1
|
Figueroa JD, Gómez-Cayupan J, Solís-Egaña F, Jara-Gutiérrez C, Valero V, Faunes M, Campbell S, Toso P, Davies MJ, Casanello P, López-Alarcón C. Oxidation products of proteins in plasma of newborns reflect damage inflicted by O 2 supplementation and correlate with gestational age. Free Radic Biol Med 2025; 232:185-193. [PMID: 40020882 DOI: 10.1016/j.freeradbiomed.2025.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/03/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Treatment of neonates, and especially preterm newborns, with supplementary O2, can result in oxidative stress and both short- and long-term health complications. Oxidation products formed on proteins, which are the principal targets of reactive species in plasma, can be used to assess damage arising from O2 therapy. We hypothesized that this may be particularly relevant for preterm neonates. Oxidation products formed on proteins in the plasma of term and preterm newborns were quantified to assess their possible use as biomarkers. Plasma samples from 114 term and preterm neonates with and without O2 supplementation (fraction of inspired oxygen, FiO2 > 21 % and 21 %, respectively) were analyzed. Total protein content and protein carbonyls were determined spectrophotometrically, whilst specific oxidation products from Tyr, Trp and Met were quantified using liquid chromatography coupled to mass detection (LC-MS). Kynurenine (Kyn), N-formylkynurenine (NFKyn), dihydroxydiphenylalanine (DOPA), 3-nitrotyrosine (3-NTyr), methionine sulfoxide (MetSO) and di-tyrosine (di-Tyr) were assessed in their protein-bound form. Alcohols, hydroperoxides and dimers of Trp were also investigated. Carbonyl groups, as well as 3-NTyr and MetSO, showed statistical differences between term and preterm neonates. However, only MetSO was sensitive to O2 supplementation in both term and preterm subjects. The plasma levels of these products showed an inverse association with gestational age. The advantages and limitations of these products as biomarkers of protein oxidation, and the experimental procedures needed to quantify these accurately, should be considered when designing future clinical investigations.
Collapse
Affiliation(s)
- Juan David Figueroa
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Gómez-Cayupan
- Departamento de Neonatología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fresia Solís-Egaña
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Jara-Gutiérrez
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Reñaca, Chile
| | - Viviana Valero
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Reñaca, Chile
| | - Miriam Faunes
- Departamento de Neonatología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Servicio de Neonatología, Hospital Clínico UC-Christus, Santiago, Chile
| | - Stephanie Campbell
- Departamento de Neonatología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Servicio de Neonatología, Hospital Clínico UC-Christus, Santiago, Chile
| | - Paulina Toso
- Departamento de Neonatología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Servicio de Neonatología, Hospital Clínico UC-Christus, Santiago, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Paola Casanello
- Departamento de Neonatología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Obstetricia, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Targonska S, Greenwell F, Agback T, Seisenbaeva GA, Kessler VG. Visualizing Catalytic Oxidation of Tryptophan by Nanoceria via an Oligonuclear Cerium Oxo-Complex Model. Inorg Chem 2025; 64:7300-7310. [PMID: 40208753 PMCID: PMC12015816 DOI: 10.1021/acs.inorgchem.4c05165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Metal oxide species interact with biologically relevant molecules, which are crucial to the life cycle of plants and animals. Metal oxides can also act as catalysts in various reactions required for proper plant development. In this study, we investigated the hydrolysis of inorganic Ce(IV) precursors in the presence of carboxylic acids, leading to the formation of oligonuclear cerium oxo-complexes. The structure of the species was obtained by X-ray single-crystal studies and found to be hexanuclear, with the composition Ce6O4(OH)4(H2O)2(NO3)3(C7H5O2)9(C3H7NO)4 (Ce-BA-DMF). The catalytic properties of these complexes on the oxidation of amino acids have been investigated, aiming to establish a transformation mechanism providing insights into both molecular and surface interactions. A redox feature assigned to the CeIV/III couple in the cerium oxo-complex was observed by cyclic voltammetry and found to be sufficiently positive to oxidize tryptophan directly, without the need for intermediate generation of reactive oxygen species. Our findings provide new insights into the possible molecular mechanisms and open the door for more targeted applications of ceria nanoparticles in agriculture and biomedicine.
Collapse
Affiliation(s)
- Sara Targonska
- Department
Of Molecular Sciences, Swedish University
Of Agricultural Sciences, Box 7015, Uppsala 750
07, Sweden
| | - Francesca Greenwell
- Department
Of Chemistry, Uppsala University, Box 523, Uppsala 751 20, Sweden
| | - Tatiana Agback
- Department
Of Molecular Sciences, Swedish University
Of Agricultural Sciences, Box 7015, Uppsala 750
07, Sweden
| | - Gulaim A. Seisenbaeva
- Department
Of Molecular Sciences, Swedish University
Of Agricultural Sciences, Box 7015, Uppsala 750
07, Sweden
| | - Vadim G. Kessler
- Department
Of Molecular Sciences, Swedish University
Of Agricultural Sciences, Box 7015, Uppsala 750
07, Sweden
| |
Collapse
|
3
|
Ferreira JDS, Figueiredo BS, Vasconcelos VVV, de Abreu ALL, Ribeiro SSDS, Kaya EN, Bulut M, Ribeiro JN, Durmuş M, Romero da Silva A. Photodynamic Inactivation of Staphylococcus aureus and Biomolecules by Free and Encapsulated Indium(III) Phthalocyanines in PHB Nanoparticles: The Influence of the Position of the Coumarin Group. Biomacromolecules 2025; 26:2076-2094. [PMID: 40165010 PMCID: PMC12004533 DOI: 10.1021/acs.biomac.4c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising alternative to inactivating resistant microorganisms. Metallic phthalocyanines (Pc) substituted with coumarin groups exhibit favorable photophysical properties for APDT; however, their hydrophobicity limits administration. This study investigates indium(III) Pc substituted with 7-oxy-3-(3',4',5'-trimethoxyphenyl)coumarin at nonperipheral (3nInOAc) and peripheral (4nInOAc) positions, both in their free form and encapsulated in polyhydroxybutyrate nanoparticles, for the photodynamic inactivation of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA) bacteria. The photodynamic activity was also assessed through the photooxidation of tryptophan and bovine serum albumin. Theoretical calculations and molecular docking were performed to corroborate the experimental results, investigating the influence of molecular structure on the photodynamic and antimicrobial performance of Pc-loaded nanoparticles as well as their nanoparticulate properties. Overall, both free and encapsulated Pc were capable of photooxidizing biomolecules and exhibited moderate antimicrobial activity, with 4nInOAc demonstrating superior efficacy, achieving an average reduction of 2 logs (99%) in MSSA and MRSA colonies.
Collapse
Affiliation(s)
- Julyana
Noval de Souza Ferreira
- Graduate
Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, Espírito Santo, Brazil
- Federal
Institute of Education, Science and Technology of Espírito
Santo, Campus Vitória, 29040-780 Vitória, Espírito Santo, Brazil
| | - Barbara Silva Figueiredo
- Graduate
Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, Espírito Santo, Brazil
| | - Vannyla Viktória Viana Vasconcelos
- Graduate
Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, Espírito Santo, Brazil
| | - Antony Luca Luna
Vieira de Abreu
- Federal
Institute of Education, Science and Technology of Espírito
Santo, Campus Aracruz, 29192-733 Aracruz, Espírito Santo, Brazil
| | - Sheila Souza da Silva Ribeiro
- Federal
Institute of Education, Science and Technology of Espírito
Santo, Campus Vitória, 29040-780 Vitória, Espírito Santo, Brazil
| | - Esra Nur Kaya
- Faculty
of Art and Science, Department of Chemistry, Marmara University, 34722 Kadıköy, İstanbul, Turkey
- Department
of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Mustafa Bulut
- Faculty
of Art and Science, Department of Chemistry, Marmara University, 34722 Kadıköy, İstanbul, Turkey
| | - Joselito Nardy Ribeiro
- Health
Science
Center, Federal University of Espírito
Santo, 29043-910 Vitória, Espírito Santo, Brazil
| | - Mahmut Durmuş
- Department
of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - André Romero da Silva
- Graduate
Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, Espírito Santo, Brazil
- Federal
Institute of Education, Science and Technology of Espírito
Santo, Campus Aracruz, 29192-733 Aracruz, Espírito Santo, Brazil
| |
Collapse
|
4
|
Li JL, Yu JH, Li WZ, Deng DJ, Xin Y, Reaney MJT, Cai ZZ, Wang Y. Optimized two-step flash chromatography method for large-scale isolation of linusorb and its antioxidant capacity evaluation. Food Res Int 2025; 207:116082. [PMID: 40086973 DOI: 10.1016/j.foodres.2025.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/31/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
The study presents a novel purification method tailored for a range of linusorbs with comparable polarity, leveraging flash chromatography, a rapid and convenient technique, for large-scale purification of linusorbs. A two-step approach employing silica-phenylhexyl strategy was first used for linusorb (LO, also known as cyclolinopeptide) preparation, yielding fractions of cyclolinopeptide A, E, O with purity exceeding 90 % for each 850 mg linusorbs load. Additionally, other eight fractions containing various LOs exhibited average purities ranging from 60 % to 83 %. Comparative assessment of antioxidant capacity of individual LOs elucidated the role of specific amino acid residues. Met residues initially contributed to LOs' antioxidant effects but declined due to oxidation of Met to MetO. Meanwhile, Trp residues exhibited stronger antioxidant capacity, enhancing the capacity of LOs lacking Met. Furthermore, the Phe-Phe structure was identified as contributing to the antioxidant effect of linusorbs. This study not only provides an efficient and scalable method for the purification of LOs but also offers insights into their antioxidant mechanisms.
Collapse
Affiliation(s)
- Jun-le Li
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, P.R. China
| | - Jia-Hui Yu
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, P.R. China
| | - Wan-Zen Li
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, P.R. China
| | - Du-Jian Deng
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, P.R. China
| | - Yue Xin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The First Affiliated Hospital, Jinan University, P.R. China
| | - Martin J T Reaney
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, Canada
| | - Zi-Zhe Cai
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, P.R. China.
| | - Yong Wang
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, P.R. China.
| |
Collapse
|
5
|
Pan W, Li Z, Tu W, Hu X, Yang J, Gao Y, Yang H, Ritzoulisa C, Niu F, Wu L. Characterizations of protein extracted from Moso bamboo shoot. Int J Biol Macromol 2025; 304:140897. [PMID: 39938823 DOI: 10.1016/j.ijbiomac.2025.140897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/01/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Low economic returns limit the widespread cultivation of bamboo, which could otherwise offer solutions to several global needs. This study aims to explore the physicochemical properties of nanoparticles (NPs) in protein solutions extracted from Moso bamboo shoots to enhance bamboo shoot applications. A 10 kDa molecular weight cutoff filter is used for protein purification, while amino acid composition analysis, SDS-PAGE, three independent spectroscopic techniques, and light scattering are employed for characterization. The purified protein was found to consist of 18 amino acids with molecular weights spreading from 30 kDa to 50 kDa. The corresponding secondary structure was also evaluated: Coiled, poly-dispersed NPs exhibited negative surface charges with sizes of ca 100 nm. ρ-Ratio decreases upon dilution operation, indicating the NPs' topology variation. Stability studies reveal that the NPs were temperature-sensitive, and electrostatic interactions between protein molecules play a key role in regulating the size and shape of the NPs.
