1
|
Guan X, Wu Q, Sun B. MicroRNA-regulated flounder CLDN4 functions in anti-bacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110270. [PMID: 40074190 DOI: 10.1016/j.fsi.2025.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/18/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
CLDN4 belongs to a multi-transmembrane protein family of claudins, which mainly functions in cell-cell adhesion and migration. MicroRNAs (miRNAs) are important post-transcriptional regulating factors that participate in broad biological process including immunity. Through high-throughput RNA sequencing strategy, a flounder miRNA, miR-29-x, was identified to be responsible to both bacteria and virus. In this study, we explored the regulatory mechanism and function of miR-29-x and its target gene of flounder CLDN4 (named PoCLDN4). We proved that miR-29-x could interact with the 3'UTR of PoCLDN4 and negatively regulate its expression. PoCLDN4 located on cell membrane, while the depletion of extracellular loop E2 abolished the membrane localization of this protein. E3 could bind different bacteria, and mutation of the amino acids of 13E and 18E enhanced this capacity, while mutation of 10L abolish this capacity. Further study revealed the bacteria killing effect of E3 and verified 10L as a key factor. These results identified the interaction between miR-29-x and PoCLDN4, and unraveled the function as well as the molecular basis of flounder CLDN4 in anti-bacterial immunity.
Collapse
Affiliation(s)
- Xiaolu Guan
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Qian Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Boguang Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Sarropoulou E, Katharios P, Kaitetzidou E, Scapigliati G, Miccoli A. Circulating miRNAs involved in the immune response of the European seabass (Dicentrarchus labrax). FISH & SHELLFISH IMMUNOLOGY 2025; 160:110232. [PMID: 40010615 DOI: 10.1016/j.fsi.2025.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/31/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Understanding the immune response in fish through transcriptomic and microRNA (miRNA) profiling may unlock critical insights into disease resistance mechanisms. The objective of the present study was to examine the immune modulation of the European seabass (Dicentrarchus labrax) following bacterial infection and vaccination. Therefore, sequencing of circulating miRNA isolated from blood serum and 3'UTR transcriptome sequencing of head kidney was conducted. In the infected fish 19 miRNAs were found to be differentially expressed. This included two novel miRNAs exhibiting high levels in the infected fish. Regarding circulating miRNAs following vaccination, three specific miRNAs have been identified that demonstrated a substantial increase in expression. Two of them, miR-216b and miR-30a-5p, have been documented to possess the capacity to delay the progression of viral infections. 3'UTR sequencing analysis of the infected fish revealed no significant enrichment of down-regulated transcripts. However, there was a significant enrichment of up-regulated transcripts related to ribosome biogenesis and protein processing. In vaccinated fish up-regulated transcripts did not demonstrate substantial enrichment. Down-regulated genes on the other hand were involved in cytoskeleton organization and apoptosis, indicating that cellular disruption might be a potential hindrance to effective immunity. Overall, these results provide first insights into the progression and regulation of host immune responses to pathogen infection and vaccination. Moreover, the detection of in total 13 differential expressed circulating miRNAs, including regulators of critical innate immunity-related genes such as Toll-like receptor 18, suggests a potential for circulating miRNAs to play a significant role in the post-transcriptional control of fish immune defenses.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Thalassocosomos, Heraklion, Crete, Greece.
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Thalassocosomos, Heraklion, Crete, Greece
| | - Elisavet Kaitetzidou
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Thalassocosomos, Heraklion, Crete, Greece
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100, Viterbo, Italy
| | - Andrea Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125, Ancona, Italy
| |
Collapse
|
3
|
Wang NN, Song Y, Yan X, Liu X, Wu R, Cao M, Li C. Regulatory roles of miRNA-530 in the post-transcriptional regulation of NF-κB signaling pathway through targeted modulation of IκBα in Sebastesschlegelii. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109604. [PMID: 38710343 DOI: 10.1016/j.fsi.2024.109604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
MicroRNAs (miRNAs) are a crucial type of non-coding RNAs involved in post-transcriptional regulation. The playing essential regulatory roles in the NF-κB signaling pathway and modulate the host immune response to diverse pathogens by targeting IκBα. However, the regulatory mechanism of miRNAs in relation with IκBα in Sebastes schlegelii remains unclear. In our study, we identified two copies of IkBα gene in black rockfish (Sebastes schlegelii), namely IkBα1 and IkBα2. Moreover, we have discovered that miRNA-530 can activate the NF-κB signaling pathway by inhibiting the expression of IκBα, thereby inducing the inflammatory response. This project comprehensively investigated the interactive regulatory roles of miRNA-530 in the NF-κB signaling pathway at both cellular and in vivo levels, while also elucidating the regulatory relationships between miRNA-530 and IκBα. In conclusion, our research confirmed that miRNA-530 can target the 3'UTR region of IκBα, resulting in a decrease in the expression of IκBα at the post-transcriptional level and inhibiting its translation. The findings contribute to the understanding of the regulatory network of non-coding RNA in teleosts and its subsequent regulation of the NF-κB signaling pathway by miRNAs.
Collapse
Affiliation(s)
- Ning Ning Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yize Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xu Yan
- College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xiantong Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ruixue Wu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Liu H, Tan S, Han S, Liu X, Li Z, Wang N, Wu Z, Ma J, Shi K, Wang W, Sha Z. Effects of miR-722 on gene expression and alternative splicing in the liver of half-smooth tongue sole after infection with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109275. [PMID: 38081443 DOI: 10.1016/j.fsi.2023.109275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/31/2023]
Abstract
MicroRNAs play crucial roles in various biological processes, including but not limited to differentiation, development, disease, and immunity. However, their immunoregulatory roles in half-smooth tongue sole are lacking. Our previous studies indicated that miR-722 could target C5aR1 to modulate the complement pathway to alleviate inflammatory response and even affect the mortality after the bacterial infection with Vibrio anguillarum. Driven by the purpose of revealing the underlying mechanisms, in this study, we investigated the effects of miR-722 on the gene expression and alternative splicing (AS) in the liver of half-smooth tongue sole after Vibrio anguillarum infection, with the approach of miR-722 overexpression/silencing and subsequent RNA-seq. Among the different comparisons, the I group (miR-722 inhibitor and V. anguillarum) versus blank control (PBS) exhibited the highest number of differentially expressed genes (DEGs), suggesting that the immune response was overactivated after inhibiting the miR-722. In addition, enrichment analyses were performed to reveal the functions of DEGs and differential AS (DAS) genes, reflecting the enrichment of RNA splicing and immune-related pathways including NF-κB and T cell receptor signaling pathway. Comparing the M group (miR-722 mimic and V. anguillarum) with the negative control (random sequence and V. anguillarum), two immune-related genes, cd48 and mapk8, were differentially expressed, of which mapk8 was also differentially spliced, indicating their importance in the immune response. Furthermore, representative gene analysis was performed, suggesting their corresponding functional changes due to AS. To verify the RNA-seq data, quantitative real-time PCR was employed with twenty pairs of primers for DEGs and DAS events. Overall, our results demonstrated that miR-722 could mediate the transcriptome-wide changes of gene expression and AS in half-smooth tongue sole, and provided insights into the regulatory role of miR-722 in immune responses, laying the foundation for further functional analyses and practical applications in aquaculture.
