1
|
He Z, Xiong H, Cai Y, Chen W, Shi M, Liu L, Wu K, Deng X, Deng X, Chen T. Clostridium butyricum ameliorates post-gastrectomy insulin resistance by regulating the mTORC1 signaling pathway through the gut-liver axis. Microbiol Res 2025; 297:128154. [PMID: 40188705 DOI: 10.1016/j.micres.2025.128154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 05/04/2025]
Abstract
Postoperative insulin resistance (IR) is a metabolic disorder characterized by decreased insulin sensitivity and elevated blood glucose levels following major surgery. Our previous clinical study identified a notable correlation between postoperative IR and gut microbiota, particularly butyrate-producing bacteria, yet the mechanisms remain unclear. In this study, we established gastric resection SD rat models to evaluate the impact of Clostridium butyricum NCU-27 (butyrate-producing bacteria) on postoperative IR. The results demonstrated significant reductions in fasting blood glucose (FBG), fasting insulin (FIns) levels, and HOMA-IR (6.64 ± 0.76 vs. 11.47 ± 1.32; 4.27 ± 0.59 vs. 7.40 ± 0.54) in the postoperative period compared to the control group (P < 0.05). Additionally, glucose tolerance and hepatic glycogen content were markedly improved (P < 0.001). Further exploration of butyrate demonstrated effects similar to C. butyricum NCU-27, potentially mediated through the gut-liver axis by inhibiting mTORC1 expression in liver cells, activating the IRS1/AKT pathway, enhancing glucose uptake and glycogen synthesis, suppressing gluconeogenesis, increasing insulin sensitivity, and improving IR. Finally, the use of mTORC1 agonists and inhibitors further confirmed the critical role of the mTORC1 pathway in mediating the beneficial effects of C. butyricum NCU-27 and butyrate on postoperative IR. In conclusion, this study elucidated that C. butyricum NCU-27 improves postoperative IR by regulating butyrate metabolism and inhibiting the mTORC1 pathway, offering new insights for preventing and treating post-gastrectomy IR.
Collapse
Affiliation(s)
- Zhipeng He
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China; Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Huan Xiong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yujie Cai
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Wenjing Chen
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Meng Shi
- Department of Gastrointestinal Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, China
| | - Lulin Liu
- Department of Vascular Surgery, Heyuan Hospital of Guangdong Provincial People's Hospital, Heyuan, Guangdong 51700, China
| | - Kai Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xi Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaorong Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Tingtao Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China; Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
2
|
Peng H, Cheng Q, Chen J, Wang Y, Du M, Lin X, Zhao Q, Chen S, Zhang J, Wang X. Green Tea Epigallocatechin-3-gallate Ameliorates Lipid Accumulation and Obesity-Associated Metabolic Syndrome via Regulating Autophagy and Lipolysis in Preadipocytes and Adipose Tissue. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12272-12291. [PMID: 40347183 DOI: 10.1021/acs.jafc.5c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Previous studies have shown that epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, demonstrates promising antiobesity effects. While autophagy mediates obesity via preadipocyte differentiation and lipogenesis, EGCG's potential autophagy-dependent antiobesity mechanism remains unclear. We used 3T3-L1 cells and high-fat-diet (HFD)-fed mice to examine how EGCG inhibits adipogenesis and lipogenesis via autophagy. EGCG (50 or 100 mg/kg) significantly attenuated HFD-induced weight gain, fat accumulation, hyperlipidemia, and glucose intolerance in mice. It also enhanced autophagy and lipolysis in white adipose tissue (WAT). EGCG profoundly inhibited terminal preadipocyte differentiation and lipid droplet formation in 3T3-L1 cells accompanied by reduced PPARγ, C/EBPα, and FASN expressions. Mechanistically, EGCG inhibited autophagy during the early stage of preadipocyte differentiation, as evidenced by increased autophagosome accumulation and impaired autophagic flux. The antiadipogenic effect of EGCG was further aggravated by the autophagy inhibitor chloroquine. Meanwhile, EGCG increased p38 and AMPK/ACC phosphorylation while inhibiting JNK phosphorylation in 3T3-L1 cells at an early stage of adipogenesis. Interestingly, EGCG reduced the expression of lipolytic enzymes HSL and ATGL, and it decreased glycerol contents in differentiated 3T3-L1 cells. These findings provide novel insights into the mechanism of using green tea EGCG in functional foods to combat obesity by targeting autophagy and lipolysis.
Collapse
Affiliation(s)
- He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Qi Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Ying Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Menghao Du
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, P. R. China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Shengjia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Jingsa Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
- School of Pharmaceutical Sciences & Institute of Advanced Studies, Taizhou University, Taizhou 318000, P. R. China
| |
Collapse
|
3
|
Hoseini Z, Behpour N, Hoseini R. Aerobic training and vitamin D modulate hepatic miRNA expression to improve lipid metabolism and insulin resistance in type 2 diabetes. Sci Rep 2025; 15:16764. [PMID: 40369056 PMCID: PMC12078466 DOI: 10.1038/s41598-025-01757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 05/08/2025] [Indexed: 05/16/2025] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) has reached epidemic proportions globally, posing a significant burden on public health. Dysregulation of lipid metabolism and insulin resistance in T2DM often leads to hepatic complications, making the modulation of microRNAs (miRNAs) associated with these pathways a promising therapeutic target. This study aimed to investigate the protective effects of aerobic training (AT) and vitamin D supplementation on the liver of individuals with T2DM by examining the modulation of miRNAs related to lipid metabolism and insulin resistance. Specifically, the miRNAs examined in this study were miR-33, miR-122, miR-29, and miR-9. Thirty-two male Wistar rats with T2DM were randomly assigned to four groups: Control (C), AT, moderate dose of Vitamin D supplementation (MD; 5,000 IU), and high dose of Vitamin D supplementation (HD; 10,000 IU). The AT group underwent an eight-week program consisting of treadmill running sessions, five days per week, with a gradual increase in intensity and duration. The vitamin D supplementation groups received either 5,000 or 10,000 IU of vitamin D, administered via injection once weekly for 8 weeks. The study used the STZ + HFD rat model and collected liver tissue samples for analysis. Total RNA, including miRNA, was extracted from the liver tissue samples, and the miRNA expression levels were quantified using quantitative real-time PCR (qRT-PCR). Statistical analyses were performed using one-way ANOVA followed by Tukey's post hoc test. AT led to significantly lower fasting plasma insulin levels (p < 0.05) and a notable improvement in the homeostatic model assessment of insulin resistance (HOMA-IR) index, indicating enhanced insulin sensitivity compared with the control and other groups. It also resulted in significantly lower triglyceride levels (p < 0.01) and a favorable shift in the HDL/LDL ratio, indicative of improved lipid metabolism. Vitamin D supplementation showed a dose-dependent reduction in insulin resistance, with the 10,000 IU group demonstrating a more pronounced improvement compared with the 5,000 IU group. Rats supplemented with vitamin D exhibited a dose-dependent modulation of lipid profile, with the 10,000 IU group demonstrating a more significant decrease in triglycerides and an increase in HDL/LDL ratio. The expression of miR-33, miR-122, miR-29, and miR-9 differed significantly among the experimental groups. The AT group exhibited a significant downregulation of miR-122 and miR-9 while showing a significant upregulation of miR-33 and miR-29 compared to the C and the MD groups. The HD group showed significant downregulation of miR-122 and miR-9 compared to the C and the MD groups. Both AT and high-dose vitamin D supplementation have beneficial effects on insulin levels, insulin resistance, and lipid metabolism in rats with T2DM by modulating miRNA expression, thereby inhibiting insulin resistance and improving T2DM.
Collapse
Affiliation(s)
- Zahra Hoseini
- PhD of Exercise Physiology, Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Nasser Behpour
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O.Box. 6714967346, Kermanshah, Iran.
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O.Box. 6714967346, Kermanshah, Iran
| |
Collapse
|
4
|
Sharafifard F, Kazeminasab F, Ghanbari Rad M, Ghaedi K, Rosenkranz SK. The combined effects of high-intensity interval training and time-restricted feeding on the AKT/FOXO1/PEPCK pathway in diabetic rats. Sci Rep 2025; 15:13898. [PMID: 40263494 PMCID: PMC12015413 DOI: 10.1038/s41598-025-96703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
High-intensity interval training (HIIT) and time-restricted feeding (TRF) have shown promise for improving glucose regulation by increasing insulin sensitivity, enhancing glucose uptake, reducing glucose production. Therefore, this study investigates the combined effects of HIIT and TRF on the AKT/FOXO1/PEPCK signaling pathway in the liver tissue of type 2 diabetic rats. 42 male Wistar rats (4-5 weeks of age) were included in the study. The animals were randomly divided into two groups: (1) Standard diet (SD, non-Diabetic (Non-D, n = 7) (2) High-fat diet (HFD, n = 35) for 4 weeks. To induce diabetes, 35 mg/kg of streptozotocin (STZ) was injected intraperitoneally (IP). Animals with blood glucose levels of > 250 mg/dL were considered as diabetic. Diabetic rats were randomly divided into 5 groups (n = 7): (1) Diabetes-exercise (D-EX), (2) Diabetes-TRF (D-TRF), (3) Diabetes-combined TRF and exercise (D-TRF&EX), (4) Diabetes no treatment (D-NT), (5) Diabetes with metformin (D-MET). Interventions (HIIT and TRF) were performed for 10 weeks. Rats in the Non-D group did not exercise and did not receive metformin or TRF. Periodic Acid-Schiff (PAS) staining was used to histologically analyze the liver tissue. Levels of blood glucose, insulin resistance (IR), FOXO1 protein, PEPCK, and area under the curve (AUC) following the IPGTT test, were significantly decreased in treatment groups compared to the D-NT group (p < 0.05). The AKT protein levels (p < 0.01), glycogen content (p < 0.05), and insulin sensitivity (p < 0.001) increased in the treatment groups as compared with the D-NT group. Microscopic examination of the liver tissue in general showed a better tissue arrangement in both treatment groups than in the D-NT group. Combining HIIT and TRF may be effective for improving blood glucose regulation, insulin sensitivity, in type 2 diabetes, as compared to TRF or HIIT interventions alone.