Collapse
Affiliation(s)
- Weichun Pan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhe Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weiwei Tu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyu Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jinlai Yang
- China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Huimin Yang
- China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China
| | - Christos Ritzoulisa
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; American Farm School, 57001 Thessaloniki, Greece
| | - Fuge Niu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Liangru Wu
- China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China; Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou 310012, Zhejiang, China.
| |
Collapse
|
6
|
Mikołajczak B, Waszkowiak K, Truszkowska M, Fornal E, Montowska M. Flaxseed (Linum usitatissimum L.) protein and peptide identification of raw and roasted seeds: application of the UHPLC-Q-TOF-MS/MS method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40109240 DOI: 10.1002/jsfa.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/25/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Flax (Linum usitatissimum L.) seeds are in the spotlight due to their enormous potential as a functional food ingredient, and proteins and peptides play a crucial role in their functional food properties. Flax seeds can be added to foods during production either before or after heat pre-treatment (roasting), creating the need for thermally stable peptides as markers for flax seed identification. In this study, the proteins of untreated and roasted seeds of three flax cultivars (Jantarol, Oliwin and Szafir) were analyzed by high-resolution tandem mass spectrometry coupled to high-performance liquid chromatography (UHPLC-Q-TOF-MS/MS) to search for species-specific peptides as potential markers of flax seeds. RESULTS Twenty-three proteins found in untreated seeds of each cultivar were selected using UHPLC-Q-TOF-MS/MS. After roasting, six of them were identified based on 13 unique and species-specific peptides, and they have been suggested as potential thermally stable species-specific markers for the identification of flax seed proteins. Among them, one new unique and thermally stable peptide, DPVLAWR, was found that had not been identified in previous studies. CONCLUSION Our research has provided novel information on the protein and peptide identification of flax seeds taking into account possible cultivar diversity. In the study, the proteomics UHPLC-Q-TOF-MS/MS method was applied. In addition, heat-stable peptides were determined as a potential indicator for the identification of flax seeds after roasting, a process often used for oilseed pre-treatment. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Beata Mikołajczak
- Department of Meat Technology, Poznan University of Life Sciences, Poznań, Poland
| | - Katarzyna Waszkowiak
- Department of Gastronomy Science and Functional Foods, Poznan University of Life Sciences, Poznań, Poland
| | - Michalina Truszkowska
- Department of Gastronomy Science and Functional Foods, Poznan University of Life Sciences, Poznań, Poland
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Poznań, Poland
| |
Collapse
|
7
|
Wang Y, Leung E, Tomek P. N-formylkynurenine but not kynurenine enters a nucleophile-scavenging branch of the immune-regulatory kynurenine pathway. Bioorg Chem 2025; 156:108219. [PMID: 39891998 DOI: 10.1016/j.bioorg.2025.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
Tryptophan catabolism along the kynurenine pathway (KP) mediates key physiological functions ranging from immune tolerance to lens UV protection, but the contributory roles and chemical fates of individual KP metabolites are incompletely understood. This particularly concerns the first KP metabolite, N-formylkynurenine (NFK), canonically viewed as a transient precursor to the downstream kynurenine (KYN). Here, we challenge that canon and show that hydrolytic enzymes act as a rheostat switching NFK's fate between the canonical KP and a novel non-enzymatic branch of tryptophan catabolism. In the physiological environment (37 °C, pH 7.4), NFK deaminated into electrophilic NFK-carboxyketoalkene (NFK-CKA), which rapidly (<2 min) formed adducts with nucleophiles such as cysteine and glutathione, the key intracellular antioxidants. Serum hydrolases suppressed NFK deamination as they hydrolysed NFK to KYN ∼3 times faster than NFK deaminates. Whilst KYN did not deaminate, its deaminated product (KYN-CKA) rapidly reacted with cysteine but not glutathione. The new NFK transformations of a yet to be discovered function highlight NFK's significance beyond hydrolysis to KYN and suggests the dominance of its chemical transformations over those of KYN. Enzyme compartmentalisation and abundance offer insights into the regulation of non-enzymatic KP metabolite transformations such as KYN involved in immune regulation, protein modification, lens aging or neuropathology.
Collapse
Affiliation(s)
- Yongxin Wang
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand.
| |
Collapse
|
8
|
Elliott CI, Simmons DBD, Stotesbury T. Integrating time since deposition estimation of bloodstains into a DNA profiling workflow: A novel approach using fluorescence spectroscopy. Talanta 2025; 284:127234. [PMID: 39603014 DOI: 10.1016/j.talanta.2024.127234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Determining the time since deposition (TSD) of bloodstains is important to establish a timeline of bloodshed, while DNA profiling addresses identity (source attribution). Traditionally treated as separate processes, this study integrates TSD estimation into routine DNA profiling by analyzing typically discarded cell lysate (eluates) from spin-column-based DNA extractions. Fluorescence spectroscopy was used to analyze eluates from bloodstains deposited up to 99 weeks. Two excitation-emission matrices (EEMs) were acquired for each sample and deconvoluted using parallel factor analysis (PARAFAC) to identify individual fluorophores. For example, tryptophan demonstrated a time-dependent decrease in fluorescence. Additionally, we observed an accumulation of fluorescent oxidation products (FOX) and advanced glycation end products (AGEs) over TSD. An untargeted metabolomics high-performance liquid chromatography-mass spectrometry workflow was applied to assist with fluorophore identification. Chemometric models were used to estimate TSD from EEM fluorescence data. Boruta feature selection coupled with random forest regression outperformed all other models and achieved high accuracy, with an R2 of 0.993 and root mean square error of prediction (RMSEP) of 2.83 weeks for the full 99-week period, and an R2 of 0.987 and RMSEP of 2.06 weeks for the 1-year timeframe. Comparisons were also made between anticoagulant-free (AC-free) and anticoagulant-treated (AC-treated) bloodstains deposited up to 3 months. We noted differences in fluorescence based on AC treatment, with AC-free blood exhibiting higher FOX and lower AGE fluorescence than AC-treated blood. Our findings demonstrate the effectiveness and feasibility of integrating TSD estimation into routine forensic DNA extractions while maintaining high prediction accuracies.
Collapse
Affiliation(s)
- Colin I Elliott
- Applied Bioscience Graduate Program, Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, Ontario, L1G 0C5, Canada.
| | - Denina B D Simmons
- Faculty of Science Ontario Tech University, 2000 Simcoe St N, Oshawa, Ontario, L1G 0C5, Canada
| | - Theresa Stotesbury
- Faculty of Science Ontario Tech University, 2000 Simcoe St N, Oshawa, Ontario, L1G 0C5, Canada.
| |
Collapse
|
9
|
Palacios YB, Simonetti SO, Chavez CH, Álvarez MG, Cordero PV, Cuello EA, González López EJ, Larghi EL, Agazzi ML, Durantini EN, Heredia DA. "Illuminated Glycoporphyrins": A photodynamic approach for Candida albicans inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113105. [PMID: 39922039 DOI: 10.1016/j.jphotobiol.2025.113105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/23/2024] [Accepted: 01/21/2025] [Indexed: 02/10/2025]
Abstract
The continuous increase in the incidence of invasive mycoses, particularly those caused by Candida albicans, is a relevant health issue worldwide due to the lack of effective antifungals and the constant emergence of resistant strains. One of the most promising therapies to treat infections caused by resistant microorganisms is photodynamic inactivation (PDI). The development of novel photosensitizers (PSs) with suitable properties is a key factor to consider when optimizing this therapy. In this work, we designed, synthesized, and characterized four glycoporphyrins functionalized with S-galactose (acetylated and deacetylated) and varying the number of tertiary amino groups as precursors of cationic centers, which can be activated by protonation at physiological pH. The amino and glycosyl groups were introduced to enhance interaction with the microbial cell wall, increase hydrophilicity, and evaluate their combined effect on PS efficiency in photoinactivation. All derivatives presented the characteristic absorption and emission properties of the porphyrin macrocycle. Moreover, the glycoporphyrins were capable of generating singlet oxygen and superoxide anion radical. The photophysical and photodynamic properties were not affected by the different substitution patterns on the porphyrin core. PDI treatments of C. albicans cultures, treated with 5 μM of the PS and irradiated for 30 min, produced cellular inactivation of ∼3.5 log for glycoporphyrins with cationic centers. Furthermore, PDI of C. albicans mediated by glycoporphyrins was potentiated by the addition of KI. Under these conditions, a significant enhancement in cellular death was observed, achieving complete eradication of the treated cell suspensions. Moreover, glycoporphyrins containing pH-activable groups, combined with KI, showed outstanding efficacy against C. albicans pseudohyphae. These in vitro findings underscore the significant impact of substitution patterns on antimicrobial action. To our knowledge, this study marks the first application of glycosylated porphyrin derivatives containing pH-activatable cationic groups in the photoinactivation of C. albicans, paving the way for the development of novel derivatives with potential applications as effective antifungal PSs.
Collapse
Affiliation(s)
- Yohana B Palacios
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Sebastián O Simonetti
- IQUIR-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Claudia Hernández Chavez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
| | - María G Álvarez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Paula V Cordero
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Emma A Cuello
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Edwin J González López
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Enrique L Larghi
- IQUIR-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Maximiliano L Agazzi
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina.
| | - Daniel A Heredia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
10
|
Günal-Köroğlu D, Yılmaz H, Gultekin Subasi B, Capanoglu E. Protein oxidation: The effect of different preservation methods or phenolic additives during chilled and frozen storage of meat/meat products. Food Res Int 2025; 200:115378. [PMID: 39779159 DOI: 10.1016/j.foodres.2024.115378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Lipid and protein oxidation have significant effects on the shelf-life and nutritional value of meat and meat products. While lipid oxidation has been extensively studied, it has been recognized that proteins are also susceptible to oxidation. However, the precise mechanisms of oxygen-induced amino acid and protein modifications in the food matrix remain unclear. This review comprehensively explores the impact of various preservation techniques, including high hydrostatic pressure (HHP), irradiation (IR), and modified atmosphere packaging (MAP), on protein oxidation during chilled or frozen storage of meat products. While these techniques have shown promising results in extending shelf-life, their effects on protein oxidation are dose-dependent and must be carefully controlled to maintain product quality. Preservation techniques involving the use of phenolic additives have demonstrated synergistic effects in mitigating protein oxidation during storage. Notably, natural phenolic additives have shown comparable efficacy compared to artificial antioxidants. Additionally, incorporating phenolic additives into bio-edible films has shown promise in combating protein oxidation.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye.
| | - Hilal Yılmaz
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Türkiye.
| | - Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye.
| |
Collapse
|
11
|
Badgujar D, Bawake S, Sharma N. A comprehensive study on the identification and characterization of major degradation products of synthetic liraglutide using liquid chromatography-high resolution mass spectrometry. J Pept Sci 2025; 31:e3652. [PMID: 39162000 DOI: 10.1002/psc.3652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024]
Abstract
Liraglutide (LGT) is a synthetic glucagon-like peptide-1 analogue mainly used for the treatment of type-2 diabetes or obesity. Comprehensive stability testing is essential in the development and routine quality control of synthetic therapeutic peptide pharmaceuticals. The GLP-1 peptide drugs are usually formulated in aqueous-base solution, which can generate stability issues during manufacturing, storage or shipment. The current study endeavors to observe the chemical stability behavior of LGT by exposing the drug substance to oxidative and hydrolytic stress conditions. A simple liquid chromatography (LC) method was developed where sufficient resolution between LGT and the generated degradation products was achieved. In total, 19 degradation products (DPs) were separated under acidic, basic and oxidative stress conditions. Using LC-HRMS, MS/MS studies, the generated degradation products were identified and characterized. The mechanistic fragmentation pathway for all generated DPs were established and the plausible chemical structure for the identified DPs was predicted based on MS/MS data. The results strongly suggest that LGT is highly susceptible to degrade under oxidative and hydrolytic conditions. Furthermore, this study provides insights into the hydrolytic and oxidative stability of LGT, which can be implied during generic and novel formulation drug development and discovery in synthesizing relatively stable GLP-1 analogues.
