1
|
Blagojević J, Andjelković A, Vučurović I, Trkulja N, Ristić D. Alternaria Species on Convolvulus arvensis Revealed as a Potential Inoculum Source for Solanaceous Crops in Serbia. PLANT DISEASE 2025; 109:384-398. [PMID: 39314065 DOI: 10.1094/pdis-06-24-1175-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Alternaria pathogens are a global agronomic challenge affecting the health of Solanaceae crops. Crop debris, seeds, and perennial weeds are potential inoculum reservoirs, but knowledge on their relative importance remains limited. Plants of Convolvulus arvensis showing early blight and brown leaf spot symptoms were collected from in and around potato and tomato fields in Serbia, grown both in open conditions and in tunnels, in the late season of 2021 to 2022. Morphological characterization and multilocus sequence analysis were performed on collected samples, using three genes (GPD, CAL, and RPB2) for large-spored species and six genes (Alt a1, ATP, HIS3, endoPG, TEF-1, and OPA10-2) for small-spored species of Alternaria. A total of 58 strains were identified: four large-spored species (A. grandis, A. solani, A. protenta, and A. linariae) and two small-spored species (A. alternata and A. arborescens). Phylogenetic analyses of concatenated loci and haplotype network for every investigated locus revealed that large-spored isolates from C. arvensis exhibit a low genetic variability, suggesting common haplotypes in a broad solanaceous host range. Meanwhile, small-spored Alternaria isolates displayed high genetic diversity in all examined gene regions, indicating potential geographical haplotype distribution per HIS3 locus. Pathogenicity tests confirmed the virulence of all isolates on original hosts, with crop plants of potato and tomato also showing high susceptibility. Notably, this research documents six Alternaria species on C. arvensis in Serbia for the first time, significantly broadening our understanding of the pathogen's diversity and suggesting new sources of inoculum in solanaceous crops.
Collapse
Affiliation(s)
- Jovana Blagojević
- Department for Plant Disease, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Ana Andjelković
- Department for Weed Research, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Ivan Vučurović
- Department for Plant Disease, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Nenad Trkulja
- Department for Plant Disease, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Danijela Ristić
- Department for Plant Disease, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Dučkena L, Bessadat N, Bataillé-Simoneau N, Hamon B, Koppel M, Loit K, Rasiukevičiūtė N, Bimšteine G, Simoneau P. Haplotype diversity and phylogeny within Alternaria alternata and A. arborescens species complexes from tomatoes. Fungal Biol 2024; 128:2250-2265. [PMID: 39643392 DOI: 10.1016/j.funbio.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 12/09/2024]
Abstract
Tomato (Solanum lycopersicum L.) is an economically important vegetable susceptible to various fungal diseases, including leaf spot caused by Alternaria spp. from the section Alternaria. In our study, a total of 72 tomato-associated Alternaria spp. strains from Latvia, Lithuania, Estonia, and Algeria were analysed by integrating morphological data, pathogenicity assay, multi-locus phylogeny, and haplotype assignment. Recovered Alternaria spp. strains were characterized by considerable variation in phenotypic diversity, non-pathogenicity to their host of origin and absence of the AAL-toxin biosynthesis gene (ALT1). Multi-locus phylogeny of the RNA polymerase II second largest subunit (rpb2), putative F-box-domain-containing protein (ASA-10), and putative histone-like transcription factor (ASA-19) confirmed the occurrence of both A. alternata and A. arborescens species complexes along with A. longipes and A. postmessia on symptomatic tomatoes. The discordant tree topology among single-gene phylogenies suggested the occurrence of potential recombination between phylogenetic lineages in the section Alternaria, resulting in putative alternata-arborescens and alternata-longipes hybrids. DNA polymorphism analysis of the rpb2, ASA-10, and ASA-19 loci revealed a high level of genetic diversity in the section Alternaria, and the number of single nucleotide polymorphisms (SNPs) and haplotypes varied among loci and lineages studied. A total of 16 and 6 multi-locus haplotypes were assigned in alternata and arborescens lineages, respectively. Global genetic diversity analysis of A. alternata and A. arborescens strains at the rpb2 locus confirmed that major haplotypes described from tomatoes were shared among other hosts of origin.
Collapse
Affiliation(s)
- Lilija Dučkena
- Institute of Soil and Plant Sciences, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001, Jelgava, Latvia; University of Angers, Institut Agro, INRAe, UMR 1345 IRHS, SFR 4207 QUASAV, Beaucouzé Cedex, 49070, France
| | - Nabahat Bessadat
- University of Angers, Institut Agro, INRAe, UMR 1345 IRHS, SFR 4207 QUASAV, Beaucouzé Cedex, 49070, France; Laboratory of Applied Microbiology, University of Oran1 Ahmed Ben Bella, BP 1524, El M'Naouer, 31000, Oran, Algeria
| | - Nelly Bataillé-Simoneau
- University of Angers, Institut Agro, INRAe, UMR 1345 IRHS, SFR 4207 QUASAV, Beaucouzé Cedex, 49070, France
| | - Bruno Hamon
- University of Angers, Institut Agro, INRAe, UMR 1345 IRHS, SFR 4207 QUASAV, Beaucouzé Cedex, 49070, France
| | - Mati Koppel
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr.R. Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Kaire Loit
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr.R. Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Neringa Rasiukevičiūtė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno Street 30, LT-54333, Babtai, Lithuania
| | - Gunita Bimšteine
- Institute of Soil and Plant Sciences, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001, Jelgava, Latvia
| | - Philippe Simoneau
- University of Angers, Institut Agro, INRAe, UMR 1345 IRHS, SFR 4207 QUASAV, Beaucouzé Cedex, 49070, France.