Collapse
Affiliation(s)
- Fatemeh Sharafifard
- Department of Physical Education and Sports Science, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Fatemeh Kazeminasab
- Department of Physical Education and Sports Science, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Mahtab Ghanbari Rad
- Gerash Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
5
|
Wu J, Pan Y, Lu Y, Qian J, Zhang J, Xue Y, Xiao C, Qiu Y, Xie M, Li S. Exploring the mechanisms of Chaige Kangyi Recipe in treating recurrent pregnancy loss with insulin resistance. Sci Rep 2025; 15:13866. [PMID: 40263540 PMCID: PMC12015438 DOI: 10.1038/s41598-025-98869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Chinese herbal medicine effectively treats recurrent pregnancy loss, though its mechanism is unclear. This study used RStudio 4.3.0 to collect successful cases for cluster analysis, identifying medication patterns and core formulas, and further researching key prescriptions. The prescription is frequently used for recurrent abortion patients with insulin resistance. UPLC-QTOF-MS identified components, and network pharmacology explored key prescription targets in recurrent abortion with insulin resistance, validated by molecular docking and in vitro experiments. Traditional Chinese medicine treatment for 177 recurrent abortion cases and 640 prescriptions was analysed using RStudio 4.3.0 to identify medication patterns. Chaige Kangyi Recipe (CGKYR) active components and targets were obtained from TCMNPAS, and a herb-ingredient-target gene network was constructed using Cytoscape 3.7.2. GeneCards provided RSA target genes, and Cytoscape visualised a drug-disease target PPI network. Metascape software performed GO and KEGG enrichment analyses. UHPLC-MS/MS identified active compounds in core prescriptions, and molecular docking evaluated the therapeutic effects and mechanisms of major chemical components on key targets. Key prescriptions were derived from RStudio 4.3.0 cluster analysis of the Chaige Kangyi Recipe (CGKYR), commonly used for recurrent miscarriages with insulin resistance. Sixty-seven active ingredients were identified via UPLC-QTOF-MS. Network pharmacology revealed 179 target genes related to CGKYR's effects on recurrent miscarriage with insulin resistance. PPI analysis indicated IL-6, AKT1, STAT3, and INS as potential targets. Molecular docking demonstrated strong binding activity of four compounds with IL-6.CCK-8 assays showed CGKYR promoted HDSC proliferation dose-dependently. In vitro experiments indicated CGKYR increased IL-6 mRNA expression in human decidual stromal cells. CGKYR employs a multifaceted therapy for RPL complicated by insulin resistance, enhancing endometrial receptivity and stimulating HDSC proliferation by upregulating IL-6 mRNA expression in human decidual stromal cells.
Collapse
Affiliation(s)
- Jianlan Wu
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, No. 25, Heping North Road, Tianning District, Changzhou, 213000, China
- Jiujiang City Key Laboratory of Cell Therapy, The First People's Hospital of Jiujiang City, Jiangxi, 332000, China
| | - Yunyan Pan
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, No. 25, Heping North Road, Tianning District, Changzhou, 213000, China
| | - Yingyu Lu
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, No. 25, Heping North Road, Tianning District, Changzhou, 213000, China
| | - Jing Qian
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, No. 25, Heping North Road, Tianning District, Changzhou, 213000, China
| | - Jiaying Zhang
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, No. 25, Heping North Road, Tianning District, Changzhou, 213000, China
| | - Yuanyuan Xue
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, No. 25, Heping North Road, Tianning District, Changzhou, 213000, China
| | - Chenxi Xiao
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, No. 25, Heping North Road, Tianning District, Changzhou, 213000, China
| | - Yuhan Qiu
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, No. 25, Heping North Road, Tianning District, Changzhou, 213000, China
| | - Mengxin Xie
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, No. 25, Heping North Road, Tianning District, Changzhou, 213000, China
| | - Shuping Li
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, No. 25, Heping North Road, Tianning District, Changzhou, 213000, China.
| |
Collapse
|
6
|
Samandar F, Mohsenpour A, Rastin F, Doustmohammadi-Salmani S, Saberi MR, Chamani J. Evaluating binding behavior of quercetin to human serum albumin and calf thymus DNA: Insights from molecular dynamics, spectroscopy, and apoptotic pathway regulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125638. [PMID: 39733709 DOI: 10.1016/j.saa.2024.125638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
In this work, we sought to apprehend quercetin binding affinity and its interaction behavior in complex with human serum albumin (HSA) and calf thymus DNA (ctDNA) through multi spectroscopy and molecular dynamics and also evaluated its effects on colorectal cancer. The binding constants of ctDNA-quercetin and HSA-quercetin complexes at 298 K, which were calculated to be (2.67 ± 0.04) × 103 M-1 and (4.77 ± 0.05) × 104 M-1 respectively, denoted the strong binding of quercetin with ctDNA and HSA. The Ksv and Kb values decrease with increasing temperature, indicating that the quenching of HSA and ctDNA in the presence of quercetin is caused by the combined dynamic and static effects. The obtained thermodynamic parameters for the ctDNA-quercetin interaction represented the existence of electrostatic forces (ΔH0 < 0 and ΔS0 > 0), and the thermodynamic parameters of HSA-quercetin complex disclose the dominance of hydrogen bonds and van der Waals interactions (ΔH0 < 0 and ΔS0 < 0). Moreover, the interactions were exothermic, as evidenced by the negative ΔH0 value for both interactions. According to molecular docking and MD simulation data, quercetin was capable of placing into the site 1 of HSA and forming stable interaction plus this ligand tended to unwind DNA's strands as an intercalator ligand, which was confirmed by experimental results. The fluorescence competition studies between the two intercalator probes of ethidium bromide (EB) and acridine orange (AO), as well as the effect of ionic strength, proposed the strong tendency of quercetin to exist between the two strands of ctDNA as a sign of its intercalative property. Consequently, quercetin can be assumed as an efficient intercalator ligand carried by HSA with an anticancer property. We also conducted cell viability experiments on HT-29 and SW620 cell lines to validate the anticancer ability of quercetin, and observed its decreasing impact on the cell viability of these two cell lines. Additionally, the outcomes of Real-time qPCR proved its capability to reduce the CXCR4 expression and increase the NKD2 expression in Wnt signaling pathway. Therefore, these facts confirm the inhibiting ability of quercetin towards colorectal cancer growth via the prevention of Wnt pathway and approve its functionality as a potential anticancer agent for this cancer.
Collapse
Affiliation(s)
- Farzaneh Samandar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Aida Mohsenpour
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farangis Rastin
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
7
|
Gao W, Wang M, Xu W, Ma R, Wang X, Sun T, Li P, Li F, He Y, Xie X, Pang X, Zhou Y, Pang G. Modified weiling decoction inhibited excessive autophagy via AKT/mTOR/ULK1 pathway to alleviate T2DM: Integrating network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119753. [PMID: 40194640 DOI: 10.1016/j.jep.2025.119753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weiling Decoction is a traditional Chinese herbal formula that has the function of removing dampness and transforming turbidity, and it is widely used in the treatment of metabolic diseases. The hypoglycemic and antihyperlipidemic effects of Modified Weiling Decoction (MWLD) have been clinically verified in patients with type 2 diabetes mellitus (T2DM), however, the molecular mechanism remains unclear. AIM OF THE STUDY To explore the hypoglycemic mechanism of MWLD based on integrative network pharmacology and experimental validation in vivo and in vitro. MATERIALS AND METHODS The overlap between T2DM-related genes and target genes of MWLD were deemed to the potential targets of MWLD in alleviating T2DM. Protein-protein interaction analysis was performed to find the core targets from above-mentioned potential targets, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Ontology (GO) analysis were carried out to gain the key pathways involved in the T2DM improvement by MWLD. T2DM mice and palmitic acid-induced HepG2 cells were employed to validate the mechanism of MWLD predicated by network pharmacology. RESULTS A total of 292 target genes from 113 bioactive compounds in MWLD were identified, among of which 42 genes were recognized as core genes of MWLD in ameliorating T2DM. KEGG analysis showed that the therapeutic effect of MWLD on T2DM may be associated with insulin resistance (IR), islet β cell dysfunction, AKT, and MAPK. We found that MWLD significantly reduced fasting blood glucose and improved oral glucose tolerance in T2DM mice. Meanwhile, MWLD activated the AKT/GSK3β pathway to increase liver glycogen production and improve glucose metabolism in T2DM mice. MWLD activated the AKT/mTOR/ULK1 signaling pathway and reversed the increase of autophagy associated proteins (LC3II, Beclin1, Cathepsin B, and LAMP2) in the liver of T2DM mice. Similar results were also confirmed palmitic acid-induced HepG2 cells, an in vitro model for IR. Conversely, AKT inhibitor MK2206 neutralized the effects of MWLD on autophagy and glucose uptake, which was consistent with these results that the main active components of MWLD show strong affinity with AKT1 analyzed by molecular docking. CONCLUSION Both in vivo and in vitro experiments showed that MWLD inhibited excessive autophagy through the AKT/mTOR/ULK1 pathway to improve hepatic IR, and stimulate liver glycogen production through AKT/GSK3β pathway.