Collapse
Affiliation(s)
- Devendra Badgujar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Sanket Bawake
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
12
|
Siemiątkowska A, Kuźnar-Kamińska B, Kosicka-Noworzyń K, Nowaczewska K, Winiarska H, Popiołek D, Kamiński F, Główka FK. A Novel Liquid Chromatography-Tandem Mass Spectrometry Method to Quantify Tryptophan and Its Major Metabolites in Serum to Support Biomarker Studies in Patients with Cancer Undergoing Immunotherapy. Molecules 2024; 30:121. [PMID: 39795179 PMCID: PMC11721486 DOI: 10.3390/molecules30010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Tryptophan (TRP) is an essential amino acid crucial for the production of many bioactive compounds. Disturbances in TRP metabolism have been revealed in various diseases, many of which are closely related to the immune system. In recent years, we have focused on finding blood-based biomarkers of successful immunotherapy in cancer. Thus, we aimed to develop a robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for TRP and its metabolites that could be used in biomarker studies. Although analyzing TRP derivatives in biological matrices is not a new topic, we encountered multiple challenges during method development. One of them was the phenomenon of cross-interferences between the analyzed molecules, which has not been explored in most published papers. We noticed that injecting a pure single-compound solution often generated a signal in the other compounds' MS/MS channels. Specifically, TRP generated unexpected peaks in the channel for kynurenine, kynurenic acid, and xanthurenic acid, while kynurenine generated peaks in the channel for kynurenic acid. We also recorded a mutual cross-talk between kynurenine and isotope-labeled TRP. Different origins of the observed cross-signal contribution were proposed. This paper draws attention to investigating cross-interferences in LC-MS/MS, especially when structurally related compounds will be analyzed. Despite all the challenges, the method was successfully validated according to international guidelines (EMA/ICH), and its applicability was confirmed in a pilot study including 20 patients with lung cancer undergoing chemoimmunotherapy.
Collapse
Affiliation(s)
- Anna Siemiątkowska
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland; (K.K.-N.); (F.K.G.)
| | - Barbara Kuźnar-Kamińska
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (B.K.-K.); (H.W.)
| | - Katarzyna Kosicka-Noworzyń
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland; (K.K.-N.); (F.K.G.)
| | - Kamila Nowaczewska
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland; (K.K.-N.); (F.K.G.)
| | - Hanna Winiarska
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (B.K.-K.); (H.W.)
| | - Dominika Popiołek
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland; (K.K.-N.); (F.K.G.)
| | - Filip Kamiński
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (B.K.-K.); (H.W.)
| | - Franciszek K. Główka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland; (K.K.-N.); (F.K.G.)
| |
Collapse
|
13
|
Chen S, Zhang X, Wang L, Chen C, Huang J, Zhang B. Microplastics alter the migration and transformation of vanadium in the riverine sediment environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177610. [PMID: 39566629 DOI: 10.1016/j.scitotenv.2024.177610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Microplastics (MPs, size <5 mm) have emerged as environmental hazards and are widespread in the environment. They can significantly alter the reactivity and mobility of co-occurring elements. Vanadium, a strategic resource, was witnessed rising in the environment because of extensive anthropogenic activities. Nevertheless, the impact of MPs on the migration and transformation of vanadium has yet been investigated. This study therefore investigated the vanadium behavior in riverine sediment and overlying river water in the presence of MPs. 1.5 g representative non-degradable MPs (polyamide, polyethylene terephthalate) and biodegradable MPs (polybutylene succinate, polyhydroxyalkanoates) were separately amended into the reactors, which contained 50 mg vanadium-rich sediment. After incubation for 60 days, vanadium in the sediments decreased substantially, while vanadium increased in the overlying water, especially in reactors amended with biodegradable MPs. The biodegradable and non-degradable MPs were found to influence vanadium behavior through distinct mechanisms. The amendment of non-degradable MPs did not substantially impact humification process, during which the mobile and reducible vanadium passively leached out from the riverine sediment and migrated into overlying water. Conversely, amendment of biodegradable MPs significantly enriched several microbial genera (e.g., Massilia) in the MPs biofilm. These genera confer heavy metal resistance and synthetic polymer degradability, and were significantly correlated with specific sediment organic matter components (C3, Ex/Em = 270/352; C4, Ex/Em = 280(370)/504). The microbial community was found to alter sediment DOM when biodegradable MPs were introduced. These changes in microbial dynamics and sediment chemistry subsequently influenced the bioavailability and mobility of vanadium within the riverine sediment.
Collapse
Affiliation(s)
- Siming Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Xinyue Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Luyao Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Cuibai Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.
| | - Jiamin Huang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.
| |
Collapse
|
14
|
Xu BJ, Lu Y, Liu N, Chen Y, Liu M, Wu QY, Du Y. Increased Toxicity toward Mammalian Cells in the Periodate Oxidation Process of Wastewater: The Overlooked Formation of Noniodinated but Nitrogenous Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22064-22075. [PMID: 39639542 DOI: 10.1021/acs.est.4c10187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Periodate (PI) shows promising potential as an oxidant for wastewater treatment; however, its impact on the toxicity of wastewater remains unknown. Here, we found that with 100 μM PI addition, the cytotoxicity of wastewater increased from 4.8 to 7.6 mg-Phenol/L to 9.5 to 12.8 mg-Phenol/L, and genotoxicity increased from 0.3 to 0.9 μg-4-NQO/L. Interestingly, hypoiodous acid (HOI) was not detected during the reaction, and there was no observed increase in the concentration of total organic iodine (TOI). CHON components in dissolved organic matter changed most obviously in PI oxidation, which might serve as primary precursors for toxic byproducts. Cytotoxicity of typical nitrogen-containing precursors of tryptophan, lysine, phenylalanine, and tyrosine after PI oxidation increased from not detected to 14.7, 2.4, 4.1, and 3.2 mg-Phenol/L, respectively. Here, four nonhalogenated aromatic nitrogenous byproducts (N-DBPs) of 3-hydroxyquinoline, 4-hydroxyquinoline, benzopyridine, and benzopyrrole were confirmed using standards, and four byproducts such as 2-formylbenzonitrile were tentatively proposed. The cytotoxicity of the four confirmed byproducts was comparable to those known N-DBPs such as nitrosamines, suggesting attention should be given to these nonhalogenated but nitrogenous byproducts. The four confirmed byproducts were detected in two PI-treated wastewater samples with concentrations of 0.8, 0.98, 0.52, and 0.0038, and 18.28, 1.50, 0.57, and 0.0074 μg/L, respectively, with contributions less than 1.5% to the overall cytotoxicity. Further investigations are warranted to elucidate the primary drivers of toxicity in PI-treated wastewater.
Collapse
Affiliation(s)
- Bao-Jun Xu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Yao Lu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Nan Liu
- Boxing Branch of Binzhou Ecological Environment Bureau, Binzhou 256500, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| |
Collapse
|
15
|
Pulliam C, Xue D, Campbell A, Older E, Li J. Discovery and Heterologous Expression of Trilenodin, an Antimicrobial Lasso Peptide with a Unique Tri-Isoleucine Motif. Chembiochem 2024; 25:e202400586. [PMID: 39225753 PMCID: PMC11664905 DOI: 10.1002/cbic.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Lasso peptides are an increasingly relevant class of peptide natural products with diverse biological activities, intriguing physical properties, and unique chemical structures. Most characterized lasso peptides have been from Actinobacteria and Proteobacteria, despite bioinformatic analyses suggesting that other bacterial taxa, particularly those from Firmicutes, are rich in biosynthetic gene clusters (BGCs) encoding lasso peptides. Herein, we report the bioinformatic identification of a lasso peptide BGC from Paenibacillus taiwanensis DSM18679 which we termed pats. We used a bioinformatics-guided isolation approach and high-resolution tandem mass spectrometry (HRMS/MS) to isolate and subsequently characterize a new lasso peptide produced from the pats BGC, which we named trilenodin, after the tri-isoleucine motif present in its primary sequence. This tri-isoleucine motif is unique among currently characterized lasso peptides. We confirmed the connection between the pats BGC and trilenodin production by establishing the first Bacillus subtilis 168-based heterologous expression system for expressing Firmicutes lasso peptides. We finally determined that trilenodin exhibits potent antimicrobial activity against B. subtilis and Klebsiella pneumoniae, making trilenodin the first characterized biologically active lasso peptide from Firmicutes. Collectively, we demonstrate that bacteria from Firmicutes can serve as high-potential sources of chemically and biologically diverse lasso peptides.
Collapse
Affiliation(s)
- Conor Pulliam
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbia, South Carolina29208United States
| | - Dan Xue
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbia, South Carolina29208United States
| | - Andrew Campbell
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbia, South Carolina29208United States
| | - Ethan Older
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbia, South Carolina29208United States
| | - Jie Li
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbia, South Carolina29208United States
| |
Collapse
|
16
|
Liang J, Tan X, Ali I, Duan Z, Huang J, Zhu R. Polystyrene microplastics enhanced the photo-degradation and -ammonification of algae-derived dissolved organic matters. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135991. [PMID: 39369677 DOI: 10.1016/j.jhazmat.2024.135991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Algae-derived organic matter (ADOM) is a key source of chromophoric dissolved organic matter (CDOM) in natural waters. When exposed to solar irradiation, ADOM undergoes gradual degradation and transformation. The escalating presence of microplastics (MPs) can act as a novel type of environmental photosensitizer, however its impacts on ADOM photodegradation remains largely unexplored. Thus, in this study, ADOM were extracted from four common algal species (Microcystis aeruginosa, Synechococcus sp., Chlorella pyrenoidosa and Scenedesmus obliquus) and exposed to UV irradiation with or without polystyrene (PS) MPs, namely ADOM+PS groups and ADOM groups, respectively. The results indicated that a more rapid degradation of amino acid-like substances (∼38 % vs. ∼22 %) and more ammonia products (1.86 vs. 1.21 mg L-1) were observed in the ADOM+PS groups compared to the ADOM groups after a five-day exposure. This enhanced photodegradation might be attributed to the production of environmentally persistent free radicals and reactive species during the photoaging of PS. Furthermore, PS-derived high electron transfer belt activity of ADOM led to the production of highly aromatic and humified products. These humic-like products could potentially accelerate the degradation of amino acid-like compounds by exciting the generation of excited triplet CDOM. This study underscores the role of MPs as environmental photosensitizers in promoting ADOM degradation and ammonia generation, providing insights on the transformation of ADOM mediated by emerging pollutants and its impact on aquatic carbon and nitrogen cycles.