Collapse
Affiliation(s)
- Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Sen Han
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xinbao Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhujun Li
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Ningning Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; College of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhendong Wu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Jie Ma
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Kunpeng Shi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
5
|
Sun H, Chen Z, Jiang J, Dong Y, Wang B, Guan X, Zhao L, Gao S, Zunchun Z. Analyses of regulation between miRNA and DNA methyltransferase 1 related genes in sea cucumber Apostichopusjaponicus. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109169. [PMID: 37852510 DOI: 10.1016/j.fsi.2023.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Affiliation(s)
- Hongjuan Sun
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Zhong Chen
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Jingwei Jiang
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Ying Dong
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Bai Wang
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Xiaoyan Guan
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Liang Zhao
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Shan Gao
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Zhou Zunchun
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| |
Collapse
|
6
|
Margiana R, Kzar HH, Hussam F, Hameed NM, Al-Qaim ZH, Al-Gazally ME, Kandee M, Saleh MM, Toshbekov BBU, Tursunbaev F, Karampoor S, Mirzaei R. Exploring the impact of miR-128 in inflammatory diseases: A comprehensive study on autoimmune diseases. Pathol Res Pract 2023; 248:154705. [PMID: 37499519 DOI: 10.1016/j.prp.2023.154705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
microRNAs (miRNAs) play a crucial role in various biological processes, including immune system regulation, such as cell proliferation, tolerance (central and peripheral), and T helper cell development. Dysregulation of miRNA expression and activity can disrupt immune responses and increase susceptibility to neuroimmune disorders. Conversely, miRNAs have been shown to have a protective role in modulating immune responses and preventing autoimmunity. Specifically, reducing the expression of miRNA-128 (miR-128) in an Alzheimer's disease (AD) mouse model has been found to improve cognitive deficits and reduce neuropathology. This comprehensive review focuses on the significance of miR-128 in the pathogenesis of neuroautoimmune disorders, including multiple sclerosis (MS), AD, Parkinson's disease (PD), Huntington's disease (HD), epilepsy, as well as other immune-mediated diseases such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA). Additionally, we present compelling evidence supporting the potential use of miR-128 as a diagnostic or therapeutic biomarker for neuroimmune disorders. Collectively, the available literature suggests that targeting miR-128 could be a promising strategy to alleviate the behavioral symptoms associated with neuroimmune diseases. Furthermore, further research in this area may uncover new insights into the molecular mechanisms underlying these disorders and potentially lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Hamzah H Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | - Fadhil Hussam
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Iraq
| | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Iraq
| | | | | | - Mahmoud Kandee
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh 33516, Egypt
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Anbar, Iraq
| | | | - Farkhod Tursunbaev
- MD, Independent Researcher, "Medcloud" educational centre, Tashkent, Uzbekistan
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Lv X, Xin S, Zheng W, Xu T, Sun Y. microRNA-27c negatively regulates NF-κB and IRF3 signaling pathway via targeting MITA in miiuy croaker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 137:104522. [PMID: 36049570 DOI: 10.1016/j.dci.2022.104522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
As a non-coding RNA with regulatory functions, microRNAs(miRNAs) can regulate gene expression and participate in a variety of physiological and pathological processes. In recent years, although there have been many studies on miRNA, the regulation mechanisms of miRNA in teleost fish have not been fully elucidated. In this study, it was first predicted that MITA is the target of miR-27c through bioinformatics, and it was confirmed by dual fluorescence experiments. Then we found that miR-27c can inhibit the expression of MITA at the mRNA and protein levels, thereby promoting the NF-κB or IRF3 pathway. It is speculated that miR-27c plays an important role in the innate immunity of teleost fish. This study will help to further understand miRNAs regulatory mechanism in teleost fish.
Collapse
Affiliation(s)
- Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shiying Xin
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| |
Collapse
|
8
|
Cromileptes altivelis microRNA Transcriptome Analysis upon Nervous Necrosis Virus (NNV) Infection and the Effect of cal-miR-155 on Cells Apoptosis and Virus Replication. Viruses 2022; 14:v14102184. [PMID: 36298739 PMCID: PMC9609685 DOI: 10.3390/v14102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) could regulate various biological processes. Nervous necrosis virus (NNV) is one of the primary germs of the Humpback grouper (Cromileptes altivelis), a commercial fish of great importance for Asian aquaculture. However, there is limited available information on the host-virus interactions of C. altivelis. miRNAs have been shown to play key roles in the host response to infection by a variety of pathogens. To better understand the regulatory mechanism of miRNAs, we constructed miRNA transcriptomes and identified immune-related miRNAs of C. altivelis spleen in response to NNV infection. Reads from the three libraries were mapped onto the Danio rerio reference genome. As a result, a total of 942 mature miRNAs were determined, with 266 known miRNAs and 676 novel miRNAs. Among them, thirty-two differentially expressed miRNAs (DEmiRs) were identified compared to the PBS control. These DEmiRs were targeted on 895 genes, respectively, by using miRanda v3.3a. Then, 14 DEmiRs were validated by qRT-PCR and showed consistency with those obtained from high-throughput sequencing. In order to study the relationship between viral infection and host miRNA, a cell line from C. altivelis brain (CAB) was used to examine the expressions of five known DEmiRs (miR-132-3p, miR-194a, miR-155, miR-203b-5p, and miR-146) during NNV infection. The results showed that one miRNA, cal-miRNA-155, displayed significantly increased expression in response to the virus infection. Subsequently, it was proved that overexpression of cal-miR-155 enhanced cell apoptosis with or without NNV infection and inhibited virus replication in CAB cells. Oppositely, the cal-miRNA-155 inhibitor markedly suppressed apoptosis in CAB cells. The results of the apoptosis-related genes mRNA expression also showed the regulation of cal-miR-155 on the apoptosis process in CAB cells. These findings verify that miR-155 might exert a function as a pro-apoptotic factor in reply to NNV stimulation in CAB cells and help us further study the molecular mechanisms of the pathogenesis of NNV in C. altivelis.
Collapse
|
9
|
Xin S, Lv X, Zheng WW, Wang L, Xu T, Sun Y. Circular RNA circRara promote the innate immune responses in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2022; 128:557-564. [PMID: 35988709 DOI: 10.1016/j.fsi.2022.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
With the in-depth study of circRNA, more and more biological studies have shown that circRNAs play an important role in mammals, such as cell proliferation, apoptosis, invasion, development and disease state. However, the regulatory mechanism of circRNA in lower vertebrates remains unclear. Here, we found a new circular RNA and named it circRara. We carried out the experimental study on its antiviral and antibacterial response, cell proliferation and activity. The results showed that circRara had a positive regulatory effect on the antiviral and antibacterial response, cell proliferation and activity in miiuy croaker. First, we found that the expression of circRara could be up-regulated under the stimulation of LPS and poly (I: C), but not the expression of linear Rara. In addition, the increase of circRara can increase the production of inflammatory factors and antiviral genes, which was confirmed by double luciferase reporter gene experiment and qPCR. These results will help to further understand the immunomodulatory mechanism of circRNA in teleost fish.