Collapse
Affiliation(s)
- Weiping Gao
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Mengwei Wang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Wangjun Xu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Ruichen Ma
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China; Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, 475000, China
| | - Xian Wang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Taimeng Sun
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China; Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, 475000, China
| | - Penghui Li
- Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, 475000, China
| | - Fangxu Li
- Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, 475000, China
| | - Yangyang He
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xinmei Xie
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiaobin Pang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Yunfeng Zhou
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Guoming Pang
- Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, 475000, China.
| |
Collapse
|
8
|
Li J, Sun M, Tang M, Song X, Zheng K, Meng T, Li C, Du L. Mechanism of PI3K/Akt‑mediated mitochondrial pathway in obesity‑induced apoptosis (Review). Biomed Rep 2025; 22:40. [PMID: 39781039 PMCID: PMC11707581 DOI: 10.3892/br.2024.1918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Obesity is a pervasive global health challenge that substantially reduces the quality of life of millions of individuals and impedes social and economic advancement. Obesity is an independent risk factor that contributes to a range of chronic non-communicable metabolic diseases, significantly affecting energy metabolism, mental health, cancer susceptibility, sleep quality, and other physiological processes. The PI3K/AKT signaling pathway, a significant glucose, lipid, and protein metabolism regulator, is integral to cellular growth, survival, and apoptosis. Apoptosis is a highly regulated form of programmed cell death that is critical for immune cell maturation and tissue repair. The present review examines the association between obesity, the PI3K/AKT pathway, and mitochondrial apoptosis to elucidate the potential mechanisms by which obesity may activate apoptotic pathways. These findings provide a theoretical foundation for mitigating obesity-related complications by targeting these critical pathways.
Collapse
Affiliation(s)
- Jiarui Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Mingxiu Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Ming Tang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xin Song
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Kaize Zheng
- Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, Liaoning 110167, P.R. China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Likun Du
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
9
|
Zhang Z, Cui M, Wang H, Yuan W, Liu Z, Gao H, Guan X, Chen X, Xie L, Chen S, He Y, Wang Q. Co-exposure to F-53B and nanoplastics induced hepatic glucolipid metabolism disorders by the PI3K-AKT signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125771. [PMID: 39894156 DOI: 10.1016/j.envpol.2025.125771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Recent investigations suggest that the chemical compound F-53B (6:2 chlorinated polyfluorinated ether sulfonate) may pose risks of liver toxicity. Within environmental settings, F-53B attaches to microplastics and nanoplastics, which are capable of being consumed by diverse species. To investigate the synergistic effects on hepatotoxicity, adult male mice were subjected to F-53B at daily doses of 1, 10, and 100 μg/kg, NPs at 100 mg/kg per day, or a combination of both treatments for a duration of 2 months. The results indicated that NPs moderately increased the buildup of F-53B within both the liver and plasma. Co-exposure to F-53B (100 μg/kg/day) and NPs induced hepatocellular edema and elevated plasma ALT levels, which were rarely observed in groups exposed to F-53B or NPs alone. Additionally, we found that co-exposure decreased the concentrations of total cholesterol (TC) and triglycerides (TG) in both plasma and liver tissues, while increasing fasting plasma glucose and insulin levels. Transcriptomic analysis revealed that the PI3K-AKT signaling pathway is potentially involved in mediating hepatic metabolic disorders. Further experiments demonstrated that the combined treatment significantly suppressed the expression of FGF21, an upstream regulator of the PI3K-AKT pathway. This alteration resulted in the suppression of PI3K-regulated gene expression associated with glucose and lipid metabolism. The findings suggest that F-53B impairs hepatic glucolipid metabolism in mice by suppressing of the PI3K-AKT signaling cascade, with NPs amplifying its toxicity.
Collapse
Affiliation(s)
- Zhihan Zhang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mengxing Cui
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Han Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenke Yuan
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huan Gao
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinchao Guan
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoyu Chen
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lijie Xie
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shilin Chen
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yujie He
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Chipofya E, Docrat TF, Marnewick JL. The Neuroprotective Effect of Rooibos Herbal Tea Against Alzheimer's Disease: A Review. Mol Nutr Food Res 2025; 69:e202400670. [PMID: 39703045 PMCID: PMC11704843 DOI: 10.1002/mnfr.202400670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
The world is experiencing a demographic shift toward an increasing proportion of elderly persons. Alzheimer's disease (AD) and other neurological disorders are far more likely to develop as people age. AD is a gradual, irreversible, and degenerative brain disorder that progressively deteriorates memory and cognitive function, eventually leading to death. Treatment for AD is the most significant unmet clinical need in neurology. There are no effective treatment options to prevent or reverse the degenerative process. The current medical management focuses primarily on temporarily easing symptoms, with little or no overall improvement. Although genetic predisposition and lifestyle factors influence the risk of neurodegenerative disorders, recent research suggests that dietary polyphenols with solid antioxidant capacities play crucial roles in determining brain health and aging. Aspalathus linearis is used to produce Rooibos, a popular South African herbal tea, which may modulate neurodegenerative mechanisms such as oxidative stress, tau protein, amyloid plaques, inflammation, and metals, all of which have been associated with AD. We reviewed the literature to evaluate the potential neuroprotective effects of Rooibos and its major flavonoids and to understand the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Elias Chipofya
- Applied Microbial and Health Biotechnology InstituteCape Peninsula University of TechnologyCape TownSouth Africa
- Department of Biomedical SciencesFaculty of Health Sciences and Wellness SciencesCape Peninsula University of TechnologyCape TownSouth Africa
| | - Taskeen F. Docrat
- Applied Microbial and Health Biotechnology InstituteCape Peninsula University of TechnologyCape TownSouth Africa
| | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology InstituteCape Peninsula University of TechnologyCape TownSouth Africa
| |
Collapse
|
11
|
Yurtseven K, Yücecan S. Exploring the Potential of Epigallocatechin Gallate in Combating Insulin Resistance and Diabetes. Nutrients 2024; 16:4360. [PMID: 39770980 PMCID: PMC11676372 DOI: 10.3390/nu16244360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES In this study, the potential effects are evaluated of epigallocatechin gallate (EGCG) on the prognosis of diabetes and insulin resistance. METHODS In an experiment, 35 male Wistar albino rats were used and in the streptozotocin (STZ)-induced diabetic rats, the effects were examined of different doses (50 mg/kg, 100 mg/kg, 200 mg/kg) of EGCG on metabolic parameters associated with diabetes and insulin resistance. RESULTS The findings show favorable effects of EGCG on fasting blood glucose levels, insulin secretion, insulin resistance, and beta cell function. In this study, it was observed that EGCG was able to significantly lower fasting blood glucose levels, especially at high doses (200 mg/kg), providing the most significant improvement. Furthermore, EGCG has been found to reduce insulin resistance and improve insulin sensitivity by increasing insulin secretion. When the biochemical parameters of increased insulin secretion are evaluated, it is also observed that it creates clinically significant changes. At doses of 100 mg/kg and 200 mg/kg, EGCG has the potential to help control diabetes by most effectively improving insulin resistance and beta cell function. The study results suggest that EGCG, especially at high doses, is an effective component in the treatment of diabetes and the management of insulin resistance. CONCLUSIONS The inclusion of EGCG as a natural flavonoid in medical nutrition therapy may contribute to glycemic control and improve insulin sensitivity in individuals with diabetes. These findings suggest that EGCG may be used as an alternative option in the treatment of diabetes and future studies may further clarify the potential benefits in this area.