Collapse
Affiliation(s)
- Jia Liang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Rui Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
17
|
Sharma M, Goksen G, Ali N, Janghu S, Parvez MK, Al-Dosari MS, Bhaswant M, Chawla P. Advancing antimicrobial efficacy of Cucumis momordica seeds: Nanoemulsion application in Eurotium cristatum-mediated solid-state fermentation. FOOD AND BIOPRODUCTS PROCESSING 2024; 148:507-518. [DOI: 10.1016/j.fbp.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
|
18
|
Cvetkova S, Edinger S, Zimmermann D, Woll B, Stahl M, Scharfenberger-Schmeer M, Richling E, Durner D. 2-Aminoacetophenone formation through UV-C induced degradation of tryptophan in the presence of riboflavin in model wine: Role of oxygen and transition metals. Food Chem 2024; 459:140259. [PMID: 39089197 DOI: 10.1016/j.foodchem.2024.140259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 08/03/2024]
Abstract
2-Aminoacetophenone is an off-flavor that can result from tryptophan degradation via riboflavin-photosensitized reaction. This study investigates the impact of light exposure, provided by a UV-C source, oxygen concentrations and transition metals on the formation of 2-aminoacetophenone in model wine containing tryptophan and riboflavin. Irrespective of oxygen and transition metals, >85% of tryptophan were degraded via first-order kinetics to unknown product(s). However, longer light exposure and more oxygen caused 2-aminoacetophenone concentrations to increase. Transition metals decelerated the 2-aminoacetophenone formation and acetaldehyde was formed suggesting photo-Fenton reaction occurred as a competitive reaction. The degradation rate of riboflavin inclined with less oxygen and in the presence of transition metals due to the depletion of oxygen by photo-Fenton reaction. Oxygen plays an important role in the regeneration of riboflavin and therefore must be seen as an intensifier for light-induced 2-aminoacetophenone formation. This paper provides new insights into riboflavin-photosensitized reactions.
Collapse
Affiliation(s)
- Svetlana Cvetkova
- Weincampus Neustadt, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt a. d. Weinstraße, Germany
| | - Sarah Edinger
- Weincampus Neustadt, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt a. d. Weinstraße, Germany
| | - Daniel Zimmermann
- Weincampus Neustadt, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt a. d. Weinstraße, Germany
| | - Benedikt Woll
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Mario Stahl
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Maren Scharfenberger-Schmeer
- Weincampus Neustadt, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt a. d. Weinstraße, Germany
| | - Elke Richling
- Departmant of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663 Kaiserslautern, Germany
| | - Dominik Durner
- Weincampus Neustadt, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt a. d. Weinstraße, Germany.
| |
Collapse
|
19
|
Gao Q, Hägglund P, Gamon LF, Davies MJ. Mapping of oxidative modifications on the alpha-keto glutarate dehydrogenase complex induced by singlet oxygen: Effects on structure and activity. Free Radic Biol Med 2024; 224:723-739. [PMID: 39299525 DOI: 10.1016/j.freeradbiomed.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The large multi-subunit mitochondrial alpha-keto glutarate dehydrogenase (KGDH) complex plays a key, rate-determining, role in the tricarboxylic acid (Krebs) cycle, catalyzing the conversion of alpha-keto glutarate to succinyl-CoA. This complex is both a source and target of oxidants, but the sites of modification and association with structural changes and activity loss are poorly understood. We report here oxidative modifications induced by Rose Bengal (RB) in the presence of O2, a source of singlet oxygen (1O2). A rapid loss of activity was detected, with this being dependent on light exposure, illumination time, and the presence of RB and O2. Activity loss was enhanced by D2O (consistent with 1O2 involvement), but diminished by both pre- and (to a lesser extent) post-illumination addition of lipoic acid and lipoamide. Aggregates containing all three KGDH subunits were detected on photooxidation. LC-MS experiments provided evidence for oxidation at 45 sites, including specific Met, His, Trp, Tyr residues and the lipoyllysine active-site cofactor. Products include mono- and di-oxygenated species, and kynurenine from Trp. Mapping of the modifications to the 3-D structure showed that these are localized to both the inner channel and the external surface, consistent with reactions of free 1O2, however the sites and extent of modification do not correlate with their solvent accessibility. These products are generated concurrently with loss of activity, indicative of strong links between these events. These data provide evidence for the impairment of KGDH activity by 1O2 via the oxidation of specific residues on the protein subunits of the complex.
Collapse
Affiliation(s)
- Qing Gao
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
20
|
Liu H, Zhan L, Zhao J, Zhang S, Yin H, Hou Z, Huang G. Paper Spray Ionization Mass Spectrometry Coupled with Paper-Based Three-Dimensional Tumor Model for Rapid Metabolic Gradient Profiling. Anal Chem 2024; 96:16706-16714. [PMID: 39387545 DOI: 10.1021/acs.analchem.4c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The tumor microenvironment (TME), especially with its complicated metabolic characteristics, will dynamically affect the proliferation, migration, and drug response of tumor cells. Rapid metabolic analysis brings out a deeper understanding of the TME, while the susceptibility and environmental dependence of metabolites extremely hinder real-time metabolic profiling since the TME is easily disrupted. Here, we directly integrated paper spray ionization mass spectrometry with a paper-based three-dimensional (3D) tumor model, realizing the rapid capture of metabolic gradients. The entire procedure, from sample preparation to mass spectrometry detection, took less than 4 min, which was able to provide metabolic results close to real time and contributed to understanding the real metabolic processes. At present, our method successfully detected 160 metabolites; notably, over 40 significantly gradient metabolites were revealed across the six layers of the paper-based 3D tumor model. At least 22 gradient metabolites were reported to be associated with cell viability. This strategy was powerful enough to rapidly profile metabolic gradients of a paper-based 3D tumor model for revealing cell viability changes from a metabolomics perspective.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Liujuan Zhan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jia Zhao
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Shan Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hao Yin
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
21
|
Pastrana EC, Valdivia-Alvarez D, Radenovich IE, Gonzales-Lorenzo CD, Wang D, de Brito JF, Zanoni MVB, Alarcón HA. Synthesis of a novel bismuth molybdite/iron oxide thin film for oxytetracycline degradation in a photoelectrocatalytic system. CHEMOSPHERE 2024; 366:143505. [PMID: 39384136 DOI: 10.1016/j.chemosphere.2024.143505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
In this study, heterostructures based on Bismuth molybdite/iron oxide (Bi2MoO6/Fe2O3) thin films were fabricated by a dip-coating technique using precursor solutions. The heterostructures were deposited on fluorine-doped tin oxide glass substrates. From a detailed characterization using X-ray diffraction and X-ray photoelectron spectroscopy, the formation of the orthorhombic phase for Bi2MoO6 and the co-existence of hematite and maghemite in Fe2O3 was demonstrated. Meanwhile, the field emission scanning electron microscopy cross-section images confirm the formation of well-defined Bi2MoO6 film under the Fe2O3 deposition. The optical band gap energies for the heterostructure obtained were estimated from the diffuse reflectance spectra and ranged from 2.3 to 3.5 eV. Photoluminescence analysis revealed an improved separation and faster transfer of photogenerated electrons and holes for the Bi2MoO6/Fe2O3 (Het) film. The best oxytetracycline (OTC) removal percentage through photoelectrocatalytic treatment was 96.85% using the Het. Besides, were carried out the variation of parameters which affect the OTC photoelectrocatalytic degradation as pH, potential applied, and scavenger assay. The 1O2 was the oxidant predominate, which attack the OTC ring to initiate and accelerate the degradation process. Based on the analysis of degradation intermediates and characteristics of Bi2MoO6/Fe2O3, possible degradation pathways and mechanisms of OTC were displayed. An enhancement of oxytetracycline degradation efficiency of Het fabricated compared to pristine oxides was achieved mainly due to avoid the charge recombination of photogenerated electron-hole pairs provided by Direct Z-scheme heterostructure. Finally, the Het fabricated represents a promising material for efficient and sustainable pharmaceutical removal applications.
Collapse
Affiliation(s)
- Elizabeth C Pastrana
- Center for the Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima, Peru.
| | - Daniel Valdivia-Alvarez
- Center for the Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima, Peru.
| | - Italo Espinoza Radenovich
- Center for the Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima, Peru.
| | | | - Dunwei Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA.
| | - Juliana Ferreira de Brito
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara. National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), Av. Prof. Francisco Degni, 55, 14800-060, Araraquara, SP, Brazil.
| | - Maria Valnice Boldrin Zanoni
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara. National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), Av. Prof. Francisco Degni, 55, 14800-060, Araraquara, SP, Brazil.
| | - Hugo A Alarcón
- Center for the Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima, Peru.
| |
Collapse
|
22
|
Klein A, Leiss-Maier F, Mühlhofer R, Boesen B, Mustafa G, Kugler H, Zeymer C. A De Novo Metalloenzyme for Cerium Photoredox Catalysis. J Am Chem Soc 2024; 146:25976-25985. [PMID: 39115259 PMCID: PMC11440500 DOI: 10.1021/jacs.4c04618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/26/2024]
Abstract
Cerium photoredox catalysis has emerged as a powerful strategy to activate molecules under mild conditions. Radical intermediates are formed using visible light and simple complexes of the earth-abundant lanthanide. Here, we report an artificial photoenzyme enabling this chemistry inside a protein. We utilize a de novo designed protein scaffold that tightly binds lanthanide ions in its central cavity. Upon visible-light irradiation, the cerium-dependent enzyme catalyzes the radical C-C bond cleavage of 1,2-diols in aqueous solution. Protein engineering led to variants with improved photostability and metal binding behavior. The photoenzyme cleaves a range of aromatic and aliphatic substrates, including lignin surrogates. Surface display of the protein scaffold on Escherichia coli facilitates whole-cell photobiocatalysis. Furthermore, we show that also natural lanthanide-binding proteins are suitable for this approach. Our study thus demonstrates a new-to-nature enzymatic photoredox activity with broad catalytic potential.
Collapse
Affiliation(s)
- Andreas
Sebastian Klein
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Florian Leiss-Maier
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Rahel Mühlhofer
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Benedikt Boesen
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Ghulam Mustafa
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Hannah Kugler
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Cathleen Zeymer
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
- TUM
Catalysis Research Center, Technical University
of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
23
|
Farías JJ, Dántola ML, Thomas AH. Photosensitized Oxidation of Free and Peptide Tryptophan to N-Formylkynurenine. Chem Res Toxicol 2024; 37:1562-1573. [PMID: 39105764 DOI: 10.1021/acs.chemrestox.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The oxidation of proteins and, in particular, of tryptophan (Trp) residues leads to chemical modifications that can affect the structure and function. The oxidative damage to proteins in photochemical processes is relevant in the skin and eyes and is related to a series of pathologies triggered by exposure to electromagnetic radiation. In this work, we studied the photosensitized formation of N-formylkynurenine (NFKyn) from Trp in different reaction systems. We used two substrates: free Trp and a peptide of nine amino acid residues, with Trp being the only oxidizable residue. Two different photosensitizers were employed: Rose Bengal (RB) and pterin (Ptr). The former is a typical type II photosensitizer [acts by producing singlet oxygen (1O2)]. Ptr is the parent compound of oxidized or aromatic pterins, natural photosensitizers that accumulate in human skin under certain pathological conditions and act mainly through type I mechanisms (generation of radicals). Experimental data were collected in steady photolysis, and the irradiated solutions were analyzed by chromatography (HPLC). Results indicate that the reaction of Trp with 1O2 initiates the process leading to NFKyn, but different competitive pathways take place depending on the photosensitizer and the substrate. In Ptr-photosensitization, a type I mechanism is involved in secondary reactions accelerating the formation of NFKyn when free Trp is the substrate.
