1
|
Wang Q, Wang H, Wang X, Yang C, Li Y, Liao L, Zhu Z, Wang Y, He L. Cell surface heparan sulfate is an attachment receptor for grass carp reovirus. iScience 2025; 28:112033. [PMID: 40104073 PMCID: PMC11914516 DOI: 10.1016/j.isci.2025.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/16/2024] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Grass carp reovirus (GCRV) causes hemorrhagic disease in grass carp, leading to significant economic losses in China's aquaculture. However, the cellular receptors responsible for the initiation of GCRV infection remain unclear. This study reveals that cell surface heparan sulfate (HS) acts as a crucial attachment receptor for GCRV. Removing HS with heparinase significantly reduces GCRV attachment and infection. Both HS and its homologue, heparin, inhibit the attachment of GCRV to cells. Altering HS levels in cells affects GCRV attachment and infection accordingly. GCRV outer capsid proteins VP5, VP56, and VP35, as well as purified GCRV virions, directly bind to HS. Pretreating GCRV with heparin or feeding grass carp with feed containing heparin significantly reduces mortality caused by GCRV infection. Collectively, these results highlight the crucial role of HS as an attachment receptor for GCRV and therefore provide a promising target for the prevention and control of this virus.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanyue Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyang Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Yang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongming Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lanjie Liao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaping Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Libo He
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhang Y, Zhao K, Liu Y, Xu J, Zhang H, Yin Z, Xu P, Jiang Z, Wang S, Mao H, Xu X, Hu C. An oral probiotic vaccine loaded by Lactobacillus casei effectively increases defense against GCRV infection in grass carp. Vaccine 2025; 45:126660. [PMID: 39729770 DOI: 10.1016/j.vaccine.2024.126660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
For a long time, grass carp culture in China has been severely affected by Grass Carp hemorrhagic disease caused by Grass Carp Reovirus (GCRV). At present, vaccines have been widely used for protecting aquatic organisms against infectious diseases, among which oral immunization with Lactobacillus casei is safe and highly effective. This vaccination route has the advantages of easy administration and noninvasive delivery. In this study, the recombinant LC-pVE5523-VP5 was constructed by using the outer capsid protein VP5 of GCRV as the immunogen and pVE5523 as the secretory expression vector. The bacterial powder was prepared from fermented broth by using the vacuum freeze-drying technology. The dried bacterial powder was subsequently mixed with feed and then pressed to pellets. After oral administration of the feed mixed with the recombinant L.casei powder, the expression of the immune-related genes (IFN I, IgM et al.) in grass carp was upregulated significantly. With the increased duration of oral immunization period, serum IgM level was also increased in grass carp. The survival analysis was carried out on the basis of grass carp in response to GCRV challenge. The result showed that the survival rate in the immunized group (74 %) was significantly higher than that in the control group (35 %). The amount of virus replication was also investigated in vaccine-treated fish. The result suggested that the virus content in fish tissue was also significantly less than that of the non-immunized group. The LC-pVE5523-VP5 was still present in the fish intestines 15 days after vaccination. These results indicated that the oral LC-pVE5523-VP5 can effectively protect grass carps from GCRV infection.
Collapse
Affiliation(s)
- Yansong Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Kaiwen Zhao
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jingen Xu
- Jiujiang Academy of Agriculture Sciences, Jiujiang 332000, China
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Zijia Yin
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Pengxia Xu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Zeyin Jiang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang 330031, China; Chongqing Research Institute of Nanchang University 402660, China.
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Liu M, Xu C, Zhou Y, Xue M, Jiang N, Li Y, Huang Z, Meng Y, Liu W, Kong X, Fan Y. Biochemical profiling of the protein encoded by grass carp reovirus genotype II. iScience 2024; 27:110502. [PMID: 39220409 PMCID: PMC11363571 DOI: 10.1016/j.isci.2024.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, we obtained the whole genome sequence of GCRV-DY197 and investigated the localization, post-translational modifications, and host interactions of the 11 viral proteins encoded by GCRV-DY197 in grass carp ovary (GCO) cells. The whole genome sequence is 24,704 kb and contains 11 segments (S1-S11). Subcellular localization showed that the VP1, VP2, VP3, VP5, VP56, and VP35 proteins were localized in both cytoplasm and nucleus, whereas the NS79, VP4, VP41, VP6, and NS38 proteins were localized in the cytoplasm. The NS79 and NS38 proteins were phosphorylated, and the ubiquitination modification sites were identified in VP41 and NS38. An interaction network containing 9 viral proteins and 140 host proteins was also constructed. These results offer a theoretical basis for an in-depth understanding of the biochemical characteristics and pathogenic mechanism of GCRV-II.