| |
Collapse
|
3
|
Martín-Cacheda L, Röder G, Abdala-Roberts L, Moreira X. Test of Specificity in Signalling between Potato Plants in Response to Infection by Fusarium Solani and Phytophthora Infestans. J Chem Ecol 2024; 50:562-572. [PMID: 38904862 PMCID: PMC11493820 DOI: 10.1007/s10886-024-01521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/29/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Plant-plant signalling via volatile organic compounds (VOCs) in response to insect herbivory has been widely studied, but its occurrence and specificity in response to pathogen attack has received much less attention. To fill this gap, we carried out a greenhouse experiment using two fungal pathogens (Fusarium solani and Phytophthora infestans) to test for specificity in VOC induction and signalling between potato plants (Solanum tuberosum). We paired potato plants in plastic cages, one acting as VOC emitter and the other as receiver, and subjected emitters to one of the following treatments: no infection (control), infected by F. solani, or infected by P. infestans. We measured total emission and composition of VOCs released by emitter plants to test for pathogen-specificity in VOC induction, and then conducted a pathogen infection bioassay to assess resistance levels on receiver plants by subjecting half of the receivers of each emitter treatment to F. solani infection and the other half to P. infestans infection. This allowed us to test for specificity in plant VOC signalling by comparing its effects on conspecific and heterospecific sequential infections. Results showed that infection by neither F. solani or P. infestans produced quantitative (total emissions) or qualitative (compositional) changes in VOC emissions. Mirroring these patterns, emitter infection treatment (control vs. pathogen infection) did not produce a significant change in pathogen infection levels on receiver plants in any case (i.e., either for conspecific or heterospecific sequential infections), indicating a lack of signalling effects which precluded pathogen-based specificity in signalling. We discuss possible mechanisms for lack of pathogen effects on VOC emissions and call for future work testing for pathogen specificity in plant-plant signalling and its implications for plant-pathogen interactions under ecologically relevant scenarios involving infections by multiple pathogens.
Collapse
Affiliation(s)
- Lucía Martín-Cacheda
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, 36080, Spain.
| | - Gregory Röder
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116,, Yucatán, Itzimná, 97000. Mérida, México
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, 36080, Spain.
| |
Collapse
|
4
|
Liu J, Zhang J, He Y, Li Y, Deng H, Jiang Y. Evaluation and Control of Alternaria tenuissima Causing Leaf Spots in Blue Honeysuckle in China. PLANT DISEASE 2024; 108:1270-1277. [PMID: 37933146 DOI: 10.1094/pdis-07-23-1470-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Blue honeysuckle is emerging as a popular edible fruit and is also used in folk medicine. However, from June to August 2021, a serious leaf-spot disease affected the yield and quality of blue honeysuckle in Harbin, Heilongjiang Province, China; the species and characteristics of the pathogens responsible for the disease were unknown. In this study, 30 fungal isolates were obtained from infected blue honeysuckle leaves and identified as Alternaria tenuissima based on morphological and molecular characteristics and phylogenetic analyses. To the best of our knowledge, this is one of the first studies to identify A. tenuissima as the causal agent of blue honeysuckle leaf spots in China. Pathogenicity tests of the isolates revealed that most isolates were moderately pathogenic. All blue honeysuckle cultivars tested were found to be susceptible to 30 A. tenuissima isolates. In addition, elder, Dahurian rose fruit, sea buckthorn, rowan, hawthorn, bird cherry, and sorb could be infected by A. tenuissima isolates, while European cranberry bush and Nanking cherry were not infected. A. tenuissima isolates were highly sensitive to prochloraz (EC50 ≤ 0.50 μg ml-1) with 86.21% efficacy at 400 μg ml-1 in the field trials. Therefore, crop rotation and application of chemical fungicides are considered to control the disease-causing leaf spots in blue honeysuckle. These results provide a basis for controlling A. tenuissima in blue honeysuckle in China.
Collapse
Affiliation(s)
- Jinxin Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cole Regions, Harbin 150030, China
| | - Jing Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Ying He
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Yonggang Li
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cole Regions, Harbin 150030, China
| | - Hongzhi Deng
- Heilongjiang Agricultural Economy Vocational College, Mudanjiang 157041, China
| | - Yanyan Jiang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Alijani Mamaghani N, Masiello M, Somma S, Moretti A, Saremi H, Haidukowski M, Altomare C. Endophytic Alternaria and Fusarium species associated to potato plants ( Solanum tuberosum L.) in Iran and their capability to produce regulated and emerging mycotoxins. Heliyon 2024; 10:e26385. [PMID: 38434378 PMCID: PMC10907534 DOI: 10.1016/j.heliyon.2024.e26385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Endophytic fungi live inside virtually every plant species, without causing any apparent disease or damage to the host. Nevertheless, under particular conditions, mutualistic lifestyle of endophytes may change to pathogenic. In this study, the biodiversity of Alternaria and Fusarium species, the two most abundant endophytic fungi isolated from healthy potato plants in two climatically different regions of Iran, Ardebil in the north-west and Kerman in the south-east, was investigated. Seventy-five Fusarium strains and 83 Alternaria strains were molecularly characterized by multi-locus gene sequencing. Alternaria strains were characterized by the sequences of gpd and caM gene fragments and the phylogenetic tree was resolved in 3 well-separated clades. Seventy-three strains were included in the clade A, referred as Alternaria section, 6 strains were included in clade B, referred as Ulocladioides section, and 4 strains were included in clade C, referred as Infectoriae section. Fusarium strains, identified by sequencing the translation elongation factor 1α (tef1), β-tubulin (tub2) and internal transcribed spacer (ITS) genomic regions, were assigned to 13 species, viz. F. brachygibosum, F. clavum, F. equiseti, F. flocciferum, F. incarnatum, F. nirenbergiae, F. nygamai, F. oxysporum, F. proliferatum, F. redolens, F. sambucinum, F. solani and F. thapsinum. Twenty-six selected strains, representative of F. equiseti, F. nirenbergiae, F. oxysporum, F. nygamai, F. proliferatum, and F. sambucinum, were also tested for production of the mycotoxins deoxynivalenol (DON), nivalenol (NIV), diacetoxyscirpenol (DAS), T-2 toxin (T-2), beauvericin (BEA), enniatins (ENNs), fumonisins (FBs), fusaric acid (FA) and moniliformin (MON). None of the tested strains produced trichothecene toxins (DON, NIV, DAS and T-2). Two out of 2 F. equiseti isolates, 1/6 F. oxysporum, 1/3 F. proliferatum, and 1/9 F. nygamai did not produce any of the tested toxins; the rest of strains produced one or more BEA, ENNs, FBs, FA and MON toxins. The most toxigenic strain, F. nygamai ITEM-19012, produced the highest quantities of FBs (7946, 4693 and 4333 μg/g of B1, B2, and B3 respectively), along with the highest quantities of both BEA (4190 μg/g) and MON (538 μg/g). These findings suggest that contamination of potato tubers with mycotoxins in the field or at post-harvest, due to a change in lifestyle of endophytic microflora, should be carefully considered and furtherly investigated.