Collapse
Affiliation(s)
- Shiying Xin
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Wei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Linchao Wang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| |
Collapse
|
10
|
Sun L, Zheng W, Sun Y, Xu T. Long non-coding RNA LTCONS7822 positively regulates innate immunity by targeting MITA in miiuy croaker (Miichthys miiuy). FISH & SHELLFISH IMMUNOLOGY 2022; 125:285-291. [PMID: 35595061 DOI: 10.1016/j.fsi.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Accumulated studies have shown that long non-coding RNA (lncRNA) is considered a critical regulatory factor in mammals, with a length greater than 200 nucleotides, and it can participate in gene imprinting, dose compensation, transcription enhancement, and antisense regulation. Most of the above studies are carried out in mammals, and there are very few studies on lncRNA of lower vertebrates. Here, we report a novel lncRNA, LTCONS7822, which can play a positive regulatory effect on antiviral immunity in miiuy croaker, Miichthys miiuy. Our results show that the levels of lncRNA LTCONS7822 were significantly increased after poly (I:C) stimulation. Further study, we found that lncRNA LTCONS7822 could positively regulate MITA at the post-transcriptional level. In addition, the dual-luciferase reporter assay analysis showed that the positive regulatory effect of lncRNA LTCONS7822 on NF-κB and IRF3 signaling pathways presented the dose and time-dependent manner. Western blotting experiments proved that lncRNA LTCONS7822 has a positive regulatory effect on MITA. Collectively, our study provided new information to enrich the immune regulation network of lncRNA in teleost fish.
Collapse
Affiliation(s)
- Lingping Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
11
|
Cui J, Zheng W, Xu T, Sun Y. Long Noncoding RNA MIR122HG Inhibits MAVS-Mediated Antiviral Immune Response by Deriving miR-122 in Miiuy Croaker ( Miichthys miiuy). Viruses 2022; 14:930. [PMID: 35632672 PMCID: PMC9143459 DOI: 10.3390/v14050930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) function as micro regulators to impact gene expression after multiple pathogen infections, which have been largely studied in the last few years. Although lncRNA studies on lower vertebrates have received less attention than those on mammals, current studies suggest that lncRNA plays an important role in the immune response of fish to pathogen infections. Here, we studied the effect of MIR122HG as the host gene of miR-122 and indirectly negatively regulate MAVS-mediated antiviral immune responses in miiuy croaker (Miichthysmiiuy). We found that poly(I:C) significantly increases the host MIR122HG expression. The increased MIR122HG expression inhibited the production of the antiviral immune-related genes IFN-1, ISG15 and Viperin upon SCRV treatment. In addition, MIR122HG can act as a pivotally negative regulator involved in the MAVS-mediated NF-κB and IRF3 signaling pathways, which can effectively avoid an excessive immune response. Additionally, we found that MIR122HG can promote the replication of SCRV. Our study provides evidence about the involvement of lncRNAs in the antiviral immune response of fish and broadens the understanding of the function of lncRNAs as a precursor miRNA in teleost fish.
Collapse
Affiliation(s)
- Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.Z.)
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.Z.)
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.Z.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
12
|
Dong W, Geng S, Cui J, Gao W, Sun Y, Xu T. MicroRNA-103 and microRNA-190 negatively regulate NF-κB-mediated immune responses by targeting IL-1R1 in Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2022; 123:94-101. [PMID: 35240295 DOI: 10.1016/j.fsi.2022.02.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/26/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Accumulating evidence has demonstrated that microRNAs (miRNAs) regulate various physiological and pathological processes at the transcriptional level, thus called novel regulators in immune response. In this study, we used bioinformatics and functional experiments to determine the role of miR-103 and miR-190 in the regulation of IL-1R1 gene involved in the immune and inflammatory responses in miiuy croakers. First, we predicted the target genes of miR-103 and miR-190 through bioinformatics and found that IL-1R1 is a direct target gene of miR-103 and miR-190. This was further confirmed by the dual-luciferase reporter assay that the over-expression of miR-103, miR-190 mimics and the pre-miR-103, pre-miR-190 plasmids inhibit the luciferase levels of the wild-type of IL-1R1 3'UTR. miR-103 and miR-190 inhibitors increase the luciferase levels of IL-1R1-3'UTR. Additionally, we found that miR-103 and miR-190 could negatively regulate the mRNA expression of IL-1R1. Importantly, we demonstrated that miR-103 and miR-190 significantly inhibit the NF-κB signaling pathway by targeting IL-1R1 upon LPS stimulation. Collectively, these results provide strong evidence for an important regulatory mechanism of miR-103 and miR-190 targeting the IL-1R1 gene, thereby preventing excessive inflammatory immune responses from causing autoimmunity.
Collapse
Affiliation(s)
- Wenjing Dong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenya Gao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| |
Collapse
|
13
|
Sun Y, Zhang L, Hong L, Zheng W, Cui J, Liu X, Xu T. MicroRNA-181b-2 and MicroRNA-21-1 Negatively Regulate NF-κB and IRF3-Mediated Innate Immune Responses via Targeting TRIF in Teleost. Front Immunol 2021; 12:734520. [PMID: 34956174 PMCID: PMC8695722 DOI: 10.3389/fimmu.2021.734520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Upon recognition of bacterial or viral components by Toll-like receptors (TLRs), cells could be activated to induce a series of reactions to produce inflammatory cytokines, type I interferon (IFN), and IFN stimulating genes (ISG). MicroRNAs (miRNAs) are an important regulatory molecules that are widely involved in the regulatory networks of mammalian inflammation and immune responses; however, in lower vertebrates, the regulatory network of miRNA-mediated immune responses is poorly understood. Here, we report two miRNAs form Miichthys miiuy, namely, miR-181b-2 and miR-21-1, that play a negative role in host antiviral and antibacterial immunity. We found that miR-181b-2 and miR-21-1 are abundantly expressed in gram-negative bacteria, as well as RNA rhabdovirus infection. Inducible miR-181b-2 and miR-21-1 suppress the production of inflammatory cytokines and type I IFN by targeting TRIF, thereby avoiding excessive inflammation. We further revealed that miR-181b-2 and miR-21-1 modulate antibacterial and antiviral immunity through the TRIF-mediated NF-κB and IRF3 signaling pathways. The overall results indicate that miR-181b-2 and miR-21-1 act as negative feedback regulators and participate in host antibacterial and antiviral immune responses; this finding could provide information for a deeper understanding of the resistance of lower vertebrates to the invasion of pathogens and to avoidance of excessive immunity.
