1
|
Makopa TP, Semumu T, Gaaipone MT, Masemola T, Ramchuran S, Vrhovsek U, Zhou N. Valorisation of insect infested sweet sorghum reeds towards production of a fermented beverage. BMC Microbiol 2025; 25:331. [PMID: 40426063 PMCID: PMC12107736 DOI: 10.1186/s12866-025-03857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/03/2025] [Indexed: 05/29/2025] Open
Abstract
Sweet sorghum variety (Sorghum bicolour (L)) commonly known as sweet reeds, Ntšhe, in Setswana, is a valuable cash crop mostly for small scale farmers in Botswana and other southern African countries. These reeds are widely consumed as a delicacy and contribute significantly to food security, employment, and rural incomes. However, infestations by the larval stages of Chilo partellus (stem borer moths) lead to substantial economic losses, as consumers reject worm-infested reeds. To mitigate these losses, valorisation of condemned sweet reeds is attractive. Here, we took advantage of our understanding of yeast-insect interactions to isolate yeasts associated with larval stages of the stem borer moths and investigated their potential for use in the production of an alcoholic sweet sorghum beverage. We report the isolation of thirty-two yeast strains from the larvae and assessed their ability to ferment the simplest sugar, glucose, a constituent of the sweet sorghum juice. Out of the selected yeasts, a subset of fourteen strains belonging to Hanseniaspora and Candida genera were further characterised based on their capacity to ferment more sugars found in sweet sorghum juice. We further assessed the isolates for the ability to tolerate brewing/fermentation-associated stresses and production of complex aroma profiles towards the use of sweet sorghum juice as a sole feedstock to produce a commercial beverage. Our findings suggest that yeast-insect interactions offer a promising approach for converting rejected sweet sorghum stalks into a novel alcoholic beverage, adding economic value to an otherwise discarded resource. Clinical trial number Not applicable.
Collapse
Affiliation(s)
- Tawanda Proceed Makopa
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
- Department of Biotechnology, School of Health Science & Technology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe.
| | - Thandiwe Semumu
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag, Gaborone, 0022, Botswana
| | - Mpho T Gaaipone
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | - Thato Masemola
- Chemicals Cluster, Council for Science and Industrial Research, Meiring Naude Road, Pretoria, 0184, South Africa
| | - Santosh Ramchuran
- Chemicals Cluster, Council for Science and Industrial Research, Meiring Naude Road, Pretoria, 0184, South Africa
| | - Urska Vrhovsek
- Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| |
Collapse
|
2
|
Kibet S, Mudalungu CM, Kimani NM, Makwatta JO, Kabii J, Sevgan S, Kelemu S, Tanga CM. Unearthing Lactococcus lactis and Scheffersomyeces symbionts from edible wood-boring beetle larvae as a bio-resource for industrial applications. BMC Microbiol 2024; 24:282. [PMID: 39080520 PMCID: PMC11290184 DOI: 10.1186/s12866-024-03428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Gut microbiota have several advantages in influencing the host nutrition, metabolism, immunity and growth. However, the understanding of the gut microbiota in key edible wood-boring beetle larvae remain largely undefined. In the present study, the characteristics of the gut microbiota of two edible wood-boring species (Titocerus jaspideus and Passalus punctiger) from two indigenous forested areas were investigated. RESULTS Over 50% of Amplicon Sequence Variants (ASVs) constituted of Firmicutes in T. jaspideus. The dominant phyla in both beetle species were Bacteroidota (4.20-19.79%) and Proteobacteria (15.10-23.90%). Lactococcus lactis was the most abundant and core prokaryote in the guts of T. jaspideus. The fungi identified in the gut of both insects belong to the phylum Obazoa (66%) and Ascomycota (> 15%). Scheffersomyeces sp. was the core eukaryote recorded. The diversity of gut microbiota in both insect species did not vary significantly. Most of the prokaryotic genes expressed were predominantly associated with biosynthesis and metabolism. CONCLUSION Our findings demonstrated that Lactococcus lactis and Scheffersomyeces are core gut microbes of wood boring beetle larvae with desirable probiotic properties and promising use in food product fermentation for improved growth performance, gut barrier health, intestinal flora balance and immune protection for human and animals. Further studies to highlight the latest medical-based applications of L. lactis as live-delivery vector for the administration of therapeutics against both communicable and non-communicable diseases are warranted.
