1
|
Cui T, Liu P, Chen X, Liu Z, Wang B, Gao C, Wang Z, Li C, Yang N. Identification and functional characterization of caspases in turbot (Scophthalmus maximus) in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108757. [PMID: 37084854 DOI: 10.1016/j.fsi.2023.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Apoptosis is the autonomous and orderly death of cells under genetic control to maintain the stability of the internal environment, and is a programmed cell death process with unique morphological and biochemical properties that is regulated by a variety of factors. Caspase gene family has a significant function in the process of apoptosis. However, the knowledge of caspases in turbot remains largely unknown. In present study, a total of nine turbot caspase genes were identified. The mRNA length of these caspase genes was ranged from 1149 bp (caspase-1) to 3216 bp (caspase-2), and the protein length was ranged from 281 aa (caspase-3a) to 507 aa (caspase-10). Phylogenetic analysis showed these caspase genes were divided into three subfamilies. The qRT-PCR results showed that turbot caspase genes were expressed in all the examined organs, especially the intestine, kidney, blood and gills. Meanwhile, we explored the expression patterns of caspase genes in the intestine, skin and gills after Vibrio anguillarum and Aeromonas salmonids infections. The results showed that caspase genes showed different expression patterns in mucosal tissues after bacterial infection, demonstrating the critical role of caspase genes in mucosal immune responses. In addition, protein-protein interaction analysis showed that caspase proteins interacted with immune molecules such as NLR, IL-1β, and birc. The results of interference and overexpression experiments showed that caspase-1 might play key roles in the regulation of the IL-1β production, but the detailed mechanism needs to be further studied. The results of this study provide valuable information for further study the roles of caspase genes in turbot, which could help us to further understand the inflammatory pathways in teleost.
Collapse
Affiliation(s)
- Tong Cui
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Peng Liu
- Yantai Marine Economic Research Institute, Yantai, China
| | - Xuan Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhe Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongyi Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Guru A, Velayutham M, Arockiaraj J. Lipid-Lowering and Antioxidant Activity of RF13 Peptide From Vacuolar Protein Sorting-Associated Protein 26B (VPS26B) by Modulating Lipid Metabolism and Oxidative Stress in HFD Induced Obesity in Zebrafish Larvae. Int J Pept Res Ther 2022; 28:74. [DOI: 10.1007/s10989-022-10376-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 12/28/2022]
|
3
|
Raju SV, Sarkar P, Pasupuleti M, Saraswathi NT, Arasu MV, Al-Dhabi NA, Esmail GA, Arshad A, Arockiaraj J. Pharmacological importance of TG12 from tachykinin and its toxicological behavior against multidrug-resistant bacteria Klebsiella pneumonia. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:108974. [PMID: 33465517 DOI: 10.1016/j.cbpc.2021.108974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Development of antimicrobial drugs against multidrug-resistant (MDR) bacteria is a great focus in recent years. TG12, a short peptide molecule used in this study was screened from tachykinin (Tac) protein of an established teleost Channa striatus (Cs) transcriptome. Tachykinin cDNA has 345 coding sequence, that denotes a protein contained 115 amino acids; in which a short peptide (TG12) was identified at 83-94. Tachykinin mRNA upregulated in C. striatus treated with Aeromonas hydrophila and Escherichia coli lipopolysaccharide (LPS). The mRNA up-regulation was studied using real-time PCR. The up-regulation tachykinin mRNA pattern confirmed the immune involvement of tachykinin in C. striatus during infection. Further, the identified peptide, TG12 was synthesized and its toxicity was demonstrated in hemolytic and cytotoxic assays using human erythrocytes and human dermal fibroblast cells, respectively. The toxicity study exhibited that the toxicity of TG12 was similar to negative control, phosphate buffer saline (PBS). Moreover, the antibiogram of TG12 was active against Klebsiella pneumonia ATCC 27736, a major MDR bacterial pathogen. Further, the antimicrobial activity of TG12 against pathogenic bacteria was screened using minimum inhibitory concentration (MIC) and anti-biofilm assays, altogether TG12 showed potential activity against K. pneumonia. Fluorescence assisted cell sorter flow cytometer analysis (FACS) and field emission scanning electron microscopy (FESEM) was carried on TG12 with K. pneumonia; the results showed that TG12 significantly reduced K. pneumonia viability as well as TG12 disrupt its membrane. In conclusion, TG12 of CsTac is potentially involved in the antibacterial immune mechanisms, which has a prospectus efficiency in pharma industry against MDR strains, especially K. pneumonia.
Collapse
Affiliation(s)
- Stefi V Raju
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Purabi Sarkar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Galal Ali Esmail
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
4
|
Sarkar P, Issac PK, Raju SV, Elumalai P, Arshad A, Arockiaraj J. Pathogenic bacterial toxins and virulence influences in cultivable fish. AQUACULTURE RESEARCH 2021; 52:2361-2376. [DOI: 10.1111/are.15089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/07/2020] [Indexed: 10/16/2023]
Affiliation(s)
- Purabi Sarkar
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Praveen Kumar Issac
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Stefi V. Raju
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Preetham Elumalai
- Department of Fish Processing Technology Kerala University of Fisheries and Ocean Studies (KUFOS) Kochi India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Negeri Sembilan Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Selangor Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| |
Collapse
|
5
|
Kim KH, Lee S, Jung HS, Kim J, Park JW, Park CJ, Kim H, Kim WJ, Lee D. Expression Analysis of the Caspase10 from Olive Flounder ( Paralichthys olivaceus) against Viral Hemorrhagic Septicemia Virus (VHSV) Challenge. Dev Reprod 2020; 24:187-196. [PMID: 33110950 PMCID: PMC7576969 DOI: 10.12717/dr.2020.24.3.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022]
Abstract
The caspase10 encodes an initiating caspase that plays an important role in the
maintaining the cellular homeostasis by regulating the steps involved in the
immune response and cell death. We investigated the expression of caspase10
during the different developmental stages and in olive flounder tissues.
Caspase10 increased in the late stage of the formation of immune tissue, and
high expression was observed in the gills, kidney, skin, and spleen. The current
study analyzed the expressional changes of caspase10 in olive flounder infected
with viral hemorrhagic septicemia virus (VHSV). One of the major causes of mass
mortality, VHSV infection in olive flounder attributes to significant expression
of caspase10 in the gills, spleen, skin, and kidneys. The results indicate a
close association of caspase10 expression with the immune response to VHSV
infection in olive flounder. The observations could form the basis data for
exploration of other fish immune system.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea
| | - Sanghyun Lee
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea
| | - Hyo Sun Jung
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea
| | - Julan Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea
| | - Jong-Won Park
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea
| | - Choul-Ji Park
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea
| | - Hyejin Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea
| | - Woo-Jin Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea
| | - Dain Lee
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea
| |
Collapse
|
6
|
I PK, Sarkar P, V SR, V M, Guru A, Arshad A, Elumalai P, Arockiaraj J. Pathogenicity and Pathobiology of Epizootic Ulcerative Syndrome (EUS) Causing Fungus Aphanomyces invadans and Its Immunological Response in Fish. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2020; 28:358-375. [DOI: 10.1080/23308249.2020.1753167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Affiliation(s)
- Praveen Kumar I
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Purabi Sarkar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Stefi Raju V
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Manikandan V
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Preetham Elumalai
- School of Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| |
Collapse
|
7
|
Li S, Li J, Peng W, Hao G, Sun J. Characterization of the responses of the caspase 2, 3, 6 and 8 genes to immune challenges and extracellular ATP stimulation in the Japanese flounder (Paralichthys olivaceus). BMC Vet Res 2019; 15:20. [PMID: 30621683 PMCID: PMC6325855 DOI: 10.1186/s12917-018-1763-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 12/26/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Caspases are a family of conserved intracellular cysteine-dependent aspartate-specific cysteine proteases that play important roles in regulating cell death and inflammation. Our previous study revealed the importance of the inflammatory caspase 1 gene in extracellular ATP-mediated immune signaling in Japanese flounder, Paralichthys olivaceus. To explore the potential roles of other caspases in P. olivaceus innate immunity, we extended our study by characterizing of the responses of four additional P. olivaceus caspase genes, termed JfCaspase 2, 3, 6 and 8, to inflammatory challenge and extracellular ATP stimulation. RESULTS Sequence analysis revealed that the domain structures of all the Japanese flounder caspase proteins are evolutionarily conserved. Quantitative real-time PCR analysis showed that the JfCaspase 2, 3, 6 and 8 genes were expressed ubiquitously but at unequal levels in all examined Japanese flounder normal tissues. In addition, the basal gene expression levels of JfCaspase 2, 3, 6 and 8 were higher than those of JfCaspase 1 in both Japanese flounder head kidney macrophages (HKMs) and peripheral blood leukocytes (PBLs). Furthermore, immune challenge experiments showed that the inflammatory stimuli LPS and poly(I:C) significantly modulated the expression of the JfCaspase 2, 3, 6 and 8 genes in Japanese flounder immune cells. Finally, DNA fragmentation, associated with increased extracellular ATP-induced JfCaspase 2, 3, 6 and 8 gene expression and enzymatic activity, was inhibited by the caspase inhibitor Z-VAD-FMK in the HKMs. CONCLUSION Our findings demonstrate broad participation of multiple caspase genes in response to inflammatory stimulation in Japanese flounder immune cells and provide new evidence for the involvement of caspase(s) in extracellular ATP-induced apoptosis in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Weijiao Peng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| |
Collapse
|
8
|
Palanisamy R, Bhatt P, Kumaresan V, Pasupuleti M, Arockiaraj J. Innate and adaptive immune molecules of striped murrel Channa striatus. REVIEWS IN AQUACULTURE 2018; 10:296-319. [DOI: 10.1111/raq.12161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/09/2016] [Indexed: 10/16/2023]
Abstract
AbstractChanna striatus, also called snakehead murrel, is an important freshwater teleost fish which has been widely cultured for its tasty flesh along with nutritional and medicinal values. The growth of both cultured and wild murrels is affected by various physical, chemical and biological factors. As a teleost fish, C. striatus is an intermediate organism between invertebrates and vertebrates. They have a well‐developed innate immune system than invertebrates and a primitive adaptive immune system compared to that of higher vertebrates, thus an interesting unique immune structure to explore. Studies have identified that a few external stimulants do instigate the immune system to fight against the pathogens at the time of infection in C. striatus. This review discusses the physicochemical and biological stress factors, immune system and immune molecules of C. striatus which are potentially involved in combating the stress factors.