Collapse
Affiliation(s)
- Jesuán J Farías
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata 1900, Argentina
| | - M Laura Dántola
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata 1900, Argentina
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata 1900, Argentina
| |
Collapse
|
24
|
Colpaert T, Risseeuw M, Deventer K, Van Eenoo P. Investigating the detection of the novel doping‐relevant peptide kisspeptin‐10 in urine using liquid chromatography high‐resolution mass spectrometry. Biomed Chromatogr 2024; 38:e5946. [PMID: 38978171 DOI: 10.1002/bmc.5946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024]
Abstract
Kisspeptin-10 is a peptide hormone capable of increasing circulating follicle-stimulating hormone, luteinizing hormone and testosterone levels in humans. Clinically, these effects suggest its use as a treatment for infertility. However, its testosterone-increasing effect indicates potential misuse in sports. As such, it is included in the 2024 World Anti-Doping Agency Prohibited List. This work describes the successful validation of an initial testing procedure (screening) and a confirmation procedure for kisspeptin-10 in urine using liquid chromatography-mass spectrometry. Additionally, kisspeptin-10 was incubated in human serum to mimic endogenous metabolism to improve method sensitivity, as previous research had demonstrated a rapid elimination time of only 30 min after injection (in rats). Four metabolites, corresponding to peptide fragments y9, y8, y7 and y5, were found and added to the ITP in full scan mode. A degradation product discovered during early experimentation was found to probably be caused by oxidation of the tryptophan residue into a kynurenine residue. Further research should elucidate the kinetic parameters of the reaction to improve product stability. Using the validated confirmation procedure, a black-market vial of kisspeptin-10 was analysed. The product contained no unexpected impurities, although it appeared to have undergone more degradation than the purchased reference standard.
Collapse
Affiliation(s)
- Thibo Colpaert
- Doping Control Laboratory, Department Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Martijn Risseeuw
- Laboratory of Medicinal Chemistry, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Koen Deventer
- Doping Control Laboratory, Department Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory, Department Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Nuruzzaman M, Colella BM, Nizam ZM, Cho IJ, Zagorski J, Ohata J. Redox-neutral, metal-free tryptophan labeling of polypeptides in hexafluoroisopropanol (HFIP). RSC Chem Biol 2024; 5:d4cb00142g. [PMID: 39234575 PMCID: PMC11368038 DOI: 10.1039/d4cb00142g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Despite the unmet needs for chemical tools to study biological roles of tryptophan in living systems, there has been a lack of chemical modification methods for tryptophan residues that can be used in cellular environments. Driven by a preliminary computational study of our previous research, this work experimentally examined our hypotheses to translate the metal-catalyzed tryptophan modification method in hexafluoroisopropanol (HFIP) into a metal-free process. While one of the hypotheses merely confirmed the superiority of the thiophene-ethanol reagent developed in the previous report, the second hypothesis resulted in the identification of a trifluoroborate salt and an acidic ionic liquid as alternatives for the catalysis. Labeling of lysates of a human cell line was achieved with the acidic ionic liquid catalyst, where negative impacts of the tryptophan labeling and HFIP medium on the cellular samples were apparently insignificant. Because the labeling process does not require any redox mediators and is a formal redox-neutral reaction, the metal-free approach would be of use for tryptophan biology research potentially related to their various redox roles.
Collapse
Affiliation(s)
- Mohammad Nuruzzaman
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Brandon M Colella
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Zeinab M Nizam
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Isaac JiHoon Cho
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Julia Zagorski
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Jun Ohata
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| |
Collapse
|
26
|
Kulbay M, Wu KY, Nirwal GK, Bélanger P, Tran SD. Oxidative Stress and Cataract Formation: Evaluating the Efficacy of Antioxidant Therapies. Biomolecules 2024; 14:1055. [PMID: 39334822 PMCID: PMC11430732 DOI: 10.3390/biom14091055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
This comprehensive review investigates the pivotal role of reactive oxygen species (ROS) in cataract formation and evaluates the potential of antioxidant therapies in mitigating this ocular condition. By elucidating the mechanisms of oxidative stress, the article examines how ROS contribute to the deterioration of lens proteins and lipids, leading to the characteristic aggregation, cross-linking, and light scattering observed in cataracts. The review provides a thorough assessment of various antioxidant strategies aimed at preventing and managing cataracts, such as dietary antioxidants (i.e., vitamins C and E, lutein, and zeaxanthin), as well as pharmacological agents with antioxidative properties. Furthermore, the article explores innovative therapeutic approaches, including gene therapy and nanotechnology-based delivery systems, designed to bolster antioxidant defenses in ocular tissues. Concluding with a critical analysis of current research, the review offers evidence-based recommendations for optimizing antioxidant therapies. The current literature on the use of antioxidant therapies to prevent cataract formation is sparse. There is a lack of evidence-based conclusions; further clinical studies are needed to endorse the use of antioxidant strategies in patients to prevent cataractogenesis. However, personalized treatment plans considering individual patient factors and disease stages can be applied. This article serves as a valuable resource, providing insights into the potential of antioxidants to alleviate the burden of cataracts.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada
| | - Kevin Y Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J4K 0A8, Canada
| | - Gurleen K Nirwal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Paul Bélanger
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J4K 0A8, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
27
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
28
|
Nguyen NTH, Tran GT, Nguyen TTT, Nguyen DTC, Tran TV. Synthesis of MnFe 2O 4/activated carbon derived from durian shell waste for removal of indole in water: Optimization, modelling, and mechanism. ENVIRONMENTAL RESEARCH 2024; 254:118883. [PMID: 38583658 DOI: 10.1016/j.envres.2024.118883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
While durian shell is often discharged into landfills, this waste can be a potential and zero-cost raw material to synthesize carbon-based adsorbents with purposes of saving costs and minimizing environmental contamination. Indole (IDO) is one of serious organic pollutants that influence aquatic species and human health; hence, the necessity for IDO removal is worth considering. Here, we synthesized a magnetic composite, denoted as MFOAC, based on activated carbon (AC) derived from durian shell waste incorporated with MnFe2O4 (MFO) to adsorb IDO in water. MFOAC showed a microporous structure, along with a high surface area and pore volume, at 518.9 m2/g, and 0.106 cm3/g, respectively. Optimization of factors affecting the IDO removal of MFOAC were implemented by Box-Behnken design and response surface methodology. Adsorption kinetics and isotherms suggested a suitable model for MFOAC to remove IDO. MFOAC was recyclable with 3 cycles. Main interactions involving in the IDO adsorption mechanism onto MFOAC were clarified, including pore filling, n-π interaction, π-π interaction, Yoshida H-bonding, H-bonding.
Collapse
Affiliation(s)
- Nhu Thi Huynh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Giang Thanh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | | | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
29
|
Li WZ, Song ZL, Li JL, Yu JH, Deng DJ, Cai XQ, J T Reaney M, Cai ZZ, Wang Y. Stability of tryptophan-containing LOs in flaxseed oil and their response towards γ-tocopherol. Food Chem 2024; 448:139026. [PMID: 38531298 DOI: 10.1016/j.foodchem.2024.139026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
Linusorbs (LOs), significantly influence oil quality and sensory properties of flaxseed oil. Trp-containing LOs exhibit distinct oxidative behavior when γ-tocopherol (γ-T) is present. Polar fractions of crude flaxseed oil were stripped via silica absorption, and reintroduced (LO and γ-T) separately into the oil matrix to investigate their interaction during storage. Compared with crude oil, LOs account for 18.49% reduction of p-anisidine value, while LOs with γ-T contributed to most of the endogenous antioxidant effect in crude oil. γ-T was found to suppress oxidation of Trp-containing LO at early stage (Met form), while facilitate oxidation while at their mid-stage (MetO form, Methionine sulfoxide). In vitro oxidation shows that CLD more likely cleaved into peptide fragments, while few products retain intact ring structures. LC-MS/MS analysis and silicon simulation revealed proximity between MetO and Trp residues, facilitating inter- or intra-molecular reactions and ring structure rupture. Remarkably, the presence of γ-T facilitate these phenomena.
Collapse
Affiliation(s)
- Wan-Zhen Li
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Zi-Liang Song
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jun-le Li
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jia-Hui Yu
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Du-Jian Deng
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xiao-Qing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Martin J T Reaney
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, Canada
| | - Zi-Zhe Cai
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Yong Wang
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
30
|
Wei W, Chu F, Chen G, Zhou S, Sun C, Feng H, Pan Y. Prebiotic Formation of Peptides Through Bubbling and Arc Plasma. Chemistry 2024; 30:e202401809. [PMID: 38802327 DOI: 10.1002/chem.202401809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The abiotic synthesis of peptides, widely regarded as one of the key chemical reactions on the prebiotic Earth, is thermodynamically constrained in solution. Herein, a simulation of the lightning phenomenon on the sea surface using bubble bursting and arc plasma under ambient conditions enables dipeptide formation of six amino acids with conversion ratios ranging from 2.6 % to 25.5 %. Additionally, we observed the formation of biologically active tripeptides and investigated the stereoselectivity of the dipeptide formation reaction. By utilizing a mixture of 20 amino acids in the reaction, 102 possible dipeptides were generated. These results establish experimental constructions to mimic achievable prebiotic conditions and provide a credible pathway for endogenous biopolymer synthesis on prebiotic Earth.
Collapse
Affiliation(s)
- Wei Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fengjian Chu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guanru Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Shiwen Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Cuirong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
31
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
32
|
Dowty ME, Qiu R, Dantonio A, Niosi M, Doran A, Balesano A, Wright SW, Walker GS, Sharma R. The Metabolism and Disposition of Brepocitinib in Humans and Characterization of the Formation Mechanism of an Aminopyridine Metabolite. Drug Metab Dispos 2024; 52:690-702. [PMID: 38719744 DOI: 10.1124/dmd.124.001750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 06/19/2024] Open
Abstract
Brepocitinib is an oral once-daily Janus kinase 1 and Tyrosine kinase 2 selective inhibitor currently in development for the treatment of several autoimmune disorders. Mass balance and metabolic profiles were determined using accelerator mass spectrometry in six healthy male participants following a single oral 60 mg dose of 14C-brepocitinib (∼300 nCi). The average mass balance recovery was 96.7% ± 6.3%, with the majority of dose (88.0% ± 8.0%) recovered in urine and 8.7% ± 2.1% of the dose recovered in feces. Absorption of brepocitinib was rapid, with maximal plasma concentrations of total radioactivity and brepocitinib achieved within 0.5 hours after dosing. Circulating radioactivity consisted primarily of brepocitinib (47.8%) and metabolite M1 (37.1%) derived from hydroxylation at the C5' position of the pyrazole ring. Fractional contributions to metabolism via cytochrome P450 enzymes were determined to be 0.77 for CYP3A4/5 and 0.14 for CYP1A2 based on phenotyping studies in human liver microsomes. However, additional clinical studies are required to understand the potential contribution of CYP1A1. Approximately 83% of the dose was eliminated as N-methylpyrazolyl oxidative metabolites, with 52.1% of the dose excreted as M1 alone. Notably, M1 was not observed as a circulating metabolite in earlier metabolic profiling of human plasma from a multiple ascending dose study with unlabeled brepocitinib. Mechanistic studies revealed that M1 was highly unstable in human plasma and phosphate buffer, undergoing chemical oxidation leading to loss of the 5-hydroxy-1-methylpyrazole moiety and formation of aminopyrimidine cleavage product M2. Time-dependent inhibition and trapping studies with M1 yielded insights into the mechanism of this unusual and unexpected instability. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of brepocitinib, a JAK1/TYK2 inhibitor for atopic dermatitis, in humans as well as characterization of clearance pathways and pharmacokinetics of brepocitinib and its metabolites.