Collapse
Affiliation(s)
- Kübra Yurtseven
- Department of Nutrition and Dietetics, Institute of Health Sciences, Lokman Hekim University, 06510 Çankaya, Ankara, Turkey
| | - Sevinç Yücecan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Lokman Hekim University, 06510 Çankaya, Ankara, Turkey;
| |
Collapse
|
12
|
Yi R, Liu Y, Zhang X, Sun X, Wang N, Zhang C, Deng H, Yao X, Wang S, Yang G. Unraveling Quercetin's Potential: A Comprehensive Review of Its Properties and Mechanisms of Action, in Diabetes and Obesity Complications. Phytother Res 2024; 38:5641-5656. [PMID: 39307545 DOI: 10.1002/ptr.8332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 12/13/2024]
Abstract
The prevalence of diabetes is escalating alarmingly, placing a significant economic burden on the global healthcare system. The use of chemical substances extracted from plants has been demonstrated to be an effective method for the treatment and control of insulin resistance and Type 2 diabetes mellitus (T2DM). New research indicates that natural phytochemicals present in fruits and vegetables are expected to become drugs for the treatment of diabetes and the prevention of related complications. Quercetin, a widely distributed flavonoid, is well-known for its antioxidant, anti-inflammatory, anticancer, and antidiabetic properties. This article provides a comprehensive account of the mechanism of action of quercetin on diabetes and obesity complications in vivo and in vitro. It elucidates the impact of quercetin on various cells. These include hepatocytes, renal cells, skeletal muscle cells, and adipocytes. Furthermore, this article discusses the mechanism of quercetin on organ damage in diabetic mice induced by STZ, alloxan, diet, and spontaneous Type 2 diabetic mice caused by genetic defects. Additionally, it addresses the pharmacokinetics of quercetin and its potential for synergistic effects with existing diabetic drugs.
Collapse
Affiliation(s)
- Ruhan Yi
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Yun Liu
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xu Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xiance Sun
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xiaofeng Yao
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Li Z, Chen L, Qu L, Yu W, Liu T, Ning F, Li J, Guo X, Sun F, Sun B, Luo L. Potential implications of natural compounds on aging and metabolic regulation. Ageing Res Rev 2024; 101:102475. [PMID: 39222665 DOI: 10.1016/j.arr.2024.102475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aging is generally accompanied by a progressive loss of metabolic homeostasis. Targeting metabolic processes is an attractive strategy for healthy-aging. Numerous natural compounds have demonstrated strong anti-aging effects. This review summarizes recent findings on metabolic pathways involved in aging and explores the anti-aging effects of natural compounds by modulating these pathways. The potential anti-aging effects of natural extracts rich in biologically active compounds are also discussed. Regulating the metabolism of carbohydrates, proteins, lipids, and nicotinamide adenine dinucleotide is an important strategy for delaying aging. Furthermore, phenolic compounds, terpenoids, alkaloids, and nucleotide compounds have shown particularly promising effects on aging, especially with respect to metabolism regulation. Moreover, metabolomics is a valuable tool for uncovering potential targets against aging. Future research should focus on identifying novel natural compounds that regulate human metabolism and should delve deeper into the mechanisms of metabolic regulation using metabolomics methods, aiming to delay aging and extend lifespan.
Collapse
Affiliation(s)
- Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liangliang Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fangjian Ning
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinwang Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiali Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
14
|
Ji T, Xu G, Wu Y, Wang Y, Xiao C, Zhang B, Xu B, Xu F. Amelioration of Type 2 Diabetes Mellitus Using Rapeseed ( Brassica napus)-Derived Peptides through Stimulating Calcium-Sensing Receptor: Effects on Glucagon-Like Peptide-1 Secretion and Hepatic Lipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23804-23818. [PMID: 39425744 DOI: 10.1021/acs.jafc.4c03987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The potential of rapeseed-derived peptides (RDPs) in the amelioration of type 2 diabetes mellitus (T2DM) has been hypothesized. However, the mechanisms of the intestinal endocrine hormones activated by RDPs have not been fully understood. This study aimed to explore the amelioration of T2DM and associated hepatic lipid metabolism disorders using RDPs by affecting glucagon-like peptide-1 (GLP-1) secretion. Eight RDPs were prepared by different stepwise enzymatic hydrolysis, wherein RCPP-3 (sequential using alcalase/flavourzyme) and RNPP-1 (sequential using alcalase/trypsin) maintained the normal blood glucose level, significantly increased the body weight (27.17 ± 0.19%) in T2DM mice compared to the positive group (p < 0.05). Western blotting and immunofluorescence experiments indicated that RCPP-3 and RNPP-1 regulated the intestinal endocrine hormones GLP-1 secretion through the calcium-sensing receptor (CaSR). Additionally, the PI3K-Akt pathway was significantly activated by GLP-1, leading to marked improvements in hepatic lipid parameters (TC, TG, LDL-c, and HDL-c) and mitigated fat accumulation (p < 0.05). Notably, the stimulating effect of RCPP-3 on GLP-1 was 10.05% ± 0.71% higher than RNPP-1. G2-R3, a fraction separated from RCPP-3, which contained 14 peptides with the best capacity to stimulate GLP-1 secretion, was identified using HPLC-QTOF-MS/MS. This study suggests the potential of RDPs as novel functional food supplements for ameliorating T2DM.
Collapse
Affiliation(s)
- Tong Ji
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Guosheng Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Ying Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Yu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Chuqiao Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Bao Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Feiran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| |
Collapse
|
15
|
Sivri D, Gezmen-Karadağ M. Effects of Phytochemicals on Type 2 Diabetes via MicroRNAs. Curr Nutr Rep 2024; 13:444-454. [PMID: 38805166 PMCID: PMC11327184 DOI: 10.1007/s13668-024-00549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE OF REVIEW Type 2 diabetes, characterized by inadequate insulin secretion and resistance, is increasingly prevalent. To effectively manage type 2 diabetes, identifying new therapeutic targets is crucial. MicroRNAs, short noncoding RNA molecules, play a pivotal role in regulating β-cell function, insulin production, and resistance, and show promise as biomarkers for predicting type 2 diabetes onset. Phytochemicals, known for their antioxidant activities, may influence microRNA expression, potentially improving insulin sensitivity and mitigating associated complications. This review aims to explore the significance of microRNA in type 2 diabetes, their potential as biomarkers, and how certain phytochemicals may modulate microRNA expressions to reduce or prevent diabetes and its complications. RECENT FINDINGS Current research suggests that microRNAs show promise as novel therapeutic biomarkers for diagnosing type 2 diabetes and monitoring diabetic complications. Additionally, phytochemicals may regulate microRNAs to control type 2 diabetes, presenting a potential therapeutic strategy. The multifactorial effects of phytochemicals on type 2 diabetes and its complications through microRNAs warrant further research to elucidate their mechanisms. Comprehensive clinical trials are needed to assess the safety and efficacy of phytochemicals and their combinations. Given their ability to modulate microRNAs expression, incorporating phytochemical-rich foods into the diet may be beneficial.
Collapse
Affiliation(s)
- Dilek Sivri
- Department of Nutrition and Dietetic, Faculty of Health Science, Anadolu University, Eskişehir, Turkey.
| | - Makbule Gezmen-Karadağ
- Department of Nutrition and Dietetic, Faculty of Health Science, Gazi University, Ankara, Turkey
| |
Collapse
|
16
|
Feng J, Chen W, Li S, Fang Q, Chen X, Bai G, Tian M, Huang Y, Xu P, Wang Z, Ma Y. PACAP ameliorates obesity-induced insulin resistance through FAIM/Rictor/AKT axis. FEBS J 2024; 291:4096-4110. [PMID: 39041617 DOI: 10.1111/febs.17228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/17/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Obesity and obesity-related insulin resistance have been a research hotspot. Pituitary adenylate cyclase activating polypeptide (PACAP) has emerged as playing a significant role in energy metabolism, holding promising potential for attenuating insulin resistance. However, the precise mechanism is not fully understood. Palmitic acid and a high-fat diet (HFD) were used to establish insulin resistance model in Alpha mouse liver 12 cell line and C57BL/6 mice, respectively. Subsequently, we assessed the effects of PACAP both in vivo and in vitro. Lentivirus vectors were used to explore the signaling pathway through which PACAP may ameliorate insulin resistance. PACAP was found to selectively bind to the PACAP type I receptor receptor and ameliorate insulin resistance, which was characterized by increased glycogen synthesis and the suppression of gluconeogenesis in the insulin-resistant cell model and HFD-fed mice. These effects were linked to the activation of the Fas apoptotic inhibitory molecule/rapamycin-insensitive companion of mammalian target of rapamycin/RAC-alpha serine/threonine-protein kinase (FAIM/Rictor/AKT) axis. Furthermore, PACAP ameliorated insulin resistance by increasing solute carrier family 2, facilitated glucose transporter members 2/4 and inhibiting gluconeogenesis-related proteins glucose 6-phosphatase catalytic subunit 1 and phosphoenolpyruvate carboxykinase 2 expression. Meanwhile, the phosphorylation of hepatic AKT/glycogen synthase kinase 3β was promoted both in vivo and in vitro by PACAP. Additionally, PACAP treatment decreased body weight, food intake and blood glucose levels in obese mice. Our study shows that PACAP ameliorated insulin resistance through the FAIM/Rictor/AKT axis, presenting it as a promising drug candidate for the treatment of obesity-related insulin resistance.
Collapse
Affiliation(s)
- Jia Feng
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wenhui Chen
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shanshan Li
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qianchen Fang
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xingwu Chen
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ge Bai
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Meng Tian
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yongmei Huang
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pei Xu
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zixian Wang
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Du J, Zhu Y, Yang X, Geng X, Xu Y, Zhang M, Zhang M. Berberine attenuates obesity-induced insulin resistance by inhibiting miR-27a secretion. Diabet Med 2024; 41:e15319. [PMID: 38711201 DOI: 10.1111/dme.15319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Berberine (BBR) is an alkaloid found in plants. It has neuroprotective, anti-inflammatory and lipid-lowering activity. However, the efficacy of treatment with BBR and the mechanisms through which it acts need further study. AIMS This study investigated the therapeutic effects and the mechanism of action of BBR on obesity-induced insulin resistance in peripheral tissues. METHODS High-fat-fed C57BL/6J mice and low-fat-fed C57BL/6J mice with miR-27a overexpression were given BBR intervention (100 mg/kg, po), and the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed. Palmitic acid-stimulated hypertrophic adipocyte models were treated with BBR (10 μM). Related indicators and protein expression levels were examined. RESULTS The AUCs of the OGTT and the ITT in the BBR intervention group were reduced significantly (p < 0.01) (p < 0.05), and the serum biochemical parameters, including FBG, TC, TG and LDL-C were significantly reduced after BBR intervention. In the in vitro experiments, the triglyceride level and volume of lipid droplets decreased significantly after BBR intervention (p < 0.01) (p < 0.05). Likewise, BBR ameliorates skeletal muscle and pancreas insulin signalling pathways in vivo and in vitro. DISCUSSION The results showed that BBR significantly ameliorated insulin resistance, reduced body weight and percent body fat and improved serum biochemical parameters in mice. Likewise, BBR reduced triglyceride level and lipid droplet volume in hypertrophic adipocytes, BBR improved obesity effectively. Meanwhile, BBR ameliorated the histomorphology of the pancreas, and skeletal muscle and pancreas insulin related signalling pathways of islets in in vitro and in vivo experiments. The results further demonstrated that BBR inhibited miR-27a levels in serum from obese mice and supernatant of hypertrophic adipocytes. miR-27a overexpression in low-fat fed mice indicated that miR-27a caused insulin resistance, and BBR intervention significantly improved the miR-27a induced insulin resistance status. CONCLUSION This study demonstrates the important role of BBR in obesity-induced peripheral insulin resistance and suggest that the mechanism of its effect may be inhibition of miR-27a secretion.
Collapse
Affiliation(s)
- Junda Du
- Department of Pharmacology, College of Basic Medical Sciences, School of nursing, Jilin University, Changchun, Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
| | - Yu Zhu
- Department of Ophthalmology of Jilin Province FAW General Hospital, Changchun, Jilin, China
| | - Xuehan Yang
- Department of Pharmacology, College of Basic Medical Sciences, School of nursing, Jilin University, Changchun, Jilin, China
| | - Xinru Geng
- Department of Pharmacology, College of Basic Medical Sciences, School of nursing, Jilin University, Changchun, Jilin, China
| | - Yang Xu
- Department of Pharmacology, College of Basic Medical Sciences, School of nursing, Jilin University, Changchun, Jilin, China
| | - Meishuang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of nursing, Jilin University, Changchun, Jilin, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of nursing, Jilin University, Changchun, Jilin, China
| |
Collapse
|
18
|
Song L, Li Y, Xu M. Exogenous Nucleotides Ameliorate Insulin Resistance Induced by Palmitic Acid in HepG2 Cells through the IRS-1/AKT/FOXO1 Pathways. Nutrients 2024; 16:1801. [PMID: 38931156 PMCID: PMC11206901 DOI: 10.3390/nu16121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Nucleotides (NTs) act as pivotal regulatory factors in numerous biological processes, playing indispensable roles in growth, development, and metabolism across organisms. This study delves into the effects of exogenous NTs on hepatic insulin resistance using palmitic-acid-induced HepG2 cells, administering interventions at three distinct dosage levels of exogenous NTs. The findings underscore that exogenous NT intervention augments glucose consumption in HepG2 cells, modulates the expression of glycogen-synthesis-related enzymes (glycogen synthase kinase 3β and glycogen synthase), and influences glycogen content. Additionally, it governs the expression levels of hepatic enzymes (hexokinase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase). Moreover, exogenous NT intervention orchestrates insulin signaling pathway (insulin receptor substrate-1, protein kinase B, and forkhead box protein O1) and AMP-activated protein kinase (AMPK) activity in HepG2 cells. Furthermore, exogenous NT intervention fine-tunes the expression levels of oxidative stress-related markers (malondialdehyde, glutathione peroxidase, and NADPH oxidase 4) and the expression of inflammation-related nuclear transcription factor (NF-κB). Lastly, exogenous NT intervention regulates the expression levels of glucose transporter proteins (GLUTs). Consequently, exogenous NTs ameliorate insulin resistance in HepG2 cells by modulating the IRS-1/AKT/FOXO1 pathways and regulate glucose consumption, glycogen content, insulin signaling pathways, AMPK activity, oxidative stress, and inflammatory status.
Collapse
Affiliation(s)
- Lixia Song
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (L.S.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (L.S.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (L.S.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100019, China
| |
Collapse
|
19
|
Chen C, Chen F, Gu L, Jiang Y, Cai Z, Zhao Y, Chen L, Zhu Z, Liu X. Discovery and validation of COX2 as a target of flavonoids in Apocyni Veneti Folium: Implications for the treatment of liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117919. [PMID: 38364933 DOI: 10.1016/j.jep.2024.117919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Apocyni Veneti Folium (AVF), a popular traditional Chinese medicine (TCM), is known for its effects in soothing the liver and nerves and eliminating heat and water. It is relevant from an ethnopharmacological perspective. Pharmacological research has confirmed its benefits on antihypertension, antihyperlipidemia, antidepression, liver protection, immune system boosting, antiaging, and diabetic vascular lesions. Previous studies have shown that flavonoids, the active ingredients, have a hepatoprotective effect. However, the exact mechanism has not been clarified. AIM OF THE STUDY This study aimed to identify the active flavonoids in AVF and their corresponding targets for liver injury. Multiple methods were introduced to confirm the targets. MATERIAL AND METHODS AVF compounds were analyzed using liquid chromatography-mass spectrometry (LC-MS). Then, network pharmacology was utilized to screen potential hepatoprotection targets of the compounds. An enzyme activity assay was performed to determine the effect of the compounds on the targets. Biolayer interferometry (BLI) was applied to confirm the direct interaction between the compounds and the targets. RESULTS A total of 71 compounds were identified by LC-MS and 19 compounds and 112 shared targets were screened using network pharmacology. These common targets were primarily involved in the TNF signaling pathway, cancer pathways, hepatitis B, drug responses, and negative regulation of the apoptotic process. Flavonoids were the primary pharmacological substance basis of AVF. The cyclooxygenase 2 (COX2) protein was one of the direct targets of flavonoids in AVF. The enzyme activity assay and BLI-based intermolecular interactions demonstrated that the compounds astragalin, isoquercitrin, and hyperoside exhibited stronger inhibition of enzyme activity and a higher affinity with COX2 compared to epigallocatechin, quercetin, and catechin. CONCLUSIONS COX2 was preliminarily identified as a target of flavonoids, and the mechanism of the hepatoprotective effect of AVF might be linked to flavonoids inhibiting the activity of COX2. The findings can establish the foundation for future research on the traditional hepatoprotective effect of AVF on the liver and for clinical studies on liver disorders.
Collapse
Affiliation(s)
- Cuihua Chen
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Feiyan Chen
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ling Gu
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yucui Jiang
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhichen Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yunan Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhu Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
20
|
Feng Y, Ren Y, Zhang X, Yang S, Jiao Q, Li Q, Jiang W. Metabolites of traditional Chinese medicine targeting PI3K/AKT signaling pathway for hypoglycemic effect in type 2 diabetes. Front Pharmacol 2024; 15:1373711. [PMID: 38799166 PMCID: PMC11116707 DOI: 10.3389/fphar.2024.1373711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease characterized by insulin resistance, with high morbidity and mortality worldwide. Due to the tightly intertwined connection between the insulin resistance pathway and the PI3K/AKT signaling pathway, regulating the PI3K/AKT pathway and its associated targets is essential for hypoglycemia and the prevention of type 2 diabetes mellitus. In recent years, metabolites isolated from traditional Chinese medicine has received more attention and acceptance for its superior bioactivity, high safety, and fewer side effects. Meanwhile, numerous in vivo and in vitro studies have revealed that the metabolites present in traditional Chinese medicine possess better bioactivities in regulating the balance of glucose metabolism, ameliorating insulin resistance, and preventing type 2 diabetes mellitus via the PI3K/AKT signaling pathway. In this article, we reviewed the literature related to the metabolites of traditional Chinese medicine improving IR and possessing therapeutic potential for type 2 diabetes mellitus by targeting the PI3K/AKT signaling pathway, focusing on the hypoglycemic mechanism of the metabolites of traditional Chinese medicine in type 2 diabetes mellitus and elaborating on the significant role of the PI3K/AKT signaling pathway in type 2 diabetes mellitus. In order to provide reference for clinical prevention and treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
21
|
Wang Y, Li Z, He J, Zhao Y. Quercetin Regulates Lipid Metabolism and Fat Accumulation by Regulating Inflammatory Responses and Glycometabolism Pathways: A Review. Nutrients 2024; 16:1102. [PMID: 38674793 PMCID: PMC11053503 DOI: 10.3390/nu16081102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Fat synthesis and lipolysis are natural processes in growth and have a close association with health. Fat provides energy, maintains physiological function, and so on, and thus plays a significant role in the body. However, excessive/abnormal fat accumulation leads to obesity and lipid metabolism disorder, which can have a detrimental impact on growth and even harm one's health. Aside from genetic effects, there are a range of factors related to obesity, such as excessive nutrient intake, inflammation, glycometabolism disease, and so on. These factors could serve as potential targets for anti-obesity therapy. Quercetin is a flavonol that has received a lot of attention recently because of its role in anti-obesity. It was thought to have the ability to regulate lipid metabolism and have a positive effect on anti-obesity, but the processes are still unknown. Recent studies have shown the role of quercetin in lipid metabolism might be related to its effects on inflammatory responses and glycometabolism. The references were chosen for this review with no date restrictions applied based on the topics they addressed, and the databases PubMed and Web of Sicence was used to conduct the references research, using the following search terms: "quercetin", "obesity", "inflammation", "glycometabolism", "insulin sensitivity", etc. This review summarizes the potential mechanisms of quercetin in alleviating lipid metabolism through anti-inflammatory and hypoglycemic signaling pathways, and describes the possible signaling pathways in the interaction of inflammation and glycometabolism, with the goal of providing references for future research and application of quercetin in the regulation of lipid metabolism.
Collapse
Affiliation(s)
| | | | - Jianhua He
- College of Animal Science & Technology, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Z.L.)
| | - Yurong Zhao
- College of Animal Science & Technology, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Z.L.)
| |
Collapse
|
22
|
Martino E, D’Onofrio N, Balestrieri A, Colloca A, Anastasio C, Sardu C, Marfella R, Campanile G, Balestrieri ML. Dietary Epigenetic Modulators: Unravelling the Still-Controversial Benefits of miRNAs in Nutrition and Disease. Nutrients 2024; 16:160. [PMID: 38201989 PMCID: PMC10780859 DOI: 10.3390/nu16010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
In the context of nutrient-driven epigenetic alterations, food-derived miRNAs can be absorbed into the circulatory system and organs of recipients, especially humans, and potentially contribute to modulating health and diseases. Evidence suggests that food uptake, by carrying exogenous miRNAs (xenomiRNAs), regulates the individual miRNA profile, modifying the redox homeostasis and inflammatory conditions underlying pathological processes, such as type 2 diabetes mellitus, insulin resistance, metabolic syndrome, and cancer. The capacity of diet to control miRNA levels and the comprehension of the unique characteristics of dietary miRNAs in terms of gene expression regulation show important perspectives as a strategy to control disease susceptibility via epigenetic modifications and refine the clinical outcomes. However, the absorption, stability, availability, and epigenetic roles of dietary miRNAs are intriguing and currently the subject of intense debate; additionally, there is restricted knowledge of their physiological and potential side effects. Within this framework, we provided up-to-date and comprehensive knowledge on dietary miRNAs' potential, discussing the latest advances and controversial issues related to the role of miRNAs in human health and disease as modulators of chronic syndromes.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| |
Collapse
|
23
|
Farhadi F, Sharififar F, Jafari M, Rahimi VB, Askari N, Askari VR. Hallmarks of Quercetin Benefits as a Functional Supplementary in the Management of Diabetes Mellitus-Related Maladies: From Basic to Clinical Applications. Curr Drug Metab 2024; 25:653-669. [PMID: 39878112 DOI: 10.2174/0113892002339410250108031621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/31/2025]
Abstract
Quercetin (QE), a particular flavonoid, is well known for its medicinal effects, including anti-oxidant, hypoglycemic, and anti-inflammatory effects. In this review, the findings of QE effects on diabetes STZinduced, alloxan-induced, and its complications have been summarized with a particular focus on in vitro, in vivo, and clinical trials. Consequently, QE mediates several mechanisms, including ameliorating tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, IL-8, and IL-10 expression, increasing insulin glucose uptake to inhibit insulin resistance. Moreover, QE stimulates insulin secretion and attenuates insulin resistance through various pathways, namely transient KATP channel, motivating peroxisome proliferator-activated receptor expression, increasing glucose transporter-4, and decreasing inducible nitric oxide synthase in skeletal muscle. QE has protective effects on the complications caused by diabetes, such as polycystic ovary syndrome, high-fat diet-induced obesity, diabetic-induced hepatic damage, vascular inflammation, nephropathy, and neuropathy.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Jafari
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Yu W, Zhu H, Huang R, Yan B, Xu B, Shi Y, Mao J, Liu Z, Wang J. Roles of Cyt-c/Caspase-9/Caspase-3/Bax/Bcl-2 pathway in Cd-induced testicular injury in rats and the protective effect of quercetin. Toxicon 2024; 237:107561. [PMID: 38092195 DOI: 10.1016/j.toxicon.2023.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Cadmium (Cd) exposure causes oxidative damage to mitochondria, which would adversely affect rat testicular tissue. Quercetin (Que) is a natural antioxidant with anti-inflammatory, antioxidant and anti-apoptotic effects. However, the mechanism by which Que inhibits Cd-induced apoptosis of testicular cells remains unclear. The purpose of this study was to investigate the role of mitochondrial apoptosis pathway (Cyt-c/Caspase-9/Caspase-3/Bax/Bcl-2 pathway) in inhibiting Cd-induced apoptosis of testicular cells by Que. We used SD rats to simulate Cd chloride exposure by treating all sides of the rats with CdCl2 and/or Que. The levels of GSH and MDA in rat testis were detected using reagent kits. The effects of CdCl2 and/or Que on tissue damage, apoptosis, and gene and protein expression of the Cyt-c/Caspase-9/Caspase-3/Bax/Bcl-2 pathway in rat testis were examined by HE, TUNEL, RNA extraction and reverse-transcriptase polymerase chain reaction (RT-PCR), and Western blot (Wb). The results show that Cd significantly increased the contents of GSH and MDA in rat testis (P < 0.01); conversely, Que significantly reduced the contents of GSH and MDA (P < 0.01). Cd inflicted damage to testicular tissue, and Que addition significantly reduced the damage. Cd increased the number of apoptosis of testicle cells, and Que inhibited testicle-cell apoptosis. In addition, the results of reverse transcription PCR and Wb assays confirmed that, as expected, Cd increased the expression levels of Cyt-c, Caspase-9, Caspase-3, and Bax mRNAs as well as proteins. And at the same time decreased the expression of the anti-apoptotic factor Bcl-2 in the cells. Surprisingly, these effects were reversed when Que was added. Therefore, Que can play an antioxidant and anti-apoptotic role in reducing the testicular tissue damage caused by Cd exposure. This provides a conceptual basis for the later development and utilization of Que as well as the prevention and treatment of tissue damage caused by Cd exposure.