Collapse
Affiliation(s)
- Man Liu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453000, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhenyu Huang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453000, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
4
|
Lu Y, Zhao W, Ji N, Xu D, Li Y, Xiao T, Wang J, Zou J. Analysis of tissue tropism of GCRV-II infection in grass carp using a VP35 monoclonal antibody. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105189. [PMID: 38692524 DOI: 10.1016/j.dci.2024.105189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Grass carp, one of the major freshwater aquaculture species in China, is susceptible to grass carp reovirus (GCRV). GCRV is a non-enveloped RNA virus and has a double-layered capsid, causing hemorrhagic disease and high mortalities in infected fish. However, the tropism of GCRV infection has not been investigated. In this study, monoclonal antibodies against recombinant VP35 protein were generated in mice and characterized. The antibodies exhibited specific binding to the N terminal region (1-155 aa) of the recombinant VP35 protein expressed in the HEK293 cells, and native VP35 protein in the GCRV-II infected CIK cells. Immunofluorescent staining revealed that viruses aggregated in the cytoplasm of infected cells. In vivo challenge experiments showed that high levels of GCRV-II viruses were present in the gills, intestine, spleen and liver, indicating that they are the major sites for virus infection. Our study showed that the VP35 antibodies generated in this study exhibited high specificity, and are valuable for the development of diagnostic tools for GCRV-II infection.
Collapse
Affiliation(s)
- Yanan Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China.
| | - Weihua Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Ning Ji
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Dan Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Yaoguo Li
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China; Fisheries College, Hunan Agricultural University, Changsha, 410128, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| |
Collapse
|
5
|
Tao J, Liu L, Huang X, Tu C, Zhang L, Yang S, Bai Y, Li L, Qin Z. FerrylHb induces inflammation and cell death in grass carp (Ctenopharyngodon idella) hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109474. [PMID: 38513914 DOI: 10.1016/j.fsi.2024.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
Grass carp hemorrhagic disease is a significant problem in grass carp aquaculture. It releases highly oxidizing hemoglobin (Hb) into tissues, induces rapid autooxidation, and subsequently discharges cytotoxic reactive oxygen species (ROS). However, the mechanism underlying Hb damage to the teleost remains unclear. Here, we employed ferrylHb and heme to incubate L8824 (grass carp liver) cells and quantitatively analyzed the corresponding molecular regulation using the RNA-seq method. Based on the RNA-seq analysis data, after 12 h of incubation of the L8824 cells with ferrylHb, a total of 3738 differentially expressed genes (DEGs) were identified, 1824 of which were upregulated, and 1914 were downregulated. A total of 4434 DEGs were obtained in the heme treated group, with 2227 DEGs upregulated and 2207 DEGs downregulated. KEGG enrichment analysis data revealed that the incubation of ferrylHb and heme significantly activated the pathways related to Oxidative Phosphorylation, Autophagy, Mitophagy and Protein Processing in Endoplasmic Reticulum. The genes associated with NF-κB, autophagy and apoptosis pathways were selected for further validation by quantitative real-time RT-PCR (qRT-PCR). The results were consistent with the RNA-seq data. Taken together, the incubation of Hb and heme induced the molecular regulation of L8824, which consequently led to programmed cell death through multiple pathways.
Collapse
Affiliation(s)
- Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lihan Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Xiaoman Huang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Chenming Tu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanhan Bai
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
6
|
Zeng Q, Sun Y, Lai P, Huang M, Peng X, Huang J, Chen Q, Chen Y, Wang H. Identification of a potential antigen stimulating immune response against Vibrio parahaemolyticus infection in hybrid tilapia (Oreochromis aureus♂ × Oreochromis niloticus♀). JOURNAL OF FISH DISEASES 2024; 47:e13904. [PMID: 38069492 DOI: 10.1111/jfd.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 02/09/2024]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a major pathogen that causes substantial losses in the marine fishery. With the emergence of antibiotic resistance, vaccines have become the most effective approach against V. parahaemolyticus infection. Adhesion factors on the cell surface are pivotal in the colonization and pathogenesis of V. parahaemolyticus within the host, highlighting their potential as vaccine candidates. This study aims to assess the immunogenicity and potential of recombinant V. parahaemolyticus MAM7 (rMAM7) as a vaccine candidate. Initially, we cloned and purified the MAM7 protein of V. parahaemolyticus. Moreover, after 4 weeks of vaccination, the fish were challenged with V. parahaemolyticus. rMAM7 demonstrated a certain protective effect. Immunological analysis revealed that rMAM7 immunization-induced antibody production and significantly increased acid phosphatase (ACP) and alkaline phosphatase (AKP) activity in hybrid tilapia. Furthermore, serum bactericidal tests demonstrated a lower bacterial survival rate in the rMAM7 group compared to PBS and rTrxa. qRT-PCR results indicated that rMAM7 significantly upregulated CD4, CD8 and IgM gene expression, suggesting the induction of Th1 and Th2 responses in hybrid tilapia. Overall, these findings highlight the potential application of MAM7 from V. parahaemolyticus in the development of protein vaccines.