Collapse
Affiliation(s)
- Rajesh Palanisamy
- Division of Fisheries Biotechnology and Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology and Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology and Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai India
| | - Mukesh Pasupuleti
- Lab PCN 206 Microbiology Division CSIR‐Central Drug Research Institute Lucknow India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology and Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai India
| |
Collapse
|
9
|
Kumaresan V, Palanisamy R, Pasupuleti M, Arockiaraj J. Impacts of environmental and biological stressors on immune system of Macrobrachium rosenbergii. REVIEWS IN AQUACULTURE 2017; 9:283-307. [DOI: 10.1111/raq.12139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/14/2015] [Indexed: 10/16/2023]
Abstract
AbstractMacrobrachium rosenbergiicommonly called giant freshwater prawn is a widely farmed crustacean in freshwater. Similar to other aquatic organisms, their growth and well‐being is influenced by various physical, chemical and biological factors. We discuss about the critical growth limiting factors as well as disease causing agents and the potential immune molecules ofM. rosenbergiithat are proved to involve in preventing and/or responding to those limiting factors.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai Tamil Nadu India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai Tamil Nadu India
| | - Mukesh Pasupuleti
- Lab PCN 206 Microbiology Division CSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai Tamil Nadu India
| |
Collapse
|
10
|
Sathyamoorthi A, Bhatt P, Ravichandran G, Kumaresan V, Arasu MV, Al-Dhabi NA, Arockiaraj J. Gene expression and in silico analysis of snakehead murrel interleukin 8 and antimicrobial activity of C-terminal derived peptide WS12. Vet Immunol Immunopathol 2017; 190:1-9. [PMID: 28778316 DOI: 10.1016/j.vetimm.2017.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022]
Abstract
Chemokines have been known for their wide range of functions including chemoattractant property in humans and other vertebrate organisms. They act as a bridge between innate and adaptive immune system. In the present study, we have identified a CXC chemokine from the cDNA library of C. striatus; on the basis of orthology study, it was found highly identical to interleukin 8 (IL8). The bioinformatics analysis of the chemokine revealed the presence of a typical γ-core domain and a CXC motif at the N-terminal region of the molecule. Based on the amphipathic nature at the C terminal helical region of CstIL8 and their antimicrobial propensity observed during bioinformatics analysis, a short peptide namely WS12 comprising 12 amino acid residues was predicted and synthesized to determine its antimicrobial activity. The peptide WS12 was active against Bacillus cereus, a Gram positive bacterium. Scanning electron microscopy (SEM) results showed bleb-like formation on the surface of the bacteria after the treatment of WS12. Additionally, WS12 did not exhibit any cytotoxic activity against the fish leukocytes. Further, the gene expression studies also revealed that CstIL8 was expressed significantly in liver of Channa striatus (Cst) at basal level. The immune challenge studies with pathogens and immune-stimulants revealed an increase in the mRNA levels at different time points post-challenge. Hence, it is possible to conclude that WS12 was a potent antimicrobial agent and it was significantly expressed during the pathogen stress.
Collapse
Affiliation(s)
- Akila Sathyamoorthi
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur, Chennai 603 203, India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Gayathri Ravichandran
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; SRM Research Institute, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
11
|
Arasu A, Kumaresan V, Ganesh MR, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arockiaraj J. Bactericidal activity of fish galectin 4 derived membrane-binding peptide tagged with oligotryptophan. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 71:37-48. [PMID: 28126555 DOI: 10.1016/j.dci.2017.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/22/2017] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Galectins belong to the family of galactoside-binding proteins which act as pathogen recognition receptors by recognizing and binding to the carbohydrate present in the bacterial membranes. In this study, a Galectin-4 sequence was identified from the constructed cDNA library of Channa striatus and its structural features were reported. Gene expression analysis revealed that CsGal4 was highly expressed in liver and strongly induced by Epizootic Ulcerative Syndrome (EUS) causing pathogens such as Aphanomyces invadans, Aeromonas hydrophila and a viral analogue, poly I:C. To understand the antimicrobial role of putative dimerization site of CsGal4, the region was chemically synthesized and its bactericidal effect was determined. G4 peptide exhibited a weak bactericidal activity against Vibrio harveyi, an important aquaculture pathogen. We have also determined the bactericidal activity of the dimerization site by tagging pentamer oligotryptophan (W5) at the C-terminal of G4 peptide. Flow cytometry analysis revealed that G4W induced drastic reduction in cell counts than G4. Electron microscopic images showed membrane blebbings in V. harveyi which indicated the membrane disrupting activity of G4W. Interestingly, both the peptides did not exhibit any hemolytic activity and cytotoxicity towards peripheral blood cells of Channa striatus and the activity was specific only towards the bacterial membrane. Our results suggested that addition of W5 at the C-terminal of membrane-binding peptide remarkably improved its membrane disrupting activity.