Collapse
Affiliation(s)
- Martin E Dowty
- Pharmacokinetics, Dynamics, and Metabolism (M.E.D.) and Clinical Pharmacology (R.Q.), Pfizer Inc., Cambridge, Massachusetts and Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut (Al.D., M.N., An.D., A.B., S.W.W., G.S.W., R.S.)
| | - Ruolun Qiu
- Pharmacokinetics, Dynamics, and Metabolism (M.E.D.) and Clinical Pharmacology (R.Q.), Pfizer Inc., Cambridge, Massachusetts and Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut (Al.D., M.N., An.D., A.B., S.W.W., G.S.W., R.S.)
| | - Alyssa Dantonio
- Pharmacokinetics, Dynamics, and Metabolism (M.E.D.) and Clinical Pharmacology (R.Q.), Pfizer Inc., Cambridge, Massachusetts and Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut (Al.D., M.N., An.D., A.B., S.W.W., G.S.W., R.S.)
| | - Mark Niosi
- Pharmacokinetics, Dynamics, and Metabolism (M.E.D.) and Clinical Pharmacology (R.Q.), Pfizer Inc., Cambridge, Massachusetts and Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut (Al.D., M.N., An.D., A.B., S.W.W., G.S.W., R.S.)
| | - Angela Doran
- Pharmacokinetics, Dynamics, and Metabolism (M.E.D.) and Clinical Pharmacology (R.Q.), Pfizer Inc., Cambridge, Massachusetts and Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut (Al.D., M.N., An.D., A.B., S.W.W., G.S.W., R.S.)
| | - Amanda Balesano
- Pharmacokinetics, Dynamics, and Metabolism (M.E.D.) and Clinical Pharmacology (R.Q.), Pfizer Inc., Cambridge, Massachusetts and Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut (Al.D., M.N., An.D., A.B., S.W.W., G.S.W., R.S.)
| | - Stephen W Wright
- Pharmacokinetics, Dynamics, and Metabolism (M.E.D.) and Clinical Pharmacology (R.Q.), Pfizer Inc., Cambridge, Massachusetts and Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut (Al.D., M.N., An.D., A.B., S.W.W., G.S.W., R.S.)
| | - Gregory S Walker
- Pharmacokinetics, Dynamics, and Metabolism (M.E.D.) and Clinical Pharmacology (R.Q.), Pfizer Inc., Cambridge, Massachusetts and Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut (Al.D., M.N., An.D., A.B., S.W.W., G.S.W., R.S.)
| | - Raman Sharma
- Pharmacokinetics, Dynamics, and Metabolism (M.E.D.) and Clinical Pharmacology (R.Q.), Pfizer Inc., Cambridge, Massachusetts and Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut (Al.D., M.N., An.D., A.B., S.W.W., G.S.W., R.S.)
| |
Collapse
|
33
|
Zhang M, Fu JJ, Mao JL, Dong XP, Chen YW. Correlations of dynamic changes in lipid and protein of salted large yellow croaker during storage. Food Res Int 2024; 186:114410. [PMID: 38729706 DOI: 10.1016/j.foodres.2024.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Protein and lipid are two major components that undergo significant changes during processing of aquatic products. This study focused on the protein oxidation, protein conformational states, lipid oxidation and lipid molecule profiling of salted large yellow croaker during storage, and their correlations were investigated. The degree of oxidation of protein and lipid was time-dependent, leading to an increase in carbonyl content and surface hydrophobicity, a decrease in sulfhydryl groups, and an increase in conjugated diene, peroxide value and thiobarbituric acid reactive substances value. Oxidation caused protein structure denaturation and aggregation during storage. Lipid composition and content changed dynamically, with polyunsaturated phosphatidylcholine (PC) was preferentially oxidized compared to polyunsaturated triacylglycerol. Correlation analysis showed that the degradation of polyunsaturated key differential lipids (PC 18:2_20:5, PC 16:0_22:6, PC 16:0_20:5, etc.) was closely related to the oxidation of protein and lipid. The changes in protein conformation and the peroxidation of polyunsaturated lipids mutually promote each other's oxidation process.
Collapse
Affiliation(s)
- Min Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou Zhejiang 310035, China
| | - Jun-Long Mao
- School of Food Science and Biotechnology, Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou Zhejiang 310035, China
| | - Xiu-Ping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Yue-Wen Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; School of Food Science and Biotechnology, Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou Zhejiang 310035, China.
| |
Collapse
|
34
|
Esfandi R, Willmore WG, Tsopmo A. Structural characterization of peroxyl radical oxidative products of antioxidant peptides from hydrolyzed proteins. Heliyon 2024; 10:e30588. [PMID: 38765145 PMCID: PMC11101819 DOI: 10.1016/j.heliyon.2024.e30588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
This work aimed to characterize oxidative products of five unique antioxidant peptides (P1: YFDEQNEQFR, P2: GQLLIVPQ, P3: SPFWNINAH, P4: NINAHSVVY, P5: RALPIDVL) from hydrolyzed oat proteins. Peptides were reacted with 2,2'-Azobis(2-amidinopropane) dihydrochloride, a common peroxyl radical generator. Chromatographic data showed that peptide P3 was the most oxidized (67 ± 4 %) while also displaying the most ability to scavenge radicals in the oxygen absorbance capacity assay (ORAC) with an activity of 2.16 ± 0.09 μM Trolox equivalents/μM peptide. Structural characterization using mass spectrometry showed the presence of four oxidative products of P3, three of which were mono-oxygenated and the fourth di-oxygenated. The identification of these oxidative products is new and provides an opportunity to investigate their biological function. A good correlation (r = 0.889) between the degree of oxidation and the ORAC data, demonstrates the usefulness of using oxidative peptide data to predict their radical scavenging activities.
Collapse
Affiliation(s)
- Ramak Esfandi
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - William G. Willmore
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
35
|
Nefedova A, Svensson FG, Vanetsev AS, Agback P, Agback T, Gohil S, Kloo L, Tätte T, Ivask A, Seisenbaeva GA, Kessler VG. Molecular Mechanisms in Metal Oxide Nanoparticle-Tryptophan Interactions. Inorg Chem 2024; 63:8556-8566. [PMID: 38684718 PMCID: PMC11094791 DOI: 10.1021/acs.inorgchem.3c03674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
One of the crucial metabolic processes for both plant and animal kingdoms is the oxidation of the amino acid tryptophan (TRP) that regulates plant growth and controls hunger and sleeping patterns in animals. Here, we report revolutionary insights into how this process can be crucially affected by interactions with metal oxide nanoparticles (NPs), creating a toolbox for a plethora of important biomedical and agricultural applications. Molecular mechanisms in TRP-NP interactions were revealed by NMR and optical spectroscopy for ceria and titania and by X-ray single-crystal study and a computational study of model TRP-polyoxometalate complexes, which permitted the visualization of the oxidation mechanism at an atomic level. Nanozyme activity, involving concerted proton and electron transfer to the NP surface for oxides with a high oxidative potential, like CeO2 or WO3, converted TRP in the first step into a tricyclic organic acid belonging to the family of natural plant hormones, auxins. TiO2, a much poorer oxidant, was strongly binding TRP without concurrent oxidation in the dark but oxidized it nonspecifically via the release of reactive oxygen species (ROS) in daylight.
Collapse
Affiliation(s)
- Alexandra Nefedova
- Institute
of Physics, University of Tartu, W.Ostwaldi 1, 50411 Tartu, Estonia
| | - Fredric G. Svensson
- Department
of Solid State Physics, Ångström Laboratory, Uppsala University, Box 35, SE-75103 Uppsala, Sweden
| | | | - Peter Agback
- Department
of Molecular Science, BioCenter, Swedish
University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden
| | - Tatiana Agback
- Department
of Molecular Science, BioCenter, Swedish
University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden
| | - Suresh Gohil
- Department
of Molecular Science, BioCenter, Swedish
University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden
| | - Lars Kloo
- Applied
Physical Chemistry, KTH Royal Institute
of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Tanel Tätte
- Institute
of Physics, University of Tartu, W.Ostwaldi 1, 50411 Tartu, Estonia
| | - Angela Ivask
- Institute
of Molecular and Cell Biology, University
of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Gulaim A. Seisenbaeva
- Department
of Molecular Science, BioCenter, Swedish
University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden
| | - Vadim G. Kessler
- Department
of Molecular Science, BioCenter, Swedish
University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden
| |
Collapse
|
36
|
Chidley C, Darnell AM, Gaudio BL, Lien EC, Barbeau AM, Vander Heiden MG, Sorger PK. A CRISPRi/a screening platform to study cellular nutrient transport in diverse microenvironments. Nat Cell Biol 2024; 26:825-838. [PMID: 38605144 PMCID: PMC11098743 DOI: 10.1038/s41556-024-01402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Blocking the import of nutrients essential for cancer cell proliferation represents a therapeutic opportunity, but it is unclear which transporters to target. Here we report a CRISPR interference/activation screening platform to systematically interrogate the contribution of nutrient transporters to support cancer cell proliferation in environments ranging from standard culture media to tumours. We applied this platform to identify the transporters of amino acids in leukaemia cells and found that amino acid transport involves high bidirectional flux dependent on the microenvironment composition. While investigating the role of transporters in cystine starved cells, we uncovered a role for serotonin uptake in preventing ferroptosis. Finally, we identified transporters essential for cell proliferation in subcutaneous tumours and found that levels of glucose and amino acids can restrain proliferation in that environment. This study establishes a framework for systematically identifying critical cellular nutrient transporters, characterizing their function and exploring how the tumour microenvironment impacts cancer metabolism.
Collapse
Affiliation(s)
- Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin L Gaudio
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Evan C Lien
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna M Barbeau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Seager MD, Seager S, Bains W, Petkowski JJ. Stability of 20 Biogenic Amino Acids in Concentrated Sulfuric Acid: Implications for the Habitability of Venus' Clouds. ASTROBIOLOGY 2024; 24:386-396. [PMID: 38498680 PMCID: PMC11035925 DOI: 10.1089/ast.2023.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/01/2024] [Indexed: 03/20/2024]
Abstract
Scientists have long speculated about the potential habitability of Venus, not at the 700K surface, but in the cloud layers located at 48-60 km altitudes, where temperatures match those found on Earth's surface. However, the prevailing belief has been that Venus' clouds cannot support life due to the cloud chemical composition of concentrated sulfuric acid-a highly aggressive solvent. In this work, we study 20 biogenic amino acids at the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest water) and temperatures. We find 19 of the biogenic amino acids we tested are either unreactive (13 in 98% w/w and 12 in 81% w/w) or chemically modified in the side chain only, after 4 weeks. Our major finding, therefore, is that the amino acid backbone remains intact in concentrated sulfuric acid. These findings significantly broaden the range of biologically relevant molecules that could be components of a biochemistry based on a concentrated sulfuric acid solvent.
