1
|
Overton E, Emelyanova A, Bunik VI. Thiamine, gastrointestinal beriberi and acetylcholine signaling. Front Nutr 2025; 12:1541054. [PMID: 40271433 PMCID: PMC12014454 DOI: 10.3389/fnut.2025.1541054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Research has highlighted numerous detrimental consequences of thiamine deficiency on digestive function. These range from impaired gastric and intestinal motility to aberrant changes in pancreatic exocrine function, gastric acidity and disturbances in gut barrier integrity and inflammation. Thiamine and its pharmacological forms, as a primary or adjunctive therapy, have been shown to improve symptoms such as nausea, constipation, dysphagia and intestinal dysmotility, in both humans and animals. This review aims to explore molecular mechanisms underlying the therapeutic action of thiamine in gastrointestinal dysfunction. Our analysis demonstrates that thiamine insufficiency restricted to the gastrointestinal system, i.e., lacking well-known symptoms of dry and wet beriberi, may arise through (i) a disbalance between the nutrient influx and efflux in the gastrointestinal system due to increased demands of thiamine by the organism; (ii) direct exposure of the gastrointestinal system to oral drugs and gut microbiome, targeting thiamine-dependent metabolism in the gastrointestinal system in the first line; (iii) the involvement of thiamine in acetylcholine (ACh) signaling and cholinergic activity in the enteric nervous system and non-neuronal cells of the gut and pancreas, employing both the coenzyme and non-coenzyme actions of thiamine. The coenzyme action relies on the requirement of the thiamine coenzyme form - thiamine diphosphate - for the production of energy and acetylcholine (ACh). The non-coenzyme action involves participation of thiamine and/or derivatives, including thiamine triphosphate, in the regulation of ACh synaptic function, consistent with the early data on thiamine as a co-mediator of ACh in neuromuscular synapses, and in allosteric action on metabolic enzymes. By examining the available evidence with a focus on the gastrointestinal system, we deepen the understanding of thiamine's contribution to overall gastrointestinal health, highlighting important implications of thiamine-dependent mechanisms in functional gastrointestinal disorders.
Collapse
Affiliation(s)
| | - Alina Emelyanova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
| |
Collapse
|
2
|
Huang KJ, Feng L, Wu P, Liu Y, Zhang L, Mi HF, Zhou XQ, Jiang WD. Hypoxia leads to gill endoplasmic reticulum stress and disruption of mitochondrial homeostasis in grass carp (Ctenopharyngodon idella): Mitigation effect of thiamine. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134005. [PMID: 38484660 DOI: 10.1016/j.jhazmat.2024.134005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
Hypoxia in water environment is one of the important problems faced by intensive aquaculture. Under hypoxia stress, the effects of dietary thiamine were investigated on grass carp gill tissue damage and their mechanisms. Six thiamine diets with different thiamine levels (0.22, 0.43, 0.73, 1.03, 1.33 and 1.63 mg/kg) were fed grass carp (Ctenopharyngodon idella) for 63 days. Then, 96-hour hypoxia stress test was conducted. This study described that thiamine enhanced the growth performance of adult grass carp and ameliorated nutritional status of thiamine (pyruvic acid, glucose, lactic acid and transketolase). Additionally, thiamine alleviated the deterioration of blood parameters [glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), glucose, cortisol, lactic dehydrogenase (LDH), erythrocyte fragility, and red blood cell count (RBC count)] caused by hypoxia stress, and reduced reactive oxygen species (ROS) content and oxidative damage to the gills. In addition, thiamine alleviated endoplasmic reticulum stress in the gills, which may be related to its inhibition of RNA-dependent protein kinase-like ER kinase (PERK)/eukaryotic translation initiation factor-2α (eIF2α)/activating transcription factor4 (ATF4), inositol-requiring enzyme 1 (IRE1)/X-Box binding protein 1 (XBP1) and activating transcription factor 6 (ATF6) pathways. Furthermore, thiamine maintaining mitochondrial dynamics balance was probably related to promoting mitochondrial fusion and inhibiting mitochondrial fission, and inhibiting mitophagy may involve PTEN induced putative kinase 1 (PINK1)/Parkin-dependent pathway and hypoxia-inducible factor (HIF)-Bcl-2 adenovirus E1B 19 kDa interacting protein 3 (BNIP3) pathway. In summary, thiamine alleviated hypoxia stress in fish gills, which may be related to reducing endoplasmic reticulum stress, regulating mitochondrial dynamics balance and reducing mitophagy. The thiamine requirement for optimum growth [percent weight gain (PWG)] of adult grass carp was estimated to be 0.81 mg/kg diet. Based on the index of anti-hypoxia stress (ROS content in gill), the thiamine requirement for adult grass carp was estimated to be 1.32 mg/kg diet.
Collapse
Affiliation(s)
- Ke-Jing Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Lu Zhang
- Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture, Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, Sichuan 610041, China
| | - Hai-Feng Mi
- Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture, Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, Sichuan 610041, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
3
|
Zhou D, Wang C, Zheng J, Zhao J, Wei S, Xiong Y, Limbu SM, Kong Y, Cao F, Ding Z. Dietary thiamine modulates carbohydrate metabolism, antioxidant status, and alleviates hypoxia stress in oriental river prawn Macrobrachium nipponense (de Haan). FISH & SHELLFISH IMMUNOLOGY 2022; 131:42-53. [PMID: 36191902 DOI: 10.1016/j.fsi.2022.09.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Hypoxia is one of the challenges in prawns aquaculture. However, the role of thiamine, which is a coenzyme in carbohydrate metabolism with antioxidant properties, in reducing hypoxia in prawns aquaculture is currently unknown. We investigated the effects of thiamine on antioxidant status, carbohydrate metabolism and acute hypoxia in oriental river prawn, Macrobrachium nipponense. One thousand eight hundred prawns (0.123 ± 0.003 g) were fed five diets (60 prawns each tank, six replicates per diet) supplemented with graded thiamine levels (5.69, 70.70, 133.67, 268.33 and 532.00 mg/kg dry mater) for eight weeks and then exposed to hypoxia stress for 12 h followed by reoxyegnation for 12 h. The results showed that, under normoxia, prawns fed the 133.67 or 268.33 mg/kg thiamine diet had significantly lower glucose 6-phosphatedehydrogenase, succinate dehydrogenase and phosphoenolpyruvate carboxykinase activities than those fed the other diets. Moreover, total antioxidant capacity (T-AOC) increased significantly when prawns were fed the 133.67 mg/kg thiamine diet. Superoxide dismutase (SOD) activity and malonaldehyde (MDA) content also increased significantly when prawns were fed the 268.33 or 532.00 mg/kg thiamine diet under hypoxia. And the significantly increased SOD activity and MDA level also observed in prawns fed 532.00 mg/kg thiamine under reoxygenation. Under normoxia, prawns fed the 70.70 or 133.67 mg/kg thiamine diet decreased the mRNA expressions of AMP-activated protein kinase-alpha (AMPK-α), pyruvate dehydrogenase-E1-α subunit (PDH-E1-α) and hypoxia-inducible factor-1s (HIF-1α, HIF-1β), but increased the mRNA expressions of phosphofructokinase (PFK) significantly. After 12 h of hypoxia, the energy metabolism related genes (AMPK-β, AMPK-γ, PFK, PDH-E1-α), hypoxia-inducible factor related genes (HIF-1α, HIF-1β) and thiamine transporter gene (SLC19A2) were up-regulated significantly in prawns fed the 133.67 or 268.33 mg/kg thiamine diets. After 12 h of reoxygenation, prawns fed the 133.67 or 268.33 mg/kg diet significantly decreased the SOD activity, MDA level and SLC19A2 mRNA expression compared with other diets. The optimum thiamine was 161.20 mg/kg for minimum MDA content and 143.17 mg/kg for maximum T-AOC activity based on cubic regression analysis. In summary, supplementing 143.17 to 161.20 mg/kg thiamine in the diets for M. nipponense improves the antioxidant capacity under normoxia and reduces the oxidative damage under hypoxia stress.