Collapse
Affiliation(s)
- Qingsong Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yunxiao Sun
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Peifang Lai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Mingqin Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Ximing Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Junjie Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Qintao Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yanxu Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Huaqian Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Wang Y, Zheng S, Zeng W, Yin J, Li Y, Ren Y, Mo X, Shi C, Bergmann SM, Wang Q. Comparative transcriptional analysis between virulent isolate HN1307 and avirulent isolate GD1108 of grass carp reovirus genotype II. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104893. [PMID: 37451563 DOI: 10.1016/j.dci.2023.104893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
As a widespread epidemic virus, genotype II of the grass carp reovirus poses a significant threat to the grass carp farming industry in China. Different genotype II isolates cause different degrees of virulence, although the underlying pathogenic mechanisms remain largely unknown. In this work, infections of grass carp with the virulent isolate grass carp reovirus (GCRV)-HN1307 and the avirulent isolate GCRV-GD1108 were performed to reveal a possible mutual transcriptional discrepancy. More differentially expressed genes (DEGs) were identified in the HN1307-infected group, which defined a grossly similar gene ontology (GO) pattern and different pathway landscape as the GD1108-infected group. Gene set enrichment analysis revealed that pathways related to innate immunity and metabolism were reciprocally activated and suppressed, respectively, following infection withHN1307, compared with GD1108. The trend analysis further indicated that immune-related pathways were involved in one of the four statistically significant profiles. Network analysis of transcription factor-gene interactions and protein-protein interactions on the immune-related profile suggested that among the core transcriptional factors (TFs) (UBTF, HCFC1, MAZ, MAX, and NRF1) and the hub proteins (Tlr3, Tlr7, Tlr9, Irf3, and Irf7), the latter were highly enriched in the toll-like receptor signaling pathway. Real-time quantitative PCR performed on the selected mRNAs validated the relative expression. This work will provide insights into the distinct transcriptional signatures from avirulent and virulent isolates of GCRV, which may contribute to the development of products for prevention.
Collapse
Affiliation(s)
- Yingying Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Shucheng Zheng
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Weiwei Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China.
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Yingying Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Yan Ren
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Xubing Mo
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany.
| | - Qing Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| |
Collapse
|
8
|
Wang T, Jin S, Lv R, Meng Y, Li G, Han Y, Zhang Q. Development of an indirect ELISA for detection of the adaptive immune response of black carp (Mylopharyngodon piceus). J Immunol Methods 2023; 521:113550. [PMID: 37661050 DOI: 10.1016/j.jim.2023.113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/02/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Black carp (Mylopharyngodon piceus) is an important fishery resource and the main breeding target in China. Due to the lack of an assay of immunoglobulin M (IgM) antibodies in black carp, there is no effective method to evaluate adaptive immune response, which limits immunological studies and vaccine development. The present study used mAbs (monoclonal antibodies) against serum IgM of grass carp as capture antibodies. The results of Western blot analysis indicated that these antibodies had strong affinity and specificity to IgM heavy chain in black carp serum and were used to detect the antibody titer, optimize the conditions, perform a sensitivity test, and develop an indirect ELISA (enzyme-linked immunosorbent assay) to detect specific IgM antibodies in the serum. This detection method has good specificity and is effective only for grass carp (Ctenopharyngodon idella) and black carp and not for crucian carp (Carassius aumtus), silver carp (Hypophthalmichthys molitrix), bighead carp (Hypophthalmichthys nobilis), mandarin fish (Siniperca chuatsi), black bream (Megalobrama skolkovii), or yellow catfish (Pseudobagrus fulvidraco). The lowest antigen detection level was 0.05 μg/ml. The error of experimental repetition in the same sample was 1.61-4.61%. The levels of specific IgM in black carp serum were steadily increased after immunization, peaked on day 28, and then slowly decreased. Indirect ELISA can be applied to detect the changes in specific antibodies in black carp serum. Moreover, indirect ELISA provides a convenient and reliable serological detection method for immunological research and evaluation of immune effects of a vaccine in black carp.