Collapse
Affiliation(s)
- Nasim Alijani Mamaghani
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 77871-31587, Karaj, Iran
| | - Mario Masiello
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Stefania Somma
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Hossein Saremi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 77871-31587, Karaj, Iran
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Claudio Altomare
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| |
Collapse
|
6
|
Li Q, Feng Y, Li J, Hai Y, Si L, Tan C, Peng J, Hu Z, Li Z, Li C, Hao D, Tang W. Multi-omics approaches to understand pathogenicity during potato early blight disease caused by Alternaria solani. Front Microbiol 2024; 15:1357579. [PMID: 38529180 PMCID: PMC10961351 DOI: 10.3389/fmicb.2024.1357579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Potato early blight (PEB), a foliar disease of potato during the growing period, caused by Alternaria sp., is common in major potato-producing areas worldwide. Effective agents to control this disease or completely resistant potato varieties are absent. Large-scale use of fungicides is limited due to possibility of increase in pathogen resistance and the requirements of ecological agriculture. In this study, we focused on the composition and infection characteristics of early blight pathogens in Yunnan Province and screened candidate pathogenesis-related pathways and genes. We isolated 85 strains of Alternaria sp. fungi from typical early blight spots in three potato-growing regions in Yunnan Province from 2018 to 2022, and identified 35 strains of Alternaria solani and 50 strains of Alternaria alternata by morphological characterization and ITS sequence comparison, which were identified as the main and conditional pathogens causing early blight in potato, respectively. Scanning electron microscope analysis confirmed only A. solani producing appressorium at 4 h after inoculation successfully infected the leaf cells. Via genome assembly and annotation, combine transcriptome and proteomic analysis, the following pathogenicity-related unit, transcription factors and metabolic pathway were identified: (1) cell wall-degrading enzymes, such as pectinase, keratinase, and cellulase; (2) genes and pathways related to conidia germination and pathogenicity, such as ubiquitination and peroxisomes; and (3) transcription factors, such as Zn-clus, C2H2, bZIP, and bHLH. These elements were responsible for PEB epidemic in Yunnan.
Collapse
Affiliation(s)
- Qing Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Yan Feng
- School of Economics and Management, Yunnan Normal University, Kunming, China
| | - Jianmei Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Yang Hai
- Yunnan YinMore Modern Agriculture Co., Ltd., Kunming, China
| | - Liping Si
- Yunnan YinMore Modern Agriculture Co., Ltd., Kunming, China
| | - Chen Tan
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Jing Peng
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Zuo Hu
- Zhaotong Academy of Agricultural Sciences, Zhaotong, China
| | - Zhou Li
- Zhaotong Academy of Agricultural Sciences, Zhaotong, China
| | - Canhui Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Dahai Hao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wei Tang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| |
Collapse
|
7
|
Schmey T, Tominello‐Ramirez CS, Brune C, Stam R. Alternaria diseases on potato and tomato. MOLECULAR PLANT PATHOLOGY 2024; 25:e13435. [PMID: 38476108 PMCID: PMC10933620 DOI: 10.1111/mpp.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
Alternaria spp. cause different diseases in potato and tomato crops. Early blight caused by Alternaria solani and brown spot caused by Alternaria alternata are most common, but the disease complex is far more diverse. We first provide an overview of the Alternaria species infecting the two host plants to alleviate some of the confusion that arises from the taxonomic rearrangements in this fungal genus. Highlighting the diversity of Alternaria fungi on both solanaceous hosts, we review studies investigating the genetic diversity and genomes, before we present recent advances from studies elucidating host-pathogen interactions and fungicide resistances. TAXONOMY Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes, Order Pleosporales, Family Pleosporaceae, Genus Alternaria. BIOLOGY AND HOST RANGE Alternaria spp. adopt diverse lifestyles. We specifically review Alternaria spp. that cause disease in the two solanaceous crops potato (Solanum tuberosum) and tomato (Solanum lycopersicum). They are necrotrophic pathogens with no known sexual stage, despite some signatures of recombination. DISEASE SYMPTOMS Symptoms of the early blight/brown spot disease complex include foliar lesions that first present as brown spots, depending on the species with characteristic concentric rings, which eventually lead to severe defoliation and considerable yield loss. CONTROL Good field hygiene can keep the disease pressure low. Some potato and tomato cultivars show differences in susceptibility, but there are no fully resistant varieties known. Therefore, the main control mechanism is treatment with fungicides.