Collapse
Affiliation(s)
- Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur 603 203, Chennai, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Munuswamy-Ramanujam Ganesh
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
12
|
Arasu A, Kumaresan V, Palanisamy R, Arasu MV, Al-Dhabi NA, Ganesh MR, Arockiaraj J. Bacterial membrane binding and pore formation abilities of carbohydrate recognition domain of fish lectin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:202-212. [PMID: 27729229 DOI: 10.1016/j.dci.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides (AMPs) are innate molecules that are found in a wide variety of species ranging from bacteria to humans. In recent years, excessive usage of antibiotics resulted in development of multi-drug resistant pathogens which made researchers to focus on AMPs as potential substitute for antibiotics. Lily type mannose-binding lectin is an extended super-family of structurally and evolutionarily related sugar binding proteins. These lectins are well-known AMPs which play important roles in fish defense mechanism. Here, we report a full-length lily type lectin-2 (LTL-2) identified from the cDNA library of striped murrel, Channa striatus (Cs). CsLTL-2 protein contained B-lectin domain along with three carbohydrate binding sites which is a prominent characteristic functional feature of LTL. The mRNA transcripts of CsLTL-2 were predominantly expressed in gills and considerably up-regulated upon infection with fungus (Aphanomyces invadans) and bacteria (Aeromonas hydrophila). To evaluate the antimicrobial activity of the carbohydrate binding region of CsLTL-2, the region was synthesized (QP13) and its bactericidal activity was analyzed. In addition, QP13 was labeled with fluorescein isothiocyanate (FITC) and its binding affinity with the bacterial cell membranes was analyzed. Minimum inhibitory concentration assay revealed that QP13 inhibited the growth of Escherichia coli at a concentration of 80 μM/ml. Confocal microscopic observation showed that FITC tagged QP13 specifically bound to the bacterial membrane. Fluorescence assisted cell sorter (FACS) assay showed that QP13 reduced the bacterial cell count drastically. Therefore, the mechanism of action of QP13 on E. coli cells was determined by propidium iodide internalization assay which confirmed that QP13 induced bacterial membrane disruption. Moreover, the peptide did not show any cytotoxicity towards fish peripheral blood leucocytes. Taken together, these results support the potentiality of QP13 that can be used as an antimicrobial agent against the tested pathogens.
Collapse
Affiliation(s)
- Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur, 603 203, Chennai, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Munuswamy-Ramanujam Ganesh
- Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
13
|
Sathyamoorthy A, Chaurasia MK, Arasu MV, Al-Dhabi NA, Harikrishnan R, Arockiaraj J. Differences in structure and changes in gene regulation of murrel molecular chaperone HSP family during epizootic ulcerative syndrome (EUS) infection. FISH & SHELLFISH IMMUNOLOGY 2017; 60:129-140. [PMID: 27876624 DOI: 10.1016/j.fsi.2016.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/10/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Heat shock proteins (HSPs) are immunogenic, ubiquitous class of molecular chaperones, which are induced in response to various environmental and microbial stressful conditions. It plays a vital role in maintaining cellular protein homeostasis in eukaryotic cells. In this study, we described a comprehensive comparative data by bioinformatics approach on three different full length cDNA sequences of HSP family at molecular level. The cDNA sequences of three HSPs were identified from constructed cDNA library of Channa striatus and named as CsCPN60, CsHSP60 and CsHSP70. We have conducted various physicochemical study, which showed that CsHSP70 (666 amino acid) possessed a larger polypeptides followed by CsCPN60 (575) and CsCPN60 (542). Three dimensional structural analysis of these HSPs showed maximum residues in α-helices and least in β-sheets; also CsHSP60 lacks β-sheet and formed helix-turn-helix structure. Further analysis indicated that each HSP carried distinct domains and gene specific signature motif, which showed that each HSP are structurally diverse. Homology and phylogenetic study showed that the sequences taken for analysis shared maximum identity with fish HSP family. Tissue specific mRNA expression analysis revealed that all the HSPs showed maximum expression in one of the major immune organ such as CsCPN60 in kidney, CsHSP60 in spleen and CsHSP70 in head kidney. To understand the function of HSPs in murrel immune system, the elevation in mRNA expression level was analyzed against microbial oxidative stressors such as fungal (Aphanomyces invadans) and bacterial (Aeromonas hydrophila). It is interesting to note that all the HSP showed a different expression pattern and reached maximum up-regulation at 48 h post-infection (p.i) during fungal stress, whereas in bacterial stress only CsCPN60 showed maximum up-regulation at 48 h p.i, but CsHSP60 and CsHSP70 showed maximum up-regulation at 24 h p.i. The differential expression pattern showed that each HSP is diverse in function. Overall, the elevation in expression levels showed that HSPs might have potential involvement in murrel immune protection thus, protecting the organism against various external stimuli including environmental and microbial stress.
Collapse
Affiliation(s)
- Akila Sathyamoorthy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
14
|
Arasu A, Kumaresan V, Sathyamoorthi A, Arasu MV, Al-Dhabi NA, Arockiaraj J. Coagulation profile, gene expression and bioinformatics characterization of coagulation factor X of striped murrel Channa striatus. FISH & SHELLFISH IMMUNOLOGY 2016; 55:149-158. [PMID: 27235370 DOI: 10.1016/j.fsi.2016.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 06/05/2023]
Abstract
A transcriptome wide analysis of the constructed cDNA library of snakehead murrel Channa striatus revealed a full length cDNA sequence of coagulation factor X. Sequence analysis of C. striatus coagulation factor X (CsFX) showed that the cDNA contained 1232 base pairs (bp) comprising 1209 bp open reading frame (ORF). The ORF region encodes 424 amino acids with a molecular mass of 59 kDa. The polypeptide contains γ-carboxyglutamic acid (GLA) rich domain and two epidermal growth factor (EGF) like domains including EGF-CA domain and serine proteases trypsin signature profile. CsFX exhibited the maximum similarity with fish species such as Stegastes partitus (78%), Poecilia formosa (76%) and Cynoglossus semilaevis (74%). Phylogenetically, CsFX is clustered together with the fish group belonging to Actinopterygii. Secondary structure of factor X includes alpha helix 28.54%, extended strand 20.75%, beta turn 7.78% and random coil 42.92%. A predicted 3D model of CsFX revealed a short α-helix and a Ca(2+) (Gla domain) binding site in the coil. Four disulfide bridges were found in serine protease trypsin profile. Obviously, the highest gene expression (P < 0.05) was noticed in blood. Further, the changes in expression of CsFX was observed after inducing with bacterial (Aeromonas hydrophila) and fungal (Aphanomyces invadans) infections and other synthetic immune stimulants. Variation in blood clotting time (CT), prothrombin time (PT) and activated prothromboplastin time (APTT) was analyzed and compared between healthy and bacterial infected fishes. During infection, PT and APTT showed a declined clotting time due to the raised level of thrombocytes.
Collapse
Affiliation(s)
- Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur 603 203, Chennai, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Akila Sathyamoorthi
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur 603 203, Chennai, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
15
|
Chaurasia MK, Ravichandran G, Nizam F, Arasu MV, Al-Dhabi NA, Arshad A, Harikrishnan R, Arockiaraj J. In-silico analysis and mRNA modulation of detoxification enzymes GST delta and kappa against various biotic and abiotic oxidative stressors. FISH & SHELLFISH IMMUNOLOGY 2016; 54:353-363. [PMID: 27109581 DOI: 10.1016/j.fsi.2016.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
This study reports the comprehensive comparative information of two different detoxification enzymes such as glutathione S-transferases (GSTs) delta and kappa from freshwater giant prawn Macrobrachium rosenbergii (designated as MrGSTD and MrGSTK) by investigating their in-silico characters and mRNA modulation against various biotic and abiotic oxidative stressors. The physico-chemical properties of these cDNA and their polypeptide structure were analyzed using various bioinformatics program. The analysis indicated the variation in size of the polypeptides, presence or absence of domains and motifs and structure. Homology and phylogenetic analysis revealed that MrGSTD shared maximum identity (83%) with crustaceans GST delta, whereas MrGSTK fell in arthropods GST kappa. It is interesting to note that MrGSTD and MrGSTK shared only 21% identity; it indicated their structural difference. Structural analysis indicated that MrGSTD to be canonical dimer like shape and MrGSTK appeared to be butterfly dimer like shape, in spite of four β-sheets being conserved in both GSTs. Tissue specific gene expression analysis showed that both MrGSTD and MrGSTK are highly expressed in immune organs such as haemocyte and hepatopancreas, respectively. To understand the role of mRNA modulation of MrGSTD and MrGSTK, the prawns were inducted with oxidative stressors such as bacteria (Vibrio harveyi), virus [white spot syndrome virus (WSSV)] and heavy metal, cadmium (Cd). The analysis revealed an interesting fact that both MrGSTD and MrGSTK showed higher (P < 0.05) up-regulation at 48 h post-challenge, except MrGSTD stressed with bacteria, where it showed up-regulation at 24 h post-challenge. Overall, the results suggested that GSTs are diverse in their structure and possibly conferring their potential involvement in immune protection in crustaceans. However, further study is necessary to focus their functional differences at proteomic level.