Collapse
Affiliation(s)
- Dongsheng Zhou
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Chengli Wang
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu, China
| | - Jinxian Zheng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Jianhua Zhao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Shanshan Wei
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Yunfeng Xiong
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P.O. Box 35091, Dar es Salaam, Tanzania
| | - Youqin Kong
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Fang Cao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Zhili Ding
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
4
|
Zhang W, Tan B, Deng J, Haitao Z. Multiomics analysis of soybean meal induced marine fish enteritis in juvenile pearl gentian grouper, Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂. Sci Rep 2021; 11:23319. [PMID: 34857775 PMCID: PMC8640039 DOI: 10.1038/s41598-021-02278-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
As an important protein source, soybean products can cause intestinal inflammation and injury in many animals including human beings, particularly infants and juvenile individuals. Research in this field has been performed for terrestrial animals and fish, but still lacks integrity and systematicness. In this study, the main biological processes in the intestinal tract of marine fish juvenile pearl gentian grouper in the state of soybean meal-induced enteritis (SBMIE) were analyzed. A total of 720 groupers with an approximate initial weight of 12.5 g were randomly divided into three groups: the fish meal (FM) control group, the 20% SBM group (SBM20), and the SBM40 group (n = 4). Three iso-nitrogenous and iso-lipidic diets were prepared and fed to fish for 10 weeks. Each barrel contained a water volume of about 1 m3 in and was exposed to natural light and temperature. Results indicated that the growth and physiology of groupers fed with SBM were significantly negatively affected, with the gene expressions of intestinal structural protein abnormal. 16SrDNA high-throughput sequencing showed that the intestinal microflora played an important role in the pathogenesis of pearl gentian grouper SBMIE, which may activate a variety of pathogen pattern recognition receptors, such as toll-like receptors (TLRs), RIG-I-like receptors, and nod-like receptors. Transcriptome analysis revealed that changes of the SBMIE signaling pathway in pearl gentian groupers were conservative to some extent than that of terrestrial animals and freshwater fish. Moreover, the TLRs-nuclear factor kappa-B signaling pathway becomes activated, which played an important role in SBMIE. Meanwhile, the signal pathways related to nutrient absorption and metabolism were generally inhibited. Metabolomics analysis showed that isoflavones and saponins accounted for a large proportion in the potential biomarkers of pearl gentian grouper SBMIE, and most of the biomarkers had significantly positive or negative correlations with each other; 56 metabolites were exchanged between intestinal tissues and contents, which may play an important role in the development of enteritis, including unsaturated fatty acids, organic acids, amino acids, vitamins, small peptides, and nucleotides, etc. These results provide a basic theoretical reference for solving the intestinal issues of fish SBMIE and research of inflammatory bowel disease in mammals.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524025, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, People's Republic of China.
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524025, Guangdong, People's Republic of China.
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China.
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China.
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524025, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Zhang Haitao
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China
| |
Collapse
|
5
|
Dietary Administration of Novel Multistrain Probiotics from Healthy Grouper Intestines Promotes the Intestinal Immune Response against NNV Infection. Life (Basel) 2021; 11:life11101053. [PMID: 34685424 PMCID: PMC8539657 DOI: 10.3390/life11101053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Epinephelus lanceolatus (giant grouper) is a high-value cultured species in the Asia-Pacific region. However, nervous necrosis virus (NNV) is an infectious viral disease that affects over 120 species of marine cultured species and causes high mortality, ranging from 90-100% in the grouper industry. Probiotics isolated from the intestines of healthy individuals have provided insight into novel approaches involved in the defense against viral pathogens. In this study, we isolated three strains of bacteria as candidate probiotics from healthy grouper intestines and a 28-day feeding trial was performed. At day 21, the nervous necrosis virus (NNV) challenge test was conducted for 7 days to evaluate the antiviral effect of candidate probiotics. The results showed that candidate probiotics could improve growth conditions, such as weight gain (WG) and specific growth rate (SGR), and increase the utilization of feed. Furthermore, the candidate probiotic mixture had the ability to protect against NNV, which could decrease the mortality rate by 100% in giant grouper after NNV challenge. Subsequently, we analyzed the mechanism of the candidate probiotic mixture's defense against NNV. A volcano plot revealed 203 (control vs. NNV), 126 (NNV vs. probiotics - NNV), and 5 (control vs. probiotics - NNV) differentially expressed transcripts in intestinal tissue. Moreover, principal components analysis (PCA) and cluster analysis heatmap showed large differences among the three groups. Functional pathway analysis showed that the candidate probiotic mixture could induce the innate and adaptive immunity of the host to defend against virus pathogens. Therefore, we hope that potential candidate probiotics could be successfully applied to the industry to achieve sustainable aquaculture.