Collapse
Affiliation(s)
- Tamara Schmey
- TUM School of Life Science WeihenstephanTechnical University of MunichFreisingGermany
| | | | - Carolin Brune
- TUM School of Life Science WeihenstephanTechnical University of MunichFreisingGermany
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute of PhytopathologyChristian Albrechts UniversityKielGermany
| |
Collapse
|
8
|
Schmey T, Small C, Einspanier S, Hoyoz LM, Ali T, Gamboa S, Mamani B, Sepulveda GC, Thines M, Stam R. Small-spored Alternaria spp. (section Alternaria) are common pathogens on wild tomato species. Environ Microbiol 2023; 25:1830-1846. [PMID: 37171093 DOI: 10.1111/1462-2920.16394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
The wild relatives of modern tomato crops are native to South America. These plants occur in habitats as different as the Andes and the Atacama Desert and are, to some degree, all susceptible to fungal pathogens of the genus Alternaria. Alternaria is a large genus. On tomatoes, several species cause early blight, leaf spots and other diseases. We collected Alternaria-like infection lesions from the leaves of eight wild tomato species from Chile and Peru. Using molecular barcoding markers, we characterized the pathogens. The infection lesions were caused predominantly by small-spored species of Alternaria of the section Alternaria, like A. alternata, but also by Stemphylium spp., Alternaria spp. from the section Ulocladioides and other related species. Morphological observations and an infection assay confirmed this. Comparative genetic diversity analyses show a larger diversity in this wild system than in studies of cultivated Solanum species. As A. alternata has been reported to be an increasing problem in cultivated tomatoes, investigating the evolutionary potential of this pathogen is not only interesting to scientists studying wild plant pathosystems. It could also inform crop protection and breeding programs to be aware of potential epidemics caused by species still confined to South America.
Collapse
Affiliation(s)
- Tamara Schmey
- Chair of Phytopathology, TUM School of Life Science, Technische Universität München, Freising-Weihenstephan, Germany
| | - Corinn Small
- Chair of Phytopathology, TUM School of Life Science, Technische Universität München, Freising-Weihenstephan, Germany
| | - Severin Einspanier
- Department for Phytopathology and Crop Protection, Institute for Phytopathology, Faculty of Agricultural and Nutritional Sciences, Christian Albrechts University, Kiel, Germany
| | - Lina Muñoz Hoyoz
- Chair of Phytopathology, TUM School of Life Science, Technische Universität München, Freising-Weihenstephan, Germany
| | - Tahir Ali
- Translational Biodiversity Genomics Centre, Senckenberg Institute, Frankfurt am Main, Germany
- Institute of Plant Sciences, University of Cologne, Cologne, Germany
| | - Soledad Gamboa
- Plant Pathology and Bacteriology, International Potato Centre, Lima, Peru
| | - Betty Mamani
- Instituto Basadre de Investigación en Agrobiotecnología y Recursos Genéticos, Escuela de Agronomía, Facultad Ciencias Agropecuarias, Universidad Nacional Jorge Basadre Grohmann, Tacna, Peru
| | - German C Sepulveda
- Departmento de recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Arapacá, Arica, Chile
| | - Marco Thines
- Translational Biodiversity Genomics Centre, Senckenberg Institute, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Center, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department of Biology, Institute of Ecology, Evolution, and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Remco Stam
- Department for Phytopathology and Crop Protection, Institute for Phytopathology, Faculty of Agricultural and Nutritional Sciences, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
9
|
Sajeevan RS, Abdelmeguid I, Saripella GV, Lenman M, Alexandersson E. Comprehensive transcriptome analysis of different potato cultivars provides insight into early blight disease caused by Alternaria solani. BMC PLANT BIOLOGY 2023; 23:130. [PMID: 36882678 PMCID: PMC9993742 DOI: 10.1186/s12870-023-04135-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Early blight, caused by the necrotrophic fungal pathogen Alternaria solani, is an economically important disease affecting the tuber yield worldwide. The disease is mainly controlled by chemical plant protection agents. However, over-using these chemicals can lead to the evolution of resistant A. solani strains and is environmentally hazardous. Identifying genetic disease resistance factors is crucial for the sustainable management of early blight but little effort has been diverted in this direction. Therefore, we carried out transcriptome sequencing of the A. solani interaction with different potato cultivars with varying levels of early blight resistance to identify key host genes and pathways in a cultivar-specific manner. RESULTS In this study, we have captured transcriptomes from three different potato cultivars with varying susceptibility to A. solani, namely Magnum Bonum, Désirée, and Kuras, at 18 and 36 h post-infection. We identified many differentially expressed genes (DEGs) between these cultivars, and the number of DEGs increased with susceptibility and infection time. There were 649 transcripts commonly expressed between the potato cultivars and time points, of which 627 and 22 were up- and down-regulated, respectively. Interestingly, overall the up-regulated DEGs were twice in number as compared to down-regulated ones in all the potato cultivars and time points, except Kuras at 36 h post-inoculation. In general, transcription factor families WRKY, ERF, bHLH, MYB, and C2H2 were highly enriched DEGs, of which a significant number were up-regulated. The majority of the key transcripts involved in the jasmonic acid and ethylene biosynthesis pathways were highly up-regulated. Many transcripts involved in the mevalonate (MVA) pathway, isoprenyl-PP, and terpene biosynthesis were also up-regulated across the potato cultivars and time points. Compared to Magnum Bonum and Désirée, multiple components of the photosynthesis machinery, starch biosynthesis and degradation pathway were down-regulated in the most susceptible potato cultivar, Kuras. CONCLUSIONS Transcriptome sequencing identified many differentially expressed genes and pathways, thereby contributing to the improved understanding of the interaction between the potato host and A. solani. The transcription factors identified are attractive targets for genetic modification to improve potato resistance against early blight. The results provide important insights into the molecular events at the early stages of disease development, help to shorten the knowledge gap, and support potato breeding programs for improved early blight disease resistance.