Collapse
Affiliation(s)
- Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Gayathri Ravichandran
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; SRM Research Institute, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Faizal Nizam
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
16
|
Kumaresan V, Ravichandran G, Nizam F, Dhayanithi NB, Arasu MV, Al-Dhabi NA, Harikrishnan R, Arockiaraj J. Multifunctional murrel caspase 1, 2, 3, 8 and 9: Conservation, uniqueness and their pathogen-induced expression pattern. FISH & SHELLFISH IMMUNOLOGY 2016; 49:493-504. [PMID: 26777895 DOI: 10.1016/j.fsi.2016.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Caspases are evolutionarily conserved proteases which play fundamental role in apoptosis. Invasion of pathogen triggers the activation of caspases-mediated pro-inflammatory and pro-apoptotic pathways, where multifunctional caspases are involved. In striped murrel Channa striatus, epizootic ulcerative syndrome (EUS) causes endemics resulting in huge economic loss. Aphanomyces invadans, an oomycete is the primary causative agent of EUS which further induces secondary bacterial infections especially Aeromonas hydrophila. In order to get insights into the caspase gene family in C. striatus during EUS infection, we performed various physicochemical and structural analyses on the cDNA and protein sequences of five different murrel caspases namely CsCasp 1, 2, 3, 8 and 9. Sequence analysis of murrel caspase proteins showed that in spite of the conserved CASC domain, each caspase embraces some unique features which made them functionally different. Tissue distribution analysis showed that all the murrel caspases are highly expressed in one of the immune organs such as liver, kidney, spleen and blood cells. Further, to understand the role of caspase during EUS infection, modulation in expression of each caspase gene was analysed after inducing fungal and bacterial infection in C. striatus. Pathogen-induced gene expression pattern revealed an interesting fact that the expression of all the caspase genes reached a maximum level at 24 h post-infection (p.i) in case of bacteria, whereas it was 48 h in fungus. However, the initiation of elevated expression differed between each caspase based on their role such as pro-inflammatory, initiator and executioner caspase. Overall, the results suggested that the caspases in murrel are diverse in their structure and function. Here, we discuss the similarities and differences of five different murrel caspases.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Gayathri Ravichandran
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; SRM Research Institute, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Faizal Nizam
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | | | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
17
|
Kumaresan V, Bhatt P, Ganesh MR, Harikrishnan R, Arasu M, Al-Dhabi NA, Pasupuleti M, Marimuthu K, Arockiaraj J. A novel antimicrobial peptide derived from fish goose type lysozyme disrupts the membrane of Salmonella enterica. Mol Immunol 2015; 68:421-433. [PMID: 26477736 DOI: 10.1016/j.molimm.2015.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 12/21/2022]
Abstract
In aquaculture, accumulation of antibiotics resulted in development of resistance among bacterial pathogens. Consequently, it became mandatory to find alternative to synthetic antibiotics. Antimicrobial peptides (AMPs) which are described as evolutionary ancient weapons have been considered as promising alternates in recent years. In this study, a novel antimicrobial peptide had been derived from goose type lysozyme (LyzG) which was identified from the cDNA library of freshwater fish Channa striatus (Cs). The identified lysozyme cDNA contains 585 nucleotides which encodes a protein of 194 amino acids. CsLyzG was closely related to Siniperca chuatsi with 92.8% homology. The depicted protein sequence contained a GEWL domain with conserved GLMQ motif, 7 active residues and 2 catalytic residues. Gene expression analysis revealed that CsLyzG was distributed in major immune organs with highest expression in head kidney. Results of temporal expression analysis after bacterial (Aeromonas hydrophila) and fungal (Aphanomyces invadans) challenges indicated a stimulant-dependent expression pattern of CsLyzG. Two antimicrobial peptides IK12 and TS10 were identified from CsLyzG and synthesized. Antibiogram showed that IK12 was active against Salmonella enterica, a major multi-drug resistant (MDR) bacterial pathogen which produces beta lactamase. The IK12 induced loss of cell viability in the bacterial pathogen. Flow cytometry assay revealed that IK12 disrupt the membrane of S. enterica which is confirmed by scanning electron microscope (SEM) analysis that reveals blebs around the bacterial cell membrane. Conclusively, CsLyzG is a potential innate immune component and the identified antimicrobial peptide has great caliber to be used as an ecofriendly antibacterial substance in aquaculture.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Munuswamy-Ramanujam Ganesh
- Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501 Tamil Nadu, India
| | - MariadhasValan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031 Uttar Pradesh, India
| | - Kasi Marimuthu
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling Bedong, 08100 Bedong, Kedah, Malaysia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
18
|
Molecular delineation of a caspase 10 homolog from black rockfish (Sebastes schlegelii) and its transcriptional regulation in response to pathogenic stress. Gene 2015; 570:288-94. [PMID: 26048002 DOI: 10.1016/j.gene.2015.05.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 02/08/2023]
|
19
|
Arockiaraj J, Bhatt P, Harikrishnan R, Arasu MV, Al-Dhabi NA. Molecular and functional roles of 6C CC chemokine 19 in defense system of striped murrel Channa striatus. FISH & SHELLFISH IMMUNOLOGY 2015; 45:817-827. [PMID: 26057460 DOI: 10.1016/j.fsi.2015.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 05/21/2023]
Abstract
In this study, we have reported the molecular information of chemokine-19 (Chem19) from striped murrel Channa striatus (Cs). CsCC-Chem19 cDNA sequence was 555 base pair (bp) in length which is 68bp 5' untranslated region (UTR), 339bp translated region and 149bp 3' UTR. The translated region is encoded for a polypeptide of 112 amino acids. CsCC-Chem19 peptide contains a signal sequence between 1 and 26 and an interleukin (IL) 8 like domain between 24 and 89. The multiple sequence alignment showed a 'DCCL' motif, an indispensable motif present in all CC chemokines which was conserved throughout the evolution. Phylogenetic tree showed that CsCC-Chem19 formed a cluster with chemokine 19 from fishes. Secondary structure of CsCC-Chem19 revealed that the peptide contains maximum amount of coils (61.6%) compared to α-helices (25.9%%) and β-sheet (12.5%). Further, 3D analysis indicated that the cysteine residues at 33, 34, 59 and 75 making the disulfide bridges as 33 = 59 and 34 = 75. Significantly (P < 0.05) highest CsCC-Chem19 mRNA expression was observed in blood and it was up-regulated upon fungus and bacterial infection. Utilizing the coding region of CsCC-Chem19, recombinant CsCC-Chem19 protein was produced. The recombinant CsCC-Chem19 protein induced the cellular proliferation and respiratory burst activity of C. striatus peripheral blood leukocytes (PBL) in a concentration dependent manner. Moreover, the chemotactic activity showed that the recombinant CsCC-Chem19 significantly (P < 0.05) enhanced the movement of PBL of C. striatus. Conclusively, CsCC-Chem19 is a 6C CC chemokine having an ability to perform both inflammatory and homeostatic functions. However, further research is necessary to understand the potential of 6C CC chemokine 19 of C. striatus, particularly their regulatory ability on different cellular components in the defense system.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Palanisamy R, Kumaresan V, Harikrishnan R, Arasu MV, Al-Dhabi NA, Arockiaraj J. Functional roles and gene regulation of tumor necrosis factor receptor 1 in freshwater striped murrel. Mol Immunol 2015; 66:240-252. [PMID: 25841174 DOI: 10.1016/j.molimm.2015.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/14/2015] [Accepted: 03/15/2015] [Indexed: 01/16/2023]
Abstract
In this study, a complete molecular characterization of tumor necrosis factor receptor 1 (TNFR1) which was identified from the constructed cDNA library of striped murrel Channa striatus (Cs) is reported. The CsTNFR1 encoded a type I membrane receptor protein that contains 399 amino acids including three cysteine-rich domains (CRDs) at CRD1(41-46), CRD2(79-118) and CRD3(120-159) in the extracellular region and a putative TNF receptor-associated factor (TRAF) site at 245-253 and a death domain between 297 and 388 in the cytoplasmic region which is essential for induction of apoptosis. The predicted molecular mass of CsTNFR1 is 45kDa and its corresponding theoretical isoelectric point (pI) is 6.3. CsTNFR1 shared maximum identity with TNFR1 from olive flounder Paralichthys olivaceus (82%). Real-time PCR showed that CsTNFR1 gene was expressed most abundantly (P<0.05) in the head kidney. Further, CsTNFR1 mRNA transcription was studied after challenge with fungus Apanomyces invadans and bacteria Aeromonas hydrophila. The fungus injected murrels showed a highest expression at 48h, whereas bacteria injected murrels showed at 24h. The gene expression studies revealed that CsTNFR1 may be involved in innate immune process of murrels against pathogenic infections. The over-expressed and purified recombinant CsTNFR1 protein (rCsTNFR1) was subjected to TNF-α inhibition assay to confirm their specificity and activity against TNF-α which confirmed that the rCsTNFR1 inhibits the activity of TNF-α in a dose dependent manner where maximum inhibition (97%) was observed at 10,000 fold concentration of rCsTNFR1. In addition, the direct cytotoxic effect of rCsTNFR1 was analyzed against head kidney phagocyte. The results showed that the recombinant CsTNFR1 protein does not exhibit any significant cytotoxicity against head kidney phagocyte cells even at higher concentration (8μg/ml). Moreover, the recombinant protein was analyzed for respiratory burst activity in the presence of two different ROS inducers, opsonized zymosan (fungal cell wall component) and phorbol 12-myristate 13-acetate (PMA). The findings showed that the C. striatus head kidney phagocyte exposed to purified recombinant CsTNFR1 protein alone do not produced any ROS. However, opsonized zymosan induced recombinant CsTNFR1 protein significantly (P<0.05) enhanced the ROS production on concentration basis which is revealed that the ROS production depends on the concentration of the recombinant CsTNFR1 protein. Overall, the study showed that the CsTNFR1 plays an important role in the pathogen-induced inflammatory process of striped murrel.