Collapse
Affiliation(s)
- Maxwell D. Seager
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Nanoplanet Consulting, Concord, Massachusetts, USA
| | - Sara Seager
- Nanoplanet Consulting, Concord, Massachusetts, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Physics & Astronomy, Cardiff University, Cardiff, United Kingdom
- Rufus Scientific, Royston, United Kingdom
| | - Janusz J. Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
- JJ Scientific, Warsaw, Poland
| |
Collapse
|
38
|
Asghar A, Lipfert D, Kerpen K, Schmidt TC. Elucidating the inhibitory effects of natural organic matter on the photodegradation of organic micropollutants: Atrazine as a probe compound. CHEMOSPHERE 2024; 352:141390. [PMID: 38325617 DOI: 10.1016/j.chemosphere.2024.141390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Natural organic matter (NOM) is a complex mixture of heterogeneous compounds with varying functional groups and molecular sizes. Understanding the impact of NOM on the generation of photochemically produced reactive intermediates (PPRIs) and their potential inhibitory effects on photolysis has remained challenging due to the variations in the reactivities and concentrations of these functional groups. To address this gap, tannic acid (TA), gallic acid (GA), catechin (CAT), and tryptophan (Trp), were chosen as potential substitutes for NOM. Their effects on the photochemical transformation process were evaluated and compared with the widely used Suwannee River NOM (SRNOM). Atrazine (ATZ) was selected as a probe organic micropollutant (OMP). In this investigation, a significantly higher concentration of HO• was observed compared to O21, and the triplet excited state ( NOM*3). The findings suggest that the substituted phenols, particularly those with carboxylate-substitutions, played a substantial role in HO• formation, while electron-rich moieties acted as antioxidants, consuming NOM*3. Hydroxyl, carboxylic, and amino acid were the active groups for O21 formation. However, the inhibitory effects induced by the NOM surrogates were significant and mainly attributed to the direct photolysis inhibition caused by the inner filter effect. The scope of this work was further extended to include SRNOM, where similar trends with less pronounced formation of PPRIs and inner filter effects were observed. Therefore, this study sheds some light on the role of the functional groups in NOM during photochemical transformations of OMPs, thereby deepening our understanding of their fate in aqueous systems.
Collapse
Affiliation(s)
- Anam Asghar
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany.
| | - Daniel Lipfert
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany
| | - Klaus Kerpen
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
| |
Collapse
|
39
|
Soro AB, Botinestean C, Shokri S, Juge A, Hannon S, Whyte P, Bolton DJ, Bourke P, Poojary MM, Tiwari BK. Comparison of the impact of UV-light emitting diode and UV lamp at pilot-plant scale level on quality parameters and consumer perception of fresh chicken meat. Food Chem 2024; 434:137397. [PMID: 37725840 DOI: 10.1016/j.foodchem.2023.137397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/21/2023] [Accepted: 09/02/2023] [Indexed: 09/21/2023]
Abstract
The present study compared the impact of two UV light devices: conventional UV lamp and UV-LED on the colour, pH, lipid and protein oxidation of fresh chicken breast meat aerobically stored at 4 °C for 10 days. Lipid oxidation was the most impacted quality attribute in UV lamp treated meat, unlike UV-LED that showed no effect compared to non-treated meat. Slight changes were observed in colour, pH and protein oxidation of chicken samples subjected to UV lamp and UV-LED. To evaluate these changes from a consumer perspective, the different treatment samples were stored at 4 °C for 3 days and colour likeness, odour likeness and overall appearance were assessed by consumer sensory analysis. However, alterations in quality parameters of chicken meat caused by UV light did not decrease overall acceptance in the sensory analysis. UV-LED was the preferred chicken meat by the participants, even compared to non-treated meat.
Collapse
Affiliation(s)
- Arturo B Soro
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Infectious Diseases in Humans, Sciensano, 1050 Brussels, Belgium.
| | | | - Sajad Shokri
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland.
| | - Alexandre Juge
- Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering University, 101 Rte de Gachet, 44300 Nantes, France.
| | - Shay Hannon
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Paula Bourke
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland.
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| | | |
Collapse
|
40
|
Wang M, Vollstedt C, Siebels B, Yu H, Wu X, Shen L, Li J, Liu Y, Yu R, Streit WR, Zeng W. Extracellular proteins enhance Cupriavidus pauculus nickel tolerance and cell aggregate formation. BIORESOURCE TECHNOLOGY 2024; 393:130133. [PMID: 38043689 DOI: 10.1016/j.biortech.2023.130133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal-resistant bacteria secrete extracellular proteins (e-PNs). However, the role of e-PNs in heavy metal resistance remains elusive. Here Fourier Transform Infrared Spectroscopy implied that N-H, C = O and NH2-R played a crucial role in the adsorption and resistance of Ni2+ in the model organism Cuprividus pauculus 1490 (C. pauculus). Proteinase K treatment reduced Ni2+ resistance of C. pauculus underlining the essential role of e-PNs. Further three-dimension excitation-emission matrix fluorescence spectroscopy analysis demonstrated that tryptophan proteins as part of the e-PNs increased significantly with Ni2+ treatment. Proteomic and quantitative real-time polymerase chain reaction data indicated that major changes were induced in the metabolism of C. pauculus in response to Ni2+. Among those lipopolysaccharide biosynthesis, general secretion pathways, Ni2+-affiliated transporters and multidrug efflux play an essential role in Ni2+ resistance. Altogether the results provide a conceptual model for comprehending how e-PNs contribute to bacterial resistance and adsorption of Ni2+.
Collapse
Affiliation(s)
- Mingwei Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Department of Microbiology and Biotechnology, University of Hamburg, Hamburg 22609, Germany
| | - Christel Vollstedt
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg 22609, Germany
| | - Bente Siebels
- Institute for Clinical Chemistry and Laboratory Medicine, University of Hamburg, Hamburg 20246, Germany
| | - Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg 22609, Germany.
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
41
|
Barbieri E, Mollica GN, Moore BD, Sripada SA, Shastry S, Kilgore RE, Loudermilk CM, Whitacre ZH, Kilgour KM, Wuestenhagen E, Aldinger A, Graalfs H, Rammo O, Schulte MM, Johnson TF, Daniele MA, Menegatti S. Peptide ligands targeting the vesicular stomatitis virus G (VSV-G) protein for the affinity purification of lentivirus particles. Biotechnol Bioeng 2024; 121:618-639. [PMID: 37947118 DOI: 10.1002/bit.28594] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
The recent uptick in the approval of ex vivo cell therapies highlights the relevance of lentivirus (LV) as an enabling viral vector of modern medicine. As labile biologics, however, LVs pose critical challenges to industrial biomanufacturing. In particular, LV purification-currently reliant on filtration and anion-exchange or size-exclusion chromatography-suffers from long process times and low yield of transducing particles, which translate into high waiting time and cost to patients. Seeking to improve LV downstream processing, this study introduces peptides targeting the enveloped protein Vesicular stomatitis virus G (VSV-G) to serve as affinity ligands for the chromatographic purification of LV particles. An ensemble of candidate ligands was initially discovered by implementing a dual-fluorescence screening technology and a targeted in silico approach designed to identify sequences with high selectivity and tunable affinity. The selected peptides were conjugated on Poros resin and their LV binding-and-release performance was optimized by adjusting the flow rate, composition, and pH of the chromatographic buffers. Ligands GKEAAFAA and SRAFVGDADRD were selected for their high product yield (50%-60% of viral genomes; 40%-50% of HT1080 cell-transducing particles) upon elution in PIPES buffer with 0.65 M NaCl at pH 7.4. The peptide-based adsorbents also presented remarkable values of binding capacity (up to 3·109 TU per mL of resin, or 5·1011 vp per mL of resin, at the residence time of 1 min) and clearance of host cell proteins (up to a 220-fold reduction of HEK293 HCPs). Additionally, GKEAAFAA demonstrated high resistance to caustic cleaning-in-place (0.5 M NaOH, 30 min) with no observable loss in product yield and quality.
Collapse
Affiliation(s)
- Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Gina N Mollica
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Casee M Loudermilk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Zachary H Whitacre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Katie M Kilgour
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | | | | - Thomas F Johnson
- Department of Biochemical Engineering, University College London, London, UK
| | - Michael A Daniele
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- LigaTrap Technologies LLC, Raleigh, North Carolina, USA
| |
Collapse
|
42
|
Mezzina L, Nicosia A, Barone L, Vento F, Mineo PG. Water-Soluble Star Polymer as a Potential Photoactivated Nanotool for Lysozyme Degradation. Polymers (Basel) 2024; 16:301. [PMID: 38276709 PMCID: PMC10819795 DOI: 10.3390/polym16020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The development of nanotools for chemical sensing and macromolecular modifications is a new challenge in the biomedical field, with emphasis on artificial peptidases designed to cleave peptide bonds at specific sites. In this landscape, metal porphyrins are attractive due to their ability to form stable complexes with amino acids and to generate reactive oxygen species when irradiated by light of appropriate wavelengths. The issues of hydrophobic behavior and aggregation in aqueous environments of porphyrins can be solved by using its PEGylated derivatives. This work proposes the design of an artificial photo-protease agent based on a PEGylated mercury porphyrin, able to form a stable complex with l-Tryptophan, an amino acid present also in the lysozyme structure (a well-known protein model). The sensing and photodegradation features of PEGylated mercury porphyrin were exploited to detect and degrade both l-Trp and lysozyme using ROS, generated under green (532 nm) and red (650 nm) light lasers. The obtained system (Star3600_Hg) and its behavior as a photo-protease agent were studied by means of several spectroscopies (UV-Vis, fluorescence and circular dichroism), and MALDI-TOF mass spectrometry, showing the cleavage of lysozyme and the appearance of several short-chain residues. The approach of this study paves the way for potential applications in theranostics and targeted bio-medical therapies.
Collapse
Affiliation(s)
- Lidia Mezzina
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
| | - Angelo Nicosia
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
| | - Laura Barone
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
| | - Fabiana Vento
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
| | - Placido Giuseppe Mineo
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
- Institute for Chemical and Physical Processes, National Research Council (IPCF-CNR), Viale F. Stagno d’Alcontres 37, I-98158 Messina, Italy
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Via P. Gaifami 18, I-95126 Catania, Italy
| |
Collapse
|
43
|
Szopa D, Izydorczyk G, Chojnacka K, Witek-Krowiak A. Evaluation of the feasibility of using inorganic and organic acids for the extraction of amino acids from high-protein material (mealworm larvae) by chemical hydrolysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119479. [PMID: 37944317 DOI: 10.1016/j.jenvman.2023.119479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
High-protein mealworm larvae (Tenebrio molitor) were treated with organic and inorganic acids in order to check the feasibility of applying acid hydrolyzates derived from them. Hydrolysis was optimized for the highest content of amino acids that have beneficial effects on plant development. The response surface method served the purpose of selecting optimal process conditions for such media as phosphoric acid, citric acid, acetic acid and mixtures of phosphoric and citric acids. The elemental composition of the best formulations and their amino acid profile was determined. Plant tests on cucumber (germination and pot tests) revealed the beneficial effect of the hydrolyzates on plant biometric parameters. By offering valuable insights into the relationship between fertilizer treatments and plant growth, our study contributes to developing sustainable agricultural practices and improved crop productivity.
Collapse
Affiliation(s)
- Daniel Szopa
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland.
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| |
Collapse
|
44
|
Kang S, Bai Q, Qin Y, Liang Q, Hu Y, Li S, Luan G. Film-forming properties and mechanisms of soy protein: Insights from β-conglycinin and glycinin. Int J Biol Macromol 2023; 253:127611. [PMID: 37879573 DOI: 10.1016/j.ijbiomac.2023.127611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Extensive research has been conducted on soy protein films; however, limited information is available regarding the influence of the major components, β-conglycinin (7S) and glycinin (11S), on the film-forming properties of soy protein. This study aimed to isolate the 7S and 11S fractions in order to prepare films and investigate the impact of varying 7S/11S ratios on the film-forming solutions (FFS) and film properties. The findings revealed that higher 11S ratios led to increased protein aggregation, consequently elevating the storage modulus (G') of the FFS. Notably, an optimal 7S/11S ratio of 7S1:11S2 (CF3) significantly enhanced the film's water resistance. Specifically, it enhanced the water contact angle by an impressive 17.44 % and reduced the water vapor transmission rate by 27.56 %. These improvements were attributed to intermolecular interactions, involving hydrogen bonds and salt bridges, between the amino acid residues of 7S and 11S. As a result, a more uniform and dense microstructure was achieved. Interestingly, the mechanical and optical properties of the film were maintained by the different protein fractions examined. In summary, this study contributes to the understanding of the film-forming properties of soy protein, particularly the role of 7S and 11S.