Collapse
|
6
|
Zhang W, Tan B, Deng J, Dong X, Yang Q, Chi S, Liu H, Zhang S, Xie S, Zhang H. Mechanisms by Which Fermented Soybean Meal and Soybean Meal Induced Enteritis in Marine Fish Juvenile Pearl Gentian Grouper. Front Physiol 2021; 12:646853. [PMID: 33967821 PMCID: PMC8100241 DOI: 10.3389/fphys.2021.646853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 01/02/2023] Open
Abstract
Soy meals can cause intestinal inflammation and even injury in animals, especially infants and juvenile individuals. This study investigated the effects of fermented soybean meal (FSBM) on the growth and intestinal homeostasis of juvenile pearl gentian grouper and examined the mechanisms by which FSBM and soybean meal (SBM) induced enteritis in fish, using "3+2" full-length transcriptome sequencing. We randomly assigned 720 female juvenile groupers into three treatment groups: FM control group, 20% FSBM group (FSBM20), and FSBM40 group (n = 4). Three iso-nitrogenous (50% protein) and iso-lipidic (10% lipid) diets were prepared and fed to fish for 10 weeks. The water volume in each barrel was about 1 m3, using natural light and temperature. Results showed that dietary FSBM, at experimental level, significantly affected fish growth and intestinal structure negatively and significantly increased enteritis indices. The degree of intestinal injury and inflammation was determined by the enzyme activities of trypsin and lysozyme, and the contents of IgM, C3, C4, and malondialdehyde, and the expressions of pro-inflammatory genes (IL1β, IL8, IL17, and TNFα) and anti-inflammatory genes (IL4, IL10, and TGFβ1). Full-length transcriptome analysis identified 2,305 and 3,462 differentially expressed genes (DEGs) in SBM40 and FSBM40 groups, respectively. However, only 18.98% (920/5,445) of DEGs had similar expression patterns, indicating that high levels of SBM40 and FSBM40 have different metabolic strategies. KEGG enrichment analysis indicated that among the significant pathways, ~45% were related to immune diseases/systems, infectious diseases, and signal transduction in both SBM and FSBM groups. Based on PacBio SMRT sequencing, nine toll-like receptor (TLR) members, including TLR1, TLR2, TLR3, TLR5, TLR8, TLR9, TLR13, TLR21, and TLR22, were detected in intestinal tissues of pearl gentian grouper. TLR-MyD88-NF-κB signaling pathway played an important role in the development of FSBM- and SBM-induced enteritis in pearl gentian grouper; however, TLR receptors used in SBM and FSBM groups were different. TLR1, TLR8, TLR13, and TLR22 were the main receptors used in FSBM group, while TLR5, TLR8, TLR9, TLR21, and TLR22 were the main receptors used in SBM group. Present study provides valuable theoretical references for further research on soy protein-induced enteritis in fish.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| |
Collapse
|
7
|
Wu P, Chen L, Cheng J, Pan Y, Guo X, Chu W, Zhang J, Liu X. MiRNAs-Modulation of Nrf2 Signaling Networks in Regulation Oxidative Stress of Chinese Perch Skeletal Muscle After Fasting Treatment. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:620-630. [PMID: 32839828 DOI: 10.1007/s10126-020-09982-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Nrf2 is an important transcription factor involved in the antioxidant response and is widely expressed in animal tissues. The function of Nrf2 is regulated by its negative regulator Keap1 by inducing its cytoplasmic degradation. Recent studies have suggested that Nrf2 is also regulated post-transcriptionally via miRNAs. However, to date, how miRNAs regulate Nrf2 in fish skeletal muscles is unknown. In this study, the full-length cDNAs with 2398 bp of the Nrf2 was firstly cloned by SMART RACE amplification tools from Chinese perch. The Nrf2 gene structure and its 3'-UTR region for possible miRNA binding sites, as well as its spatial expression profile were assayed. Then, we employed TargetScan Fish tool MiRNAnome to predict putative sites for five miRNAs including miR-181a-5p, MiR-194a, MiR-216a, miR-459-5p, and miR-724. Using qRT-PCR assay, we found that Nrf2 mRNA levels have negative correlation with all five miRNAs expression in muscle of nutritionally deprived fish, and that ectopic expression of miR-181a-5p alone reduces Nrf2 mRNA levels. Luciferase reporter assay in a heterologous cell system revealed that each of the five miRNAs reduced Nrf2 expression, suggesting a direct regulatory mechanism. Moreover, the miR-181a-5p suppression using specific antagomir led to a significant increase in Nrf2 expression in vivo. At the same time, the expression levels of the antioxidant enzymes CAT, ZnSOD, GPx, GSTA, and GSTA genes increased significantly after injecting miR-181a-5p antagomir. Taken together, these findings provide evidence that miRNAs are involved in the Nrf2 signaling networks in regulation of oxidative stress in fish, at least in Chinese perch muscle.
Collapse
Affiliation(s)
- Ping Wu
- State Key laboratory of Chemo/Biosening and Chemomertrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Lin Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Jia Cheng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Yaxiong Pan
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Xinhong Guo
- State Key laboratory of Chemo/Biosening and Chemomertrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China
| | - Wuying Chu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Jianshe Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China.
| | - Xuanming Liu
- State Key laboratory of Chemo/Biosening and Chemomertrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
8
|
He P, Jiang WD, Liu XA, Feng L, Wu P, Liu Y, Jiang J, Tan BP, Yang QH, Kuang SY, Tang L, Zhou XQ. Dietary biotin deficiency decreased growth performance and impaired the immune function of the head kidney, spleen and skin in on-growing grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 97:216-234. [PMID: 31857225 DOI: 10.1016/j.fsi.2019.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the effects of dietary biotin deficiency on the growth performance and immune function of the head kidney, spleen and skin in on-growing grass carp (Ctenopharyngodon idella). A total of 540 on-growing grass carp (117.11 ± 0.48 g) were fed six diets containing increasing levels of biotin (0.012, 0.110, 0.214, 0.311, 0.427 and 0.518 mg/kg diet) for 70 days. Subsequently, a challenge experiment was performed by infecting them with Aeromonas hydrophila for six days. Our results showed that compared with the appropriate biotin level, (1) biotin deficiency (0.012 mg/kg diet) reduced the activities of lysozyme (LZ) and acid phosphatase (ACP), decreased the contents of complement 3 (C3), C4 and immunoglobulin M (IgM), as well as reduced the mRNA levels of antimicrobial peptides in the head kidney, spleen and skin of on-growing grass carp; (2) biotin deficiency reduced the mRNA levels of anti-microbial substances: liver-expressed antimicrobial peptide (LEAP) -2A, LEAP-2B, hepcidin, β-defensin-1 and mucin 2 in the head kidney, spleen and skin of on-growing grass carp; (3) biotin deficiency increased the mRNA levels of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, IL-8, IL-12p40, IL-15, IL-17D, tumour necrosis factor α (TNF-α) and interferon γ2 (IFN-γ2) partially in association with nuclear factor-kappa B (NF-κB) signalling and reduced anti-inflammatory IL-4/13A, IL-10, IL-11 and transforming growth factor β1 (TGF-β1) mRNA levels partially in association with target of rapamycin (TOR) signalling in the head kidney, spleen and skin of on-growing grass carp. Interestingly, biotin deficiency had no effect on the expression of IL-12p35, IL-4/13B, TGF-β2, 4E-BP1 (skin only) or IKKα in the head kidney, spleen and skin of on-growing grass carp. In conclusion, the results indicated that biotin deficiency impaired the immune function of the head kidney, spleen and skin in fish. Finally, based on the percent weight gain (PWG), the ability to prevent skin haemorrhages and lesions, the LZ activity in the head kidney and the C4 content in the spleen, the optimal dietary biotin levels for on-growing grass carp (117-534 g) were estimated as 0.210, 0.230, 0.245 and 0.238 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Peng He
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Xiang-An Liu
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Bei-Ping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qi-Hui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
9
|
The effect of dietary supplementation with Clostridium butyricum on the growth performance, immunity, intestinal microbiota and disease resistance of tilapia (Oreochromis niloticus). PLoS One 2019; 14:e0223428. [PMID: 31815958 PMCID: PMC6901227 DOI: 10.1371/journal.pone.0223428] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
This study was conducted to assess the effects of dietary Clostridium butyricum on the growth, immunity, intestinal microbiota and disease resistance of tilapia (Oreochromis niloticus). Three hundreds of tilapia (56.21 ± 0.81 g) were divided into 5 groups and fed a diet supplemented with C. butyricum at 0, 1 x 104, 1 x 105, 1 x 106 or 1 x 107 CFU g-1 diet (denoted as CG, CB1, CB2, CB3 and CB4, respectively) for 56 days. Then 45 fish from each group were intraperitoneally injected with Streptococcus agalactiae, and the mortality was recorded for 14 days. The results showed that dietary C. butyricum significantly improved the specific growth rate (SGR) and feed intake in the CB2 group and decreased the cumulative mortality post-challenge with S. agalactiae in the CB2, CB3 and CB4 groups. The serum total antioxidant capacity and intestinal interleukin receptor-associated kinase-4 gene expression were significantly increased, and serum malondialdehyde content and diamine oxidase activity were significantly decreased in the CB1, CB2, CB3 and CB4 groups. Serum complement 3 and complement 4 concentrations and intestinal gene expression of tumour necrosis factor α, interleukin 8, and myeloid differentiation factor 88 were significantly higher in the CB2, CB3 and CB4 groups. Intestinal toll-like receptor 2 gene expression was significantly upregulated in the CB3 and CB4 groups. Dietary C. butyricum increased the diversity of the intestinal microbiota and the relative abundance of beneficial bacteria (such as Bacillus), and decreased the relative abundance of opportunistic pathogenic bacteria (such as Aeromonas) in the CB2 group. These results revealed that dietary C. butyricum at a suitable dose enhanced growth performance, elevated humoral and intestinal immunity, regulated the intestinal microbial components, and improved disease resistance in tilapia. The optimal dose was 1 x 105 CFU g-1 diet.