Collapse
MESH Headings
- Aeromonas hydrophila/immunology
- Amino Acid Sequence
- Animals
- Base Sequence
- Fish Diseases/immunology
- Fish Diseases/microbiology
- Fish Proteins/chemistry
- Fish Proteins/genetics
- Fish Proteins/immunology
- Fish Proteins/pharmacology
- Fishes/immunology
- Fishes/microbiology
- Gene Expression Regulation
- Gram-Negative Bacterial Infections/immunology
- Gram-Negative Bacterial Infections/microbiology
- Gram-Negative Bacterial Infections/veterinary
- Immunity, Innate
- Kidney/drug effects
- Kidney/immunology
- Kidney/microbiology
- Molecular Sequence Data
- Molecular Weight
- Mycoses/immunology
- Mycoses/microbiology
- Mycoses/veterinary
- Open Reading Frames
- Phagocytes/cytology
- Phagocytes/drug effects
- Phagocytes/immunology
- Protein Structure, Tertiary
- Reactive Oxygen Species/immunology
- Reactive Oxygen Species/metabolism
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/pharmacology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacology
- Sequence Alignment
- Tetradecanoylphorbol Acetate/pharmacology
- Zymosan/pharmacology
Collapse
Affiliation(s)
- Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
21
|
Kumaresan V, Gnanam AJ, Pasupuleti M, Arasu MV, Al-Dhabi NA, Harikrishnan R, Arockiaraj J. Comparative analysis of CsCu/ZnSOD defense role by molecular characterization: gene expression-enzyme activity-protein level. Gene 2015; 564:53-62. [PMID: 25804520 DOI: 10.1016/j.gene.2015.03.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/02/2015] [Accepted: 03/18/2015] [Indexed: 11/29/2022]
Abstract
Cu/ZnSOD (copper/zinc superoxide dismutase) primarily scavenges cytosolic reactive oxygen species (ROS) by converting ROS to hydrogen peroxide, which is then converted to water by the catalytic action of catalase, thus playing a pivotal role in the first line of defense mechanism against oxidative stress. In this study, we have reported a complete molecular characterization of cDNA sequence from striped murrel Channa striatus (Cs). Cellular location prediction reveals that CsCu/ZnSOD protein is cytosolic with an accuracy of 90%. Phylogenetic analysis showed that CsCu/ZnSOD belongs to SOD1 group and it shared a common clad with Asian seabass Lates calcarifer and then with other fishes. The highest CsCu/ZnSOD gene expression, SOD enzyme activity and total protein concentration were observed in the liver and its regulation was studied upon fungus (Aphanomyces invadans) and bacterial (Aeromonas hydrophila) challenges. Based on the results obtained from the above analysis, we concluded a correlation of gene expression-enzyme activity-protein concentration. Overall, the findings demonstrated that the CsCu/ZnSOD plays a critical role in the antioxidant system especially in the liver during oxidative stress caused by fungus and bacteria.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Annie J Gnanam
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
22
|
Arockiaraj J, Palanisamy R, Arasu A, Sathyamoorthi A, Kumaresan V, Bhatt P, Chaurasia MK, Pasupuleti M, Gnanam AJ. An anti-apoptotic B-cell lymphoma-2 (BCL-2) from Channa striatus: Sequence analysis and delayed and advanced gene expression in response to fungal, bacterial and poly I:C induction. Mol Immunol 2015; 63:586-594. [PMID: 25128157 DOI: 10.1016/j.molimm.2014.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 01/26/2023]
Abstract
B-cell lymphoma-2 (BCL-2) is a suppressor of apoptosis and inhibits the caspase dependent apoptosis pathway. In this study, we report molecular characterization of a cDNA sequence encoded of BCL-2 from striped murrel, Channa striatus. A partial cDNA sequence of CsBCL-2 was identified from the striped murrel cDNA library during annotation. Subsequently, the full length CsBCL-2 cDNA sequence was obtained by an internal sequencing method using a forward primer. The sequence contains 699 nucleotide base pairs which encode 232 amino acid residues. The domain and motif analysis revealed that the CsBCL-2 polypeptide consists of BCL-2 homologous domain BH4 at the N-terminal region between 4 and 21 and the BCL-2 homologous domains BH1, BH2 and BH3 between 87 and 187. The CsBCL-2 polypeptide sequence does not have a signal peptide region, but it consists of two novel transmembrane regions at 134-152 and 209-226. The sequence analysis showed that the CsBCL-2 has highest sequence identity (70%) with BCL-2 like protein 1 (BCL-2 L1) from pufferfish Takifugu rubripes. The phylogenetic analysis showed that the CsBCL-2 was situated in the BCL-2 L1 fish clade. The secondary analysis showed that the CsBCL-2 protein consists of 132 amino acid residues in the α-helical region and 100 amino acid residues in the random coil region. The validated 3D structure of CsBCL-2 showed the active residues Gly(135) and Arg(136) in the 7th α-helical position, whereas Trp(178) is in the 9th α-helical region. CsBCL-2 mRNA transcription is predominately present in spleen and is upregulated upon being induced with fungus Aphanomyces invadans, bacteria Aeromonas hydrophila, Escherichia coli LPS, Laminaria digitata beta-1,3-glucan and poly I:C. Overall, the CsBCL-2 mRNA transcription results indicate the potential involvement of CsBCL-2 in immune system of C. striatus. However, further research at proteomic level is necessary to examine these predictions.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Akila Sathyamoorthi
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Annie J Gnanam
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA
| |
Collapse
|
23
|
Kumaresan V, Harikrishnan R, Arockiaraj J. A potential Kazal-type serine protease inhibitor involves in kinetics of protease inhibition and bacteriostatic activity. FISH & SHELLFISH IMMUNOLOGY 2015; 42:430-438. [PMID: 25433138 DOI: 10.1016/j.fsi.2014.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/31/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
Kazal-type serine protease inhibitor (KSPI) is a pancreatic secretary trypsin inhibitor which involves in various cellular component regulations including development and defense process. In this study, we have characterized a KSPI cDNA sequence of freshwater striped murrel fish Channa striatus (Cs) at molecular level. Cellular location analysis predicted that the CsKSPI was an extracellular protein. The domain analysis showed that the CsKSPI contains a Kazal domain at 47-103 along with its family signature between 61 and 83. Phylogenetically, CsKSPI is closely related to KSPI from Maylandia zebra and formed a sister group with mammals. The 2D structure of CsKSPI showed three α-helical regions which are connected with random coils, one helix at signal sequence and two at the Kazal domain region. The relative gene expression showed that the CsKSPI was highly expressed in gills and its expression was induced upon fungus (Aphanomyces invadans), bacteria (Aeromonas hydrophila) and poly I:C (a viral analogue) challenge. The CsKSPI recombinant protein was produced to characterize and study the CsKSPI gene specific functions. The recombinant CsKSPI strongly inhibited trypsin compared to other tested proteases. The results of the kinetic activity of CsKSPI against trypsin was V(max)s = 1.62 nmol/min, K(M)s = 0.21 mM and K(i)s = 15.37 nM. Moreover, the recombinant CsKSPI inhibited the growth of Gram-negative bacteria A. hydrophila at 20 μM and Gram-positive bacteria Bacillus subtilis at the MIC50 of 15 μM. Overall, the study indicated that the CsKSPI was a potential trypsin inhibitor which involves in antimicrobial activity.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ramaswamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
24
|
Kelotra S, Jain M, Kelotra A, Jain I, Bandaru S, Nayarisseri A, Bidwai A. An in silico Appraisal to Identify High Affinity Anti-Apoptotic Synthetic Tetrapeptide Inhibitors Targeting the Mammalian Caspase 3 Enzyme. Asian Pac J Cancer Prev 2015; 15:10137-42. [DOI: 10.7314/apjcp.2014.15.23.10137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Arockiaraj J, Palanisamy R, Bhatt P, Kumaresan V, Gnanam AJ, Pasupuleti M, Kasi M. A novel murrel Channa striatus mitochondrial manganese superoxide dismutase: gene silencing, SOD activity, superoxide anion production and expression. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1937-1955. [PMID: 25183231 DOI: 10.1007/s10695-014-9981-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