Collapse
Affiliation(s)
- Wenjing Yu
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Huali Zhu
- Law Hospital, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Ruxue Huang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Bingzhao Yan
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Bing Xu
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Yaning Shi
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Junbing Mao
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, No.12, East Wenhui Road, 225009, Yangzhou, PR China
| | - Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China.
| |
Collapse
|
25
|
Poulios E, Koukounari S, Psara E, Vasios GK, Sakarikou C, Giaginis C. Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem 2024; 31:25-61. [PMID: 37198988 DOI: 10.2174/0929867330666230517124033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world's population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stergia Koukounari
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
26
|
Kazeminasab F, Baharlooie M, Rezazadeh H, Soltani N, Rosenkranz SK. The effects of aerobic exercise on liver function, insulin resistance, and lipid profiles in prediabetic and type 2 diabetic mice. Physiol Behav 2023; 271:114340. [PMID: 37648184 DOI: 10.1016/j.physbeh.2023.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/05/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND AND AIMS The purpose of the current study was to evaluate the expression of gluconeogenesis and insulin resistance key genes; including insulin receptor substrate 1 (Irs1), a serine/threonine protein kinase (Akt), forkhead box class-O 1 (FoxO1) and phosphoenolpyruvate carboxykinase (Pepck) genes, and lipid profiles following either a standard or a high-fat diet (HFD) and either an aerobic exercise or non-exercise intervention in prediabetic and type 2 diabetic (T2DM) mice. METHODS 24 male mice were randomly assigned to two groups fed with a normal diet (ND) or a HFD for 12 weeks. The mice in each group were again randomly assigned to two groups to create four groups in total: 1. Prediabetes-exercised (Prediabetes-Exe), 2. Prediabetes-non exercised (Prediabetes-Non exe), 3. Healthy-exercised (Healthy-Exe), and 4. Healthy-non exercised (Healthy-Non exe). Eighteen additional male mice were fed with the HFD for 8 weeks, after which streptozotocin (STZ) was administered. The mice were then fed the HFD for an additional 4 weeks. These T2DM mice were then randomly divided into two groups: 1. Diabetes-exercised (Diabetic-Exe), and 2. Diabetes-Non exe. The three Exe groups all exercised on a treadmill for 8 weeks for 5 sessions/week. After the last training session, liver tissue was extracted, and the expression of Irs1, Akt, FoxO1, and Pepck genes was measured using real time quantitative Polymerase chain reaction tests. Lipid profiles were measured in serum and in the liver. RESULTS The expression of both Irs1 and Akt was significantly increased in the Healthy-Exe, Prediabetes-Exe, and Diabetes-Exe groups as compared to the Healthy-Non exe, Prediabetes-Non exe, and Diabetes-Non exe groups (p < 0.001). Additionally, the expression of FoxO1 (p < 0.05) and Pepck (p < 0.001) decreased significantly in the Prediabetes-Exe, and Diabetes-Exe groups as compared to the Prediabetes-non exe, and Diabetes-Non exe groups. Aerobic exercise did not lead to reductions in FoxO1 or Pepck expression in the Healthy-Exe mice. CONCLUSIONS Eight weeks of aerobic exercise (5 sessions/week) significantly increased the expression of key genes that are important for maintaining glucose homeostasis and improving insulin resistance (Irs1 and Akt), and decreased expression of genes that are important for decreasing gluconeogenesis in the liver (FoxO1 and Pepck) in healthy, prediabetic, and T2DM mice. The lipid profiles improved in healthy, prediabetic, and T2DM mice.
Collapse
Affiliation(s)
- Fatemeh Kazeminasab
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Maryam Baharlooie
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hossein Rezazadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
27
|
Han S, Luo Y, Liu B, Guo T, Qin D, Luo F. Dietary flavonoids prevent diabetes through epigenetic regulation: advance and challenge. Crit Rev Food Sci Nutr 2023; 63:11925-11941. [PMID: 35816298 DOI: 10.1080/10408398.2022.2097637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pathophysiology of diabetes has been studied extensively in various countries, but effective prevention and treatment methods are still insufficient. In recent years, epigenetics has received increasing attention from researchers in exploring the etiology and treatment of diabetes. DNA methylation, histone modifications, and non-coding RNAs play critical roles in the occurrence, maintenance, and progression of diabetes and its complications. Therefore, preventing or reversing the epigenetic alterations that occur during the development of diabetes may reduce the individual and societal burden of the disease. Dietary flavonoids serve as natural epigenetic modulators for the discovery of biomarkers for diabetes prevention and the development of alternative therapies. However, there is limited knowledge about the potential beneficial effects of flavonoids on the epigenetics of diabetes. In this review, the multidimensional epigenetic effects of different flavonoid subtypes in diabetes were summarized. Furthermore, it was discussed that parental flavonoid diets might reduce diabetes incidence in offspring, which represent a promising opportunity to prevent diabetes in the future. Future work will depend on exploring anti-diabetic effects of different flavonoids with different epigenetic regulation mechanisms and clinical trials.Highlights• "Epigenetic therapy" could reduce the burden of diabetic patients• "Epigenetic diet" ameliorates diabetes• Targeting epigenetic regulations by dietary flavonoids in the diabetes prevention• Dietary flavonoids prevent diabetes via transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Liu
- Central South Food Science Institute of Grain and Oil Co., Ltd., Hunan Grain Group Co., Ltd, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Dandan Qin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
28
|
Afsharmanesh MR, Mohammadi Z, Mansourian AR, Jafari SM. A Review of micro RNAs changes in T2DM in animals and humans. J Diabetes 2023; 15:649-664. [PMID: 37329278 PMCID: PMC10415875 DOI: 10.1111/1753-0407.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its associated complications have become a crucial public health concern in the world. According to the literature, chronic inflammation and the progression of T2DM have a close relationship. Accumulated evidence suggests that inflammation enhances the insulin secretion lost by islets of Langerhans and the resistance of target tissues to insulin action, which are two critical features in T2DM development. Based on recently highlighted research that plasma concentration of inflammatory mediators such as tumor necrosis factor α and interleukin-6 are elevated in insulin-resistant and T2DM, and it raises novel question marks about the processes causing inflammation in both situations. Over the past few decades, microRNAs (miRNAs), a class of short, noncoding RNA molecules, have been discovered to be involved in the regulation of inflammation, insulin resistance, and T2DM pathology. These noncoding RNAs are specifically comprised of RNA-induced silencing complexes and regulate the expression of specific protein-coding genes through various mechanisms. There is extending evidence that describes the expression profile of a special class of miRNA molecules altered during T2DM development. These modifications can be observed as potential biomarkers for the diagnosis of T2DM and related diseases. In this review study, after reviewing the possible mechanisms involved in T2DM pathophysiology, we update recent information on the miRNA roles in T2DM, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Mohammad Reza Afsharmanesh
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Zeinab Mohammadi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Azad Reza Mansourian
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| |
Collapse
|
29
|
Zhang Q, Pan J, Liu H, Jiao Z. Characterization of the Synergistic Antioxidant Activity of Epigallocatechin Gallate (EGCG) and Kaempferol. Molecules 2023; 28:5265. [PMID: 37446925 DOI: 10.3390/molecules28135265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Epigallocatechin gallate (EGCG) and kaempferol exhibit cellular antioxidant activity; however, their interactive effects in terms of antioxidant actions and underlying mechanisms remain unclear. In this study, their cytoprotective effects were examined against 2,2-azobis (2-amidinopropane) dihydrochloride solution (ABAP)-induced oxidative stress in HepG2 cells. The results showed that the median effective dose (EC50) of the EGCG and kaempferol (6:1.5, c/c) combination was 3.4 ± 0.1 μg/mL, with a combination index (CIavg) value of 0.54, which represented a significant synergistic effect. Further experiments proved that the combined pretreatment with EGCG and kaempferol exerted protective effects by suppressing reactive oxygen species (ROS) generation, upregulating cellular antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px)) in a dose-dependent manner. The mechanism of synergistic antioxidant effects of EGCG combined with kaempferol may be due to the up-regulation of higher antioxidant enzyme activities that improve the antioxidant capacities and balance the cell oxidative stress. The synergistic antioxidant effect of EGCG and kaempferol can provide a theoretical basis for the development of formulas of functional food ingredients.
Collapse
Affiliation(s)
- Qiang Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Junkun Pan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Hui Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhonggao Jiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
30
|
Deng X, Niu L, Xiao J, Guo Q, Liang J, Tang J, Liu X, Xiao C. Involvement of intestinal flora and miRNA into the mechanism of coarse grains improving type 2 diabetes: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4257-4267. [PMID: 36224106 DOI: 10.1002/jsfa.12270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/06/2023]
Abstract
The prevalence of type 2 diabetes has been growing at an increasing rate worldwide. Dietary therapy is probably the easiest and least expensive method to prevent and treat diabetes. Previous studies have reported that coarse grains have anti-diabetic effects. Although considerable efforts have been made on the anti-diabetic function of different grains, the mechanisms of coarse grains on type 2 diabetes have not been systematically compared and summarized so far. Intestinal flora, reported as the main 'organ' of action underlying coarse grains, is an important factor in the alleviation of type 2 diabetes by coarse grains. Furthermore, microRNA (miRNA), as a new disease marker and 'dark nutrient', plays a likely influential role in cross-border communication among coarse grains, intestinal flora, and hosts. Given this context, this article reviews several possible mechanisms for the role of coarse grains on diabetes, incorporating resistance to inflammation and oxidative stress, repair of insulin signaling and β-cell dysfunction, and highlights the regulation of intestinal flora disorders and miRNAs expression, along with some novel insights. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xu Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Li Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qianqian Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiayi Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiayu Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Yi X, Dong M, Guo N, Tian J, Lei P, Wang S, Yang Y, Shi Y. Flavonoids improve type 2 diabetes mellitus and its complications: a review. Front Nutr 2023; 10:1192131. [PMID: 37324738 PMCID: PMC10265523 DOI: 10.3389/fnut.2023.1192131] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is increasing every year. Medications are currently the most common therapy for T2DM. However, these medications have certain adverse effects. In order to find safe and effective ways to improve this disease, researchers have discovered that some natural products can decrease blood sugar. Flavonoids are one of the most essential low molecular weight phenolic chemicals in the plant world, which widely exist in plant roots, stems, leaves, flowers, and fruits. They possess a variety of biological activities, including organ protection, hypoglycemic, lipid-lowering, anti-oxidative and anti-inflammatory effects. Some natural flavonoids ameliorate T2DM and its complications through anti-oxidation, anti-inflammatory action, glucose and lipid metabolism regulation, insulin resistance management, etc. Hence, this review aims at demonstrating the potential benefits of flavonoids in T2DM and its complications. This laid the foundation for the development of novel hypoglycemic medications from flavonoids.