Collapse
Affiliation(s)
- Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lei Zhang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ling Hong
- School of Medicine, Tongji University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xuezhu Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
14
|
Gao W, Zheng W, Sun Y, Xu T. microRNA-489 negatively modulates RIG-I signaling pathway via targeting TRAF6 in miiuy croaker after poly(I:C) stimulation. FISH & SHELLFISH IMMUNOLOGY 2021; 113:61-68. [PMID: 33785469 DOI: 10.1016/j.fsi.2021.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/21/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
The innate immune response is first line of host defense against pathogen invasion. However, excessive activation of immune responses may cause autoimmune diseases and excessive inflammation. Retinoic acid-inducible gene I (RIG-I) is an important cytoplasmic pathogen recognition receptor that is activated on virus infection. TNF-receptor-associated factor 6 (TRAF6) plays an essential role in the RIG-I-mediated signaling pathway. MicroRNAs (miRNAs) are noncoding RNAs that are emerging as important regulators of immune responses. In this study, we found that the overexpression of miR-489 mimics and pre-miR-489 significantly suppressed the luciferase activity of the wild-type TRAF6 3'UTR, whereas mutant-type led to a complete abrogation of the negative effect. In addition, we also observed that miR-489 can negatively regulate TRAF6 at the level of translation. More importantly, we demonstrated that miR-489 is a negative regulator of TRAF6 involved in the immune response to poly(I:C) stimulation. These common findings indicated that miR-489 plays a regulatory role in host-virus interactions by targeting TRAF6. Overall, all of the present results provide direct evidence that miR-489 is involved in the regulation of TRAF6 expression in miiuy croaker, which will help to better understand the complex regulatory networks of teleost fish.
Collapse
Affiliation(s)
- Wenya Gao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
15
|
Chang MX. The negative regulation of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104038. [PMID: 33548290 DOI: 10.1016/j.dci.2021.104038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
At each stage of innate immune response, there are stimulatory and inhibitory signals that modulate the strength and character of the response. RIG-I-like receptor (RLR) signaling pathway plays pivotal roles in antiviral innate immune response. Recent studies have revealed the molecular mechanisms that viral infection leads to the activation of RLRs-mediated downstream signaling cascades and the production of type I interferons (IFNs). However, antiviral immune responses must be tightly regulated in order to prevent detrimental type I IFNs production. Previous reviews have highlighted negative regulation of RLR signaling pathway, which mainly target to directly regulate RIG-I, MDA5, MAVS and TBK1 function in mammals. In this review, we summarize recent advances in our understanding of negative regulators of RLR signaling pathway in teleost, with specific focus on piscine and viral regulatory mechanisms that directly or indirectly inhibit the function of RIG-I, MDA5, LGP2, MAVS, TRAF3, TBK1, IRF3 and IRF7 both in the steady state or upon viral infection. We also further discuss important directions for future studies, especially for non-coding RNAs and post-translational modifications via fish specific TRIM proteins. The knowledge of negative regulators of RLR signaling pathway in teleost will shed new light on the critical information for potential therapeutic purposes.
Collapse
Affiliation(s)
- Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Abo-Al-Ela HG. The emerging regulatory roles of noncoding RNAs in immune function of fish: MicroRNAs versus long noncoding RNAs. Mol Genet Genomics 2021; 296:765-781. [PMID: 33904988 DOI: 10.1007/s00438-021-01786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The genome could be considered as raw data expressed in proteins and various types of noncoding RNAs (ncRNAs). However, a large portion of the genome is dedicated to ncRNAs, which in turn represent a considerable amount of the transcriptome. ncRNAs are modulated on levels of type and amount whenever any physiological process occurs or as a response to external modulators. ncRNAs, typically forming complexes with other partners, are key molecules that influence diverse cellular processes. Based on the knowledge of mammalian biology, ncRNAs are known to regulate and control diverse trafficking pathways and cellular activities. Long noncoding RNAs (lncRNAs) notably have diverse and more regulatory roles than microRNAs. Expanding these studies on fish has derived the same conclusion with relevance to other species, including invertebrates, explored the potentials to harness such types of RNA to further understand the biology of such organisms, and opened gates for applying recent technologies, such as RNA interference and delivering micromolecules as microRNAs to living cells and possibly to target organs. These technologies should improve aquaculture productivity and fish health, as well as help understand fish biology.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, 43518, Suez, Egypt.
| |
Collapse
|
17
|
Ren X, Cui J, Xu T, Sun Y. microRNA-128 inhibits the inflammatory responses by targeting TAB2 in miiuy croaker, Miichthysmiiuy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103976. [PMID: 33347907 DOI: 10.1016/j.dci.2020.103976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The inflammatory response is a self-defense process that fights the pathogen invasion by eliminating harmful stimuli. However, excessive inflammation may disrupt immune homeostasis, even causing chronic inflammation or autoimmune diseases. MicroRNAs (miRNAs) are a crucial regulator that can negatively regulate gene expression and participate in multiple biological processes of growth, development, and immune response in organisms. However, the miRNA-mediated modulation networks of inflammatory responses remain largely unclear in lower vertebrates. In this study, miR-128 was identified as a negative regulator to participate in the NF-κB signaling pathway by targeting TAB2 in miiuy croaker. First, we predicted target genes of miR-128 through the bioinformatics software programs and found that TAB2 is a direct target of miR-128. We also found that miR-128 can inhibit TAB2 expression at the mRNA and protein levels. Besides, upon LPS stimulation, miR-128 inhibits the expression of inflammatory cytokines by targeting TAB2 to avoid excessive inflammation. Particularly, we found that miR-128 can regulate TAB2-mediated NF-κB signaling pathways. In summary, our results indicate that miR-128 plays a critical role in suppressing inflammatory responses by regulating the TAB2-mediated NF-κB signaling pathway in miiuy croaker.
Collapse
Affiliation(s)
- Xiaomeng Ren
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| |
Collapse
|
18
|
Kwak JS, Kim KH. Effect of miR-155 on type I interferon response in Epithelioma papulosum cyprini cells. FISH & SHELLFISH IMMUNOLOGY 2021; 111:1-5. [PMID: 33460718 DOI: 10.1016/j.fsi.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/27/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
MicroRNA-155 (miRNA-155) is known to play an important role in the regulation of innate and adaptive immune responses in mammals. However, no information is available on the role of miRNA-155 in relation to type I interferon (IFN) responses in fish cells. In the present study, we found that the protein inhibitor of activated STAT 4a (PIAS4a) gene of fathead minnow (Pimephales promelas) was a target of miR-155, which was verified by the inhibitory activity of miR-155 in the expression of reporter gene harboring 3'UTR of PIAS4a of EPC cells. Furthermore, cells over-expressing miR-155 showed a significantly higher type I IFN response after polyinosinic-polycytidylic acid (poly I:C) stimulation, suggesting the targeting of PIAS4a in EPC cells by miR-155 can be a cause of the up-regulation of type I IFN, and miR-155 can act as an antiviral factor. However, as the targeting PIAS4a might not be the sole cause of the type I IFN up-regulation by miR-155, further studies on the uncovering of miR-155 target genes that are involved in type I IFN responses in fish are required.