Collapse
Affiliation(s)
- Shadrack Kibet
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya
- Department of Physical Sciences, University of Embu, P.O Box 6, Embu, 60100, Kenya
| | - Cynthia M Mudalungu
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya.
- School of Chemistry and Material Science, The Technical University of Kenya, P.O Box 52428, 00200, Nairobi, Kenya.
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, P.O Box 6, Embu, 60100, Kenya
| | - JohnMark O Makwatta
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya
| | - James Kabii
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya
| | - Subramanian Sevgan
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya
| | - Segenet Kelemu
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772, Nairobi, 00100, Kenya.
| |
Collapse
|
3
|
Huang MY, Truong BN, Nguyen TP, Ju HJ, Lee PT. Synergistic effects of combined probiotics Bacillus pumilis D5 and Leuconostoc mesenteroide B4 on immune enhancement and disease resistance in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105158. [PMID: 38467323 DOI: 10.1016/j.dci.2024.105158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/13/2024]
Abstract
This study investigated the effects of two distinct probiotics, Leuconostoc mesenteroides B4 (B4) and Bacillus pumilus D5 (D5), along with their combination, on the diet of white shrimp (Litopenaeus vannamei) during an eight-week feeding trial. The diets tested included B4 + dextran at 107 CFU/g feed (the B4 group), D5 alone at 107 CFU/g feed (the D5 group), and a combination of B4 + dextran and D5 at 5 × 106 CFU/g feed each (the B4+dextran + D5 group). Relative to the control group, those administered probiotics exhibited moderate enhancements in growth. By the eighth week, the weight gain for the B4, D5, and B4+D5 groups was 696.50 ± 78.15%, 718.53 ± 130.73%, and 693.05 ± 93.79%, respectively, outperforming the control group's 691.66 ± 31.10% gain. The feed conversion ratio was most efficient in the B4 group (2.16 ± 0.06), closely followed by B4+D5 (2.21 ± 0.03) and D5 (2.22 ± 0.06), with the control group having the highest ratio (2.27 ± 0.03). While phenoloxidase activity was somewhat elevated in the B4 and D5 groups, no significant differences were noted in respiratory burst activity or total hemocyte count across all groups. Challenge tests at weeks 4 and 8 showed that the B4 + D5 combination offered superior protection against AHPND-causing Vibrio parahaemolyticus. The 4-week cumulative survival rate was highest in shrimp treated with B4 + dextran + D5 (56.25%), followed by B4 + dextran (31.25%), control (18.75%), and lowest in D5 (12.5%). By week 8, the B4 + dextran + D5 (43.75%) and B4 + dextran (37.5%) groups significantly outperformed the control group (6.25%, p < 0.05), with no significant difference observed between the D5 group (37.5%) and the control group at day 56. Analysis of the shrimp's foregut microbiota revealed an increase in unique OTUs in the B4 and B4 + D5 groups. Compared to the control, Proteobacteria abundance was reduced in all probiotic groups. Potential pathogens like Vibrio, Bacteroides, Neisseria, Botrytis, Clostridioides, and Deltaentomopoxvirus were detected in the control but were reduced or absent in probiotic groups. Beneficial microbes such as Methanobrevibacter and Dictyostelium in the B4+D5 group, and Sugiyamaella in the B4 group, showed significant increases. Probiotics also led to higher transcript levels of nitric oxide synthase in the hemocytes, and lysozyme and transglutaminase in the midgut, along with lysozyme and α2-macroglobulin in the foregut. Notably, the combined B4 + D5 probiotics synergistically enhanced the expression of superoxide dismutase and prophenoloxidase in the foregut, indicating an improved immune response. In summary, this study demonstrates that the probiotics evaluated, especially when used in combination, significantly boost the expression of specific immune-related genes, enhance the bacterial diversity and richness of the intestine, and thus prevent the colonization and proliferation of Vibrio spp. in L. vannamei.