Collapse
|
10
|
You C, Chen B, Wang M, Wang S, Zhang M, Sun Z, Juventus AJ, Ma H, Li Y. Effects of dietary lipid sources on the intestinal microbiome and health of golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2019; 89:187-197. [PMID: 30936050 DOI: 10.1016/j.fsi.2019.03.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Replacement of fish oil (FO) with vegetable oils (VO) in diets is economically desirable for the sustainable development of the aquaculture industry. However, inflammation provoked by FO replacement limited its widely application in fish industry. In order to understand the mechanism of VO-induced inflammation, this study investigated the impact of different dietary vegetable oils on the intestinal health and microbiome in carnivorous marine fish golden pompano (Trachinotus ovatus). Three diets supplemented with fish oil (FO, rich in long-chain polyunsaturated fatty acids), soybean oil (SO, rich in 18:2n-6) and linseed oil (LO, rich in 18:3n-3), respectively, were fed on juvenile golden pompano for 8 weeks, and the intestinal histology, digestive enzymes activities, immunity and antioxidant indices as well as intestinal microbiome were determined. The results showed that dietary SO significantly impaired intestinal health, and decreased the number and height of intestinal folds, and muscle thickness, as well as the zonula occludens-1 (zo-1) mRNA expression in intestine. Moreover, the two dietary VO significantly decreased the amylase and lipase activities in intestine, and reduced the trypsin activity in the dietary SO group. Furthermore, the two VO diets increased intestinal acid phosphatase (ACP) activity, while intestinal lysozyme (LZM) activity and serum diamine oxidase (DAO) activity in the SO group were also significantly increased (P < 0.05). Analysis of the intestinal microbiota showed that the two VO diets significantly increased the abundance of intestinal potentially pathogenic bacteria (Mycoplasma and Vibrio) and decreased proportions of intestinal probiotics (Bacillus and Lactococcus), especially in the dietary SO group. These results indicate that complete replacement of FO with VO in diets would induce intestinal inflammation and impair intestinal function, which might be due to changes in intestinal microbiota profiles, and that dietary SO would have a more negative effect compared to dietary LO on intestinal health in T. ovatus.
Collapse
Affiliation(s)
- Cuihong You
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| | - Baojia Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Meng Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Zhijie Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Aweya Jude Juventus
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yuanyou Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
11
|
Jiang WD, Zhou XQ, Zhang L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Shi HQ, Feng L. Vitamin A deficiency impairs intestinal physical barrier function of fish. FISH & SHELLFISH IMMUNOLOGY 2019; 87:546-558. [PMID: 30716522 DOI: 10.1016/j.fsi.2019.01.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
The present study was the first to investigate the effects of dietary vitamin A (VA) on the intestinal physical barrier function associated with oxidation, antioxidant system, apoptosis and cell-cellular tight junction (TJ) in the proximal (PI), mid (MI) and distal (DI) intestines of young grass carp (Ctenopharyngodon idella). Fish were fed graded levels of dietary VA for 10 weeks, and then a challenge test using an injection of Aeromonas hydrophila was conducted for 14 days. Results indicated that dietary VA deficiency caused oxidative damage to fish intestine partly by the reduced non-enzymatic antioxidant components glutathione (GSH) and VA contents as well as reduced antioxidant enzyme activities [not including manganese superoxide dismutase (MnSOD)]. Further results observed that the decreased antioxidant enzyme activities by VA deficiency were partly related to the down-regulation of their corresponding mRNA levels which were regulated by the down-regulation of NF-E2-related factor 2 (Nrf2) mRNA levels and up-regulation of kelch-like-ECH-associated protein (Keap1a) (rather than Keap1b) mRNA levels in three intestinal segments of fish. Meanwhile, VA deficiency up-regulated the mRNA levels of the apoptosis signalling [caspase-3, caspase-8, caspase-9 (rather than caspase-7)] associated with the inhibition of the target of rapamycin (TOR) signalling pathway in three intestinal segments of fish. Additionally, VA deficiency decreased the mRNA levels of TJ complexes [claudin-b, claudin-c, claudin-3, claudin-12, claudin-15a, occludin and zonula occludens-1 (ZO-1) in the PI, MI and DI, as well as claudin-7 and claudin-11a in the MI and DI] linked to the up-regulation of myosin light chain kinase (MLCK) signalling. These results suggested that VA deficiency impaired structural integrity in three intestinal segments of fish. Meanwhile, excessive VA also showed similar negative effects on these indexes. Taken together, the current study firstly demonstrated that VA deficiency impaired physical barrier functions associated with impaired antioxidant capacity, aggravated cell apoptosis and disrupted TJ complexes in the PI, MI and DI, but different segments performed different actions in fish. Based on protecting fish against protein oxidation, the optimal VA levels for grass carp were estimated to be 2622 IU/kg diet.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - He-Qun Shi
- Guangzhou Cohoo Bio-tech Research & Development Centre, Guangzhou, 510663, Guangdong, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
12
|
Kong L, Cheng SY, Xiang XJ, Liu WS, Yu DH, Yang YO, Zhou J, Huang F, Dong GF. Dietary conjugated linoleic acid modulates morphology, selective immune parameters, and gene expressions in the intestine of grass carp. FISH & SHELLFISH IMMUNOLOGY 2019; 86:536-548. [PMID: 30508674 DOI: 10.1016/j.fsi.2018.11.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Conjugated linoleic acid (CLA) has been shown to exhibit anti-inflammatory properties in the intestine in mammals. However, the effect of CLA on intestinal immune response in fish is still unknown. Therefore, a 65-day growth trial was conducted to investigate the effects of dietary conjugated linoleic acid (CLA) on morphology, selective immune parameters, and gene expressions in the intestine of grass carp. Seven isonitrogenous and isolipidic diets were formulated as follows: 0 (control), 0.5 (CLA0.5), 1 (CLA1), 1.5 (CLA1.5), 2 (CLA2), 2.5 (CLA2.5), and 3 (CLA3) g CLA per 100g of feed. RESULTS: showed that dietary supplementation of 1.5-3% CLA significantly (P < 0.05) increased the fold and enterocyte heights in the PI and MI of grass carp. Complement 3 (C3) and immunoglobulin M (IgM) contents in three intestinal segments were significantly (P < 0.05) higher in fish fed with CLA1.5 to CLA2.5 diets compared to fish fed the control diet. CLA1.5 to CLA2.5 diets significantly (P < 0.05) increased the mRNA expression levels of anti-inflammatory cytokines (IL-10 and TGFβ1) and significantly (P < 0.05) reduced the mRNA expression levels of pro-inflammatory cytokines (IL-1β, IL-8, and TNF-α) in the PI, MI, and DI. This improved expression of anti-inflammatory cytokines and the inhibited expression of pro-inflammatory cytokines in the intestine of grass carp, might be mediated via TLR4/NF-κB-signaling pathway. Our results suggested that CLA1.5 to CLA2 diets improved intestinal morphology, increased the expression of anti-inflammatory cytokines, and inhibited the expression of pro-inflammatory cytokines in the intestine of grass carp. In conclusion, dietary supplementation of 1.5%-2% CLA show the anti-inflammatory therapeutic potential in the intestine of grass carp. The anti-inflammatory therapeutic potential of CLA might be mediated via TLR4/NF-κB-signaling pathway.