We have reported the molecular characterization including gene silencing, superoxide activity, superoxide anion production, gene expression and molecular characterization of a mitochondrial manganese superoxide dismutase (mMnSOD) from striped murrel Channa striatus (named as CsmMnSOD). The CsmMnSOD polypeptide contains 225 amino acids with a molecular weight of 25 kDa and a theoretical isoelectric point of 8.3. In the N-terminal region, CsmMnSOD carries a mitochondrial targeting sequence and a superoxide dismutases (SOD) Fe domain (28-109), and in C-terminal region, it carries another SOD Fe domain (114-220). The CsmMnSOD protein sequence shared significant similarity with its homolog of MnSOD from rock bream Oplegnathus fasciatus (96%). The phylogenetic analysis showed that the CsmMnSOD fell in the clade of fish mMnSOD group. The monomeric structure of CsmMnSOD possesses 9 α-helices (52.4%), 3 β-sheets (8.8%) and 38.8% random coils. The highest gene expression was noticed in liver, and its expression was inducted with fungal (Aphanomyces invadans) and bacterial (Aeromonas hydrophila) infections. The gene silencing results show that the fish that received dsRNA exhibited significant (P < 0.05) changes in expression when compared to their non-injected and fish physiological saline-injected controls. The SOD activity shows that the activity increases with the spread of infection and decreases once the molecule controls the pathogen. The capacity of superoxide anion production was determined by calculating the granular blood cell count during infection in murrel. It shows that the infection influenced the superoxide radical production which plays a major role in killing the pathogens. Overall, this study indicated the defense potentiality of CsmMnSOD; however, further research is necessary to explore its capability at protein level.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology and Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai, 603 203, Tamil Nadu, India,
| | | | | | | | | | | | | |
Collapse
|
26
|
Arasu A, Kumaresan V, Sathyamoorthi A, Chaurasia MK, Bhatt P, Gnanam AJ, Palanisamy R, Marimuthu K, Pasupuleti M, Arockiaraj J. Molecular characterization of a novel proto-type antimicrobial protein galectin-1 from striped murrel. Microbiol Res 2014; 169:824-834. [PMID: 24780642 DOI: 10.1016/j.micres.2014.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/21/2014] [Accepted: 03/27/2014] [Indexed: 11/21/2022]
Abstract
In this study, we reported a molecular characterization of a novel proto-type galectin-1 from the striped murrel Channa striatus (named as CsGal-1). The full length CsGal-1 was identified from an established striped murrel cDNA library and further we confirmed the sequence by cloning. The complete cDNA sequence of CsGal-1 is 590 base pairs (bp) in length and its coding region encoded a poly peptide of 135 amino acids. The polypeptide contains a galactoside binding lectin domain at 4-135. The domain carries a sugar binding site at 45-74 along with its signatures (H(45)-X-Asn(47)-X-Arg(49) and Trp(69)-X-X-Glu(72)-X-Arg(74)). CsGal-1 shares a highly conserved carbohydrate recognition domain (CRD) with galectin-1 from other proto-type galectin of teleosts. The mRNA expressions of CsGal-1 in healthy and various immune stimulants including Aphanomyces invadans, Aeromonas hydrophila, Escherchia coli lipopolysaccharide and poly I:C injected tissues of C. striatus were examined using qRT-PCR. CsGal-1 mRNA is highly expressed in kidney and is up-regulated with different immune stimulants at various time points. To understand its biological activity, the coding region of CsGal-1 gene was expressed in an E. coli BL21 (DE3) cloning system and its recombinant protein was purified. The recombinant CsGal-1 protein was agglutinated with mouse erythrocytes at a concentration of 4μg/mL in a calcium independent manner. CsGal-1 activity was inhibited by d-galactose at 25mM(-1) and d-glucose and d-fructose at 100mM(-1). The results of microbial binding assay showed that the recombinant CsGal-1 protein agglutinated only with the Gram-negative bacteria. Interestingly, we observed no agglutination against Gram-positive bacteria. Overall, the study showed that CsGal-1 is an important immune gene involved in the recognition and elimination of pathogens in C. striatus.
Collapse
Affiliation(s)
- Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Akila Sathyamoorthi
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur 603203, Chennai, India
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Annie J Gnanam
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Kasi Marimuthu
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling Bedong, 08100 Bedong, Kedah, Malaysia
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603203, Chennai, Tamil Nadu, India.
| |
Collapse
|
27
|
Arockiaraj J, Gnanam AJ, Palanisamy R, Bhatt P, Kumaresan V, Chaurasia MK, Pasupuleti M, Ramaswamy H, Arasu A, Sathyamoorthi A. A cytosolic glutathione s-transferase, GST-theta from freshwater prawn Macrobrachium rosenbergii: molecular and biochemical properties. Gene 2014; 546:437-442. [PMID: 24879918 DOI: 10.1016/j.gene.2014.05.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Glutathione S-transferases play an important role in cellular detoxification and may have evolved to protect cells against reactive oxygen metabolites. In this study, we report the molecular characterization of glutathione s-transferase-theta (GST-θ) from freshwater prawn Macrobrachium rosenbergii. A full length cDNA of GSTT (1417 base pairs) was isolated and characterized bioinformatically. Exposure to virus (white spot syndrome baculovirus or M. rosenbergii nodovirus), bacteria (Aeromonas hydrophila or Vibrio harveyi) or heavy metals (cadmium or lead) significantly increased the expression of GSTT (P<0.05) in hepatopancreas. Recombinant GST-θ with monochlorobimane substrate had an optimum activity at pH7.5 and 35 °C. Furthermore recombinant GST-θ activity was abolished by the denaturants triton X-100, Gua-HCl, Gua-thiocyanate, SDS and urea in a dose-dependent manner. Overall, the results suggest a potential role for M. rosenbergii GST-θ in detoxification and possibly conferring immune protection.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| | - Annie J Gnanam
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Harikrishnan Ramaswamy
- PG and Research Department of Biotechnology, Bharath College of Science and Management, Thanjavur 613 005, Tamil Nadu, India
| | - Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur 603 203, Chennai, India
| | - Akila Sathyamoorthi
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur 603 203, Chennai, India
| |
Collapse
|
28
|
Bhatt P, Chaurasia MK, Palanisamy R, Kumaresan V, Arasu A, Sathyamoorthi A, Gnanam AJ, Kasi M, Pasupuleti M, Ramaswamy H, Arockiaraj J. Molecular cloning, characterization and gene expression of murrel CXC chemokine receptor 3a against sodium nitrite acute toxicity and microbial pathogens. FISH & SHELLFISH IMMUNOLOGY 2014; 39:245-253. [PMID: 24861891 DOI: 10.1016/j.fsi.2014.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/07/2014] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
CXCR3 is a CXC chemokine receptor 3 which binds to CXC ligand 4 (CXCL4), 9, 10 and 11. CXC chemokine receptor 3a (CXCR3a) is one of the splice variants of CXCR3. It plays crucial role in defense and other physiological processes. In this study, we report the molecular cloning, characterization and gene expression of CXCR3a from striped murrel Channa striatus (Cs). The full length CsCXCR3a cDNA sequence was obtained from the constructed cDNA library of striped murrel by cloning and sequencing using an internal sequencing primer. The full length sequence is 1425 nucleotides in length including an open reading frame of 1086 nucleotides which is encoded with a polypeptide of 361 amino acids (mol. wt. 40 kDa). CsCXCR3a domain analysis showed that the protein contains a G protein coupled receptor between 55 and 305 along with its family signature at 129-145. The transmembrane prediction analysis showed that CsCXCR3a protein contains 7 transmembrane helical regions at 34-65, 80-106, 113-146, 154-181, 208-242, 249-278 and 284-308. The 'DRY' motif from CsCXCR3a protein sequence at (140)Asp-(141)Arg-(142)Tyr which is responsible for G-protein binding is also highly conserved with CXCR3 from other species. Phylogenetic tree showed that the CXC chemokine receptors 3, 4, 5 and 6, each formed a separate clade, but 1 and 2 were clustered together, which may be due to the high similarity between these receptors. The predicted 3D structure revealed cysteine residues, which are responsible for 'CXC' motif at 116 and 198. The CsCXR3a transcript was found to be high in kidney, further its expression was up-regulated by sodium nitrite acute toxicity exposure, fungal, bacterial and poly I:C challenges. Overall, these results supported the active involvement of CsCXCR3a in inflammatory process of striped murrel during infection. However, further study is necessary to explore the striped murrel chemokine signaling pathways and their roles in defense system.