Collapse
Affiliation(s)
- Tongtong Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Shanshan Jin
- School of Agriculture, Ludong University, Yantai, China
| | - Ruoxuan Lv
- School of Agriculture, Ludong University, Yantai, China
| | - Yuting Meng
- School of Agriculture, Ludong University, Yantai, China
| | - Guozhong Li
- School of Agriculture, Ludong University, Yantai, China
| | - Yuxing Han
- School of Agriculture, Ludong University, Yantai, China
| | - Qiusheng Zhang
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
9
|
Ren HT, An HY, Du MX, Zhou J. Effects of Zinc Adaptation on Histological Morphology, Antioxidant Responses, and Expression of Immune-Related Genes of Grass Carp (Ctenopharyngodon idella). Biol Trace Elem Res 2022; 200:5251-5259. [PMID: 35015244 DOI: 10.1007/s12011-022-03112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/08/2022] [Indexed: 11/02/2022]
Abstract
The study was conducted to evaluate the effect of zinc adaptation on histological morphology and antioxidant and immune responses of grass carp(Ctenopharyngodon idella). A total of 180 young grass carp (20.0 ± 2.0 g) was equally distributed into 9 groups, and triplicate groups were subjected to 0 μg/L Zn2+ (control group), 200 μg/L Zn2+, and 300 μg/L Zn2+ solution for 42 days, respectively. The results indicated that the liver and gill have obvious pathological changes after long-term adaptation to zinc except the intestine; the zinc adaptation can positively influence intestinal morphology. The activities of GPX (glutathione peroxidase activity), SOD (superoxide dismutase), and CAT (Catalase) were significantly increased in zinc treatment groups (P < 0.05). The genes expression levels of CuZnSOD (copper zinc superoxide dismutase), CAT, Hsp70 (heat shock protein-70), IL-1b (interleukin-1-b), and TGF-β1 (transforming growth factor-β1) were upregulated in the gill and intestine of grass carp following waterborne adaptation to zinc solution for 42 days (P < 0.05). In conclusion, zinc adaptation has different effects on organs of grass carp and may reduce the inflammatory response of the body's gills and intestines by improving the body's antioxidant and anti-stress defense capabilities.
Collapse
Affiliation(s)
- Hong Tao Ren
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Hui Ying An
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Ming Xing Du
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jian Zhou
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
10
|
Mu C, Zhong Q, Meng Y, Zhou Y, Jiang N, Liu W, Li Y, Xue M, Zeng L, Vakharia VN, Fan Y. Oral Vaccination of Grass Carp ( Ctenopharyngodon idella) with Baculovirus-Expressed Grass Carp Reovirus (GCRV) Proteins Induces Protective Immunity against GCRV Infection. Vaccines (Basel) 2021; 9:41. [PMID: 33445494 PMCID: PMC7827918 DOI: 10.3390/vaccines9010041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 11/17/2022] Open
Abstract
The grass carp reovirus (GCRV) causes severe hemorrhagic disease with high mortality and leads to serious economic losses in the grass carp (Ctenopharyngodon idella) industry in China. Oral vaccine has been proven to be an effective method to provide protection against fish viruses. In this study, a recombinant baculovirus BmNPV-VP35-VP4 was generated to express VP35 and VP4 proteins from GCRV type Ⅱ via Bac-to-Bac baculovirus expression system. The expression of recombinant VP35-VP4 protein (rVP35-VP4) in Bombyx mori embryo cells (BmE) and silkworm pupae was confirmed by Western blotting and immunofluorescence assay (IFA) after infection with BmNPV-VP35-VP4. To vaccinate the grass carp by oral route, the silkworm pupae expressing the rVP35-VP4 proteins were converted into a powder after freeze-drying, added to artificial feed at 5% and fed to grass carp (18 ± 1.5 g) for six weeks, and the immune response and protective efficacy in grass carp after oral vaccination trial was thoroughly investigated. This included blood cell counting and classification, serum antibody titer detection, immune-related gene expression and the relative percent survival rate in immunized grass carp. The results of blood cell counts show that the number of white blood cells in the peripheral blood of immunized grass carp increased significantly from 14 to 28 days post-immunization (dpi). The differential leukocyte count of neutrophils and monocytes were significantly higher than those in the control group at 14 dpi. Additionally, the number of lymphocytes increased significantly and reached a peak at 28 dpi. The serum antibody levels were significantly increased at Day 14 and continued until 42 days post-vaccination. The mRNA expression levels of immune-related genes (IFN-1, TLR22, IL-1β, MHC I, Mx and IgM) were significantly upregulated in liver, spleen, kidney and hindgut after immunization. Four weeks post-immunization, fish were challenged with virulent GCRV by intraperitoneal injection. The results of this challenge study show that orally immunized group exhibited a survival rate of 60% and relative percent survival (RPS) of 56%, whereas the control group had a survival rate of 13% and RPS of 4%. Taken together, our results demonstrate that the silkworm pupae powder containing baculovirus-expressed VP35-VP4 proteins could induce both non-specific and specific immune responses and protect grass carp against GCRV infection, suggesting it could be used as an oral vaccine.
Collapse
Affiliation(s)
- Changyong Mu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (C.M.); (Y.M.); (Y.Z.); (N.J.); (W.L.); (Y.L.); (M.X.); (L.Z.)
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Qiwang Zhong
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (C.M.); (Y.M.); (Y.Z.); (N.J.); (W.L.); (Y.L.); (M.X.); (L.Z.)
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (C.M.); (Y.M.); (Y.Z.); (N.J.); (W.L.); (Y.L.); (M.X.); (L.Z.)
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (C.M.); (Y.M.); (Y.Z.); (N.J.); (W.L.); (Y.L.); (M.X.); (L.Z.)
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (C.M.); (Y.M.); (Y.Z.); (N.J.); (W.L.); (Y.L.); (M.X.); (L.Z.)
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (C.M.); (Y.M.); (Y.Z.); (N.J.); (W.L.); (Y.L.); (M.X.); (L.Z.)
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (C.M.); (Y.M.); (Y.Z.); (N.J.); (W.L.); (Y.L.); (M.X.); (L.Z.)
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (C.M.); (Y.M.); (Y.Z.); (N.J.); (W.L.); (Y.L.); (M.X.); (L.Z.)
| | - Vikram N. Vakharia
- Institute of Marine and Environmental Technology, University of Maryland Baltimore Country, Baltimore, MD 21202, USA
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (C.M.); (Y.M.); (Y.Z.); (N.J.); (W.L.); (Y.L.); (M.X.); (L.Z.)
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
- Institute of Marine and Environmental Technology, University of Maryland Baltimore Country, Baltimore, MD 21202, USA
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
11
|
Jia YJ, Guo ZR, Ma R, Qiu DK, Wang GX, Zhu B. Protective immunity of largemouth bass immunized with immersed DNA vaccine against largemouth bass ulcerative syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2020; 107:269-276. [PMID: 33068760 DOI: 10.1016/j.fsi.2020.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
To reduce the largemouth bass ulcer syndrome (LBUSV) aquatic economic losses, it must take effective preventive measures and coping strategies should be urgently investigated. In this research, the effects of a functionalized single-walled carbon nanotubes (SWCNTs) applied as a delivery vehicle for DNA vaccine administration in largemouth bass (Micropterus Salmoides) against LBUSV were studied. Our results showed that SWCNTs loaded with DNA vaccine induced a better protection to largemouth bass against LBUSV. We found more than 10 times increase in serum antibody levels, enzyme activities and immune-related genes (IL-6, IL-8, IFN-γ, IgM and TNF-α) expression, in the SWCNTs-pcDNA-MCP immunized groups compared with PBS group and the pure SWCNTs group. The survival rates for control group (PBS), pure SWCNTs groups (40 mg L-1), four pcDNA-MCP groups (5 mg L-1, 10 mg L-1, 20 mg L-1 and 40 mg L-1) and four SWCNTs-pcDNA-MCP groups (5 mg L-1, 10 mg L-1, 20 mg L-1 and 40 mg L-1) were 0%, 0%, 0%, 2.77%, 11.11%, 19.44%, 27.78%, 38.89%, 52.78% and 61.11%, respectively. Our results demonstrate that the SWCNTs-DNA vaccine can be used as a new method against LBUSV showing protection following challenge with LBUSV.
Collapse
Affiliation(s)
- Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Zi-Rao Guo
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Rui Ma
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - De-Kui Qiu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
Wang L, Wang X, Ma J, Yang K, Feng X, You X, Wang S, Zhang Y, Xiong G, Wang L, Sun W. Effects of radio frequency heating on water distribution and structural properties of grass carp myofibrillar protein gel. Food Chem 2020; 343:128557. [PMID: 33199125 DOI: 10.1016/j.foodchem.2020.128557] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/27/2020] [Accepted: 11/01/2020] [Indexed: 11/28/2022]
Abstract
This study explored effects of radio frequency (RF, 27.12 MHz, 3 kW) heating replacing the first stage (electrode gaps of 120, 140 and 160 mm) or/and the second stage (95 mm) of the water bath heating on water distribution and structural characteristics of grass carp myofibrillar proteins gels. Compared with control, RF heating (140) during the first stage significantly reduced the total time to prepare gels from 70 min to 45.3 min and increased springiness and water holding capacity from 62.9% to 68.3%. It may be attributed to the appropriate RF heating contributing to α-helix turning into random coil and cross-linking via hydrophobic interactions and disulfide bonds, thus forming smooth gels with clear network structures. Structural changes further affected water distribution (immobilized water increasing from 97.8% to 98.7%). Namely, RF (140 mm) heating improved water distribution and structural characteristics of gels, which provided basic information for RF heating surimi gels.
Collapse
Affiliation(s)
- Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| | - Xian Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| | - Xiaolong Feng
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| | - Xiaopeng You
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China; Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, Hubei, 430064, PR China.
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering Northwest A&F University, Yangling 712100, China.
| | - Yunhua Zhang
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023, PR China.
| | - Guangquan Xiong
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, Hubei, 430064, PR China.
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, Hubei, 430064, PR China.
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| |
Collapse
|
13
|
Zhao Z, Xiong Y, Zhang C, Jia YJ, Qiu DK, Wang GX, Zhu B. Optimization of the efficacy of a SWCNTs-based subunit vaccine against infectious spleen and kidney necrosis virus in mandarin fish. FISH & SHELLFISH IMMUNOLOGY 2020; 106:190-196. [PMID: 32755683 DOI: 10.1016/j.fsi.2020.07.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) cause a high mortality disease which brings substantial economic losses to the mandarin fish culture industry in China. This study was aimed at optimizing the efficacy of a SWCNTs-based immersion subunit vaccine (SWCNTs-M-MCP) which as a promising vaccine against ISKNV. Mandarin fish were vaccinated by immersion, then we designed an orthogonal experiment to optimize different parameters affecting vaccination such as immune duration of bath immunization, immune dose, and fish density when immunized. Our results showed that the highest relative percent survival (86.7%) was found in the group 6 with 8 h of immune duration, 20 mg/L of immune dose, and 8 fish per liter of fish density. And other immune responses (serum antibody production, enzyme activities, and immune-related genes expression) also demonstrated similar results. In addition, the expression of IRF-I in group 6 (8 h, 20 mg/L, 8 fish per liter) was significant extents, and about 16-folds increases were obtained than the control group at 21 d post-vaccination. And the highest specific antibody response was significantly increased (more than 4-folds) than control group which was found in group 6. The optimum immune duration, immune dose, and fish density of SWCNTs-M-MCP were 8 h, 20 mg/L, 8 fish per liter, respectively. Importantly, our results also showed that immune duration had the greatest effect on the immune response of our vaccine, followed by immune dose. The study reported herein provides a helpful reference for the effective use of vaccine in fish farming industry.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yan Xiong
- Yunnan Institute of Fishery Sciences Research, Kunmin, 650224, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - De-Kui Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
14
|
Zhao L, Tang X, Sheng X, Xing J, Chi H, Zhan W. Different immune responses of flounder (Paralichthys olivaceus) towards the full-length and N-terminal or C-terminal portion of hirame novirhabdovirus glycoprotein. FISH & SHELLFISH IMMUNOLOGY 2020; 104:279-288. [PMID: 32505718 DOI: 10.1016/j.fsi.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Glycoprotein is an important immunogenic protein of Hirame novirhabdovirus (HIRRV). In this study, the full-length and N-/C-terminal portions of glycoprotein were recombinantly expressed (rG, rGn and rGc protein), and the induced immune responses were investigated in flounder (Paralichthys olivaceus) model. The results showed that compared to PBS control, rG, rGn and rGc proteins and inactivated HIRRV suspension (iVS) could all stimulate significant increases of flounder CD4-1+, CD4-2+ T lymphocytes and surface IgM positive (sIgM+) B lymphocytes in peripheral blood, spleen and head kidney (p < 0.05). However, no significant differences of the percentages of CD4-1+ or CD4-2+ T lymphocytes were observed among three protein vaccination groups (p > 0.05). iVS could induce the highest mean levels of CD4+ T lymphocytes in peripheral blood and spleen. For sIgM+ B lymphocytes, the average peak percentages in rG and rGc groups were higher than rGn group. Moreover, significant increases of specific serum IgM against HIRRV or rG protein were observed in iVS, rG, rGn and rGc groups, but rG group exhibited the highest mean level. Furthermore, rG protein induced the highest titer of neutralizing antibodies against HIRRV, followed by iVS. Meanwhile, the challenge test showed that the relative percent survival (RPS) of rG, rGn, rGc and iVS groups were 75.0%, 35.7%, 53.6% and 60.7%, respectively. These results revealed that the full-length G protein would be a more effective subunit vaccine candidate against HIRRV infection.
Collapse
Affiliation(s)
- Lining Zhao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
15
|
Chen X, Xie J, Liu Z, Yin P, Chen M, Liu Y, Tian L, Niu J. Modulation of growth performance, non-specific immunity, intestinal morphology, the response to hypoxia stress and resistance to Aeromonas hydrophila of grass carp (Ctenopharyngodon idella) by dietary supplementation of a multi-strain probiotic. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108724. [PMID: 32061958 DOI: 10.1016/j.cbpc.2020.108724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
The present study was conducted to evaluate a multi-strain probiotic (MP) on growth performance, immune and antioxidant function, response to hypoxia stress and resistance to Aeromonas hydrophila of grass carp (Ctenopharyngodon idella). Based on the viable cell counts of aerobic Bacillus spp., six experimental diets with MP supplemented at 0, 0.34, 1.68, 3.36, 6.72, 10.1 g kg-1 were formulated and 900 juveniles (7.30 ± 0.01 g) were equally distributed into 30 aquaria with respective diet for 60 days. Results showed that fish with 0.34-1.68 g kg-1 MP had better growth and feed utilization. Further, plasma total protein, albumin and high-density lipoprotein were remarkably increased with dietary MP at >1.68 g kg-1. Dietary MP supplementation at 6.72-10.1 g kg-1 strikingly elevated plasma myeloperoxidase activity and complement C3 content. For fish with MP at 1.68 and 6.72-10.1 g kg-1, their liver malondialdehyde and glutathione peroxidase were remarkably declined and promoted. After hypoxia stress, fish with 3.36-6.72 g kg-1 MP showed significantly higher respiratory burst activity. Challenge test by A. hydrophila confirmed the protection effects of MP through the decreased cumulative mortality rates. For intestinal histomorphology and enzymatic analyses, fish with 1.68 g kg-1 MP displayed significantly higher intestinal villi height, goblet cells and alkaline phosphatase activity. In conclusion, dietary MP supplementation at 1.68 g kg-1 could promote growth, intestinal morphology and antioxidant capacity, while enhancing host immunity requires higher dosages of MP. Broken-line analysis of weight gain revealed that 1.34 g kg-1 is the optimum dosage for the growth of grass carp.
Collapse
Affiliation(s)
- Xianquan Chen
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jiajun Xie
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhenlu Liu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Peng Yin
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ming Chen
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yongjian Liu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lixia Tian
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jin Niu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
16
|
Jia YJ, Guo ZR, Ma R, Qiu DK, Zhao Z, Wang GX, Zhu B. Immune efficacy of carbon nanotubes recombinant subunit vaccine against largemouth bass ulcerative syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2020; 100:317-323. [PMID: 32173450 DOI: 10.1016/j.fsi.2020.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Largemouth bass ulcerative syndrome virus (LBUSV) is an important virus induce the mortality of largemouth bass (Micropterus Salmoides). In this study, we reported a single-walled carbon nanotubes (SWCNTs) containing LBUSV major capsid protein (MCP) subunit vaccine (SWCNTs-MCP) which was evaluated for its protective effect on largemouth bass by immersion immunization. We found an elevation in serum antibody levels, enzyme activities, complement C3 content and immune-related genes (IgM, TGF-β, IL-1β, IL-8, TNF-α and CD4) expression, in the SWCNTs-MCP immunized groups compared with the pure MCP group. The survival rates for control group, pure MCP protein groups (40 mg L-1) and four SWCNTs-MCP groups (5 mg L-1, 10 mg L-1, 20 mg L-1 and 40 mg L-1) were 0%, 27.78%, 30.56%, 50.00%, 66.67% and 80.56%, respectively. The results suggests that with the assistance of SWCNTs, the immune protection of the SWCNTs-MCP group (40 mg L-1) increased up 52.78%-80.1% compared with pure MCP group (40 mg L-1). Our results demonstrate that the single-walled carbon nanotube subunit vaccine can be used as a new immunization method against LBUSV showing protection following challenge with LBUSV. Taken together, our results demonstrate that the single-walled carbon nanotube subunit vaccine can be used as a new method against LBUSV and have a high immune protection during the largemouth bass farm.
Collapse
Affiliation(s)
- Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Zi-Rao Guo
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Rui Ma
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - De-Kui Qiu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
Guo ZR, Zhao Z, Zhang C, Jia YJ, Qiu DK, Zhu B, Wang GX. Carbon nanotubes-loaded subunit vaccine can increase protective immunity against rhabdovirus infections of largemouth bass (Micropterus Salmoides). FISH & SHELLFISH IMMUNOLOGY 2020; 99:548-554. [PMID: 32109609 DOI: 10.1016/j.fsi.2020.02.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Micropterus Salmoides rhabdovirus (MSRV), as a common aquatic animal virus, can cause lethal and epidemic diseases in the cultivation of largemouth bass. In this study, we reported a kind of immersion single-walled carbon nanotubes-loaded subunit vaccine which composited by glycoprotein (G) of MSRV, and evaluated its protective effect on largemouth bass. The results showed that a stronger immune response including serum antibody levels, enzyme activities (superoxide dismutase, acid phosphatase, alkaline phosphatase and total antioxidant capacity), complement C3 content and immune-related genes (IgM, TGF-β, IL-1β, IL-8, TNF-α, CD4) expression can be induced obviously with single-walled carbon nanotubes-glycoprotein (SWCNTs-G) groups compared with G groups when largemouth bass were vaccinated. After bath immunization with G or SWCNTs-G for 28 days, fish were challenged with a lethal dose of MSRV. The survival rates for control group (PBS), SWCNTs group (40 mg L-1), pure G protein groups (40 mg L-1) and three SWCNTs-G groups (5 mg L-1, 10 mg L-1 and 40 mg L-1) were 0%, 0%, 39.5%, 36.7%, 43.6%and 70.1%, respectively. Importantly, with the assistance of SWCNTs, the immune protective rate of the SWCNTs-G group (40 mg L-1) increased by approximately 30.6%. This study suggested that SWCNTs-G is a promising immersion subunit vaccine candidate against the death caused by MSRV.
Collapse
Affiliation(s)
- Zi-Rao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - De-Kui Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
18
|
Sun Y, Ding S, He M, Liu A, Long H, Guo W, Cao Z, Xie Z, Zhou Y. Construction and analysis of the immune effect of Vibrio harveyi subunit vaccine and DNA vaccine encoding TssJ antigen. FISH & SHELLFISH IMMUNOLOGY 2020; 98:45-51. [PMID: 31887410 DOI: 10.1016/j.fsi.2019.12.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Vibrio harveyi, a severe pathogen infects different kinds of sea animals, causes huge economic loss in aquaculture industry. In order to control the Vibriosis disease caused mainly by V. harveyi and other Vibrio spp., the best solution lies in developing corresponding efficient vaccines. In this study, we have cloned and analysed a putative antigen TssJ from the T6SS of V. harveyi, which has the potential as a vaccine against infection. The sequence analysis and western blotting experiments indicated that TssJ anchored in outer membrane and there were several antigenic determinants existed on its extracellular region. Two forms of universal vaccines, subunit vaccine and DNA vaccine, were developed based on TssJ and applied in Trachinotus ovatus. The results showed that both of the two vaccines could generate a moderate protection in fish against V. harveyi. The relative percentage survival (RPS) of subunit vaccine and DNA vaccine were 52.39% and 69.11%, respectively. Immunological analysis showed both subunit vaccine and DNA vaccine enhanced acid phosphatase, alkaline phosphatase, superoxide dismutase, and lysozyme activities. Specific serum antibodies against TssJ in the fish vaccinated with subunit vaccine was much higher than that in the DNA vaccine group. Several immune-related genes, i.e., IL10, C3, MHC Iα, MHC IIα, and IgM, were induced both by the two forms of vaccines. TNFα and Mx were only upregulated in the DNA vaccine group. However, the induction levels of these genes induced by DNA vaccine were higher than subunit vaccine. All these findings suggested that TssJ from V. harveyi had a potential application value in vaccine industry.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Susu Ding
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Mingwang He
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Anzhu Liu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Weiliang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenyu Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
19
|
Zhong JR, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhou XQ. Phytic acid disrupted intestinal immune status and suppressed growth performance in on-growing grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 92:536-551. [PMID: 31247320 DOI: 10.1016/j.fsi.2019.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/23/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Phytic acid (PA) is one of the most common anti-nutritional factors in plant-derived protein feeds, and it poses considerable threats to aquaculture production. However, little is known about the effects of PA on fish intestinal health. This study aimed to investigate the impacts of PA on intestinal immune function in on-growing grass carp. To achieve this goal, a growth trial was conducted for 60 days by feeding 540 fish (120.56 ± 0.51 g) with six semi-purified diets containing graded levels of PA (0, 0.8, 1.6, 2.4, 3.2 and 4.0%). Then fish were challenged with Aeromonas hydrophila for 6 days. The results indicated that, compared with the control group (0% PA), PA did the following: (1) suppressed fish growth performance (percentage weight gain and feed efficiency) and reduced their ability to resist enteritis; (2) decreased fish intestinal antimicrobial ability by reducing intestinal lysozyme (LZ) activities, the contents of complement 3 (C3), C4 and immunoglobulin M (IgM), and downregulating the mRNA levels of hepcidin, liver-expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, and β-defensin-1; and (3) aggravated fish intestinal inflammation responses by upregulating the mRNA levels of pro-inflammatory cytokines including tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) (except in the DI), interferon γ2 (IFN-γ2), IL-8, IL-12p40, IL-15 (except in the DI) and IL-17D, which is partly related to the nuclear factor kappa B (NF-κB) signalling pathway, whereas downregulating the mRNA levels of anti-inflammatory cytokines including transforming growth factor β1 (TGF-β1), IL-4/13A, IL-4/13B, IL-10 and IL-11, which is partially associated with the target of rapamycin (TOR) signalling pathway. The possible reasons for some distinctive gene expression patterns in fish three intestinal segments were discussed. Finally, based on the percent weight gain, enteritis morbidity, IgM content and LZ activity in the PI, the maximum tolerance levels of PA for on-growing grass carp were estimated to be 2.17, 1.68, 1.47 and 1.18% of the diet, respectively.
Collapse
Affiliation(s)
- Jing-Ren Zhong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|