Collapse
Affiliation(s)
- Radha Sivarajan Sajeevan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden.
| | - Ingi Abdelmeguid
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden
- Department of Botany and Microbiology, Faculty of Science, Helwan University, Cairo, EG-11795, Egypt
| | - Ganapathi Varma Saripella
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden
- CropTailor AB, Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden
| | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden.
| |
Collapse
|
10
|
Gou YN, Aung SLL, Htun AA, Huang CX, Deng JX. Alternaria species in section Alternaria associated with Iris plants in China. Front Microbiol 2022; 13:1036950. [PMID: 36338033 PMCID: PMC9635052 DOI: 10.3389/fmicb.2022.1036950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Plants of the Iris genus have been widely cultivated because of their medicinal, ornamental, and economic values. It commonly suffers from Alternaria leaf spot or blight disease leading to considerable losses for their commercial values. During an investigation of 14 provinces or municipalities of China from 2014 to 2022, a total of 122 Alternaria strains in section Alternaria were obtained from diseased leaves of Iris spp.. Among them, 12 representative strains were selected and identified based on morphological characterization and multi-locus phylogenetic analysis, which encompassed the internal transcribed spacer of rDNA region (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1 alpha (TEF1), RNA polymerase second largest subunit (RPB2), Alternaria major allergen gene (Alt a 1), an anonymous gene region (OPA10-2), and endopolygalacturonase gene (EndoPG). The strains comprised two known species of A. alternata and A. iridicola, and two new species of A. setosae and A. tectorum, which were described and illustrated here. Their pathogenicity evaluated on Iris setosa indicated that all the strains could induce typical Alternaria leaf spot or blight symptoms. The results showed that the virulence was variable among those four species, from which A. tectorum sp. nov. was the most virulent one, followed by A. setosae sp. nov., A. iridicola and A. alternata.
Collapse
Affiliation(s)
- Ya-Nan Gou
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, China
| | - Sein Lai Lai Aung
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, China
| | - Aye Aye Htun
- National Key Laboratory of Wheat and Maize Crop Science, Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Cheng-Xin Huang
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jian-Xin Deng
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
11
|
Ivanović Ž, Blagojević J, Jovanović G, Ivanović B, Žeželj D. New Insight in the Occurrence of Early Blight Disease on Potato Reveals High Distribution of Alternaria solani and Alternaria protenta in Serbia. Front Microbiol 2022; 13:856898. [PMID: 35401443 PMCID: PMC8984275 DOI: 10.3389/fmicb.2022.856898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 11/15/2022] Open
Abstract
Early blight is an economically important disease of potato worldwide. Understanding which fungal pathogens are the causal agents of early blight and their distribution on the same host is essential to finding the best strategy for the control of this disease. Previous studies have shown that Alternaria solani is the main early blight pathogen parasitizing potato. Here, we analyzed genetic and phenotypic diversity in isolates of Alternaria spp. covering all potato production areas in Serbia. We showed that the four species of Alternaria were found in areas with different distributions of the species. The occurrence of Alternaria spp. was studied by analyzing isolates from symptomatic potato leaves during multiyear sampling. In addition to Alternaria solani, we detected three more large-spored species identified as A. linariae (syn. A. tomatophila), A. protenta, and A. grandis that were involved in early blight disease on naturally infected potato leaves in Serbia. Differentiation of species was supported by phylogeny obtained from the DNA sequences of the GAPDH, calmodulin and Rpb2 genes. Our findings present a new perspective into the population structure of large-spored Alternaria species associated with early blight disease. Within the groups of large-spored Alternaria present in Serbia, evidence of A. protenta at high frequency reveals new insight into the contribution of Alternaria species in early blight disease. This work opens new perspectives for early blight management, while the distribution of different species on the same host suggests that the etiology of disease could depend on crop organization and the presence of other Alternaria hosts in close proximity to potato plants.