Collapse
Affiliation(s)
- Jun Soung Kwak
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
19
|
Lu RH, Qin CB, Yang F, Zhang WY, Zhang YR, Yang GK, Yang LP, Meng XL, Yan X, Nie GX. Grape seed proanthocyanidin extract ameliorates hepatic lipid accumulation and inflammation in grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1665-1677. [PMID: 32447624 DOI: 10.1007/s10695-020-00819-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Hepatic lipid metabolism disorder due to excessive fat accumulation in fish is a significant problem in aquaculture. Studies have shown that grape seed procyanidin extract (GSPE) can regulate fish lipid metabolism and improve fish immunity. However, the mechanism is unclear. In this study, we used grass carp that stores excess fat in the liver as a model. In vitro, GSPE treatment of hepatocytes for 3 h significantly decreased TG content, accompanied with decreased expression of SREBP-1c, FAS, and ACC and increased expression of PPARα, ATGL, and LPL. GSPE treatment for 1 h significantly decreased expression of pro-inflammatory cytokines (TNFα, IL-6, IL-1β, and NF-κB) and increased the expression of anti-inflammatory cytokines (IL-10 and TGF-β1). In vivo, the administration of GSPE significantly reduced high-fat diet-induced increase of serum CHOL, TG, and HDL, but increased LDL content. GSPE treatment for 3 h increased expression of ATGL and LPL, and significantly decreased the expression of HFD-fed-induced SREBP-1c, ACC, FAS, PPARγ, PPARα, and H-FABP. GSPE treatment for 3 h also significantly decreased the expression of pro-inflammatory cytokines (TNFα, IL-6, and IL-1β) and increased the expression of the anti-inflammatory cytokine IL-10. The expression levels of the lipogenic miRNAs, miR-33, and miR-122, were suppressed both in vivo and in vitro by GSPE. In summary, GSPE had hypolipidemic and potential anti-inflammatory effects in the liver, potentially mediated by miR-33 and miR-122.
Collapse
Affiliation(s)
- Rong-Hua Lu
- College of Fisheries, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, People's Republic of China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China
| | - Chao-Bin Qin
- College of Fisheries, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, People's Republic of China
| | - Feng Yang
- College of Fisheries, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, People's Republic of China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China
| | - Wen-Ya Zhang
- College of Fisheries, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, People's Republic of China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China
| | - Yu-Ru Zhang
- College of Fisheries, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, People's Republic of China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China
| | - Guo-Kun Yang
- College of Fisheries, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, People's Republic of China
| | - Li-Ping Yang
- College of Fisheries, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, People's Republic of China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China
| | - Xiao-Lin Meng
- College of Fisheries, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, People's Republic of China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China
| | - Xiao Yan
- College of Fisheries, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, People's Republic of China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, People's Republic of China.
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China.
| |
Collapse
|
20
|
Study of the Differentially Expressed Genes in the Pomacea canaliculata Transcriptome after Treatment with Pedunsaponin A. Metabolites 2019; 9:metabo9110268. [PMID: 31698793 PMCID: PMC6918322 DOI: 10.3390/metabo9110268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/29/2022] Open
Abstract
Transcriptomes, genomes, and proteomes have played important roles in the search for drug targets. To determine the molluscicidal mechanism of pedunsaponin A against Pomacea canaliculata, RNA-seq technology was adopted to analyze the differentially expressed genes (DEGs) in the P. canaliculata transcriptome after treatment with pedunsaponin A. As a result, 533 DEGs were identified, among which 255 genes were significantly upregulated and 278 genes were significantly downregulated. According to the analysis of Gene Ontology (GO) functions, we found that the DEGs were significantly enriched in the viral life cycle, UDP-glucose 4-epimerase activity, guanylate cyclase activity, the cyclic guanosine monophosphate (cGMP) biosynthetic process, and the cGMP metabolic process. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway results showed that the DEGs were mainly involved in the hedgehog signaling pathway, phagosome, cytosolic DNA-sensing pathway, retinoic acid-inducible gene I like (RIG-I-like) receptor signaling pathway, bacterial secretion system, and nuclear factor-kappa B (NF-kappa B) signaling pathway. The above results indicated that pedunsaponin A causes a metabolic disorder, anomalous opening of membrane ion channels, and an imbalance in osmotic pressure between the interior and exterior of cells, eventually resulting in the death of cells involved in immune defense and influencing the immune response of P. canaliculata.
Collapse
|
21
|
Li WR, Hu YH, Jiang S, Sun L. Global profiling and characterization of Japanese flounder (Paralichthys olivaceus) kidney microRNAs regulated by Edwardsiella tarda infection in a time-dependent fashion. FISH & SHELLFISH IMMUNOLOGY 2019; 93:766-780. [PMID: 31421241 DOI: 10.1016/j.fsi.2019.07.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Japanese flounder (Paralichthys olivaceus) is an important economic fish species farmed in China and other countries. It is susceptible to infection by Edwardsiella tarda, a severe fish pathogen with a broad host range. In this study, we employed high-throughput deep sequencing technology to identify, in a global scale, flounder kidney microRNAs (miRNAs) induced by E. tarda at different stages of infection. Differentially expressed miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) exhibiting significantly altered expression levels before and after E. tarda infection were examined. A total of 96 DEmiRNAs were identified, for which 2779 target genes were predicted. Eighty-seven miRNA-mRNA pairs, involving 29 DEmiRNAs and 86 DEmRNAs, showed negative correlations in their expression patterns. GO and KEGG enrichment analysis revealed that the putative target genes of the DEmiRNAs were associated with diverse biological processes, cellular components, and molecular functions. One of the DEmiRNAs, pol-miR-182-5p, was demonstrated to regulate sphingosine-1-phosphate receptor 1 (PoS1PR1) negatively in a manner that depended on the specific interaction between the seed sequence of pol-miR-182-5p and the 3'-UTR of PoS1PR1. Overexpression of pol-miR-182-5p in flounder cells promoted apoptosis and inhibited cellular viability. Knockdown of PoS1PR1 in flounder enhanced E. tarda invasion and dissemination in fish tissues. These results provide new insights into miRNA-mediated anti-bacterial immunity in flounder.
Collapse
Affiliation(s)
- Wen-Rui Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China; University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Hua Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shuai Jiang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
22
|
Vasadia DJ, Zippay ML, Place SP. Characterization of thermally sensitive miRNAs reveals a central role of the FoxO signaling pathway in regulating the cellular stress response of an extreme stenotherm, Trematomus bernacchii. Mar Genomics 2019; 48:100698. [PMID: 31307923 DOI: 10.1016/j.margen.2019.100698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
Despite the lack of an inducible heat shock response (HSR), the Antarctic notothenioid fish, Trematomus bernacchii, has retained a level of physiological plasticity that can at least partially compensate for the effects of acute heat stress. Over the last decade, both physiological and transcriptomic studies have signaled these fish can mitigate the effects of acute heat stress by employing other aspects of the cellular stress response (CSR) that help confer thermotolerance as well as drive homeostatic mechanisms during long-term thermal acclimations. However, the regulatory mechanisms that determine temperature-induced changes in gene expression remain largely unexplored in this species. Therefore, this study utilized next generation sequencing coupled with an in silico approach to explore the regulatory role of microRNAs in governing the transcriptomic level response observed in this Antarctic notothenioid with respect to the CSR. Using RNAseq, we characterized the expression of 125 distinct miRNA orthologues in T. bernacchii gill tissue. Additionally, we identified 12 miRNAs that appear to be thermally responsive based on differential expression (DE) analyses performed between fish acclimated to control (-1.5 °C) and an acute heat stress (+4 °C). We further characterized the functional role of these DE miRNAs using bioinformatics pipelines to identify putative gene targets of the DE miRNAs and subsequent gene set enrichment analyses, which together suggest these miRNAs are involved in regulating diverse aspects of the CSR in T. bernacchii.
Collapse
Affiliation(s)
- Dipali J Vasadia
- Sonoma State University, Department of Biology, Rohnert Park, CA 94928, United States of America
| | - Mackenzie L Zippay
- Sonoma State University, Department of Biology, Rohnert Park, CA 94928, United States of America
| | - Sean P Place
- Sonoma State University, Department of Biology, Rohnert Park, CA 94928, United States of America.
| |
Collapse
|
23
|
Nie L, Cai SY, Sun J, Chen J. MicroRNA-155 promotes pro-inflammatory functions and augments apoptosis of monocytes/macrophages during Vibrio anguillarum infection in ayu, Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:70-81. [PMID: 30447432 DOI: 10.1016/j.fsi.2018.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Upon recognition of pathogen-associated molecular patterns by pattern-recognition receptors, immune cells are recruited, and multiple antibacterial/viral signaling pathways are activated, leading to the production of immune-related cytokines, chemokines, and interferons along with further activation of the adaptive immune response. MicroRNAs (miRs) play essential roles in regulating such immune signaling pathways, as well as the biological activities of immune cells; however, knowledge regarding the roles of miRs in the immune-related function of monocytes/macrophages (MO/MΦ) remains limited in teleosts. In the present study, we addressed the effects of miR-155 on Vibrio anguillarum-infected MO/MΦ. Our results showed that miR-155 augmented MO/MΦ expression of proinflammatory cytokines and attenuated the expression of anti-inflammatory cytokines. Additionally, the phagocytosis and bacteria-killing abilities of these cells were boosted by miR-155 administration, which also promoted M1-type polarization but inhibited M2-type polarization. Furthermore, the V. anguillarum-infection-induced apoptosis was also enhanced by miR-155 mimic transfection, which might have been due to excessive inflammation or the accumulation of reactive oxygen species. These results represent the first report providing a detailed account of the regulatory roles of miR-155 on MO/MΦ functions in teleosts and offer insight into the evolutionary history of miR-155-mediated regulation of host immune responses.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiao Sun
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315800, China.
| |
Collapse
|
24
|
Wang M, Jiang S, Wu W, Yu F, Chang W, Li P, Wang K. Non-coding RNAs Function as Immune Regulators in Teleost Fish. Front Immunol 2018; 9:2801. [PMID: 30546368 PMCID: PMC6279911 DOI: 10.3389/fimmu.2018.02801] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that are transcribed from DNA but not translated into proteins. ncRNAs function as key regulators of gene expression and chromatin modification. Recently, the functional role of ncRNAs in teleost fish has been extensively studied. Teleost fish are a highly diverse group among the vertebrate lineage. Fish are also important in terms of aquatic ecosystem, food production and human life, being the source of animal proteins worldwide and models of biomedical research. However, teleost fish always suffer from the invasion of infectious pathogens including viruses and bacteria, which has resulted in a tremendous economic loss to the fishing industry worldwide. Emerging evidence suggests that ncRNAs, especially miRNAs and lncRNAs, may serve as important regulators in cytokine and chemokine signaling, antigen presentation, complement and coagulation cascades, and T cell response in teleost fish. In this review, we summarize current knowledge and understanding of the roles of both miRNAs and lncRNAs in immune regulation in teleost fish. Molecular mechanism insights into the function of ncRNAs in fish immune response may contribute to the development of potential biomarkers and therapeutic targets for the prevention and treatment of fish diseases.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
25
|
TLR3 Modulates the Response of NK Cells against Schistosoma japonicum. J Immunol Res 2018; 2018:7519856. [PMID: 30246036 PMCID: PMC6136572 DOI: 10.1155/2018/7519856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/18/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are classic innate immune cells that play roles in many types of infectious diseases. NK cells possess many kinds of TLRs that allow them to sense and respond to invading pathogens. Our previous study found that NK cells could modulate the immune response induced by Schistosoma japonicum (S. japonicum) in C57BL/6 mice. In the present study, the role of TLRs in the progress of S. japonicum infection was investigated. Results showed that the expression of TLR3 on NK cells increased significantly after S. japonicum infection by using RT-PCR and FACS (P < 0.05). TLR3 agonist (Poly I:C) increased IFN-γ and IL-4 levels in the supernatant of cultured splenocytes and induced a higher percentage of IFN-γ- and IL-4-secreting NK cells from infected mouse splenocytes (P < 0.05). Not only the percentages of MHC II-, CD69-, and NKG2A/C/E-expressing cells but also the percentages of IL-4-, IL-5-, and IL-17-producing cells in TLR3+ NK cells increased significantly after infection (P < 0.05). Moreover, the expression of NKG2A/C/E, NKG2D, MHC II, and CD69 on the surface of splenic NK cells was changed in S. japonicum-infected TLR3-/- (TLR3 KO mice, P < 0.05); the abilities of NK cells in IL-4, IL-5, and IL-17 secretion were decreased too (P < 0.05). These results indicate that TLR3 is the primary molecule which modulates the activation and function of NK cells during the course of S. japonicum infection in C57BL/6 mice.
Collapse
|
26
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
27
|
Sun Y, Yang Q, Zhao X, Liu X, Xu T. Identification and functional characterization of interferon regulatory factor 7 involved in activation JAK/STAT pathway in miiuy croaker. FISH & SHELLFISH IMMUNOLOGY 2018; 73:50-56. [PMID: 29208498 DOI: 10.1016/j.fsi.2017.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Interferon regulatory factor (IRF) family is a transcription factor family which plays an important role in the regulation of natural immunity and immune cell differentiation. IRF7 is important to regulate the response of type I interferon (IFN) to viral infection. Thus, more researches of the characteristic and functions of IRF7 should be done to get better understanding of the mechanisms underlying immune reactions. Here, the characterization of full-length cDNA of IRF7 was reported from miiuy croaker. Gene characterization analysis of mmiIRF7 showed conservative with other fish and inferred that the difference of tryptophan residues in IRF7 may occurred in the period of fish-specific genome duplication (FSGD) or earlier. Syntenic analysis of IRF7 showed that fish IRF7 had more highly conserved synteny than the higher vertebrates IRF7. Luciferase reporter assays result showed the ability of mmiIRF7 for activation of IFNα, IFNβ, IFNγ and ISRE luciferase reporter. In this study, we systematically and comprehensively analyzed evolution and function of mmiIRF7, which will provide the basis for future research on fish IRF family.
Collapse
Affiliation(s)
- Yuena Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiong Yang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xueyan Zhao
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xuezhu Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
28
|
Han J, Chu Q, Huo R, Xu T. Inducible microRNA-122 modulates RIG-I signaling pathway via targeting DAK in miiuy croaker after poly(I:C) stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:52-60. [PMID: 28923593 DOI: 10.1016/j.dci.2017.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
MicroRNA-122 (miR-122) was originally identified in mouse and then lots of researches on miR-122 had been performed in mammals. However, the functional study of miR-122 were restricted in fish. In miiuy croaker, miR-122 is sensitive to poly(I:C) stimulation. In this study, a combination of bioinformatics and experimental techniques were used to investigate the functions of miR-122. DAK is a putative target gene of miR-122 which was predicted by bioinformatics, and further the luciferase reporter assays were used to confirm the target sites in DAK 3'untranslated region. The inhibiting effect of miR-122 mimics or pre-miR-122 on DAK presented the dose and time dependent manners, and the pre-miR-122 showed stronger inhibiting effect on DAK than the miR-122 mimics. Therefore, the miR-122 participate in regulating RIG-I-like receptors signaling pathway via inhibiting DAK which is the inhibitors of MDA5. The expression of miR-122 and DAK showed negative relationship in both miiuy croaker spleen and macrophages, which imply that miR-122 may regulate DAK at the post-transcriptional level. These results will enhance our understanding about the regulation of miRNAs on immune response in fish.
Collapse
Affiliation(s)
- Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ruixuan Huo
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
29
|
Valenzuela-Miranda D, Valenzuela-Muñoz V, Farlora R, Gallardo-Escárate C. MicroRNA-based transcriptomic responses of Atlantic salmon during infection by the intracellular bacterium Piscirickettsia salmonis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:287-296. [PMID: 28870451 DOI: 10.1016/j.dci.2017.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as key regulators in diverse biological processes across taxa. However, despite the importance of these transcripts, little is known about their role during the immune response in salmonids. Because of this, we use deep sequencing technologies to explore the microRNA-based transcriptomic response of the Atlantic salmon (Salmo salar) to the intracellular bacteria Piscirickettsia salmonis, one of the main threats to salmon aquaculture in Chile. Hence, 594 different miRNAs were identified from head kidney and spleen transcriptomic data. Among them, miRNA families mir-181, mir-143 and mir-21 were the most abundant in control groups, while after infection with P. salmonis, mir-21, mir-181 and mir-30 were the most predominant families. Furthermore, transcriptional analysis revealed 84 and 25 differentially expressed miRNAs in head kidney and spleen respectively, with an overlapping response of 10 miRNAs between the analyzed tissues. Target prediction, coupled with GO enrichment analysis, revealed that the possible targets of the most regulated miRNAs were genes involved in the immune response, such as cortisol metabolism, chemokine-mediated signaling pathway and neutrophil chemotaxis genes. Among these, predicted putative target genes such as C-C motif chemokine 19-like, stromal cell-derived factor 1-like, myxovirus resistance protein 2 and hepcidin-1 were identified. Overall, our results suggest that miRNA expression in co-modulation with transcription activity of target genes is related to putative roles of non-coding RNAs in the immune response of Atlantic salmon against intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Diego Valenzuela-Miranda
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Rodolfo Farlora
- Laboratorio de Biotecnología Acuática y Genómica Reproductiva/Instituto de Biología, Facultad de Ciencias Universidad de Valparaíso, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile.
| |
Collapse
|
30
|
Andreassen R, Høyheim B. miRNAs associated with immune response in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:77-85. [PMID: 28254620 DOI: 10.1016/j.dci.2017.02.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/25/2017] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) have been identified as important post transcriptional regulators of gene expression. In higher vertebrates, a subset of miRNAs has been identified as important regulators of a number of key genes in immune system gene networks, and this paper review recent studies on miRNAs associated with immune response in teleost fish. Challenge studies conducted in several species have identified differently expressed miRNAs associated with viral or bacterial infection. The results from these studies point out several miRNAs that are likely to have evolutionary conserved functions that are related to immune response in teleost fish. Changed expression levels of mature miRNAs from the five miRNA genes miRNA-462, miRNA-731, miRNA-146, miRNA-181 and miRNA-223 are observed following viral as well as bacterial infection in several teleost fish. Furthermore, significant changes in expression of mature miRNAs from the five genes miRNA-21, miRNA-155, miRNA-1388, miRNA-99 and miRNA-100 are observed in multiple studies of virus infected fish while changes in expression of mature miRNA from the three genes miRNA-122, miRNA-192 and miRNA-451 are observed in several studies of fish with bacterial infections. Interestingly, some of these genes are not present in higher vertebrates. The function of the evolutionary conserved miRNAs responding to infection depends on the target gene(s) they regulate. A few target genes have been identified while a large number of target genes have been predicted by in silico analysis. The results suggest that many of the targets are genes from the host's immune response gene networks. We propose a model with expected temporal changes in miRNA expression if they target immune response activators/effector genes or immune response inhibitors, respectively. The best way to understand the function of a miRNA is to identify its target gene(s), but as the amount of genome resources for teleost fish is limited, with less well characterized genomes and transcriptomes, identifying the true target genes of the miRNAs associated with the immune response is a challenge. Identifying such target genes by applying new methods and approaches will likely be the next important step to understand the function of the miRNAs associated with immune response in teleost fish.
Collapse
Affiliation(s)
- Rune Andreassen
- Department of Pharmacy and Biomedical and Laboratory Sciences, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Pilestredet 50, N-0130 Oslo, Norway.
| | - Bjørn Høyheim
- Department of Basic Sciences and Aquatic Medicine, School of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway.
| |
Collapse
|
31
|
Tian Z, Zhang J, He H, Li J, Wu Y, Shen Z. MiR-525-3p mediates antiviral defense to rotavirus infection by targeting nonstructural protein 1. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3212-3225. [PMID: 28890396 DOI: 10.1016/j.bbadis.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) are short RNAs of approximately 22 nucleotides that post-transcriptionally regulate gene expression by controlling mRNA stability or translation. They play critical roles in intricate networks of host-pathogen interactions and innate immunity. Rotaviruses (RVs) are the leading cause of severe diarrhea among infants and young children worldwide. This study was undertaken to demonstrate the importance of cellular miRNAs during RV (human Wa RV or Rhesus RV) strains infection. Twenty-nine differentially regulated miRNAs were identified during RV infection, and miR-525-3p was downregulated and validated by quantitative real-time polymerase chain reaction (qRT-PCR). MiR-525-3p mimic inhibited RV replication in dose-dependent manner. Correspondingly, the miR-525-3p inhibitors enhanced RV replication. We confirmed that miR-525-3p was complementary to the 3' untranslated region (UTR) of nonstructural protein 1(NSP1) of RV (Wa or Rhesus) strains. Interestingly, miR-525-3p induced type I interferon (IFN) expression and proinflammatory cytokines during RV infection through IFN regulatory factor (IRF) 3/IRF7 and NF-κB activation, which can induce an antiviral state to further suppress RV infection. In addition, RV suppressed miR-525-3p expression to evade host innate immunity through the action of the RV protein NSP1. These results suggest that miR-525-3p has the potential to be used as an antiviral therapeutic against RV infection.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Ji Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Haiyang He
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Jintao Li
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China..
| | - Zigang Shen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China..
| |
Collapse
|
32
|
Yang Q, Cui J, Song W, Zhao X, Xu T. The evolution and functional characterization of miiuy croaker interferon regulatory factor 9 involved in immune response. FISH & SHELLFISH IMMUNOLOGY 2017; 66:524-530. [PMID: 28546020 DOI: 10.1016/j.fsi.2017.05.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Interferon regulatory factors (IRFs) are transcription factors which play important roles in regulating the expression of type I interferons (IFNs) and IFN-stimulated genes. IRF9 is one of the IRF family gene members which belongs to the IRF4 subfamily. Mammalian IRF9 has been known to be involved in antiviral responses as the DNA sequence recognition subunit of IFN-stimulated gene factor 3 (ISGF3) complex. In fish, only a few studies investigated the characteristics of IRF9 and the role in IFN signaling. In this study, we identified the IRF9 gene from miiuy croaker (mmiIRF9) and studied its feature and function. Sequence analysis showed the similarity of mmiIRF9 and other fish IRF9 genes. Structural and syntenic analysis showed the conservatism in fish IRF9 genes. The result of expression analysis in normal tissues and infected tissues and macrophages showed that mmiIRF9 expressed in all tested normal tissues and up-regulated expression in liver, kidney and macrophages after stimulated with poly(I:C). Luciferase reporter assays demonstrated the mmiIRF9 can induced IFNα and IFNβ luciferase reporters and the cellular localization of mmiIRF9 was mainly distributed in the cytoplasm in Hela cells. Furthermore, the evolutionary analysis of IRF4 subfamily showed the IRF4 and IRF8 may be the most ancient and conservative genes in the evolution of this subfamily.
Collapse
Affiliation(s)
- Qiong Yang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Junxia Cui
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Weihua Song
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xueyan Zhao
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
33
|
Nie L, Xu XX, Xiang LX, Shao JZ, Chen J. Mutual Regulation of NOD2 and RIG-I in Zebrafish Provides Insights into the Coordination between Innate Antibacterial and Antiviral Signaling Pathways. Int J Mol Sci 2017; 18:E1147. [PMID: 28555019 PMCID: PMC5485971 DOI: 10.3390/ijms18061147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/15/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022] Open
Abstract
Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and retinoic acid-inducible gene I (RIG-I) are two important cytosolic pattern recognition receptors (PRRs) in the recognition of pathogen-associated molecular patterns (PAMPs), initiating innate antibacterial and antiviral signaling pathways. However, the relationship between these PRRs, especially in teleost fish models, is rarely reported. In this article, we describe the mutual regulation of zebrafish NOD2 (DrNOD2) and RIG-I (DrRIG-I) in innate immune responses. Luciferase assays were conducted to determine the activation of NF-κB and interferon signaling. Morpholino-mediated knockdown and mRNA-mediated rescue were performed to further confirm the regulatory roles between DrNOD2 and DrRIG-I. Results showed that DrNOD2 and DrRIG-I shared conserved structural hallmarks with their mammalian counterparts, and activated DrRIG-I signaling can induce DrNOD2 production. Surprisingly, DrNOD2-initiated signaling can also induce DrRIG-I expression, indicating that a mutual regulatory mechanism may exist between them. Studies conducted using HEK293T cells and zebrafish embryos showed that DrRIG-I could negatively regulate DrNOD2-activated NF-κB signaling, and DrNOD2 could inhibit DrRIG-I-induced IFN signaling. Moreover, knocking down DrRIG-I expression by morpholino could enhance DrNOD2-initiated NF-κB activation, and vice versa, which could be rescued by their corresponding mRNAs. Results revealed a mutual feedback regulatory mechanism underlying NOD2 and RIG-I signaling pathways in teleosts. This mechanism reflects the coordination between cytosolic antibacterial and antiviral PRRs in the complex network of innate immunity.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Xiao-Xiao Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
34
|
Han J, Sun Y, Song W, Xu T. microRNA-145 regulates the RLR signaling pathway in miiuy croaker after poly(I:C) stimulation via targeting MDA5. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:79-86. [PMID: 27894672 DOI: 10.1016/j.dci.2016.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/19/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that participate in diverse biological processes via degrading the target mRNAs or repressing translation. In this study, the regulation of miRNA to the RLR (RIG-I-like receptor) signaling pathway by degrading the target mRNAs was researched in miiuy croaker. MDA5, a microRNA-145-5p (miR-145-5p) putative target gene, was predicted by bioinformatics, and the target sites from the 3'untranslated region of MDA5 transcripts were confirmed using luciferase reporter assays. Pre-miR-145 was more effective in inhibiting MDA5 than miR-145-5p mimic, and the effect was dose- and time-dependent. The expression patterns of miR-145-5p and MDA5 were analyzed in liver and kidney from miiuy croaker. Results implied that miR-145-5p may function via degrading the MDA5 mRNAs, thereby regulating the RLR signaling pathway. Studies on miR-145-5p will enrich knowledge of its functions in immune response regulation in fish, as well as offer a basis for regulatory networks that are composed of numerous miRNAs.
Collapse
Affiliation(s)
- Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yuena Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Weihua Song
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
35
|
Bi D, Cui J, Chu Q, Xu T. MicroRNA-21 contributes to suppress cytokines production by targeting TLR28 in teleost fish. Mol Immunol 2017; 83:107-114. [PMID: 28129531 DOI: 10.1016/j.molimm.2017.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) as important pattern recognition receptors, play critical roles in identifying pathogens and activating the immune response. However, when the dysregulation was occurred in this process, it could lead to excessive immune response, so it need many regulatory factors to control this process. Recently, microRNAs (miRNAs) have been shown to act as an important regulator in TLRs signaling pathway. As a member of TLRs family, TLR28 has been newly discovered in teleost fish, and play an important role in the immune response. In this study, we found that the expression of miR-21 was up-regulated after poly(I:C) stimulation, and miR-21 could inhibit the expression of cytokines. Then we predicted the target genes of miR-21, and found that TLR28 is a direct target of miR-21, which could be significantly down-regulated by both miR-21 mimics and pre-miR-21. These results suggested that miR-21 can inhibit the expression of cytokines by negative regulation of TLR28, thereby inhibiting the generation of excessive immunity and maintaining the balance of the body. This study is the first to demonstrate that miRNA can suppresses cytokines by regulating the TLR signaling pathway in teleost fish, and also can provides some new ideas for the research of the regulation of miRNA and immune system in mammals.
Collapse
Affiliation(s)
- Dekun Bi
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Junxia Cui
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
36
|
Wang Y, Xu G, Han J, Xu T. miR-200a-3p regulates TLR1 expression in bacterial challenged miiuy croaker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:181-186. [PMID: 27288848 DOI: 10.1016/j.dci.2016.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs which post-transcriptionally regulate various biological processes by repressing mRNA translation or degradating mRNA. It has been demonstrated that miRNAs play crucial roles in regulating the immune system. In this study, we explored the potential roles of miR-200a-3p in regulating TLR signaling pathway in miiuy croaker. Bioinformatics analysis showed that miiuy croaker TLR1 (mmiTLR1) was a putative target of miR-200a-3p. Negative expression profiles in spleen of Vibrio anguillarum challenged miiuy croaker and in lipopolysaccharide (LPS) stimulated miiuy croaker leukocytes further validated the prediction. Luciferase reporter assays showed that the dual-luciferase reporter fused to the 3'UTR of wild type mmiTLR1 cotransfected with miR-200a-3p mimics exhibited a reduction in luciferase activity compared with the controls. All of the present data provide direct evidence that miR-200a-3p is involved in TLR1 expression modulation in miiuy croaker, which will offer a basis for better understanding of miRNA regulation in fish TLR signaling pathways.
Collapse
Affiliation(s)
- Yanjin Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Guoliang Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|