Collapse
Affiliation(s)
- Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur, 603 203 Chennai, India
| | - Akila Sathyamoorthi
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur 603 203 Chennai, India
| | - Annie J Gnanam
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA
| | - Marimuthu Kasi
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling Bedong, 08100 Bedong, Kedah, Malaysia
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR - Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Harikrishnan Ramaswamy
- PG and Research Department of Biotechnology, Bharath College of Science and Management, Thanjavur 613 005, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
29
|
Arockiaraj J, Sathyamoorthi A, Kumaresan V, Palanisamy R, Chaurasia MK, Bhatt P, Gnanam AJ, Pasupuleti M, Arasu A. A murrel interferon regulatory factor-1: molecular characterization, gene expression and cell protection activity. Mol Biol Rep 2014; 41:5299-5309. [PMID: 24859976 DOI: 10.1007/s11033-014-3401-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/06/2014] [Indexed: 01/27/2023]
Abstract
In this study, we have reported a first murrel interferon regulatory factor-1 (designated as Murrel IRF-1) which is identified from a constructed cDNA library of striped murrel Channa striatus. The identified sequence was obtained by internal sequencing method from the library. The Murrel IRF-1 varies in size of the polypeptide from the earlier reported fish IRF-1. It contains a DNA binding domain along with a tryptophan pentad repeats, a nuclear localization signal and a transactivation domain. The homologous analysis showed that the Murrel IRF-1 had a significant sequence similarity with other known fish IRF-1 groups. The phylogenetic analysis exhibited that the Murrel IRF-1 clustered together with IRF-1 members, but the other members including IRF-2, 3, 4, 5, 6, 7, 8, 9 and 10 were clustered individually. The secondary structure of Murrel IRF-1 contains 27% α-helices (85 aa residues), 5.7% β-sheets (19 aa residues) and 67.19% random coils (210 aa residues). Furthermore, we predicted a tertiary structure of Murrel IRF-1 using I-Tasser program and analyzed the structure on PyMol surface view. The RNA structure of the Murrel IRF-1 along with its minimum free energy (-284.43 kcal/mol) was also predicted. The highest gene expression was observed in spleen and its expression was inducted with pathogenic microbes which cause epizootic ulcerative syndrome in murrels such as fungus, Aphanomyces invadans and bacteria, Aeromonas hydrophila, and poly I:C, a viral RNA analog. The results of cell protection assay suggested that the Murrel IRF-1 regulates the early defense response in C. striatus. Moreover, it showed Murrel IRF-1 as a potential candidate which can be developed as a therapeutic agent to control microbial infections in striped murrel. Overall, these results indicate the immune importance of IRF-1, however, the interferon signaling mechanism in murrels upon infection is yet to be studied at proteomic level.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai, 603 203, Tamil Nadu, India,
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Arockiaraj J, Palanisamy R, Kumaresan V, Bhatt P, Chaurasia MK, Kasi M, Pasupuleti M, Gnanam AJ. Striped murrel S1 family serine protease: immune characterization, antibacterial property and enzyme activities. Biologia (Bratisl) 2014; 69:1065-1078. [DOI: 10.2478/s11756-014-0410-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/16/2014] [Indexed: 11/20/2022]
|
31
|
Kumaresan V, Bhatt P, Palanisamy R, Gnanam AJ, Pasupuleti M, Arockiaraj J. A murrel cysteine protease, cathepsin L: bioinformatics characterization, gene expression and proteolytic activity. Biologia (Bratisl) 2014; 69:395-406. [DOI: 10.2478/s11756-013-0326-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/13/2013] [Indexed: 11/20/2022]
|
32
|
Bhatt P, Kumaresan V, Palanisamy R, Chaurasia MK, Gnanam AJ, Pasupuleti M, Arockiaraj J. Immunological role of C4 CC chemokine-1 from snakehead murrel Channa striatus. Mol Immunol 2014; 57:292-301. [PMID: 24231766 DOI: 10.1016/j.molimm.2013.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022]
Abstract
In this study, we have reported a cDNA sequence of C4 CC chemokine identified from snakehead murrel (also known as striped murrel) Channa striatus (named as CsCC-Chem-1) normalized cDNA library constructed by Genome Sequencing FLX™ Technology (GS-FLX™). CsCC-Chem-1 is 641 base pairs (bp) long that contain 438 bp open reading frame (ORF). The ORF encodes a polypeptide of 146 amino acids with a molecular mass of 15 kDa. The polypeptide contains a small cytokine domain at 30-88. The domain carries the CC motif at Cys(33)-Cys(34). In addition, CsCC-Chem-1 consists of another two cysteine residues at C(59) and C(73), which, together with C(33) and C(34), make CsCC-Chem-1 as a C4-CC chemokine. CsCC-Chem-1 also contains a 'TCCT' motif at 32-35 as CC signature motif; this new motif may represent new characteristic features, which may lead to some unknown function that needs to be further focused on. Phylogenitically, CsCC-Chem-1 clustered together with CC-Chem-1 from rock bream Oplegnathus fasciatus and European sea bass Dicentrarchus labrax. Significantly (P<0.05) highest gene expression was noticed in spleen and is up-regulated upon fungus (Aphanomyces invadans), bacteria (Aeromonas hydrophila) and virus (poly I:C) infection at various time points. The gene expression results indicate the influence of CsCC-Chem-1 in the immune system of murrel. Overall, the gene expression study showed that the CsCC-Chem-1 is a capable gene to increase the cellular response against various microbial infections. Further, we cloned the coding sequence of CsCC-Chem-1 in pMAL vector and purified the recombinant protein to study the functional properties. The cell proliferation activity of recombinant CsCC-Chem-1 protein showed a significant metabolic activity in a concentration dependent manner. Moreover, the chemotaxis assay showed the capability of recombinant CsCC-Chem-1 protein which can induce the migration of spleen leukocytes in C. striatus. However, this remains to be verified further at molecular and proteomic level.