Collapse
Affiliation(s)
- Žarko Ivanović
- Department of Plant Disease, Institute for Plant Protection and Environment, Belgrade, Serbia
| | - Jovana Blagojević
- Department of Plant Disease, Institute for Plant Protection and Environment, Belgrade, Serbia
| | | | | | - Danica Žeželj
- Department of Plant Disease, Institute for Plant Protection and Environment, Belgrade, Serbia
| |
Collapse
|
12
|
Yu X, Zhang J, Zhang X, Yang X, Xu X, Lin J, Bing H, Wang X, Zhao J, Xiang W. Identification and Pathogenicity of Fungi Associated with Leaf Spot of Muskmelon in Eastern Shandong Province, China. PLANT DISEASE 2022; 106:872-890. [PMID: 34645310 DOI: 10.1094/pdis-06-21-1126-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Leaf spot is a serious disease in the growth and development of muskmelon, which can affect its quality and yield. Over the past years, Malianzhuang Muskmelon Base, the main muskmelon producing area in Shandong Province, China, has been seriously affected by leaf spot. Since 2018, symptomatic leaves were collected from 11 production areas of this base to determine the pathogens of muskmelon foliar diseases. Two-hundred fungal strains were isolated and 10 genera and 17 species were identified based on morphological characteristics and multilocus phylogenetic analysis (ITS, GADPH, RPB2, HIS3, EF-1α, and LSU). The most frequently isolated species from each sampling area was Alternaria tenuissima with 77 strains, followed by A. alternata. Pathogenicity experiments showed that A. alternata, A. tenuissima, Fusarium neocosmosporiellum (formerly Neocosmospora vasinfecta), F. acuminatum, Exserohilum rostratum, Bipolaris sorokiniana, and Stagonosporopsis cucurbitacearum (formerly Didymella bryoniae) could cause symptoms highly similar to those of infected leaves observed under natural conditions in the field. Therefore, these fungal isolates are considered to be the primary pathogens causing muskmelon leaf spot, and A. tenuissima and A. alternata were the most common and virulent pathogens in this study. In addition, this is the first study of F. neocosmosporiellum, F. acuminatum, E. rostratum, and B. sorokiniana as pathogens associated to muskmelon leaf spot in China as well as the world.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jing Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xue Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xilang Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xi Xu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jiaying Lin
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Hui Bing
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
13
|
Characterization of New Small-Spored Alternaria Species Isolated from Solanaceae in Algeria. Life (Basel) 2021; 11:life11121291. [PMID: 34947822 PMCID: PMC8704928 DOI: 10.3390/life11121291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 11/24/2022] Open
Abstract
Although large-spored Alternaria species of the section Porri are considered to be the major agents responsible for leaf spot and blight of Solanaceae, small-spored Alternaria species are also frequently isolated from symptomatic tissues. A survey of the north-western regions of Algeria during the 2017–2018 growing seasons revealed that amongst the 623 Alternaria isolates from tomato, potato, pepper, eggplant and black nightshade, 8% could not be morphologically assigned to either section Porri or section Alternaria. In order to more precisely determine the taxonomic position of these isolates, detailed morphological characterizations and multi-locus phylogenetic analyses were performed. Based on these analyses, the isolates were grouped into four main clades: section Ulocladioides, section Infectoriae, including two new species, section Embellisioides, and section Eureka, including one new species. These isolates were also characterized for their virulence under green-house conditions. They were able to produce leaf spot symptoms on tomato plants but with variable levels.
Collapse
|
14
|
Brouwer SM, Brus-Szkalej M, Saripella GV, Liang D, Liljeroth E, Grenville-Briggs LJ. Transcriptome Analysis of Potato Infected with the Necrotrophic Pathogen Alternaria solani. PLANTS (BASEL, SWITZERLAND) 2021; 10:2212. [PMID: 34686023 PMCID: PMC8539873 DOI: 10.3390/plants10102212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Potato early blight is caused by the necrotrophic fungus Alternaria solani and can result in yield losses of up to 50% if left uncontrolled. At present, the disease is controlled by chemical fungicides, yet rapid development of fungicide resistance renders current control strategies unsustainable. On top of that, a lack of understanding of potato defences and the quantitative nature of resistance mechanisms against early blight hinders the development of more sustainable control methods. Necrotrophic pathogens, compared to biotrophs, pose an extra challenge to the plant, since common defence strategies to biotic stresses such as the hypersensitive response and programmed cell death are often beneficial for necrotrophs. With the aim of unravelling plant responses to both the early infection stages (i.e., before necrosis), such as appressorium formation and penetration, as well as to later responses to the onset of necrosis, we present here a transcriptome analysis of potato interactions with A. solani from 1 h after inoculation when the conidia have just commenced germination, to 48 h post inoculation when multiple cell necrosis has begun. Potato transcripts with putative functions related to biotic stress tolerance and defence against pathogens were upregulated, including a putative Nudix hydrolase that may play a role in defence against oxidative stress. A. solani transcripts encoding putative pathogenicity factors, such as cell wall degrading enzymes and metabolic processes that may be important for infection. We therefore identified the differential expression of several potato and A. solani transcripts that present a group of valuable candidates for further studies into their roles in immunity or disease development.
Collapse
Affiliation(s)
- Sophie M. Brouwer
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 7070, SE-750 07 Uppsala, Sweden; (M.B.-S.); (D.L.); (E.L.)
| | - Maja Brus-Szkalej
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 7070, SE-750 07 Uppsala, Sweden; (M.B.-S.); (D.L.); (E.L.)
| | - Ganapathi V. Saripella
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 7070, SE-750 07 Uppsala, Sweden;
| | - Dong Liang
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 7070, SE-750 07 Uppsala, Sweden; (M.B.-S.); (D.L.); (E.L.)
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Erland Liljeroth
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 7070, SE-750 07 Uppsala, Sweden; (M.B.-S.); (D.L.); (E.L.)
| | - Laura J. Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 7070, SE-750 07 Uppsala, Sweden; (M.B.-S.); (D.L.); (E.L.)