Collapse
Affiliation(s)
- Xinrui Yi
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mosi Dong
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Naifei Guo
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jinlong Tian
- Food Science College, Shenyang Agricultural University, Shenyang, China
| | - Ping Lei
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Song Wang
- Liaoning Shengqi Haotian Biomedical Technology Co., Ltd., Liaoning, Shenyang, China
| | - Yufeng Yang
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Shi
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
32
|
Liu H, Guan H, He F, Song Y, Li F, Sun-Waterhouse D, Li D. Therapeutic actions of tea phenolic compounds against oxidative stress and inflammation as central mediators in the development and progression of health problems: A review focusing on microRNA regulation. Crit Rev Food Sci Nutr 2023; 64:8414-8444. [PMID: 37074177 DOI: 10.1080/10408398.2023.2202762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Many health problems including chronic diseases are closely associated with oxidative stress and inflammation. Tea has abundant phenolic compounds with various health benefits including antioxidant and anti-inflammatory properties. This review focuses on the present understanding of the impact of tea phenolic compounds on the expression of miRNAs, and elucidates the biochemical and molecular mechanisms underlying the transcriptional and post-transcriptional protective actions of tea phenolic compounds against oxidative stress- and/or inflammation-mediated diseases. Clinical studies showed that drinking tea or taking catechin supplement on a daily basis promoted the endogenous antioxidant defense system of the body while inhibiting inflammatory factors. The regulation of chronic diseases based on epigenetic mechanisms, and the epigenetic-based therapies involving different tea phenolic compounds, have been insufficiently studied. The molecular mechanisms and application strategies of miR-27 and miR-34 involved in oxidative stress response and miR-126 and miR-146 involved in inflammation process were preliminarily investigated. Some emerging evidence suggests that tea phenolic compounds may promote epigenetic changes, involving non-coding RNA regulation, DNA methylation, histone modification, ubiquitin and SUMO modifications. However, epigenetic mechanisms and epigenetic-based disease therapies involving phenolic compounds from different teas, and the potential cross-talks among the epigenetic events, remain understudied.
Collapse
Affiliation(s)
- Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Fatao He
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Ye Song
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| |
Collapse
|
33
|
Yang JY, Ma YX, Liu Y, Peng XJ, Chen XZ. A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity. Molecules 2023; 28:molecules28062735. [PMID: 36985705 PMCID: PMC10054335 DOI: 10.3390/molecules28062735] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has majorly impacted public health and economies worldwide. Although several effective vaccines and drugs are now used to prevent and treat COVID-19, natural products, especially flavonoids, showed great therapeutic potential early in the pandemic and thus attracted particular attention. Quercetin, baicalein, baicalin, EGCG (epigallocatechin gallate), and luteolin are among the most studied flavonoids in this field. Flavonoids can directly or indirectly exert antiviral activities, such as the inhibition of virus invasion and the replication and inhibition of viral proteases. In addition, flavonoids can modulate the levels of interferon and proinflammatory factors. We have reviewed the previously reported relevant literature researching the pharmacological anti-SARS-CoV-2 activity of flavonoids where structures, classifications, synthetic pathways, and pharmacological effects are summarized. There is no doubt that flavonoids have great potential in the treatment of COVID-19. However, most of the current research is still in the theoretical stage. More studies are recommended to evaluate the efficacy and safety of flavonoids against SARS-CoV-2.
Collapse
Affiliation(s)
- Jun-Yu Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yi-Xuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xiang-Jun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Xiang-Zhao Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
34
|
Targeting PI3K/AKT signaling pathway in obesity. Biomed Pharmacother 2023; 159:114244. [PMID: 36638594 DOI: 10.1016/j.biopha.2023.114244] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Obesity is a disorder with an increasing prevalence, which impairs the life quality of patients and intensifies societal health care costs. The development of safe and innovative prevention strategies and therapeutic approaches is thus of great importance. The complex pathophysiology of obesity involves multiple signaling pathways that influence energy metabolism in different tissues. The phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT) pathway is critical for the metabolic homeostasis and its function in insulin-sensitive tissues is described in the context of health, obesity and obesity-related complications. The PI3K family participates in the regulation of diverse physiological processes including but not limited to cell growth, survival, differentiation, autophagy, chemotaxis, and metabolism depending on the cellular context. AKT is downstream of PI3K in the insulin signaling pathway, and promotes multiple cellular processes by targeting a plethora of regulatory proteins that control glucose and lipid metabolism. Natural products are essential for prevention and treatment of many human diseases, including obesity. Anti-obesity natural compounds effect multiple pathophysiological mechanisms involved in obesity development. Numerous recent preclinical studies reveal the advances in using plant secondary metabolites to target the PI3K/AKT signaling pathway for obesity management. In this paper the druggability of PI3K as a target for compounds with anti-obesity potential is evaluated. Perspectives on the strategies and limitations for clinical implementation of obesity management using natural compounds modulating the PI3K/AKT pathway are suggested.
Collapse
|
35
|
Sousa-Filho CPB, Silva V, Bolin AP, Rocha ALS, Otton R. Green tea actions on miRNAs expression – An update. Chem Biol Interact 2023; 378:110465. [PMID: 37004950 DOI: 10.1016/j.cbi.2023.110465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Abstract
Compounds derived from plants have been widely studied in the context of metabolic diseases and associated clinical conditions. In this regard, although the effects of Camellia sinensis plant, from which various types of teas, such as green tea, originate, have been vastly reported in the literature, the mechanisms underlying these effects remain elusive. A deep search of the literature showed that green tea's action in different cells, tissues, and diseases is an open field in the research of microRNAs (miRNAs). miRNAs are important communicator molecules between cells in different tissues implicated in diverse cellular pathways. They have emerged as an important linkage between physiology and pathophysiology, raising the issue of polyphenols can act also by changing miRNA expression. miRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. Therefore, the aim of this review is to present the studies that show the main compounds of green tea modulating the expression of miRNAs in inflammation, adipose tissue, skeletal muscle, and liver. We provide an overview of a few studies that have tried to demonstrate the role of miRNAs associated with the beneficial effects of compounds from green tea. We have emphasized that there is still a considerable gap in the literature investigating the role and likely involvement of miRNAs in the extensive beneficial health effects of green tea compounds already described, indicating miRNAs as potential polyphenols' mediators with a promising field to be investigated.
Collapse
Affiliation(s)
| | - Victoria Silva
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Anaysa Paola Bolin
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Rosemari Otton
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil.
| |
Collapse
|
36
|
Chen S, Wu F, Yang C, Zhao C, Cheng N, Cao W, Zhao H. Alternative to Sugar, Honey Does Not Provoke Insulin Resistance in Rats Based on Lipid Profiles, Inflammation, and IRS/PI3K/AKT Signaling Pathways Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10194-10208. [PMID: 35971648 DOI: 10.1021/acs.jafc.2c03639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insulin resistance (IR) is the central link to metabolic syndrome (MS), and IR prevention has become the key to overcoming this worldwide public health problem. A diet rich in simple sugars is an important pathogenic factor in IR development. To investigate the effect of honey on IR compared to the sugar-water diet, we analyzed phenolics and oligosaccharides in jujube honey and rape honey based on LC-MS and silane derivatization/GC-MS. The effects of different diets on glucose and lipid profile, histopathology and IR-related mechanism pathways were analyzed and compared by equal sugar levels intervention of fructose, fructose + glucose and two kinds of unifloral honey (high-/low-dose) in rats. The results suggested that sugar-equivalent honey, which differs from sugar solution, especially 17.1 g/kg BW jujube honey rich in phenolics (1.971 mg/100 g of isoquercitrin) and oligosaccharides (2.18 g/100 g of turanose), suppressed IR via maintaining glucose (OGTT and ITT) and lipid (TC, TG, LDL-C, HDL-C, and NEFA) homeostasis, improving histological structural abnormalities of the liver, adipose and skeletal muscle, reducing oxidative stress (GSH-Px and MDA) and inflammation (IL-6 and TNF-α), modulating the NF-κB (NF-κB gene expression was down-regulated to 0.94) and IRS/PI3K/AKT signaling pathways (e.g., AKT and GLUT2 expression in liver increased by 4.56 and 13.37 times, respectively) as well as reshaping the gut microbiota. These revealed a potential nutritional contribution of substituting honey for simple sugar in the diet, providing a theoretical basis for controlling IR development via dietary modification and supplementation.
Collapse
Affiliation(s)
- Sinan Chen
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Chenchen Yang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Cheng Zhao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Ni Cheng
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| |
Collapse
|