Collapse
Affiliation(s)
- Shufang Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qinbo Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yana Qin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qiuhong Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yayun Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Shengkai Li
- Seed Station of Xining City, Xining 810016, China
| | - Guangzhong Luan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China; Seed Station of Xining City, Xining 810016, China.
| |
Collapse
|
45
|
Arvinte A, Lungoci AL, Coroaba A, Pinteala M. Electrochemical Sensor for Tryptophan Determination Based on Trimetallic-CuZnCo-Nanoparticle-Modified Electrodes. Molecules 2023; 29:28. [PMID: 38202611 PMCID: PMC10779962 DOI: 10.3390/molecules29010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The superior properties of electrodeposited trimetallic CuZnCo nanoparticles, arising from the synergistic effect of combining the unique features of metallic components, were confirmed using voltametric measurements. The surface morphology and structure of the as-prepared electrocatalysts were determined using scanning electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy techniques. Here, the trimetallic CuZnCo nanoparticles were synthesized as a powerful redox probe and highly efficient signal amplifier for the electrochemical oxidation of tryptophan. Differential pulse voltammetry studies showed a linear relationship with a tryptophan concentration of 5-230 μM, and the low detection limit was identified at 1.1 μM with a sensitivity of 0.1831 μA μM-1 cm-2.
Collapse
Affiliation(s)
- Adina Arvinte
- “Petru Poni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania (A.C.); (M.P.)
| | | | | | | |
Collapse
|
46
|
König S, Marco HG, Gäde G. Oxidation Products of Tryptophan and Proline in Adipokinetic Hormones-Artifacts or Post-Translational Modifications? Life (Basel) 2023; 13:2315. [PMID: 38137917 PMCID: PMC10744910 DOI: 10.3390/life13122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Adipokinetic hormones (AKHs) regulate important physiological processes in insects. AKHs are short peptides with blocked termini and Trp in position 8. Often, proline occupies position 6. Few post-translational modifications have been found, including hydroxyproline ([Hyp6]) and kynurenine. Our recent data suggest that the Hyp- and Kyn-containing AKHs occur more often than originally thought and we here investigate if they are natural or artifactual. METHODS From crude extracts of the corpora cardiaca (CC) of various insect species, AKHs were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS). Synthetic [Hyp6]-AKHs were tested in an in vivo metabolic assay. Freshly dissected Periplaneta americana and Blaberus atropos CCs (with precautions taken against oxidation) were analyzed. B. atropos CC were placed into a depolarizing saline and the released AKHs were measured. RESULTS Hyp was detected in several decapeptides from cockroaches. The modified form accompanied the AKH at concentrations below 7%. The [Hyp6]-AKHs of B. atropos were present in fresh CC preparations and were shown to be releasable from the CC ex vivo. Synthetic [Hyp6]-containing peptides tested positively in a hypertrehalosemic bioassay. Hydroxyprolination was also detected for Manto-CC from the termite Kalotermes flavicollis and for Tetsu-AKH of the grasshopper, Tetrix subulata. Oxidized Trp-containing forms of Nicve-AKH were found in species of the burying beetle genus Nicrophorus. CONCLUSIONS Trp oxidation is known to occur easily during sample handling and is likely the reason for the present findings. For hydroxyprolination, however, the experimental evidence suggests endogenous processes.
Collapse
Affiliation(s)
- Simone König
- IZKF Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Röntgenstr. 21, 48149 Münster, Germany
| | - Heather G. Marco
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, Cape Town 7700, South Africa; (H.G.M.); (G.G.)
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, Cape Town 7700, South Africa; (H.G.M.); (G.G.)
| |
Collapse
|
47
|
Figueroa JD, Barroso-Torres N, Morales M, Herrera B, Aranda M, Dorta E, López-Alarcón C. Antioxidant Capacity of Free and Peptide Tryptophan Residues Determined by the ORAC (Oxygen Radical Absorbance Capacity) Assay Is Modulated by Radical-Radical Reactions and Oxidation Products. Foods 2023; 12:4360. [PMID: 38231845 DOI: 10.3390/foods12234360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
The ORAC (Oxygen Radical Absorbance Capacity) assay is commonly employed for determining the antioxidant capacity of bioactive peptides. To gain insights into the meaning of this index for peptides containing a single Trp, we studied the consumption of this residue and fluorescein (FLH, the probe of ORAC method), induced by radicals generated by AAPH (2,2'-Azo-bis(2-amidinopropane) dihydrochloride) thermolysis. ORAC values were rationalized from kinetics and computational calculations of bond dissociation energies (BDE) of the N-H bond (indole ring of Trp). Free Trp, di- and tri- peptides, and three larger peptides were studied. Solutions containing 70 nM FLH, 1-5 μM free Trp or peptides, and 10 mM AAPH were incubated at 37 °C in phosphate buffer. Kinetic studies showed that FLH minimally affected Trp consumption. However, a clear protection of FLH, characterized by pseudo-lag times, was evidenced, reflecting radical-radical reactions and FLH repairing. Peptides showed similar ORAC values (~1.9-2.8 Trolox equivalents), while BDE varied between 91.9 and 103.5 kcal. These results, added to the protection of FLH observed after total consumption of Trp, indicate a lack of discrimination of the assay for the chemical structure of peptides and the contribution of oxidation products to the index.
Collapse
Affiliation(s)
- Juan David Figueroa
- Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Noreima Barroso-Torres
- Departamento de Producción Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), 38270 San Cristóbal de la Laguna, Spain
| | - Marcela Morales
- Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Bárbara Herrera
- Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Mario Aranda
- Escuela de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Eva Dorta
- Departamento de Producción Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), 38270 San Cristóbal de la Laguna, Spain
| | - Camilo López-Alarcón
- Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
48
|
Montua N, Sewald N. Extended Biocatalytic Halogenation Cascades Involving a Single-Polypeptide Regeneration System for Diffusible FADH 2. Chembiochem 2023; 24:e202300478. [PMID: 37549375 DOI: 10.1002/cbic.202300478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Flavin-dependent halogenases have attracted increasing interest for aryl halogenation at unactivated C-H positions because they are characterised by high regioselectivity, while requiring only FADH2 , halide salts, and O2 . Their use in combined crosslinked enzyme aggregates (combiCLEAs) together with an NADH-dependent flavin reductase and an NADH-regeneration system for the preparative halogenation of tryptophan and indole derivatives has been previously described. However, multiple cultivations and protein purification steps are necessary for their production. We present a bifunctional regeneration enzyme for two-step catalytic flavin regeneration using phosphite as an inexpensive sacrificial substrate. This fusion protein proved amenable to co-expression with various flavin-dependent Trp-halogenases and enables carrier-free immobilisation as combiCLEAs from a single cultivation for protein production and the preparative synthesis of halotryptophan. The scalability of this system was demonstrated by fed-batch fermentation in bench-top bioreactors on a 2.5 L scale. Furthermore, the inclusion of a 6-halotryptophan-specific dioxygenase into the co-expression strain further converts the halogenation product to the kynurenine derivative. This reaction cascade enables the one-pot synthesis of l-4-Cl-kynurenine and its brominated analogue on a preparative scale.
Collapse
Affiliation(s)
- Nicolai Montua
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
49
|
Han Q, Su Y, Smith KM, Binns J, Drummond CJ, Darmanin C, Greaves TL. Probing ion-binding at a protein interface: Modulation of protein properties by ionic liquids. J Colloid Interface Sci 2023; 650:1393-1405. [PMID: 37480654 DOI: 10.1016/j.jcis.2023.07.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/24/2023]
Abstract
Ions are important to modulate protein properties, including solubility and stability, through specific ion effects. Ionic liquids (ILs) are designer salts with versatile ion combinations with great potential to control protein properties. Although protein-ion binding of common metals is well-known, the IL effect on proteins is not well understood. Here, we employ the model protein lysozyme in dilute and concentrated IL solutions to determine the specific ion binding effect on protein phase behaviour, activity, size and conformational change, aggregation and intermolecular interactions. A combination of spectroscopic techniques, activity assays, small-angle X-ray scattering, and crystallography highlights that ILs, particularly their anions, bind to specific sites in the protein hydration layer via polar contacts on charged, polar and aromatic residues. The specific ion binding can induce more flexible loop regions in lysozyme, while the ion binding in the bulk phase can be more dynamic in solution. Overall, the protein behaviour in ILs depends on the net effect of nonspecific interactions and specific ion binding. Compared to formate, the nitrate anion induced high protein solubility, low activity, elongated shape and aggregation, which is largely owing to its higher propensity for ion binding. These findings provide new insights into protein-IL binding interactions and using ILs to modulate protein properties.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Yuyu Su
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Kate M Smith
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC 3168, Australia; Swiss Light Source, Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Jack Binns
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Connie Darmanin
- La Trobe Institute for Molecular Science, Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
50
|
Archipowa N, Wittmann L, Köckenberger J, Ertl FJ, Gleixner J, Keller M, Heinrich MR, Kutta RJ. Characterization of Fluorescent Dyes Frequently Used for Bioimaging: Photophysics and Photocatalytical Reactions with Proteins. J Phys Chem B 2023; 127:9532-9542. [PMID: 37903729 DOI: 10.1021/acs.jpcb.3c04484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Derivatives of the rhodamine-based dye 5-TAMRA (5-carboxy-tetramethylrhodamine) and the indocarbocyanine-type Cy3B (cyclized derivative of the cyanine dye Cy3), both representing important fluorophores frequently used for the labeling of biomolecules (proteins, nucleic acids) and bioactive compounds, such as receptor ligands, were photophysically investigated in aqueous solution, i.e., in neat phosphate-buffered saline (PBS) and in PBS supplemented with 1 wt % bovine serum albumin (BSA). The dyes exhibit comparable absorption (λabs,max: 550-569 nm) and emission wavelengths (λem,max: 580-582 nm), and similar S1 lifetimes (2.27-2.75 ns), and their excited state deactivation proceeds mainly via the lowest excited singlet state (triplet quantum yield ca. 1%). However, the probes show marked differences with respect to their fluorescence quantum yield and photostability. While 5-TAMRA shows a lower quantum yield (37-39%) than the Cy3B derivative (ca. 57%), its photostability is considerably higher compared to Cy3B. Generally, the impact of the protein on the photophysics is low. However, on prolonged illumination, both fluorescent dyes undergo a photocatalytic reaction with tryptophan residues of BSA mediated by sensitized singlet oxygen resulting in a tryptophan photoproduct with an absorption maximum around 330 nm. The overall results of this work will assist in choosing the right dye for the labeling of bioactive compounds, and the study demonstrates that experiments performed with 5-TAMRA or Cy3B-labeled compounds in a biological environment may be influenced by photochemical modification of experimentally relevant proteins at aromatic amino acid residues.
Collapse
Affiliation(s)
- Nataliya Archipowa
- Institute of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany
| | - Lukas Wittmann
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Johannes Köckenberger
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|