| |
Collapse
|
15
|
Peixoto CC, Cabral CS, Fonseca MEN, Boiteux LS, Reis A. Species diversity, novel interactions and absence of well-supported host-guided phylogenetic groupings of Neotropical Alternaria isolates causing foliar lesions in Solanaceae. J Appl Microbiol 2021; 131:2466-2487. [PMID: 33891782 DOI: 10.1111/jam.15115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022]
Abstract
AIM To report the characterization of 120 Alternaria isolates inducing early blight-like foliar lesions in nine species of five Solanaceae genera collected across all macrogeographical Brazilian regions. MATERIAL AND RESULTS Phylogenetic relationships were assessed via analyses of the Alternaria alternata allergenic protein-coding, glyceraldehyde-3-phosphate dehydrogenase and the calmodulin gene sequences. Most of the tomato isolates were placed into the Alternaria linariae cluster, whereas most of the potato isolates were grouped with Alternaria grandis. Novel host-pathogen interactions were also reported. Seventeen isolates were selected for morphometrical characterization, and a subsample of 13 isolates was employed in pathogenicity assays on tomato, potato, eggplant, scarlet eggplant, Capsicum annuum, Datura stramonium, Physalis angulata and Nicotiana tabacum. Eleven isolates were able to induce foliar lesions in tomatoes but none in C. annuum. Potato was susceptible to a subgroup of isolates but displayed a subset of isolate-specific interactions. Morphological traits were in overall agreement with molecular and host range data. CONCLUSION Alternaria linariae and A. grandis were confirmed as the major causal agents of tomato and potato early blight, respectively. However other Alternaria species are also involved with early blight in solanaceous hosts in Brazil. SIGNIFICANCE AND IMPACT OF THE STUDY The diversity and host-specific patterns of the Alternaria isolates from Solanaceae may have practical implications in establishing effective early blight genetic resistance and cultural management strategies especially for tomato and potato crops.
Collapse
Affiliation(s)
- C C Peixoto
- Área de Fitossanidade, Departamento de Agronomia, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil
| | - C S Cabral
- Departamento de Fitopatologia, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasilia, DF, Brazil
| | - M E N Fonseca
- National Center for Vegetable Crops Research (CNPH), Embrapa Hortaliças, Brasilia, DF, Brazil
| | - L S Boiteux
- Departamento de Fitopatologia, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasilia, DF, Brazil.,National Center for Vegetable Crops Research (CNPH), Embrapa Hortaliças, Brasilia, DF, Brazil
| | - A Reis
- Área de Fitossanidade, Departamento de Agronomia, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil.,National Center for Vegetable Crops Research (CNPH), Embrapa Hortaliças, Brasilia, DF, Brazil
| |
Collapse
|
16
|
Ma G, Bao S, Zhao J, Sui Y, Wu X. Morphological and Molecular Characterization of Alternaria Species Causing Leaf Blight on Watermelon in China. PLANT DISEASE 2021; 105:60-70. [PMID: 33170772 DOI: 10.1094/pdis-01-20-0130-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Watermelon is an economically important crop in China and is commonly affected by Alternaria-like leaf blight that can result in significant economic losses. In this study, 830 Alternaria isolates, recovered from symptomatic watermelon leaves, were identified based on morphological traits, pathogenicity, and multilocus sequence analyses of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone 3 (HIS3), the internal transcribed spacer of ribosomal DNA (rDNA ITS), and the RNA polymerase II second largest subunit (RPB2). Watermelon isolates grouped to five Alternaria species and one unclassified Alternaria species. They were A. tenuissima, A. alternata, A. cucumerina, A. infectoria, A. gaisen, and Alternaria sp. Notably, A. tenuissima was the most prevalent (73.5%) of the six isolated species, followed by A. alternata (25.0%), A. cucumerina (1.1%), Alternaria sp. (0.2%), A. infectoria (0.1%), and A. gaisen (0.1%). Pathogenicity tests demonstrated that all six Alternaria species could produce brown necrotic lesions on detached leaves of watermelon. The average disease incidence (75.1%) and average disease index (60.8) of watermelon resulting from inoculation of leaves with A. cucumerina were significantly higher than levels resulting from A. alternata (52.9% and 37.2) and A. tenuissima (47.5% and 30.8). Inoculation with Alternaria sp. resulted in a disease incidence (70.0%) and disease index (51.5), which were lower than those of A. cucumerina. The disease incidence and disease index in watermelon leaves inoculated with the one isolate of A. infectoria and the one isolate of A. gaisen present in the inoculated leaves were 28.9% and 16.4, and 48.9% and 31.4, respectively. Results of the study indicate that Alternaria species associated with watermelon leaf blight in China are more diverse than that has been previously reported. This is the first report globally of A. infectoria, A. gaisen, and an unclassified Alternaria species as causal agents of leaf blight on watermelon.
Collapse
Affiliation(s)
- Guoping Ma
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Shuwen Bao
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Juan Zhao
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing 100193, China
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing 100097, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan District, Chongqing 402160, China
| | - Xuehong Wu
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing 100193, China
| |
Collapse
|
17
|
Zhang Y, Tian P, Duan G, Gao F, Schnabel G, Zhan J, Chen F. Histone H3 gene is not a suitable marker to distinguish Alternaria tenuissima from A. alternata affecting potato. PLoS One 2020; 15:e0231961. [PMID: 32324785 PMCID: PMC7179870 DOI: 10.1371/journal.pone.0231961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/03/2020] [Indexed: 11/21/2022] Open
Abstract
Potato Alternaria leaf blight is one of the economically most important disease in potato production worldwide. A recent study reported a quick method to distinguish main Alternaria pathogens A. tenuissima, A. alternata, and A. solani using partial histone H3 gene sequences. Using this method, our collection of 79 isolates from 8 provinces in China were presumably separated into A. tenussima and A. alternata. But in depth morphological and genetic analysis casted doubt on this identification. Culture morphologies of six presumed A. alternata isolates (PresA_alt) and six presumed A. tenuissima isolates (PresA_ten) were not significantly different. PresA_ten isolates also produced conidia in branched chains which supposed to be A. aternata. Phylogenetic analyses were conducted using internal transcribed spacer region (ITS) and five genes commonly used for species identification including glyceraldehyde-3-phosphate dehydrogenase (GPDH), translation elongation factor 1-alpha (TEF1), β-tubulin, plasma membrane ATPase (ATPase), and calmodulin genes. The results showed that GPDH and TEF1 sequences of PresA_alt and PresA_ten isolates were identical. The 12 isolates did not cluster by presumed species neither by individual or concatenated sequence comparisons. The phylogeny–trait association analysis confirmed that the two group isolates were undistinguishable by those molecular markers. Analysis of histone H3 gene sequences revealed variable intron sequences between PresA_ten and PresA_alt isolates, but the amino acid sequences were identical. Our results indicate that the previously published method to distinguish Alternaria species based on histone H3 gene sequence variation is inaccurate and that the prevalence of A. tenuissima isolates in China was likely overestimated.
Collapse
Affiliation(s)
- Yue Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peiyu Tian
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guohua Duan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangluan Gao
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States of America
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (FC); (JZ)
| | - Fengping Chen
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (FC); (JZ)
| |
Collapse
|
18
|
Metz N, Adolf B, Chaluppa N, Hückelhoven R, Hausladen H. Occurrence of sdh Mutations in German Alternaria solani Isolates and Potential Impact on Boscalid Sensitivity In Vitro, in the Greenhouse, and in the Field. PLANT DISEASE 2019; 103:3065-3071. [PMID: 31545700 DOI: 10.1094/pdis-03-19-0617-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fungus Alternaria solani is the main pathogen causing early blight on potatoes (Solanum tuberosum L.). An increase in the development of resistance to the succinate dehydrogenase inhibitor (SDHI) boscalid, one of the main active ingredients for the control of early blight, has been reported. For this study, monitoring data from Germany were collected between 2013 and 2016 and an increase in the occurrence of A. solani succinate dehydrogenase (SDH) mutant isolates was observed. In addition to the known point mutations in sdh complex II, a new mutation in subunit C was found in German isolates (SdhC-H134Q). SDHI fungicide sensitivity testing was performed in the laboratory, greenhouse, and field. Reduced boscalid sensitivity was shown for mutant isolates (SdhB-H278Y and SdhC-H134R) both in vitro and in vivo. In addition, field trials with artificial inoculation were performed in 2016 and 2017. In both years, fungicide efficacy was significantly reduced after mutant inoculation compared with wild-type inoculation.
Collapse
Affiliation(s)
- Nicole Metz
- Chair of Phytopathology, Technische Universität München, Freising 85354, Germany
| | - Birgit Adolf
- Chair of Phytopathology, Technische Universität München, Freising 85354, Germany
| | - Nicole Chaluppa
- Chair of Phytopathology, Technische Universität München, Freising 85354, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, Technische Universität München, Freising 85354, Germany
| | - Hans Hausladen
- Chair of Phytopathology, Technische Universität München, Freising 85354, Germany
| |
Collapse
|
19
|
Ding S, Meinholz K, Cleveland K, Jordan SA, Gevens AJ. Diversity and Virulence of Alternaria spp. Causing Potato Early Blight and Brown Spot in Wisconsin. PHYTOPATHOLOGY 2019; 109:436-445. [PMID: 30256185 DOI: 10.1094/phyto-06-18-0181-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Early blight, caused by Alternaria solani, along with brown spot, caused by A. alternata, have the potential to reduce quality and yield in potato production globally. Prior to this study, the incidence, disease impact, and fungicide resistance attributes of A. alternata in Wisconsin were poorly understood. Potato pathogens were isolated from foliar lesions at three commercial locations in Wisconsin in 2012 and 2017 and were initially morphologically identified as A. solani (n = 33) and A. alternata (n = 40). Identifications were further corroborated with the phylogenetic analysis of the internal transcribed spacer (ITS), translation elongation factor 1 (TEF1), gapdh, Alt a 1, and OPA10-2. A multigene phylogeny of ITS, TEF1, gapdh, and Alt a 1 showed five genotypes of A. alternata and one single genotype of A. solani. We demonstrated that the A. alternata isolates were virulent on potato cultivars Russet Burbank (P < 0.013) and Atlantic (P < 0.0073), though they caused less disease than A. solani (P < 0.0001 and P < 0.0001, respectively). A. alternata caused little disease on the breeding line 24-24-12 (P = 0.9929), and A. solani caused fewer disease symptoms on 24-24-12 than on Russet Burbank (P < 0.0001) or Atlantic (P < 0.0001). Breeding line 24-24-12 may be a promising source of potential resistance for the two diseases. There was no significant difference in virulence of different A. alternata genotypes, and no significant difference in virulence or genotype clustering among isolates from the three locations. Isolates of A. alternata that induced chlorosis caused larger lesion areas than isolates that did not in Russet Burbank (P < 0.0001), Atlantic (P < 0.0001), and 24-24-12 (P = 0.0365). There was no significant difference in virulence between quinone outside inhibitor (QoI)-sensitive and QoI-resistant isolates of A. alternata. This study enhanced our understanding of potato early blight and brown spot in Wisconsin, and suggested that A. alternata in addition to A. solani should be carefully monitored and possibly uniquely managed in order to achieve overall disease control.
Collapse
Affiliation(s)
- Shunping Ding
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Dr., Madison 53706
| | - Kiana Meinholz
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Dr., Madison 53706
| | - Kenneth Cleveland
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Dr., Madison 53706
| | - Stephen A Jordan
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Dr., Madison 53706
| | - Amanda J Gevens
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Dr., Madison 53706
| |
Collapse
|