Collapse
Affiliation(s)
- Long Kong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Shi-Yan Cheng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Xiao-Jun Xiang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Wen-Shu Liu
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, Jiangxi, 330200, China
| | - Deng-Hang Yu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Yan-Ou Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230000, China
| | - Jiancheng Zhou
- Wuhan DBN Aquaculture Technology Co. LTD, Wuhan, Hubei, 430090, China
| | - Feng Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Gui-Fang Dong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China.
| |
Collapse
|
13
|
Ren G, Xu L, Lu T, Zhang Y, Wang Y, Yin J. Protective effects of lentinan on lipopolysaccharide induced inflammatory response in intestine of juvenile taimen (Hucho taimen, Pallas). Int J Biol Macromol 2018; 121:317-325. [PMID: 30248420 DOI: 10.1016/j.ijbiomac.2018.09.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Antioxidant effects of lentinan on LPS induced inflammatory response in intestine of juvenile taimen were evaluated, and its prebiotic-like efficacy on intestinal microbiota was also investigated. The results showed that LPS decreased the activities of antioxidant enzymes and increased the expression levels of inflammatory cytokines in intestine of juvenile taimen. Dietary lentinan significantly enhanced intestinal antioxidant ability by increasing the activities of SOD, GSH-Px and CAT, and inhibiting the lipid peroxidation in juvenile taimen. Appropriate lentinan prevented the increases in the expression levels of TGF-β, TNF-α, IL1β, IL6 and IL8 and ensured the relatively high expression levels of claudin d, SOD, CAT and IκBα after LPS challenge. Furthermore, dietary lentinan effectively modified intestinal microbiota, represented by increasing the relative abundance of beneficial bacteria such as Lactobacillaceae, Lachnospiraceae and Ruminococcaceae, and decreasing those of detrimental bacteria such as Enterobacteriaceae, Fusobacteriaceae and Flavobacteriaceae. Taken together, dietary lentinan availably decreased LPS induced inflammatory response, indicating that lentinan has the potential anti-inflammatory effects for preventing inflammation diseases in cold-water fish.
Collapse
Affiliation(s)
- Guangming Ren
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Liming Xu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Tongyan Lu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Yongquan Zhang
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Yuanyuan Wang
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Jiasheng Yin
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
14
|
Wu P, Zheng X, Zhou XQ, Jiang WD, Liu Y, Jiang J, Kuang SY, Tang L, Zhang YA, Feng L. Deficiency of dietary pyridoxine disturbed the intestinal physical barrier function of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 74:459-473. [PMID: 29339045 DOI: 10.1016/j.fsi.2018.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The aim of this study was to assess the effects of dietary pyridoxine (PN) deficiency on intestinal antioxidant capacity, cell apoptosis and intercellular tight junction in young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (231.85 ± 0.63 g) were fed six diets containing graded levels of PN (0.12-7.48 mg/kg diet) for 10 weeks. At the end of the feeding trial, the fish were challenged with Aeromonas hydrophila for 2 weeks. The results showed that compared with the optimal PN level, PN deficiency (1) increased the contents of reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC), decreased the activities and mRNA levels of antioxidant enzymes such as copper, zinc superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) (P < .05); (2) up-regulated the mRNA levels of cysteinyl aspartic acid-protease-3 (caspase-3), caspase-7, caspase-8, caspase-9, Bcl-2 associated X protein (Bax), apoptotic protease activating factor-1 (Apaf-1) and Fas ligand (FasL), and down-regulated the mRNA levels of inhibitor of apoptosis proteins (IAP), B-cell lymphoma protein-2 (Bcl-2) and myeloid cell leukaemia-1 (Mcl-1) (P < .05); (3) down-regulated the mRNA levels of ZO-1, occludin [only in middle intestine (MI)], claudin-b, claudin-c, claudin-f, claudin-3c, claudin-7a, claudin-7b and claudin-11, and up-regulated the mRNA levels of claudin-12 and claudin-15a (P < .05), which might be partly linked to Kelch-like-ECH-associated protein 1a (Keap1a)/NF-E2-related factor 2 (Nrf2), p38 mitogen-activated protein kinase (p38MAPK) and myosin light chain kinase (MLCK) signalling in the intestines of fish. However, the activities and mRNA levels of MnSOD, the mRNA levels of Keap1b, c-Jun N-terminal protein kinase (JNK) and claudin-15b in three intestinal segments, and the mRNA levels of occludin in the proximal intestine (PI) and distal intestine (DI) were not affected by graded levels of PN. These data indicate that PN deficiency could disturb the intestinal physical barrier function of fish. Additionally, based on the quadratic regression analysis for MDA content and GST activity, the dietary PN requirements for young grass carp were estimated as 4.85 and 5.02 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xin Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
15
|
Tan X, Sun Z, Zhou C, Huang Z, Tan L, Xun P, Huang Q, Lin H, Ye C, Wang A. Effects of dietary dandelion extract on intestinal morphology, antioxidant status, immune function and physical barrier function of juvenile golden pompano Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2018; 73:197-206. [PMID: 29258755 DOI: 10.1016/j.fsi.2017.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/25/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Intestinal morphology, antioxidant status, immune function and tight junction proteins mRNA expression were examined in golden pompano (Trachinotus ovatus) that fed respectively six diets containing dandelion extracts (DE) at 0, 0.5, 1, 2, 4 and 10 g kg-1 after 8 weeks feeding. The study indicated that dietary DE significantly improved intestinal antioxidant abilities by increasing SOD, CAT, T-AOC activities and up-regulating intestinal cat, gpx mRNA levels, but by decreasing MDA content and down-regulating intestinal keap1 mRNA levels in golden pompano. Meanwhile, dietary DE improved intestinal morphology, suggesting that enhances intestinal digestion and absorption, by increasing muscle thickness, villus length, villus width and villus number in the foregut and hindgut; as well as villus number, villus width and muscle thickness in the midgut (P < .05). Dietary DE enhanced intestinal barrier function by increasing intestinal zo-1 and occludin mRNA levels, but by decreasing the mRNA levels of claudin-12 and claudin-15. Furthermore, dietary DE improved intestinal immunity via increasing goblet cells numbers and regulating expression of immune-related genes. In conclusion, dietary DE supplementation promoted intestine health by improving intestine morphology, immunity, antioxidant abilities and intestinal barrier in golden pompano.