Collapse
Affiliation(s)
- Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | | | | | | | | | | | | |
Collapse
|
33
|
Palanisamy R, Bhatt P, Kumaresan V, Chaurasia MK, Gnanam AJ, Pasupuleti M, Kasi M, Arockiaraj J. A redox active site containing murrel cytosolic thioredoxin: analysis of immunological properties. FISH & SHELLFISH IMMUNOLOGY 2014; 36:141-150. [PMID: 24516870 DOI: 10.1016/j.fsi.2013.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, we have reported the immunological properties of cDNA encoding thioredoxin which is obtained from the database of Channa striatus (named as CsTRx) cDNA library. The analysis showed that the CsTRx polypeptide contains a thioredoxin domain between Val(2) and Asn(106). The domain possessed a thioredoxin active family at 24–42 along with a redox active site (also known as catalytic center) at (31)WCGPC(35). The analysis showed that the catalytic center is responsible for the control of protein function. Phylogenetic study showed that CsTRx clustered together with vertebrate TRx-1. Based on the phylogenetic analysis and other bioinformatics analysis, it is confirmed that the characterized CsTRx belongs to TRx-1 family. In addition, the sub-cellular localization prediction analysis showed that CsTRx is a cytosol thioredoxin. The highest gene expression was observed in gill (P < 0.05). Further, its transcriptional modulation was evaluated under fungal (Aphanomyces invadans), bacterial (Aeromonas hydrophila) and H2O2 challenges. The recombinant CsTRx protein was over-expressed and purified using an Escherichia coli expression vector system. We conducted a H2O2 peroxidase assay using recombinant CsTRx protein under various pH and temperature. Further, we studied the influence of recombinant CsTRx protein on C. striatus spleen leukocyte activation. The recombinant CsTRx protein enhanced the cell proliferation in a concentration dependant manner. The results of antioxidant analysis showed that the antioxidant capacity of recombinant CsTRx protein was determined to be 4.2 U/mg protein. We conducted an insulin disulfides assay to study the enzymatic oxidoreductase activity of CsTRx and we observed no activity in the control group. But the recombinant CsTRx protein addition rapidly increased the enzymatic oxidoreductase activity. Over all, the results showed that the CsTRx may contain potential antioxidant properties, which could regulate the oxidative stress created by various biological pathogens as well as chemical stress in the immune system of C. striatus, thus protecting it.
Collapse
|
34
|
Arockiaraj J, Gnanam AJ, Palanisamy R, Kumaresan V, Bhatt P, Thirumalai MK, Roy A, Pasupuleti M, Kasi M, Sathyamoorthi A, Arasu A. A prawn transglutaminase: molecular characterization and biochemical properties. Biochimie 2013; 95:2354-2364. [PMID: 24012776 DOI: 10.1016/j.biochi.2013.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/22/2013] [Indexed: 12/18/2022]
Abstract
In this study, we report the bioinformatics characterization, gene expression, transglutaminase activity and coagulation assays of transglutaminase (TGase) of freshwater prawn Macrobrachium rosenbergii identified from the constructed cDNA library by GS FLX™ technology. Even though, TGase have sequence similarity, they differ extensively in their substrate specificity and are thought to play an important in variety of functions such as development, tissue differentiation and immune responses etc. Gene expression studies show that MrTGase is widely distributed in the tissues such as heart, muscle, intestine, brain, etc., but higher amounts are found in hemocyte. Results of TGase mRNA relative expression in hemocyte, before and after infected with white spot syndrome baculovirus (WSBV) and Vibrio harveyi show that the gene expression initially increases up to 24 h and then it falls down. Coagulation assay results showed that the endogenous TGase is involved in the rapid assembly of a specific, plasma clotting protein. Structural studies show that MrTGase contains a typical TGc domain between 323 and 424, and two putative integrin-binding motifs at Arg(180)-Gly(181)-Asp(182) and Arg(269)-Gly(270)-Asp(271). The predicted 3D model of MrTGase contains 47.04% coils (366 amino acid residues), 26.74% extended strand (208 residues), 21.72% α-helix (169 residues) and 4.5% beta turns (35 residues). BLASTp analysis of MrTGase exhibited high sequence similarities with other crustacean TGase, with the highest observed in white shrimp (77.1%). Moreover, the phylogenetic analysis also showed that MrTGase clustered with the other members of crustacean TGase. Overall, these results suggested that MrTGase is a major and functional TGase of M. rosenbergii for haemolymph coagulation and also in spread of infection.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Arasu A, Kumaresan V, Sathyamoorthi A, Palanisamy R, Prabha N, Bhatt P, Roy A, Thirumalai MK, Gnanam AJ, Pasupuleti M, Marimuthu K, Arockiaraj J. Fish lily type lectin-1 contains β-prism architecture: immunological characterization. Mol Immunol 2013; 56:497-506. [PMID: 23911406 DOI: 10.1016/j.molimm.2013.06.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 12/16/2022]
Abstract
In this study we report a full-length lily type lectin-1 (CsLTL-1) identified from striped murrel, Channa striatus. CsLTL-1 was identified from the established C. striatus cDNA library using GS-FLX™ genome sequencing technology and was found to contain 354 nucleotide base pairs and its open reading frame (ORF) encodes a 118 amino acid residue. CsLTL-1 mRNA is predominately expressed in the gills and is up-regulated upon infection with fungus (Aphanomyces invadans) and bacteria (Aeromonas hydrophila). Hemagglutination studies with recombinant CsLTL-1 show that, at 4μg/ml agglutinates occurs in a calcium independent manner and is inhibited in the presence of d-mannose (50mM) and d-glucose (100mM). The CsLTL-1 sequence was completely characterized using various bioinformatics tools. CsLTL-1 peptide contains a mannose binding site at 30-99 along with its specific motif of β-prism architecture. The phylogenetic analysis showed that CsLTL-1 clustered together with LTL-1 from Oplegnathus fasciatus. CsLTL-1 protein 3D structure was predicted by I-Tasser program and the model was evaluated using Ramachanran plot analysis. The secondary structure analysis of CsLTL-1 reveals that the protein contains 23% β-sheets and 77% coils. The overall results showed that CsLTL-1 is an important immune gene involved in the recognition and elimination of pathogens in murrels.
Collapse
Affiliation(s)
- Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur 603 203, Chennai, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Arockiaraj J, Gnanam AJ, Kumaresan V, Palanisamy R, Bhatt P, Thirumalai MK, Roy A, Pasupuleti M, Kasi M. An unconventional antimicrobial protein histone from freshwater prawn Macrobrachium rosenbergii: analysis of immune properties. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1511-1522. [PMID: 23994279 DOI: 10.1016/j.fsi.2013.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
In this study, we have reported the first histone characterized at molecular level from freshwater prawn Macrobrachium rosenbergii (MrHis). A full length cDNA of MrHis (751 base pairs) was identified from an established M. rosenbergii cDNA library using GS-FLX technique. It encodes 137 amino acid residues with a calculated molecular mass of 15 kDa and an isoelectric point of 10.5. MrHis peptide contains a histone H2A signature between 21 and 27 amino acids. Homologous analysis showed that MrHis had a significant sequence identity (99%) with other known histone H2A groups especially from Penaeus monodon. Phylogenetic analysis of MrHis showed a strong relationship with other amino acid sequences from histone H2A arthropod groups. Further phylogenetic analysis showed that the MrHis belongs to histone H2A superfamily and H2A1A sub-family. Secondary structure of MrHis showed that the protein contains 50.36% α-helical region and 49.64% coils. The 3D model of MrHis was predicted by I-Tasser program and the model was evaluated for quality analysis including C-score analysis, Ramachandran plot analysis and RMSD analysis. The surface view analysis of MrHis showed the active domain at the N terminal. The antimicrobial property of MrHis protein was confirmed by the helical structure and the total hydrophobic surface along with its net charge. The MFE of the predicted RNA structure of MrHis is -128.62 kcal/mol, shows its mRNA stability. Schiffer-Edmundson helical wheel analysis of the N-terminal of MrHis showed a perfect amphipathic nature of the peptide. Significantly (P < 0.05) highest gene expression was noticed in the hemocyte and is induced with viral (WSBV and MrNV) and bacteria (A eromonas hydrophila and Vibrio harveyi) infections. The coding sequence of recombinant MrHis protein was expressed in a pMAL vector and purified to study the antimicrobial properties. The recombinant product showed antimicrobial activity against both Gram negative and Gram positive bacteria. In this study, the recombinant MrHis protein displayed antimicrobial activity in its entirety. Hence, it is possible to suggest that the activity may be due to the direct defense role of histone or its N-terminal antimicrobial property. However, this remains to be verified by detailed investigations.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603 203, Tamil Nadu, India.
| | | | | | | | | | | | | | | | | |
Collapse
|