1
|
Khalifa HO, Oreiby A, Abdelhamid MAA, Ki MR, Pack SP. Biomimetic Antifungal Materials: Countering the Challenge of Multidrug-Resistant Fungi. Biomimetics (Basel) 2024; 9:425. [PMID: 39056866 PMCID: PMC11274442 DOI: 10.3390/biomimetics9070425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In light of rising public health threats like antifungal and antimicrobial resistance, alongside the slowdown in new antimicrobial development, biomimetics have shown promise as therapeutic agents. Multidrug-resistant fungi pose significant challenges as they quickly develop resistance, making traditional antifungals less effective. Developing new antifungals is also complicated by the need to target eukaryotic cells without harming the host. This review examines biomimetic antifungal materials that mimic natural biological mechanisms for targeted and efficient action. It covers a range of agents, including antifungal peptides, alginate-based antifungals, chitosan derivatives, nanoparticles, plant-derived polyphenols, and probiotic bacteria. These agents work through mechanisms such as disrupting cell membranes, generating reactive oxygen species, and inhibiting essential fungal processes. Despite their potential, challenges remain in terms of ensuring biocompatibility, optimizing delivery, and overcoming potential resistance. Production scalability and economic viability are also concerns. Future research should enhance the stability and efficacy of these materials, integrate multifunctional approaches, and develop sophisticated delivery systems. Interdisciplinary efforts are needed to understand interactions between these materials, fungal cells, and the host environment. Long-term health and environmental impacts, fungal resistance mechanisms, and standardized testing protocols require further study. In conclusion, while biomimetic antifungal materials represent a revolutionary approach to combating multidrug-resistant fungi, extensive research and development are needed to fully realize their potential.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Atef Oreiby
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
2
|
Leal Y, Valenzuela-Muñoz V, Gallardo-Escárate C. Alternative splicing in Atlantic salmon head kidney and SHK-1 cell line during the Piscirickettsia salmonis infection: A comparative transcriptome survey. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109127. [PMID: 37813155 DOI: 10.1016/j.fsi.2023.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Piscirickettsia salmonis, an intracellular bacterium in salmon aquaculture, is a big challenge because it is responsible for 54.2% of Atlantic salmon mortalities. In recent years, the high relevance of Alternative Splicing (AS) as a molecular mechanism associated with infectious conditions and host-pathogen interaction processes, especially in host immune activation, has been observed. Several studies have highlighted the role of AS in the host's immune response during viral, bacterial, and endoparasite infection. In the present study, we evaluated AS transcriptome profiles during P. salmonis infection in the two most used study models, SHK-1 cell line and salmon head kidney tissue. First, the SHK-1 cell line was exposed to P. salmonis infection at 0-, 7-, and 14-days post-infection (dpi). Following, total RNA was extracted for Illumina sequencing. On the other hand, RNA-Seq datasets of Atlantic salmon head kidney infected with the same P. salmonis strayingwase used. For both study models, the highest number of differentially alternative splicing (DAS) events was observed at 7 dpi, 16,830 DAS events derived from 9213 DAS genes in SHK-1 cells, and 13,820 DAS events from 7684 DAS genes in salmon HK. Alternative first exon (AF) was the most abundant AS type in the three infection times analyzed, representing 31% in SHK-1 cells and 228.6 in salmon HK; meanwhile, mutually exclusive exon (MX) was the least abundant. Notably, functional annotation of DAS genes in SHK-1 cells infected with P. salmonis showed a high presence of genes related to nucleotide metabolism. In contrast, the salmon head kidney exhibited many GO terms associated with immune response. Our findings reported the role of AS during P. salmonis infection in Atlantic salmon. These studies would contribute to a better understanding of the molecular bases that support the pathogen-host interaction, evidencing the contribution of AS regulating the transcriptional host response.
Collapse
Affiliation(s)
- Yeny Leal
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile.
| |
Collapse
|
3
|
Velázquez J, Rodríguez-Cornejo T, Rodríguez-Ramos T, Pérez-Rodríguez G, Rivera L, Campbell JH, Al-Hussinee L, Carpio Y, Estrada MP, Dixon B. New Evidence for the Role of Pituitary Adenylate Cyclase-Activating Polypeptide as an Antimicrobial Peptide in Teleost Fish. Antibiotics (Basel) 2023; 12:1484. [PMID: 37887185 PMCID: PMC10604671 DOI: 10.3390/antibiotics12101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is a multifunctional neuropeptide that is widely distributed and conserved across species. We have previously shown that in teleost fish, PACAP not only possesses direct antimicrobial properties but also immunomodulatory effects against the bacterial pathogens Flavobacterium psychrophilum and Pseudomonas aeruginosa using in vitro and in vivo experiments. These previous results suggest PACAP can be used as an alternative to antibiotics to prevent and/or treat bacterial infections in the aquaculture industry. To accomplish this goal, more studies are needed to better understand the effect of PACAP on pathogens affecting fish in live infections. In the present study, the transcripts PACAP, PRP/PACAP, and VPAC2 receptor were examined in rainbow trout (Oncorhynchus mykiss) naturally infected with Yersinia ruckeri, which exhibited an increase in their expression in the spleen when compared to healthy fish. Synthetic Clarias gariepinus PACAP-38 has direct antimicrobial activity on Y. ruckeri and inhibits up to 60% of the bacterial growth when the peptide is at concentrations between 50 and 100 µM in TSB. The growth inhibition increased up to 90% in the presence of 12.5 µM of PACAP-38 when salt-free LB broth was used instead of TSB. It was also found to inhibit Y. ruckeri growth in a dose-dependent manner when the rainbow trout monocyte/macrophage-like cell line (RTS11) was pre-treated with lower concentrations of the peptide (0.02 and 0.1 µM) before going through infection. Differential gene expression was analyzed in this in vitro model. Overall, the results revealed new evidence to support the role of PACAP as an antimicrobial and immunomodulatory peptide treatment in teleosts.
Collapse
Affiliation(s)
- Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Tania Rodríguez-Cornejo
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Geysi Pérez-Rodríguez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Laura Rivera
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - James Hugh Campbell
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Lowia Al-Hussinee
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| |
Collapse
|
4
|
Liu ZY, Yang HL, Wei CY, Cai GH, Ye JD, Zhang CX, Sun YZ. Commensal Bacillus siamensis LF4 induces antimicrobial peptides expression via TLRs and NLRs signaling pathways in intestinal epithelial cells of Lateolabrax maculatus. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108634. [PMID: 36828198 DOI: 10.1016/j.fsi.2023.108634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial peptides (AMPs) play an important role in modulating intestinal microbiota, and our previous study showed that autochthonous Baccilus siamensis LF4 could shape the intestinal microbiota of spotted seabass (Lateolabrax maculatus). In the present study, a spotted seabass intestinal epithelial cells (IECs) model was used to investigate whether autochthonous B. siamensis LF4 could modulate the expression of AMPs in IECs. And then, the IECs were treated with active, heat-inactivated LF4 and its supernatant to illustrate their AMPs inducing effects and the possible signal transduction mechanisms. The results showed that after 3 h of incubation with 108 CFU/mL B. siamensis LF4, lactate dehydrogenase (LDH), glutamic oxaloacetic transaminase (GOT), glutamic propylic transaminase (GPT) activities in supernatant decreased significantly and obtained minimum values, while supernatant alkaline phosphatase (AKP) activity, β-defensin protein level and IECs Na+/K+-ATPase activity, AMPs (β-defensin, hepcidin-1, NK-lysin, piscidin-5) genes expression increased significantly and obtained maximum values (P < 0.05). Further study demonstrated that the active, heat-inactivated LF4 and its supernatant treatments could effectively decrease the LDH, GOT, and GPT activities in IECs supernatant, increase AKP activity and β-defensin (except LF4 supernatant treatment) protein level in IECs supernatant and Na+/K+-ATPase and AMPs genes expression in IECs. Treatment with active and heat-inactivated B. siamensis LF4 resulted in significantly up-regulated the expressions of TLR1, TLR2, TLR3, TLR5, NOD1, NOD2, TIRAP, MyD88, IRAK1, IRAK4, TRAF6, TAB1, TAB2, ERK, JNK, p38, AP-1, IKKα, IKKβ and NF-κB genes. Treatment with B. siamensis LF4 supernatant also resulted in up-regulated these genes, but not the genes (ERK, JNK, p38, and AP-1) in MAPKs pathway. In summary, active, heat-inactivated and supernatant of B. siamensis LF4 can efficiently induce AMPs expression through activating the TLRs/NLRs-MyD88-dependent signaling, active and heat-inactivated LF4 activated both the downstream MAPKs and NF-κB pathways, while LF4 supernatant only activated NF-κB pathway.
Collapse
Affiliation(s)
- Zi-Yan Liu
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Hong-Ling Yang
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Cheng-Ye Wei
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Guo-He Cai
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ji-Dan Ye
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Chun-Xiao Zhang
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yun-Zhang Sun
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, China.
| |
Collapse
|
5
|
Rozas-Serri M. Why Does Piscirickettsia salmonis Break the Immunological Paradigm in Farmed Salmon? Biological Context to Understand the Relative Control of Piscirickettsiosis. Front Immunol 2022; 13:856896. [PMID: 35386699 PMCID: PMC8979166 DOI: 10.3389/fimmu.2022.856896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Piscirickettsiosis (SRS) has been the most important infectious disease in Chilean salmon farming since the 1980s. It was one of the first to be described, and to date, it continues to be the main infectious cause of mortality. How can we better understand the epidemiological situation of SRS? The catch-all answer is that the Chilean salmon farming industry must fight year after year against a multifactorial disease, and apparently only the environment in Chile seems to favor the presence and persistence of Piscirickettsia salmonis. This is a fastidious, facultative intracellular bacterium that replicates in the host’s own immune cells and antigen-presenting cells and evades the adaptive cell-mediated immune response, which is why the existing vaccines are not effective in controlling it. Therefore, the Chilean salmon farming industry uses a lot of antibiotics—to control SRS—because otherwise, fish health and welfare would be significantly impaired, and a significantly higher volume of biomass would be lost per year. How can the ever-present risk of negative consequences of antibiotic use in salmon farming be balanced with the productive and economic viability of an animal production industry, as well as with the care of the aquatic environment and public health and with the sustainability of the industry? The answer that is easy, but no less true, is that we must know the enemy and how it interacts with its host. Much knowledge has been generated using this line of inquiry, however it remains insufficient. Considering the state-of-the-art summarized in this review, it can be stated that, from the point of view of fish immunology and vaccinology, we are quite far from reaching an effective and long-term solution for the control of SRS. For this reason, the aim of this critical review is to comprehensively discuss the current knowledge on the interaction between the bacteria and the host to promote the generation of more and better measures for the prevention and control of SRS.
Collapse
|
6
|
Fasina YO, Obanla T, Dosu G, Muzquiz S. Significance of Endogenous Antimicrobial Peptides on the Health of Food Animals. Front Vet Sci 2021; 8:585266. [PMID: 34262957 PMCID: PMC8273337 DOI: 10.3389/fvets.2021.585266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Acquired resistance to in-feed antibiotic growth promoters continues to be an imperative problem in the livestock industries, thereby necessitating continuous pursuit for alternatives. Antimicrobial peptides (AMPs) represent a critical part of the host's innate immune system and have been documented to have immunomodulatory activity. Increasing research evidence suggests that in contrast to antibiotics, AMPs exert broad-spectrum antibacterial activity in a manner that reduces bacterial acquisition of resistance genes. This review summarizes current knowledge on the protective effects of endogenous (natural) AMPs in the gastrointestinal tract of food animals. Factors limiting the efficacy of these AMPs were also discussed and mitigating strategies were proposed.
Collapse
Affiliation(s)
- Yewande O Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Temitayo Obanla
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - George Dosu
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Sierra Muzquiz
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
7
|
Yang HL, Sun YZ, Hu X, Ye JD, Lu KL, Hu LH, Zhang JJ. Bacillus pumilus SE5 originated PG and LTA tuned the intestinal TLRs/MyD88 signaling and microbiota in grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2019; 88:266-271. [PMID: 30849499 DOI: 10.1016/j.fsi.2019.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The normal microbiota plays a key role in the health of host, but little is known of how the fish immune system recognizes and responds to indigenous bacteria/probiotics. Our previous studies have showed that heat-inactivated indigenous Bacillus pumilus SE5 activate the TLR2 signaling pathways and modulate the intestinal microbiota in grouper (Epinephelus coioides), suggesting microbial-associated molecular patterns (MAMPs) involved. In this study, whole cell wall (CW) and two possible MAMPs, peptidoglycan (PG) and lipoteichoic acid (LTA) have been extracted from B. pumilus SE5 and their effects on intestinal immune related genes expression and microbiota were evaluated in a 60 days feeding trial. Significantly elevated expression of TLR1, TLR2, TLR5 and MyD88 was observed in fish fed the CW, PG and LTA containing diets, and the highest expression was observed in groups PG and LTA. At the same time, significantly upregulated expression of antimicrobial effectors, such as antimicrobial peptides (epinecidin-1, hepcidin-1 and β-defensin), C-type Lectin and IgM was observed in fish fed PG and LTA containing diets. This induced activation of intestinal immunity was consistent with the microbiota data showing that CW, PG and LTA originated from SE5 modulated the overall structure of intestinal microbiota, and the relative abundance of potentially pathogenic Vibrio decreased significantly while beneficial Lactobacillus increased significantly in fish fed PG and LTA. In conclusion, both the PG and LTA originated from B. pumilus SE5 could activate TLRs/MyD88 signaling and expression of wide-ranging antibacterial effectors, and therefore shape the intestinal microbiota in grouper.
Collapse
Affiliation(s)
- Hong-Ling Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China; The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yun-Zhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China; The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China.
| | - Xi Hu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ji-Dan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China; The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Kang-Le Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ling-Hao Hu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Jiao-Jing Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| |
Collapse
|
8
|
Furlan M, Rosani U, Gambato S, Irato P, Manfrin A, Mardirossian M, Venier P, Pallavicini A, Scocchi M. Induced expression of cathelicidins in trout (Oncorhynchus mykiss) challenged with four different bacterial pathogens. J Pept Sci 2018; 24:e3089. [PMID: 29808604 DOI: 10.1002/psc.3089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/31/2018] [Accepted: 04/30/2018] [Indexed: 11/05/2022]
Abstract
Cathelicidins are an important family of antimicrobial peptide effectors of innate immunity in vertebrates. Two members of this group, CATH-1 and CATH-2, have been identified and characterized in teleosts (ray-finned fish). In this study, we investigated the expression of these genes in different tissues of rainbow trout challenged with 4 different inactivated pathogens. By using qPCR, we detected a strong induction of both cath-1 and cath-2 genes within 24 hours after intraperitoneal inoculation with Lactococcus garvieae, Yersinia ruckeri, Aeromonas salmonicida, or Flavobacterium psychrophilum cells. Up to 700-fold induction of cath-2 was observed in the spleen of animals challenged with Y. ruckeri. Moreover, we found differences in the intensity and timing of gene up-regulation in the analyzed tissues. The overall results highlight the importance of cathelicidins in the immune response mechanisms of salmonids.
Collapse
Affiliation(s)
- Michela Furlan
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Umberto Rosani
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
| | - Stefano Gambato
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Paola Irato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
| | - Amedeo Manfrin
- Fish Pathology Laboratory, Istituto Zooprofilattico delle Venezie, Via Romea 14/a, 35020 Legnaro, Padova, Italy
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Paola Venier
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| |
Collapse
|
9
|
Rozas-Serri M, Peña A, Maldonado L. Transcriptomic profiles of post-smolt Atlantic salmon challenged with Piscirickettsia salmonis reveal a strategy to evade the adaptive immune response and modify cell-autonomous immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:348-362. [PMID: 29288676 DOI: 10.1016/j.dci.2017.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
Piscirickettsiosis is the main bacterial disease affecting the Chilean salmon farming industry and is responsible for high economic losses. The development of effective strategies to control piscirickettsiosis has been limited in part by insufficient knowledge of the host response. The aim of this study was to use RNA sequencing to describe the transcriptional profiles of the responses of post-smolt Atlantic salmon infected with LF-89-like or EM-90-like Piscirickettsia salmonis. Enrichment and pathway analyses of the differentially expressed genes revealed several central signatures following infection, including positive regulation of DC-SIGN and TLR5 signalling, which converged at the NF-κB level to modulate the pro-inflammatory cytokine response, particularly in the PS-EM-90-infected fish. P. salmonis induced an IFN-inducible response (e.g., IRF-1 and GBP-1) but inhibited the humoral and cell-mediated immune responses. P. salmonis induced significant cytoskeletal reorganization but decreased lysosomal protease activity and caused the degradation of proteins associated with cellular stress. Infection with these isolates also delayed protein transport, antigen processing, vesicle trafficking and autophagy. Both P. salmonis isolates promoted cell survival and proliferation and inhibited apoptosis. Both groups of Trojan fish used similar pathways to modulate the immune response at 5 dpi, but the transcriptomic profiles in the head kidneys of the cohabitant fish infected with PS-LF-89 and PS-MS-90 were relatively different at day 35 post-infection of the Trojan fish, probably due to the different degree of pathogenicity of each isolate. Our study showed the most important biological mechanisms used by P. salmonis, regardless of the isolate, to evade the immune response, maintain the viability of host cells and increase intracellular replication and persistence at the infection site. These results improve the understanding of the mechanisms by which P. salmonis interacts with its host and may serve as a basis for the development of effective strategies for the control of piscirickettsiosis.
Collapse
Affiliation(s)
| | - Andrea Peña
- Pathovet Laboratory Ltd., Puerto Montt, Chile.
| | | |
Collapse
|
10
|
Estévez RA, Mostazo MGC, Rodriguez E, Espinoza JC, Kuznar J, Jónsson ZO, Guðmundsson GH, Maier VH. Inducers of salmon innate immunity: An in vitro and in vivo approach. FISH & SHELLFISH IMMUNOLOGY 2018; 72:247-258. [PMID: 29108970 DOI: 10.1016/j.fsi.2017.10.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Maintaining fish health is one of the most important aims in aquaculture. Prevention of fish diseases therefore is crucial and can be achieved by various different strategies, including most often a combination of different methods such as optimal feed and fish density, as well as strengthening the immune system. Understanding the fish innate immune system and developing methods to activate it, in an effort to prevent infections in the first place, has been a goal in recent years. In this study we choose different inducers of the innate immune system and examined their effects in vitro on the salmon cell line CHSE-214. We found that the butyrate derivatives 4-phenyl butyrate (PBA) and β-hydroxy-β-methyl butyrate (HMB) induce the expression of various innate immune genes differentially over 24-72 h. Similarly, lipids generated from fish oils were found to have an effect on the expression of the antimicrobial peptides cathelicidin and hepcidin, as well as iNOS and the viral receptor RIG-1. Interestingly we found that vitamin D3, similar as in mammals, was able to increase cathelicidin expression in fish cells. The observed induction of these different innate immune factors correlated with antibacterial activity against Aeromonas salmonicida and antiviral activity against IPNV and ISAV in vitro. To relate this data to the in vivo situation we examined cathelicidin expression in juvenile salmon and found that salmon families vary greatly in their basal cathelicidin levels. Examining cathelicidin levels in families known to be resistant to IPNV showed that these QTL-families had lower basal levels of cathelicidin in gills, than non QTL-families. Feeding fish with HMB caused a robust increase in cathelicidin expression in gills, but not skin and this was independent of the fish being resistant to IPNV. These findings support the use of fish cell lines as a tool to develop new inducers of the fish innate immune system, but also highlight the importance of the tissue studied in vivo. Understanding the response of the innate immune system in different tissues and what effect this might have on infections and downstream cellular pathways is an interesting research topic for the future.