Collapse
Affiliation(s)
- Mei-Ying Huang
- Aquaculture Division, Fisheries Research Institute, Ministry of Agriculture, Taiwan
| | - Bich Ngoc Truong
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Tan Phat Nguyen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Huei-Jen Ju
- Aquaculture Division, Fisheries Research Institute, Ministry of Agriculture, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
4
|
Rosa CA, Lachance MA, Limtong S, Santos ARO, Landell MF, Gombert AK, Morais PB, Sampaio JP, Gonçalves C, Gonçalves P, Góes-Neto A, Santa-Brígida R, Martins MB, Janzen DH, Hallwachs W. Yeasts from tropical forests: Biodiversity, ecological interactions, and as sources of bioinnovation. Yeast 2023; 40:511-539. [PMID: 37921426 DOI: 10.1002/yea.3903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Tropical rainforests and related biomes are found in Asia, Australia, Africa, Central and South America, Mexico, and many Pacific Islands. These biomes encompass less than 20% of Earth's terrestrial area, may contain about 50% of the planet's biodiversity, and are endangered regions vulnerable to deforestation. Tropical rainforests have a great diversity of substrates that can be colonized by yeasts. These unicellular fungi contribute to the recycling of organic matter, may serve as a food source for other organisms, or have ecological interactions that benefit or harm plants, animals, and other fungi. In this review, we summarize the most important studies of yeast biodiversity carried out in these biomes, as well as new data, and discuss the ecology of yeast genera frequently isolated from tropical forests and the potential of these microorganisms as a source of bioinnovation. We show that tropical forest biomes represent a tremendous source of new yeast species. Although many studies, most using culture-dependent methods, have already been carried out in Central America, South America, and Asia, the tropical forest biomes of Africa and Australasia remain an underexplored source of novel yeasts. We hope that this review will encourage new researchers to study yeasts in unexplored tropical forest habitats.
Collapse
Affiliation(s)
- Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center Kasetsart University, Kasetsart University, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Ana R O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Melissa F Landell
- Setor de Genética, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Andreas K Gombert
- Department of Engineering and Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Paula B Morais
- Laboratório de Microbiologia Ambiental e Biotecnologia, Campus de Palmas, Universidade Federal do Tocantins, Palmas, Tocantins, Brazil
| | - José P Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Carla Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Aristóteles Góes-Neto
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Schwarz M, Beza-Beza CF, Mikaelyan A. Wood fibers are a crucial microhabitat for cellulose- and xylan- degrading bacteria in the hindgut of the wood-feeding beetle Odontotaenius disjunctus. Front Microbiol 2023; 14:1173696. [PMID: 37448580 PMCID: PMC10338082 DOI: 10.3389/fmicb.2023.1173696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Wood digestion in insects relies on the maintenance of a mosaic of numerous microhabitats, each colonized by distinct microbiomes. Understanding the division of digestive labor between these microhabitats- is central to understanding the physiology and evolution of symbiotic wood digestion. A microhabitat that has emerged to be of direct relevance to the process of lignocellulose digestion is the surface of ingested plant material. Wood particles in the guts of some termites are colonized by a specialized bacterial fiber-digesting microbiome, but whether this represents a widespread strategy among insect lineages that have independently evolved wood-feeding remains an open question. Methods In this study, we investigated the bacterial communities specifically associated with wood fibers in the gut of the passalid beetle Odontotaenius disjunctus. We developed a Percoll-based centrifugation method to isolate and enrich the wood particles from the anterior hindgut, allowing us to access the wood fibers and their associated microbiome. We then performed assays of enzyme activity and used short-read and long-read amplicon sequencing of the 16S rRNA gene to identify the composition of the fiber-associated microbiome. Results Our assays demonstrated that the anterior hindgut, which houses a majority of the bacterial load, is an important site for lignocellulose digestion. Wood particles enriched from the anterior hindgut contribute to a large proportion of the total enzyme activity. The sequencing revealed that O. disjunctus, like termites, harbors a distinct fiber-associated microbiome, but notably, its community is enriched in insect-specific groups of Lactococcus and Turicibacter. Discussion Our study underscores the importance of microhabitats in fostering the complex symbiotic relationships between wood-feeding insects and their microbiomes. The discovery of distinct fiber-digesting symbionts in O. disjunctus, compared to termites, highlights the diverse evolutionary paths insects have taken to adapt to a challenging diet.
Collapse
Affiliation(s)
| | | | - Aram Mikaelyan
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
6
|
Nalabothu RL, Fisher KJ, LaBella AL, Meyer TA, Opulente DA, Wolters JF, Rokas A, Hittinger CT. Codon Optimization Improves the Prediction of Xylose Metabolism from Gene Content in Budding Yeasts. Mol Biol Evol 2023; 40:msad111. [PMID: 37154525 PMCID: PMC10263009 DOI: 10.1093/molbev/msad111] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/28/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Xylose is the second most abundant monomeric sugar in plant biomass. Consequently, xylose catabolism is an ecologically important trait for saprotrophic organisms, as well as a fundamentally important trait for industries that hope to convert plant mass to renewable fuels and other bioproducts using microbial metabolism. Although common across fungi, xylose catabolism is rare within Saccharomycotina, the subphylum that contains most industrially relevant fermentative yeast species. The genomes of several yeasts unable to consume xylose have been previously reported to contain the full set of genes in the XYL pathway, suggesting the absence of a gene-trait correlation for xylose metabolism. Here, we measured growth on xylose and systematically identified XYL pathway orthologs across the genomes of 332 budding yeast species. Although the XYL pathway coevolved with xylose metabolism, we found that pathway presence only predicted xylose catabolism about half of the time, demonstrating that a complete XYL pathway is necessary, but not sufficient, for xylose catabolism. We also found that XYL1 copy number was positively correlated, after phylogenetic correction, with xylose utilization. We then quantified codon usage bias of XYL genes and found that XYL3 codon optimization was significantly higher, after phylogenetic correction, in species able to consume xylose. Finally, we showed that codon optimization of XYL2 was positively correlated, after phylogenetic correction, with growth rates in xylose medium. We conclude that gene content alone is a weak predictor of xylose metabolism and that using codon optimization enhances the prediction of xylose metabolism from yeast genome sequence data.
Collapse
Affiliation(s)
- Rishitha L Nalabothu
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| | - Kaitlin J Fisher
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY
| | - Abigail Leavitt LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC
| | - Taylor A Meyer
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
- Department of Biology, Villanova University, Villanova, PA
| | - John F Wolters
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
7
|
Avila-Arias H, Turco RF, Scharf ME, Groves RL, Richmond DS. Larvae of an invasive scarab increase greenhouse gas emissions from soils and recruit gut mycobiota involved in C and N transformations. Front Microbiol 2023; 14:1102523. [PMID: 37025631 PMCID: PMC10072269 DOI: 10.3389/fmicb.2023.1102523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
Background Soil-derived prokaryotic gut communities of the Japanese beetle Popillia japonica Newman (JB) larval gut include heterotrophic, ammonia-oxidizing, and methanogenic microbes potentially capable of promoting greenhouse gas (GHG) emissions. However, no research has directly explored GHG emissions or the eukaryotic microbiota associated with the larval gut of this invasive species. In particular, fungi are frequently associated with the insect gut where they produce digestive enzymes and aid in nutrient acquisition. Using a series of laboratory and field experiments, this study aimed to (1) assess the impact of JB larvae on soil GHG emissions; (2) characterize gut mycobiota associated with these larvae; and (3) examine how soil biological and physicochemical characteristics influence variation in both GHG emissions and the composition of larval gut mycobiota. Methods Manipulative laboratory experiments consisted of microcosms containing increasing densities of JB larvae alone or in clean (uninfested) soil. Field experiments included 10 locations across Indiana and Wisconsin where gas samples from soils, as well as JB and their associated soil were collected to analyze soil GHG emissions, and mycobiota (ITS survey), respectively. Results In laboratory trials, emission rates of CO2, CH4, and N2O from infested soil were ≥ 6.3× higher per larva than emissions from JB larvae alone whereas CO2 emission rates from soils previously infested by JB larvae were 1.3× higher than emissions from JB larvae alone. In the field, JB larval density was a significant predictor of CO2 emissions from infested soils, and both CO2 and CH4 emissions were higher in previously infested soils. We found that geographic location had the greatest influence on variation in larval gut mycobiota, although the effects of compartment (i.e., soil, midgut and hindgut) were also significant. There was substantial overlap in the composition and prevalence of the core fungal mycobiota across compartments with prominent fungal taxa being associated with cellulose degradation and prokaryotic methane production/consumption. Soil physicochemical characteristics such as organic matter, cation exchange capacity, sand, and water holding capacity, were also correlated with both soil GHG emission, and fungal a-diversity within the JB larval gut. Conclusions: Results indicate JB larvae promote GHG emissions from the soil directly through metabolic activities, and indirectly by creating soil conditions that favor GHG-associated microbial activity. Fungal communities associated with the JB larval gut are primarily influenced by adaptation to local soils, with many prominent members of that consortium potentially contributing to C and N transformations capable of influencing GHG emissions from infested soil.
Collapse
Affiliation(s)
- Helena Avila-Arias
- Department of Entomology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Helena Avila-Arias,
| | - Ronald F. Turco
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Michael E. