1
|
Solomon P, Kaurani L, Budde M, Guiné JB, Krüger DM, Riquin K, Pena T, Burkhardt S, Fourgeux C, Adorjan K, Heilbronner M, Kalman JL, Kohshour MO, Papiol S, Reich-Erkelenz D, Schaupp SK, Schulte EC, Senner F, Vogl T, Anghelescu IG, Arolt V, Baune BT, Dannlowski U, Dietrich DE, Fallgatter AJ, Figge C, Juckel G, Konrad C, Reimer J, Reininghaus EZ, Schmauß M, Spitzer C, Wiltfang J, Zimmermann J, Schütz AL, Sananbenesi F, Sauvaget A, Falkai P, Schulze TG, Fischer A, Heilbronner U, Poschmann J. Integrative analysis of miRNA expression profiles reveals distinct and common molecular mechanisms underlying broad diagnostic groups of severe mental disorders. Mol Psychiatry 2025:10.1038/s41380-025-03018-9. [PMID: 40263528 DOI: 10.1038/s41380-025-03018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Micro RNAs (miRNAs) play a crucial role as regulators of various biological processes and have been implicated in the pathogenesis of mental disorders such as schizophrenia and bipolar disorders. In this study, we investigate the expression patterns of miRNAs in the PsyCourse Study (n = 1786), contrasting three broad diagnostic groups: Psychotic (Schizophrenia-spectrum disorders), Affective (Bipolar Disorder I, II and recurrent Depression), and neurotypic healthy individuals. Through comprehensive analyses, including differential miRNA expression, miRNA transcriptome-wide association study (TWAS), and predictive modelling, we identified multiple miRNAs unique to Psychotic and Affective groups as well as shared by both. Furthermore, we performed integrative analysis to identify the target genes of the dysregulated miRNAs and elucidate their potential roles in psychosis. Our findings reveal significant alterations of multiple miRNAs such as miR-584-3p and miR-99b-5p across the studied diagnostic groups, highlighting their role as molecular correlates. Additionally, the miRNA TWAS analysis discovered previously known and novel genetically dysregulated miRNAs confirming the relevance in the etiology of the diagnostic groups. Importantly, novel factors and putative molecular mechanisms underlying these groups were uncovered through the integration of miRNA-target gene interactions. This comprehensive investigation provides valuable insights into the molecular underpinnings of severe mental disorders, shedding light on the complex regulatory networks involving miRNAs.
Collapse
Affiliation(s)
- Pierre Solomon
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Lalit Kaurani
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Jean-Baptiste Guiné
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Dennis Manfred Krüger
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Kevin Riquin
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Tonatiuh Pena
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susanne Burkhardt
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Cynthia Fourgeux
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Maria Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina K Schaupp
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Centers for Psychiatry Suedwuerttemberg, Ravensburg, Ravensburg, Germany
| | - Thomas Vogl
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Ion-George Anghelescu
- Department of Psychiatry and Psychotherapy, Mental Health Institute Berlin, Berlin, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Bernhardt T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Detlef E Dietrich
- AMEOS Clinical Center Hildesheim, Hildesheim, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
- Department of Psychiatry, Medical School of Hannover, Hannover, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), partner site Tübingen, Tübingen, Germany
| | - Christian Figge
- Karl-Jaspers Clinic, European Medical School Oldenburg-Groningen, Oldenburg, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Agaplesion Diakonieklinikum, Rotenburg, Germany
| | - Jens Reimer
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Psychosocial Medicine, Academic Teaching Hospital Itzehoe, Itzehoe, Germany
| | - Eva Z Reininghaus
- Division of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Max Schmauß
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Augsburg University, Medical Faculty, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Carsten Spitzer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Disease (DZNE), Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Jörg Zimmermann
- Psychiatrieverbund Oldenburger Land GMBH, Karl-Jaspers-Klinik, Bad Zwischenahn, Germany
| | - Anna-Lena Schütz
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Anne Sauvaget
- Nantes Université, CHU Nantes, Movement - Interactions - Performance, MIP, UR 4334, Nantes, France
| | - Peter Falkai
- Max Planck Institute of Psychiatry, Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - André Fischer
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Jeremie Poschmann
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| |
Collapse
|
2
|
Li S, Liu J, Xu W, Zhang S, Zhao M, Miao L, Hui M, Wang Y, Hou Y, Cong B, Wang Z. A multi-class support vector machine classification model based on 14 microRNAs for forensic body fluid identification. Forensic Sci Int Genet 2025; 75:103180. [PMID: 39591840 DOI: 10.1016/j.fsigen.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/30/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
MicroRNAs (miRNAs) are promising biomarkers for forensic body fluid identification owing to their small size, stability against degradation, and differential expression patterns. However, the expression of most body fluid-miRNAs is relative (differentially expressed in certain body fluids) rather than absolute (exclusively expressed in a specific body fluid). Moreover, different body fluids contain heterogeneous cell types, complicating their identification. Therefore, appropriate normalization strategies to eliminate non-biological variations and robust models to interpret expression levels accurately are necessary prerequisites for applying miRNAs in body fluid identification. In this study, the expression stability of six candidate reference genes (RGs) across five body fluids was validated using geNorm, NormFinder, BestKeeper and RankAggreg, and the most suitable combination of RGs (hsa-miR-484 and hsa-miR-191-5p) was identified under our experimental conditions. Subsequently, we systematically evaluated the expression patterns of the 28 most promising body fluid-specific miRNA markers using TaqMan RT-qPCR and selected the optimal combination of markers (12 miRNAs) to establish a multi-class support vector machine (MSVM) classification model. An independent test set (60 samples) was used to validate the accuracy of the proposed classification model, while an additional 30 casework samples were used to assess its robustness. The MSVM model accurately predicted the body fluid origin for almost all (59/60) single-source samples. Moreover, this model demonstrated the capability to identify aged forensic samples and to predict the primary components of mixed stains to a certain extent. In summary, this study presented a miRNA-based MSVM classification model for forensic body fluid identification using the qPCR platform. However, extensive validation, especially inter-laboratory collaborative exercises, is necessary before miRNA can be routinely applied in forensic identification practice.
Collapse
Affiliation(s)
- Suyu Li
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Wei Xu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Criminal Investigation Detachment of Huainan Public Security Bureau, Huainan 232000, China
| | - Shuyuan Zhang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mengyao Zhao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lu Miao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Criminal Investigation Detachment of Huainan Public Security Bureau, Huainan 232000, China
| | - Minxiao Hui
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuan Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Anhui Hopegenerich Biotechnology, Hefei 230031, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Sun W, Huang A, Wen S, Kong Q, Liu X. Investigation into temporal changes in the human bloodstain lipidome. Int J Legal Med 2025; 139:303-317. [PMID: 39249528 DOI: 10.1007/s00414-024-03330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Bloodstains are crucial pieces of physical evidences found at violent crime scenes, providing valuable information for reconstructing forensic cases. However, there is limited data on how bloodstain lipidomes change over time after deposition. Hence, we deployed a high-throughput high-performance liquid chromatography-mass spectrometry (HPLC-MS) approach to construct lipidomic atlases of bloodstains, whole blood, plasma, and blood cells from 15 healthy adults. A time-course analysis was also performed on bloodstains deposited for up to 6 months at room temperature (~ 25°C). The molecular levels of 60 out of 400 detected lipid species differed dramatically between bloodstain and whole blood samples, with major disturbances observed in membrane glycerophospholipids. More than half of these lipids were prevalent in the cellular and plasmic fractions; approximately 27% and 10% of the identified lipids were uniquely derived from blood cells and plasma, respectively. Furthermore, a subset of 65 temporally dynamic lipid species arose across the 6-month room-temperature deposition period, with decreased triacylglycerols (TAGs) and increased lysophosphatidylcholines (LPCs) as representatives, accounting for approximately 8% of the total investigated lipids. The instability of lipids increased linearly with time, with the most variability observed in the first 10 days. This study sheds light on the impact of air-drying bloodstains on blood components at room temperature and provides a list of potential bloodstain lipid markers for determining the age of bloodstains.
Collapse
Affiliation(s)
- Weifen Sun
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ao Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou, 215123, China
| | - Shubo Wen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou, 215123, China
| | - Qianqian Kong
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China.
| |
Collapse
|
4
|
Chen X, Xu H, Lin Y, Zhu B. Forensic stability evaluation of selected miRNA and circRNA markers in human bloodstained samples exposed to different environmental conditions. Forensic Sci Int 2024; 362:112148. [PMID: 39094222 DOI: 10.1016/j.forsciint.2024.112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Recently, RNA markers have been used to identify tissue origins of different kinds of body fluids. Herein, circRNA and miRNA markers were carried out to examine the presence or absence of peripheral blood (PB) in bloodstained samples exposed to different external environmental conditions, which mimicked PB samples left at the crime scenes. PB samples were placed on sterile swabs and then exposed to different high temperatures (37°C, 55°C and 95°C) and ultraviolet light irradiation for 0 d, 0.5 d, 1 d, 3 d, and 7 d, ultra-low and low temperatures (-80°C, -20°C, and 4°C) for 30 d, 180 d and 365 d and different kinds of disinfectants. Total RNA was extracted from bloodstained samples under the above different conditions, and the expressions of target RNAs (including miR16-5p, miR451a, circ0000095, and two reference genes RNU6b and 18 S rRNA) were detected by the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method. Results showed that these selected RNA markers could be successfully measured at all observation points with their unique degradation rates, which exhibited relative stability in degraded bloodstained samples exposed to different environmental conditions. This study provides insights into the applications of these studied miRNA and circRNA markers in forensic science.
Collapse
Affiliation(s)
- Xuebing Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hui Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yifeng Lin
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
5
|
Hamza M, Sankhyan D, Shukla S, Pandey P. Advances in body fluid identification: MiRNA markers as powerful tool. Int J Legal Med 2024; 138:1223-1232. [PMID: 38467753 DOI: 10.1007/s00414-024-03202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Body fluids are one of the most encountered types of evidence in any crime and are commonly used for identifying a person's identity. In addition to these, they are also useful in ascertaining the nature of crime by determining the ty pe of fluid such as blood, semen, saliva, urine etc. Body fluids collected from crime scenes are mostly found in degraded, trace amounts and/or mixed with other fluids. However, the existing immunological and enzyme-based methods used for differentiating these fluids show limited specificity and sensitivity in such cases. To overcome these challenges, a new method utilizing microRNA expression of the body fluids has been proposed. This method is believed to be non-destructive as well as sensitive in nature and researches have shown promising results for highly degraded samples as well. This systematic review focuses on and explores the use and reliability of miRNAs in body fluid identification. It also summarizes the researches conducted on various aspects of miRNA in terms of body fluid examination in forensic investigations.
Collapse
Affiliation(s)
- Mohd Hamza
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Deeksha Sankhyan
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Saurabh Shukla
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Preeti Pandey
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
6
|
Rhodes C, Lewis C, Price K, Valentine A, Creighton MRA, Boone E, Seashols-Williams S. Evaluation and Verification of a microRNA Panel Using Quadratic Discriminant Analysis for the Classification of Human Body Fluids in DNA Extracts. Genes (Basel) 2023; 14:genes14050968. [PMID: 37239328 DOI: 10.3390/genes14050968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
There is significant interest in the use of miRNA analysis for forensic body fluid identification. Demonstrated co-extraction and detection in DNA extracts could make the use of miRNAs a more streamlined molecular body fluid identification method than other RNA-based methods. We previously reported a reverse transcription-quantitative PCR (RT-qPCR) panel of eight miRNAs that classified venous and menstrual blood, feces, urine, saliva, semen, and vaginal secretions using a quadratic discriminant analysis (QDA) model with 93% accuracy in RNA extracts. Herein, miRNA expression in DNA extracts from 50 donors of each body fluid were tested using the model. Initially, a classification rate of 87% was obtained, which increased to 92% when three additional miRNAs were added. Body fluid identification was found to be reliable across population samples of mixed ages, ethnicities, and sex, with 72-98% of the unknown samples classifying correctly. The model was then tested against compromised samples and over biological cycles, where classification accuracy varied, depending on the body fluid. In conclusion, we demonstrated the ability to classify body fluids using miRNA expression from DNA extracts, eliminating the need for RNA extraction, greatly reducing evidentiary sample consumption and processing time in forensic laboratories, but acknowledge that compromised semen and saliva samples can fail to classify properly, and mixed sample classification remains untested and may have limitations.
Collapse
Affiliation(s)
- Ciara Rhodes
- Department of Forensic Science, Virginia Commonwealth University, P.O. Box 843079, 1015 Floyd Ave., Richmond, VA 23284-3079, USA
- Integrative Life Sciences Program, Virginia Commonwealth University, P.O. Box 842030, 1000 West Cary St., Richmond, VA 23284-2030, USA
| | - Carolyn Lewis
- Department of Forensic Science, Virginia Commonwealth University, P.O. Box 843079, 1015 Floyd Ave., Richmond, VA 23284-3079, USA
- Integrative Life Sciences Program, Virginia Commonwealth University, P.O. Box 842030, 1000 West Cary St., Richmond, VA 23284-2030, USA
| | - Kelsey Price
- Department of Forensic Science, Virginia Commonwealth University, P.O. Box 843079, 1015 Floyd Ave., Richmond, VA 23284-3079, USA
| | - Anaya Valentine
- Department of Forensic Science, Virginia Commonwealth University, P.O. Box 843079, 1015 Floyd Ave., Richmond, VA 23284-3079, USA
| | - Mary-Randall A Creighton
- Center for Biological Data Science, Virginia Commonwealth University, P.O. Box 842030, 1015 Floyd Ave., Richmond, VA 23284-2030, USA
| | - Edward Boone
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, P.O. Box 843083, 1015 Floyd Ave., Richmond, VA 23284-3083, USA
| | - Sarah Seashols-Williams
- Department of Forensic Science, Virginia Commonwealth University, P.O. Box 843079, 1015 Floyd Ave., Richmond, VA 23284-3079, USA
| |
Collapse
|
7
|
Cimmino W, Migliorelli D, Singh S, Miglione A, Generelli S, Cinti S. Design of a printed electrochemical strip towards miRNA-21 detection in urine samples: optimization of the experimental procedures for real sample application. Anal Bioanal Chem 2023:10.1007/s00216-023-04659-x. [PMID: 37000212 PMCID: PMC10328899 DOI: 10.1007/s00216-023-04659-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
MicroRNAs (miRNAs) are clinical biomarkers for various human diseases, including cancer. They have been found in liquid biopsy samples, including various bodily fluids. They often play an important role in the early diagnosis and prognosis of cancer, and the development of simple and effective analytical methods would be of pivotal importance for the entire community. The determination of these targets may be affected by the different physicochemical parameters of the specimen of interest. In this work, an electrochemical detection platform for miRNA based on a screen-printed gold electrode was developed. In the present study, miRNA-21 was selected as a model sequence, due to its role in prostate, breast, colon, pancreatic, and liver cancers. A DNA sequence modified with methylene blue (MB) was covalently bound to the electrochemical strip and used to detect the selected target miRNA-21. After optimization of selected parameters in standard solutions, including the study of the effect of pH, the presence of interferent species, and NaCl salt concentration in the background, the application of square-wave voltammetry (SWV) technique allowed the detection of miRNA-21 down to a limit in the order of 2 nM. The developed device was then applied to several urine samples. In this case too, the device showed high selectivity in the presence of the complex matrix, satisfactory repeatability, and a limit of detection in the order of magnitude of nM, similarly as what observed in standard solutions.
Collapse
Affiliation(s)
- Wanda Cimmino
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Davide Migliorelli
- CSEM SA Centre Suisse d'Electronique Et de Microtechnique, Bahnhofstrasse 1, 7302, Landquart, Switzerland
| | - Sima Singh
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Antonella Miglione
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Silvia Generelli
- CSEM SA Centre Suisse d'Electronique Et de Microtechnique, Bahnhofstrasse 1, 7302, Landquart, Switzerland
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy.
- BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055, Naples, Italy.
| |
Collapse
|
8
|
Wei S, Hu S, Han N, Wang G, Chen H, Yao Q, Zhao Y, Ye J, Ji A, Sun Q. Screening and evaluation of endogenous reference genes for miRNA expression analysis in forensic body fluid samples. Forensic Sci Int Genet 2023; 63:102827. [PMID: 36642061 DOI: 10.1016/j.fsigen.2023.102827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
MicroRNA (miRNA)-based methods for body fluid identification are promising tools in the practice of forensic science. The selection of appropriate endogenous reference genes as normalizers for the relative quantification of miRNA expression levels using quantitative reverse transcription-polymerase chain reaction (RTqPCR) is essential to avoid errors and improve the comparability of miRNA expression level data among different body fluids. In this study, small RNAs were isolated from individual donations of five forensically relevant body fluids (peripheral blood, menstrual blood, saliva, semen and vaginal secretions). Thirty-seven samples were subjected to high-throughput miRNA sequencing. By combining our results with those obtained through a literature investigation, 28 candidate RNAs were identified. Following RTqPCR validation, the candidate RNAs were preliminarily evaluated in 15 samples to exclude miRNAs with low expression and high variation. Then, the expression levels of 10 relatively stable candidate reference RNAs in 100 samples were determined and further analysed using four commonly employed programs (geNorm, NormFinder, BestKeeper and ΔCq). According to the comprehensive stability rankings of the four algorithms, miR-320a-3p was validated as the most stable endogenous reference gene among the five forensically relevant body fluids, followed by miR-484, SNORD43, miR-320c and RNU6b. Moreover, the combined application of miR-320a-3p with RNU6b could increase the normalization effect. In addition, a total of 56 mock samples placed outdoors and indoors for different times were prepared to further evaluate the stability of candidate reference RNAs, and miR-320a-3p remained the preferred reference gene. Furthermore, the relative expression levels of publicly accepted body fluid-specific miRNAs were determined in 30 samples to verify the practicality and effectiveness of the reference genes. Our results revealed a set of alternative reference genes and could promote the development and application of miRNA-based body fluid identification by determining optional reference genes for strict normalization.
Collapse
Affiliation(s)
- Sunxiang Wei
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Faculty of Forensic Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Sheng Hu
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Na Han
- Chinese Center For Disease Control And Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Guoli Wang
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Marine College, Shandong University, Weihai 264209, Shandong, China
| | - Huixiang Chen
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Faculty of Forensic Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Qianwei Yao
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Faculty of Forensic Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Yixia Zhao
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Jian Ye
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Anquan Ji
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| | - Qifan Sun
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| |
Collapse
|
9
|
STABILITY OF SELECTED MICRORNAs IN HUMAN BLOOD, SEMEN AND SALIVA SAMPLES EXPOSED TO DIFFERENT ENVIRONMENTAL CONDITIONS. Forensic Sci Int 2022; 336:111338. [DOI: 10.1016/j.forsciint.2022.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
|
10
|
Teoh SL, Das S. MicroRNAs in Various Body Fluids and its importance in Forensic Medicine. Mini Rev Med Chem 2022; 22:2332-2343. [PMID: 35240957 DOI: 10.2174/1389557522666220303141558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs which regulate gene expression. miRNAs have tissue-specific expression and are also present in various extracellular body fluids, including blood, tears, semen, vaginal fluid and urine. Additionally, expression of miRNAs in body fluids is linked to various pathological diseases, including cancer and neurodegenerative diseases. Examination of body fluids is important in forensic medicine as they serve as a valuable form of evidence. Due to its stability, miRNA offers an advantage for body fluid identification, which can be detected even after several months or from compromised samples. Identification of unique miRNA profiles for different body fluids enable the identification of these body fluid. Furthermore, miRNAs profiling can be used to estimate post-mortem interval. Various biochemical and molecular methods have been used for identification of miRNAs have shown promising results. We discuss different miRNAs as specific biomarkers and their clinical importance regarding different pathological conditions, as well as their medico-legal importance.
Collapse
Affiliation(s)
- Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| |
Collapse
|
11
|
Rhodes C, Lewis C, Szekely J, Campbell A, Creighton MRA, Boone E, Seashols-Williams S. Developmental validation of a microRNA panel using quadratic discriminant analysis for the classification of seven forensically relevant body fluids. Forensic Sci Int Genet 2022; 59:102692. [DOI: 10.1016/j.fsigen.2022.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
|
12
|
Wang G, Wang Z, Wei S, Wang D, Ji A, Zhang W, Sun Q. A new strategy for distinguishing menstrual blood from peripheral blood by the miR-451a/miR-21-5p ratio. Forensic Sci Int Genet 2021; 57:102654. [PMID: 34954475 DOI: 10.1016/j.fsigen.2021.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/12/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
Abstract
Distinction between menstrual blood and peripheral blood is vital for forensic casework, as it could provide strong evidence to figure out the nature of some criminal cases. However, to date no single blood-specific gene, including the most variable microRNAs (miRNAs) could work well in identification of blood source. In this study, we developed a new strategy for identification of human blood samples by using the copy number ratios of miR-451a to miR-21-5p based on 133 samples, including 56 menstrual blood and 47 peripheral blood, as well as 30 non-blood samples of saliva (10), semen (10) and vaginal secretion (10). The cut-off value and efficacy of the identification strategy were determined through receiver operating characteristic (ROC) analysis. Our results showed that when the miR-451a/miR-21-5p ratio below 0.929, the sample should be non-blood. In contrast, when the miR-451a/miR-21-5p ratio above 0.929 and below 10.201, the sample should be menstrual blood; and when this ratio above 10.201, the sample should be peripheral blood. External validation using 86 samples (62 menstrual blood and 24 peripheral blood samples) fully supported this strategy with the 100% sensitivity and 100% specificity. We confirmed that this result accuracy was not affected by various potential confounding factors of samples and different experimental platforms. We showed that 0.2 ng of total RNA from menstrual blood and peripheral blood was sufficient for qPCR quantification. In conclusion, our results provide an accurate reference to distinguish menstrual blood from peripheral blood for forensic authentication.
Collapse
Affiliation(s)
- Guoli Wang
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Marine College, Shandong University, Weihai 264209, Shandong, China
| | - Zhe Wang
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Sunxiang Wei
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Di Wang
- National Institute of Metrology, Beijing 100029, China
| | - Anquan Ji
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai 264209, Shandong, China.
| | - Qifan Sun
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| |
Collapse
|
13
|
Developments in forensic DNA analysis. Emerg Top Life Sci 2021; 5:381-393. [PMID: 33792660 PMCID: PMC8457771 DOI: 10.1042/etls20200304] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022]
Abstract
The analysis of DNA from biological evidence recovered in the course of criminal investigations can provide very powerful evidence when a recovered profile matches one found on a DNA database or generated from a suspect. However, when no profile match is found, when the amount of DNA in a sample is too low, or the DNA too degraded to be analysed, traditional STR profiling may be of limited value. The rapidly expanding field of forensic genetics has introduced various novel methodologies that enable the analysis of challenging forensic samples, and that can generate intelligence about the donor of a biological sample. This article reviews some of the most important recent advances in the field, including the application of massively parallel sequencing to the analysis of STRs and other marker types, advancements in DNA mixture interpretation, particularly the use of probabilistic genotyping methods, the profiling of different RNA types for the identification of body fluids, the interrogation of SNP markers for predicting forensically relevant phenotypes, epigenetics and the analysis of DNA methylation to determine tissue type and estimate age, and the emerging field of forensic genetic genealogy. A key challenge will be for researchers to consider carefully how these innovations can be implemented into forensic practice to ensure their potential benefits are maximised.
Collapse
|
14
|
Next-Generation Biomarkers in Multiple Myeloma: Understanding the Molecular Basis for Potential Use in Diagnosis and Prognosis. Int J Mol Sci 2021; 22:ijms22147470. [PMID: 34299097 PMCID: PMC8305153 DOI: 10.3390/ijms22147470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is considered to be the second most common blood malignancy and it is characterized by abnormal proliferation and an accumulation of malignant plasma cells in the bone marrow. Although the currently utilized markers in the diagnosis and assessment of MM are showing promising results, the incidence and mortality rate of the disease are still high. Therefore, exploring and developing better diagnostic or prognostic biomarkers have drawn global interest. In the present review, we highlight some of the recently reported and investigated novel biomarkers that have great potentials as diagnostic and/or prognostic tools in MM. These biomarkers include angiogenic markers, miRNAs as well as proteomic and immunological biomarkers. Moreover, we present some of the advanced methodologies that could be utilized in the early and competent diagnosis of MM. The present review also focuses on understanding the molecular concepts and pathways involved in these biomarkers in order to validate and efficiently utilize them. The present review may also help in identifying areas of improvement for better diagnosis and superior outcomes of MM.
Collapse
|
15
|
MicroRNAs: An Update of Applications in Forensic Science. Diagnostics (Basel) 2020; 11:diagnostics11010032. [PMID: 33375374 PMCID: PMC7823886 DOI: 10.3390/diagnostics11010032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs containing 18–24 nucleotides that are involved in the regulation of many biochemical mechanisms in the human body. The level of miRNAs in body fluids and tissues increases because of altered pathophysiological mechanisms, thus they are employed as biomarkers for various diseases and conditions. In recent years, miRNAs obtained a great interest in many fields of forensic medicine given their stability and specificity. Several specific miRNAs have been studied in body fluid identification, in wound vitality in time of death determination, in drowning, in the anti-doping field, and other forensic fields. However, the major problems are (1) lack of universal protocols for diagnostic expression testing and (2) low reproducibility of independent studies. This review is an update on the application of these molecular markers in forensic biology.
Collapse
|
16
|
Zhao C, Zhao M, Zhu Y, Zhang L, Zheng Z, Wang Q, Li Y, Zhang P, Zhu S, Ding S, Li J. The persistence and stability of miRNA in bloodstained samples under different environmental conditions. Forensic Sci Int 2020; 318:110594. [PMID: 33276201 DOI: 10.1016/j.forsciint.2020.110594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/09/2020] [Indexed: 01/25/2023]
Abstract
miRNA markers have been an area of forensic interest to identify body fluid sources in recent years. In this study, reverse transcription and quantitative real time polymerase chain reaction (RT-qPCR) were performed to detect the existence of blood-specific miRNA markers in bloodstained samples under different environmental conditions, Blood samples from 6 individuals were deposited onto glass plates and exposed to different temperature, humidity, ultraviolet light intensity, and natural condition. When samples were stored to a series of estimated test times, total RNA was extracted and the Ct values of the target RNAs were detected, targets included two miRNA markers (hsa-miR-16-5p, hsa-miR-451a) and one reference gene (U6 snRNA). Analysis results showed that miR-451a represented strong stability and could be detected at all detection points. Meanwhile, each RNAs exhibited unique degradation characteristics, compared to U6, miRNAs showed stronger stability. Additionally, rain had an adverse effect on RNAs stability and accelerates its degradation rate.
Collapse
Affiliation(s)
- Congcong Zhao
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Ying Zhu
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Li Zhang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Zhe Zheng
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Qi Wang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Yongguo Li
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Peng Zhang
- Hainan Medical University, Hainan 570000, China
| | - Shisheng Zhu
- Faculty of Basic Medical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Shijia Ding
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Jianbo Li
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
17
|
Age estimation using bloodstain miRNAs based on massive parallel sequencing and machine learning: A pilot study. Forensic Sci Int Genet 2020; 47:102300. [DOI: 10.1016/j.fsigen.2020.102300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/19/2020] [Accepted: 04/12/2020] [Indexed: 12/23/2022]
|
18
|
Layne TR, Green RA, Lewis CA, Nogales F, Dawson Cruz TC, Zehner ZE, Seashols-Williams SJ. microRNA Detection in Blood, Urine, Semen, and Saliva Stains After Compromising Treatments. J Forensic Sci 2019; 64:1831-1837. [PMID: 31184791 DOI: 10.1111/1556-4029.14113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
Evaluation of microRNA (miRNA) expression as a potential method for forensic body fluid identification has been the subject of investigation over the past several years. Because of their size and encapsulation within proteins and lipids, miRNAs are inherently less susceptible to degradation than other RNAs. In this work, blood, urine, semen, and saliva were exposed to environmental and chemical conditions mimicking sample compromise at the crime scene. For many treated samples, including 100% of blood samples, miRNAs remained detectable, comparable to the untreated control. Sample degradation varied by body fluid and treatment, with blood remarkably resistant, while semen and saliva are more susceptible to environmental insult. Body fluid identification using relative miRNA expression of blood and semen of the exposed samples was 100% and 94%, respectively. Given the overall robust results herein, the case is strengthened for the use of miRNAs as a molecular method for body fluid identification.
Collapse
Affiliation(s)
- Tiffany R Layne
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Raquel A Green
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Carolyn A Lewis
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Francy Nogales
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Tracey C Dawson Cruz
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Zendra E Zehner
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Box 980614, Richmond, Virginia, 23298-0614
| | - Sarah J Seashols-Williams
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| |
Collapse
|
19
|
Mayes C, Houston R, Seashols-Williams S, LaRue B, Hughes-Stamm S. The stability and persistence of blood and semen mRNA and miRNA targets for body fluid identification in environmentally challenged and laundered samples. Leg Med (Tokyo) 2019; 38:45-50. [PMID: 30959396 DOI: 10.1016/j.legalmed.2019.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/27/2023]
Abstract
The identification of body fluids in evidentiary stains may provide investigators with probative information during an investigation. In this study, quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays were performed to detect the presence of mRNA and miRNA in fresh and environmentally challenged samples. Blood, semen, and reference markers were chosen for both mRNA/miRNA testing. Samples of blood and semen were exposed to heat, humidity, and sunlight, and controlled conditions (room temperature, low humidity, and darkness) for 6 months. All mRNA targets were observed through six months under controlled conditions, but were undetected after 30 days in experimental conditions. However, miRNA targets persisted under all test conditions for the duration of the study. Additionally, cotton stained with blood or semen was laundered using a liquid detergent in various washing and drying conditions. An unstained cutting was evaluated for potential transfer. Both miRNA targets were observed in all stained samples regardless of the wash protocol used. Of the mRNA markers, HBB was detected in all bloodstained samples and PRM1 persisted in all but one semen stained sample. The unstained samples showed transfer of at least one body fluid specific miRNA marker in all samples and at least one body fluid specific mRNA in approximately half of the samples. These results support that RNA markers can be used for body fluid identification in challenging samples, and that miRNA markers may be more persistent than mRNA for blood and semen stains. However, some caution is warranted with laundered items due to possible transfer.
Collapse
Affiliation(s)
- Carrie Mayes
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX 77340-2525, United States.
| | - Rachel Houston
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX 77340-2525, United States
| | - Sarah Seashols-Williams
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, VA 23284, United States
| | - Bobby LaRue
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX 77340-2525, United States
| | - Sheree Hughes-Stamm
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX 77340-2525, United States; School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
20
|
Rogobete AF, Sandesc D, Bedreag OH, Papurica M, Popovici SE, Bratu T, Popoiu CM, Nitu R, Dragomir T, AAbed HIM, Ivan MV. MicroRNA Expression is Associated with Sepsis Disorders in Critically Ill Polytrauma Patients. Cells 2018; 7:E271. [PMID: 30551680 PMCID: PMC6316368 DOI: 10.3390/cells7120271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
A critically ill polytrauma patient is one of the most complex cases to be admitted to the intensive care unit, due to both the primary traumatic complications and the secondary post-traumatic interactions. From a molecular, genetic, and epigenetic point of view, numerous biochemical interactions are responsible for the deterioration of the clinical status of a patient, and increased mortality rates. From a molecular viewpoint, microRNAs are one of the most complex macromolecular systems due to the numerous modular reactions and interactions that they are involved in. Regarding the expression and activity of microRNAs in sepsis, their usefulness has reached new levels of significance. MicroRNAs can be used both as an early biomarker for sepsis, and as a therapeutic target because of their ability to block the complex reactions involved in the initiation, maintenance, and augmentation of the clinical status.
Collapse
Affiliation(s)
- Alexandru Florin Rogobete
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Dorel Sandesc
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Ovidiu Horea Bedreag
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Marius Papurica
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Sonia Elena Popovici
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Tiberiu Bratu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Calin Marius Popoiu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Razvan Nitu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Tiberiu Dragomir
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Hazzaa I M AAbed
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Mihaela Viviana Ivan
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| |
Collapse
|