Collapse
Affiliation(s)
- Rosana A Estévez
- Stofnfiskur Staðarberg 2-4, 221 Hafnarfjörður, Iceland; Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Miriam G Contreras Mostazo
- Stofnfiskur Staðarberg 2-4, 221 Hafnarfjörður, Iceland; Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | | | - Juan Carlos Espinoza
- Centro de Investigación y Gestión de Recursos Naturales, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
| | - Juan Kuznar
- Centro de Investigación y Gestión de Recursos Naturales, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
| | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Guðmundur H Guðmundsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Valerie H Maier
- Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland.
| |
Collapse
|
11
|
Valenzuela CA, Zuloaga R, Poblete-Morales M, Vera-Tobar T, Mercado L, Avendaño-Herrera R, Valdés JA, Molina A. Fish skeletal muscle tissue is an important focus of immune reactions during pathogen infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:1-9. [PMID: 28279806 DOI: 10.1016/j.dci.2017.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/04/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
Skeletal muscle in mammals can express and secrete immune-related molecules during pathogen infection. Despite in fish is known that classical immune tissues participate in innate immunity, the role of skeletal muscle in this function is poorly understood. To determine the immunocompetence of fish skeletal muscle, juvenile fine flounder (Paralichthys adpersus) were challenged with Vibrio ordalii. Different Toll-like receptors, pro-inflammatory cytokines (TNFα, Il-1β, and IL-8), and immune-effector molecules (NKEF and the antimicrobial peptides hepcidin and LEAP-2) were analyzed. Infection initially triggered IL-1β upregulation and P38-MAPK/AP-1 pathway activation. Next, the NFĸB pathway was activated, together with an upregulation of intracellular Toll-like receptor expressions (tlr3, tlr8a tlr9, and tlr21), TNFα production, and leap-2 expression. Finally, transcriptions of il-1β, il-8, tnfα, nkef-a, and hepcidin were also upregulated. These results suggest that fish skeletal muscle is an immunologically active organ that could play an important role against pathogens.
Collapse
Affiliation(s)
- Cristián A Valenzuela
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile.
| | - Rodrigo Zuloaga
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile.
| | - Matías Poblete-Morales
- Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, 2520000 Viña del Mar, Chile.
| | - Tamara Vera-Tobar
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas, 8370146 Santiago, Chile.
| | - Luis Mercado
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2340000 Valparaíso, Chile.
| | - Ruben Avendaño-Herrera
- Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, 2520000 Viña del Mar, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, 2340000 Valparaíso, Chile.
| | - Juan Antonio Valdés
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, 2340000 Valparaíso, Chile.
| | - Alfredo Molina
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, 2340000 Valparaíso, Chile.
| |
Collapse
|
12
|
Nsrelden RM, Horiuchi H, Furusawa S. Expression of ayu antimicrobial peptide genes after LPS stimulation. J Vet Med Sci 2017; 79:1072-1080. [PMID: 28484129 PMCID: PMC5487786 DOI: 10.1292/jvms.16-0609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plecoglossus altivelis (ayu) is one of the most important fish species
in the Japanese islands and in internal fish hatcheries. Living in open aquatic
environments exposes fish to many pathogens. Therefore, they require rapid and strong
immune defenses. We investigated in vivo the direct association between
the ayu innate immune response, represented by the relative transcription of genes
encoding the cathelicidin and hepcidin antimicrobial peptides, and lipopolysaccharide
(LPS), a conventional pathogen-associated molecular patterns (PAMPs) of Gram-negative
bacteria. Different concentrations of LPS (1, 10 and 100 µg/fish) were
injected intraperitoneally into young (sexually immature) and adult (fully sexually
mature) ayu. The relative expression of the antimicrobial peptide genes was measured 6 hr,
24 hr and 1 week after stimulation with LPS. We found a direct association between the
expression of the antimicrobial peptide genes investigated and LPS stimulation. This
relationship was time-, dose- and age-dependent. Further research is required to determine
the cell-specific transcriptional regulation and posttranscriptional regulation of these
antimicrobial peptides.
Collapse
Affiliation(s)
- Rehab Marray Nsrelden
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Hiroyuki Horiuchi
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Shuichi Furusawa
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
13
|
Katzenback BA. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. BIOLOGY 2015; 4:607-39. [PMID: 26426065 PMCID: PMC4690011 DOI: 10.3390/biology4040607] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
14
|
Antibacterial products of marine organisms. Appl Microbiol Biotechnol 2015; 99:4145-73. [PMID: 25874533 DOI: 10.1007/s00253-015-6553-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
Marine organisms comprising microbes, plants, invertebrates, and vertebrates elaborate an impressive array of structurally diverse antimicrobial products ranging from small cyclic compounds to macromolecules such as proteins. Some of these biomolecules originate directly from marine animals while others arise from microbes associated with the animals. It is noteworthy that some of the biomolecules referred to above are structurally unique while others belong to known classes of compounds, peptides, and proteins. Some of the antibacterial agents are more active against Gram-positive bacteria while others have higher effectiveness on Gram-negative bacteria. Some are efficacious against both Gram-positive and Gram-negative bacteria and against drug-resistant strains as well. The mechanism of antibacterial action of a large number of the chemically identified antibacterial agents, possible synergism with currently used antibiotics, and the issue of possible toxicity on mammalian cells and tissues await elucidation. The structural characteristics pivotal to antibacterial activity have been ascertained in only a few studies. Demonstration of efficacy of the antibacterial agents in animal models of bacterial infection is highly desirable. Structural characterization of the active principles present in aqueous and organic extracts of marine organisms with reportedly antibacterial activity would be desirable.
Collapse
|
15
|
Holm H, Santi N, Kjøglum S, Perisic N, Skugor S, Evensen Ø. Difference in skin immune responses to infection with salmon louse (Lepeophtheirus salmonis) in Atlantic salmon (Salmo salar L.) of families selected for resistance and susceptibility. FISH & SHELLFISH IMMUNOLOGY 2015; 42:384-94. [PMID: 25449368 DOI: 10.1016/j.fsi.2014.10.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 05/04/2023]
Abstract
Atlantic salmon is susceptible to the salmon louse (Lepeophtheirus salmonis) and the variation in susceptibility within the species can be exploited in selective breeding programs for louse resistant fish. In this study, lice counts were completed on 3000 siblings from 150 families of Atlantic salmon identified as high resistant (HR) and low resistant (LR) families in two independent challenge trials. Skin samples behind the dorsal fin (nearby lice attachment) were collected from ten extreme families (HR or LR) and analyzed by qPCR for the expression of 32 selected genes, including a number of genes involved in T helper cell (Th) mediated immune responses, which have been previously implied to play important roles during salmon louse infections. Most genes showed lower expression patterns in the LR than in HR fish, suggesting an immunosuppressed state in LR families. The average number of lice (chalimi) was 9 in HR and 15 in LR fish. Large variation in lice counts was seen both within resistant and susceptible families, which enabled us to subdivide the groups into HR < 10 and HR > 10, and LR < 10 and LR > 10 to better understand the effect of lice burden per se. As expected, expression patterns were influenced both by genetic background and the number of attached parasites. Higher number of lice (>10) negatively affected gene expression in both HR and LR families. In general, strongest down-regulation was seen in LR > 10 and lesser down-regulation in HR < 10. HR in general and especially HR < 10 fish were better at resisting suppression of expression of both Th1 and Th2 genes. However, the best inverse correlation with infection level was seen for the prototypical Th1 genes, including several members from the interferon pathways. In addition, skin histomorphometry suggests that infected LR salmon had thicker epidermis in the area behind the dorsal fin and larger mucous cell size compared to infected HR fish, however marginally significant (p = 0.08). This histomorphometric finding was in line with the immune response being skewed in LR towards the Th2 rather than a Th1 profile. Our findings suggest that the ability to resist lice infection depends on the ability to avoid immunosuppression and not as much on the physical tissue barrier functions.
Collapse
Affiliation(s)
- Helle Holm
- Norwegian University of Life Sciences, Faculty of Biosciences and Veterinary Medicine, Sea Lice Research Center, PO Box 8146, N-0033 Oslo, Norway
| | - Nina Santi
- Aquagen AS, Havnegata 9, N-7010 Trondheim, Norway
| | | | - Nebojsa Perisic
- Weifa AS, Stittlidalen 4, Fikkjebakke, 3766 Sannidal, PO Box 98, NO-37911 Kragerø, Norway
| | - Stanko Skugor
- Norwegian University of Life Sciences, Faculty of Biosciences and Veterinary Medicine, Sea Lice Research Center, PO Box 8146, N-0033 Oslo, Norway
| | - Øystein Evensen
- Norwegian University of Life Sciences, Faculty of Biosciences and Veterinary Medicine, Sea Lice Research Center, PO Box 8146, N-0033 Oslo, Norway.
| |
Collapse
|
16
|
Yang HL, Xia HQ, Ye YD, Zou WC, Sun YZ. Probiotic Bacillus pumilus SE5 shapes the intestinal microbiota and mucosal immunity in grouper Epinephelus coioides. DISEASES OF AQUATIC ORGANISMS 2014; 111:119-127. [PMID: 25266899 DOI: 10.3354/dao02772] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The health benefits of probiotics are thought to occur, at least in part, through an improved intestinal microbial balance in fish, although the molecular mechanisms whereby probiotics modulate the intestinal microbiota by means of activation of mucosal immunity are rarely explored. In this study, the effects of viable and heat-inactivated probiotic Bacillus pumilus SE5 on the intestinal dominant microbial community and mucosal immune gene expression were evaluated. The fish were fed for 60 d with 3 different diets: control (without probiotic), and diets T1 and T2 supplemented with 1.0 × 10⁸ cells g⁻¹ viable and heat-inactivated B. pumilus SE5, respectively. Upregulated expression of TLR1, TLR2 and IL-8, but not MyD88 was observed in fish fed the viable probiotic, while elevated expression of TLR2, IL-8 and TGF-β1, but not MyD88 was observed in fish fed the heat-inactivated B. pumilus SE5. The induced activation of intestinal mucosal immunity, especially the enhanced expression of antibacterial epinecidin-1, was consistent with the microbial data showing that several potentially pathogenic bacterial species such as Psychroserpens burtonensis and Pantoea agglomerans were suppressed by both the viable and heat-inactivated probiotic B. pumilus SE5. These results lay the foundation for future studies on the molecular interactions between probiotics, intestinal microbiota and mucosal immunity in fish.
Collapse
Affiliation(s)
- Hong-Ling Yang
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | | | | | | | | |
Collapse
|
17
|
Masso-Silva JA, Diamond G. Antimicrobial peptides from fish. Pharmaceuticals (Basel) 2014; 7:265-310. [PMID: 24594555 PMCID: PMC3978493 DOI: 10.3390/ph7030265] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture.
Collapse
Affiliation(s)
- Jorge A Masso-Silva
- Department of Pediatrics and Graduate School of Biomedical Sciences, Rutgers New Jersey Medical School, Newark, NJ 07101, USA.
| | - Gill Diamond
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, FL 32610, USA.
| |
Collapse
|