Collapse
Affiliation(s)
- Xiaohong Tan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Zhenzhu Sun
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Chuanpeng Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Zhong Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518116, PR China
| | - Lianjie Tan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Pengwei Xun
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Qianqian Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518116, PR China.
| | - Chaoxia Ye
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Anli Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
16
|
Sun Z, Tan X, Ye H, Zou C, Ye C, Wang A. Effects of dietary Panax notoginseng extract on growth performance, fish composition, immune responses, intestinal histology and immune related genes expression of hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) fed high lipid diets. FISH & SHELLFISH IMMUNOLOGY 2018; 73:234-244. [PMID: 29127028 DOI: 10.1016/j.fsi.2017.11.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 05/12/2023]
Abstract
Growth, plasma biochemical parameters, fish composition, immune parameters, intestinal histology, and expressions of immune-related genes were examined in hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) that fed respectively six diets containing Panax notoginseng extract (PNE) at 0, 0.5, 1, 2, 4, and 10 g kg-1 after 8 weeks. Results indicated that dietary PNE significantly improved growth, feed efficiency ratio, protein efficiency ratio, and protein deposit rate, and significantly increased crude protein and crude lipid levels of whole body and crude protein level of muscle. Dietary PNE significantly increased plasma total protein, alkaline phosphatase, immunoglobulin, complement 3 and complement 4 contents, but significantly decreased cholesterol, triglyceride, glucose, and low density lipoprotein cholesterol contents. Furthermore, dietary PNE increased villus length and muscle thickness in foregut, midgut, and hindgut, activities of hepatic superoxide dismutase and total antioxidant capacity, and increased the expression levels of immune related genes (IL-10, TGF-β1, TOR, MHC2 and TLR3) in the head kidney and the expression levels of antioxidant genes (CAT and GR) in fish that fed PNE at 0.5-4 g kg-1. In conclusion, grouper fed high lipid diets supplemented with PNE at 0.5-10 g kg-1 improved growth, feed utilization, blood immune parameters, hepatic antioxidant status, intestine morphology and expression levels of immune related genes in the head kidney.
Collapse
Affiliation(s)
- Zhenzhu Sun
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Xiaohong Tan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Huaqun Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Cuiyun Zou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Chaoxia Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Anli Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
17
|
Tan X, Sun Z, Liu Q, Ye H, Zou C, Ye C, Wang A, Lin H. Effects of dietary ginkgo biloba leaf extract on growth performance, plasma biochemical parameters, fish composition, immune responses, liver histology, and immune and apoptosis-related genes expression of hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) fed high lipid diets. FISH & SHELLFISH IMMUNOLOGY 2018; 72:399-409. [PMID: 29032040 DOI: 10.1016/j.fsi.2017.10.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
For thousands of years, leaves from the Ginkgo biloba tree have been a common treatment in Chinese medicine. The present study was conducted to investigate the effects of dietary ginkgo biloba leaf extract (GBE) supplementation on growth performance, plasma biochemical parameters, fish composition, immune responses, liver histology, and immune and apoptosis-related genes expression of hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) fed high lipid diets. A basal diet supplemented with GBE at 0, 0.50, 1.00, 2.00, 4.00 and 10.00 g kg-1 was fed to hybrid grouper for 8 weeks. The study indicated that dietary GBE did not improve growth performance and feed utilization but it reduced intraperitoneal fat rate. There were no significant differences in condition factor, viscerosomatic index, hepatosomatic index, spleen index, relative gut length, food intake, protein deposit rate and survival among all groups (P > 0.05). Dietary supplementation with 0.50-4.00 g GBE kg-1 diets effectively increased plasma HDL content and decreased plasma GLU, LDL and TG content in fish. Furthermore, dietary GBE had a significant effect on moisture, crude protein and lipid in the liver, and protein in the whole body of fish (P < 0.05). Dietary supplementation with 0.50-1.00 g GBE kg-1 diets effectively decreased occurrence rates of the hepatocyte swelling, hepatocyte vacuolization, and nuclei shifting to the cellular periphery cytoplasmic vacuolization, meanwhile hepatic antioxidant enzymes (SOD, CAT and T-AOC) activities significantly increased whereas MDA content significantly decreased in fish fed diets supplemented with GBE (P < 0.05). Moreover, dietary GBE up-regulated the expression of antioxidant genes (CAT, GPx and GR), immune-related genes (MHC2 and TLR3) and anti-inflammatory cytokines (IL-10 and TGF-β1), while dietary supplementation with 0.50-4.00 g GBE kg-1 diets down-regulated apoptosis-related genes (p53, caspase-9, caspase-8 and caspase-3) expression in the head kidney of hybrid grouper. These results indicated that hybrid grouper fed diets supplemented with GBE did not improve growth performance and feed utilization but it had hypolipidemic effects, improved hepatic antioxidant status, maintained normal liver histology and preserved liver function, increased immune-related genes expression and decreased apoptosis-related genes expression in the head kidney of hybrid grouper.
Collapse
Affiliation(s)
- Xiaohong Tan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Zhenzhu Sun
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Qingying Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Huaqun Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Cuiyun Zou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Chaoxia Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Anli Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518116, PR China.
| |
Collapse
|
18
|
Ahmadi H. A mathematical function for the description of nutrient-response curve. PLoS One 2017; 12:e0187292. [PMID: 29161271 PMCID: PMC5697816 DOI: 10.1371/journal.pone.0187292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 10/17/2017] [Indexed: 11/19/2022] Open
Abstract
Several mathematical equations have been proposed to modeling nutrient-response curve for animal and human justified on the goodness of fit and/or on the biological mechanism. In this paper, a functional form of a generalized quantitative model based on Rayleigh distribution principle for description of nutrient-response phenomena is derived. The three parameters governing the curve a) has biological interpretation, b) may be used to calculate reliable estimates of nutrient response relationships, and c) provide the basis for deriving relationships between nutrient and physiological responses. The new function was successfully applied to fit the nutritional data obtained from 6 experiments including a wide range of nutrients and responses. An evaluation and comparison were also done based simulated data sets to check the suitability of new model and four-parameter logistic model for describing nutrient responses. This study indicates the usefulness and wide applicability of the new introduced, simple and flexible model when applied as a quantitative approach to characterizing nutrient-response curve. This new mathematical way to describe nutritional-response data, with some useful biological interpretations, has potential to be used as an alternative approach in modeling nutritional responses curve to estimate nutrient efficiency and requirements.
Collapse
Affiliation(s)
- Hamed Ahmadi
- Bioscience and Agriculture Modeling Research Unit, Department of Poultry Science, Tarbiat Modares University, Tehran, Iran
- * E-mail:
| |
Collapse
|
19
|
Zheng X, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Dietary pyridoxine deficiency reduced growth performance and impaired intestinal immune function associated with TOR and NF-κB signalling of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 70:682-700. [PMID: 28951222 DOI: 10.1016/j.fsi.2017.09.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to evaluate the effects of dietary pyridoxine (PN) deficiency on growth performance, intestinal immune function and the potential regulation mechanisms in young grass carp (Ctenopharyngodon idella). Fish were fed six diets containing graded levels of PN (0.12-7.48 mg/kg) for 70 days. After that, a challenge test was conducted by infection of Aeromonas hydrophila for 14 days. The results showed that compared with the optimal PN level, PN deficiency: (1) reduced the production of innate immune components such as lysozyme (LZ), acid phosphatase (ACP), complements and antimicrobial peptides and adaptive immune components such as immunoglobulins in three intestinal segments of young grass carp (P < 0.05); (2) down-regulated the mRNA levels of anti-inflammatory cytokines such as transforming growth factor β (TGF-β), interleukin 4/13A (IL-4/13A) (rather than IL-4/13B), IL-10 and IL-11 partly relating to target of rapamycin (TOR) signalling [TOR/ribosomal protein S6 kinases 1 (S6K1) and eIF4E-binding proteins (4E-BP)] in three intestinal segments of young grass carp; (3) up-regulated the mRNA levels of pro-inflammatory cytokines such as tumour necrosis factor α (TNF-α) [not in the proximal intestine (PI) and distal intestine (DI)], IL-1β, IL-6, IL-8, IL-12p35, IL-12p40, IL-15 and IL-17D [(rather than interferon γ2 (IFN-γ2)] partly relating to nuclear factor kappa B (NF-κB) signalling [IκB kinase β (IKKβ) and IKKγ/inhibitor of κBα (IκBα)/NF-κB (p65 and c-Rel)] in three intestinal segments of young grass carp. These results suggest that PN deficiency could impair the intestinal immune function, and the potential regulation mechanisms were partly associated with TOR and NF-κB signalling pathways. In addition, based on percent weight gain (PWG), the ability against enteritis and LZ activity, the dietary PN requirements for young grass carp were estimated to be 4.43, 4.75 and 5.07 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Xin Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
20
|
Pan JH, Feng L, Jiang WD, Wu P, Kuang SY, Tang L, Zhang YA, Zhou XQ, Liu Y. Vitamin E deficiency depressed fish growth, disease resistance, and the immunity and structural integrity of immune organs in grass carp (Ctenopharyngodon idella): Referring to NF-κB, TOR and Nrf2 signaling. FISH & SHELLFISH IMMUNOLOGY 2017; 60:219-236. [PMID: 27888132 DOI: 10.1016/j.fsi.2016.11.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the effects of dietary vitamin E on growth, disease resistance and the immunity and structural integrity of head kidney, spleen and skin in grass carp (Ctenopharyngodon idella). The fish were fed six diets containing graded levels of vitamin E (0, 45, 90, 135, 180 and 225 mg/kg diet) for 10 weeks. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila. The results showed that compared with optimal vitamin E supplementation, vitamin E deficiency caused depressed growth, poor survival rates and increased skin lesion morbidity in grass carp. Meanwhile, vitamin E deficiency decreased lysozyme and acid phosphatase activities, complement component 3 and complement component 4 contents in the head kidney, spleen and skin of grass carp (P < 0.05). Moreover, vitamin E deficiency down-regulated antimicrobial peptides (Hepcidin, liver-expressed antimicrobial peptide-2A, -2B, β-defensin), IL-10, TGFβ1, IκBα, TOR and S6K1 mRNA levels (P < 0.05) and up-regulated IL-1β, IL-6, IL-8, IFN-γ2 and TNFα, NF-κB p65, IKKα, IKKβ and 4EBP1 (not in the head kidney) mRNA levels (P < 0.05). In addition, vitamin E deficiency caused oxidative damage, decreased superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione reductase (GR) activities, and down-regulated the mRNA levels of antioxidant enzymes and signaling molecules Nrf2 (P < 0.05). Vitamin E deficiency also induced apoptosis by up-regulating capase-2, -3, -7, and -8 mRNA levels in the head kidney, spleen and skin of grass carp. In conclusion, this study indicated that dietary vitamin E deficiency depressed fish growth, impaired the immune function and disturbed the structural integrity of the head kidney, spleen and skin in grass carp, but optimal vitamin E supplementation can reverse those negative effects in fish. The optimal vitamin E requirements for young grass carp (266.39-1026.63 g) to achieve optimal growth performance and disease resistance based on the percent weight gain (PWG) and skin lesion morbidity were estimated to be 116.2 and 130.9 mg/kg diet, respectively. Meanwhile, based on immune indicator (LA activity in the head kidney) and antioxidant indicator (protection of spleen against MDA), the optimal vitamin E requirements for young grass carp were estimated to be 123.8 and 136.4 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Jia-Hong Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
21
|
Wu P, Jiang WD, Jiang J, Zhao J, Liu Y, Zhang YA, Zhou XQ, Feng L. Dietary choline deficiency and excess induced intestinal inflammation and alteration of intestinal tight junction protein transcription potentially by modulating NF-κB, STAT and p38 MAPK signaling molecules in juvenile Jian carp. FISH & SHELLFISH IMMUNOLOGY 2016; 58:462-473. [PMID: 27693201 DOI: 10.1016/j.fsi.2016.09.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the effects of choline on intestinal mucosal immune and the possible mechanisms in fish by feeding juvenile Jian carp (Cyprinus carpio var. Jian) with graded levels of dietary choline (165-1820 mg/kg diet) for 65 days. The results firstly showed that choline deficiency induced inflammatory infiltration in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) of fish. Meanwhile, compared with the optimal choline group, choline deficiency decreased the activities of lysozyme and acid phosphatase, contents of complement 3 and IgM in the intestine, downregulated the mRNA levels of antimicrobial peptides (liver-expressed antimicrobial peptide (LEAP) 2A and defensin-3 in the PI and MI, LEAP-2B and hepcidin in the PI, MI and DI), anti-inflammatory cytokines (interleukin (IL) 10 and transforming growth factor β2 in the PI, MI and DI), and signaling molecule IκB in the PI, MI and DI; while upregulated the mRNA levels of pro-inflammatory cytokines (IL-6a and tumor necrosis factor α in the MI and DI, interferon γ2b in the PI and MI, IL-1β and IL-6b in the PI, MI and DI), and signaling molecules (Toll-like receptor 4 in the MI, myeloid differentiation primary response 88 in the PI and MI, Janus kinase 3 and tyrosine kinase 2 in the MI and DI, nuclear factor kappa B (NF-κB), signal transducers and activators of transcription (STAT) 4 and STAT5 in the PI, MI and DI) of juvenile Jian carp, further indicating that choline deficiency caused inflammation and immunity depression in the intestine of fish. But choline deficiency decreased the PI IL-6a mRNA level, and increased the DI LEAP-2A and defensin-3 mRNA levels with unknown reasons. Furthermore, dietary choline deficiency downregulated mRNA levels of tight junction (TJ) proteins (claudin 3c in the PI and MI, claudin 7, claudin 11 and occludin in the PI, MI and DI) and signaling molecule mitogen-activated protein kinases p38 in the PI, MI and DI of juvenile Jian carp, whereas upregulated the mRNA levels of claudin 3b in the MI and DI, and claudin 3c in the DI. Moreover, the excessive choline exhibited negative effects on intestinal immunity and TJ proteins that were similar to the choline deficiency. In summary, dietary choline deficiency or excess caused the depression of intestinal mucosal immune by inducing inflammation and dysfunction of the intestinal physical barrier, and regulating related signaling molecules of fish.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
22
|
Hossain MS, Koshio S, Ishikawa M, Yokoyama S, Sony NM. Effects of dietary administration of guanosine monophosphate on the growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major. FISH & SHELLFISH IMMUNOLOGY 2016; 57:96-106. [PMID: 27539709 DOI: 10.1016/j.fsi.2016.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/04/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
The present study explored the dietary administration effects of guanosine monophosphate (GMP) on growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major. A semi-purified basal diet supplemented with 0% (Control), 0.1% (GMP-0.1), 0.2% (GMP-0.2), 0.4% (GMP-0.4) and 0.8% (GMP-0.8) purified GMP to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (mean initial weight 3.4 g) for 56 days. The obtained results clearly indicated that, growth performance of red sea bream enhanced by dietary GMP supplementation compared to control and significantly higher final weight was found in fish fed diet group GMP-0.4. Specific growth rate (SGR) and percent weight gain (%WG) also significantly higher in diet group GMP-0.4 in compared to control and it was not differed (P > 0.05) with diet group GMP-0.8. Feed intake significantly increased with the supplementation of GMP. Feed conversion efficiency (FCE) and protein efficiency ratio (PER) also improved (P < 0.05) when fish fed the diets containing GMP and diet group GMP-0.4 showed the significantly higher value in compared to control. The Apparent digestibility coefficients (dry matter, protein and lipid) also improved by GMP supplementation and the significantly higher protein digestibility was observed in fish fed diet groups GMP-0.2, GMP-0.4 and GMP-0.8. Among the measured non specific immune parameters peroxidase activity (PA), respiratory burst activity (NBT), Bactericidal activity (BA) were significantly affected by dietary supplementation and highest value obtained in diet group GMP-0.4. Total serum protein, lysozyme activity (LA), and agglutination antibody titer also increased (P > 0.05) by GMP supplementation. In contrast, catalase activity decreased with GMP supplementation. In terms of oxidative stress GMP-0.2 showed best condition with low oxidative stress and high antioxidant level. Moreover, the fish fed GMP supplemented diets had better improvement (P < 0.05) in body protein contents, hepatosomatic index, hematocrit content and glutamyl oxaloacetic transaminase (GOT) and glutamic-pyruvate transaminase (GPT) level than the control group. Supplementation also improved (P < 0.05) freshwater stress resistances. Quadratic regression analysis of WG and LA revealed that, the optimal levels of dietary GMP were 0.45 and 0.48%, respectively, for juvenile red sea bream, which is also in line with the most of the growth performance and health parameters of the fish.
Collapse
Affiliation(s)
- Md Sakhawat Hossain
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima 890-0056, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan; Department of Aquaculture, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Shunsuke Koshio
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima 890-0056, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Manabu Ishikawa
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima 890-0056, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Saichiro Yokoyama
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima 890-0056, Japan
| | - Nadia Mahjabin Sony
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima 890-0056, Japan
| |
Collapse
|
23
|
Hossain MS, Koshio S, Ishikawa M, Yokoyama S, Sony NM. Dietary effects of adenosine monophosphate to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major. FISH & SHELLFISH IMMUNOLOGY 2016; 56:523-533. [PMID: 27514786 DOI: 10.1016/j.fsi.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/18/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Our study explored the dietary effects of adenosine monophosphate (AMP) to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream. A semi-purified basal diet supplemented with 0% (Control), 0.1% (AMP-0.1), 0.2% (AMP-0.2), 0.4% (AMP-0.4) and 0.8% (AMP-0.8) purified AMP to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (mean initial weight 3.4 g) for 56 days. The results indicated that dietary AMP supplements tended to improve growth performances. One of the best ones was found in diet group AMP-0.2, followed by diet groups AMP-0.1, AMP-0.4 and AMP-0.8. The Apparent digestibility coefficients (dry matter, protein and lipid) also improved by AMP supplementation and the significantly highest dry matter digestibility was observed in diet group AMP-0.2. Fish fed diet groups AMP-0.2 and AMP-0.4 had significantly higher peroxidase and bactericidal activities than fish fed the control diet. Nitro-blue-tetrazolium (NBT) activity was found to be significantly (P < 0.05) greater in fish fed diet groups AMP-0.4 and AMP-0.8. Total serum protein, lysozyme activity and agglutination antibody titer were also increased (P > 0.05) by dietary supplementation. In contrast, catalase activity decreased with AMP supplementation. Moreover, the fish fed AMP supplemented diets had better improvement (P < 0.05) in body lipid contents, condition factor, hematocrit content and glutamyl oxaloacetic transaminase (GOT) level than the control group. Supplementation also improved both freshwater and oxidative stress resistances. Interestingly, the fish fed diet groups AMP-0.2 and AMP-0.4 showed the least oxidative stress condition. Finally it is concluded that, dietary AMP supplementation enhanced the growth, digestibility, immune response and stress resistance of red sea bream. The regression analysis revealed that a dietary AMP supplementation between 0.2 and 0.4% supported weight gain and lysozyme activity as a marker of immune functions for red sea bream, which is also inline with the most of the growth and health performance parameters of fish under present experimental conditions.
Collapse
Affiliation(s)
- Md Sakhawat Hossain
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima 890-0056, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan; Department of Aquaculture, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Shunsuke Koshio
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima 890-0056, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Manabu Ishikawa
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima 890-0056, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Saichiro Yokoyama
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima 890-0056, Japan
| | - Nadia Mahjabin Sony
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima 890-0056, Japan
| |
Collapse
|
24
|
Wen LM, Feng L, Jiang WD, Liu Y, Wu P, Zhao J, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Thiamin deficiency induces impaired fish gill immune responses, tight junction protein expression and antioxidant capacity: Roles of the NF-κB, TOR, p38 MAPK and Nrf2 signaling molecules. FISH & SHELLFISH IMMUNOLOGY 2016; 51:373-383. [PMID: 26902706 DOI: 10.1016/j.fsi.2015.12.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/11/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
In this study, we investigate the effects of dietary thiamin deficiency on immune responses, tight junctions, antioxidant capacity and related signaling molecules in the gills of young grass carp (Ctenopharyngodon idella). Fish were fed diets that contained 0.12-2.04 mg thiamin kg(-1) for 8 weeks. We found that dietary thiamin deficiency resulted in reduced complement 3 content, lysozyme and acid phosphatase activities, mRNA levels of hepcidin, liver-expressed antimicrobial peptides 2, transforming growth factor (TGF)-β1, interleukin (IL)-10, inhibitor protein-κBα (IκBα), ribosomal S6 protein kinase 1 and target of rapamycin (TOR) and increased expression of interferon-γ2, tumor necrosis factor-α, TGF-β2, IL-1β, IL-8, IκB kinases (IKKβ and IKKγ) and nuclear factor-κB p65 (NF-κB p65). Our findings showed that thiamin deficiency reduced the immune status of fish gills. Furthermore, thiamin deficiency resulted in reduced mRNA transcript levels of claudin b, claudin 3, claudin 12, zonula occludens 1 (ZO-1) and occludin and increased mRNA transcript levels of claudin 15a, myosin light-chain kinase (MLCK) and p38 mitogen-activated protein kinase (p38 MAPK) in fish gill tissues. These data suggested that thiamin deficiency disrupted tight junction-mediated fish gill barrier function. Additionally, reactive oxygen species, malondialdehyde and protein carbonyl levels and both the activities and expression levels of Cu/Zn superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferases and glutathione reductase, as well as NF-E2-related factor 2 gene expression in fish gills, were lower in fish fed a thiamin-deficient diet. By contrast, thiamin deficiency increased levels of Kelch-like-ECH-associated protein 1a (Keap1a) and Keap1b mRNA transcript expression in fish gills. Taken together, our findings indicated that thiamin deficiency impaired fish gill health by effects on the expression of genes encoding cytokines, tight junction proteins, antioxidant enzymes, NF-κB p65, MLCK and Nrf2.
Collapse
Affiliation(s)
- Ling-Mei Wen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Xianning Agriculture Academy of Sciences, Xianning 437100, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|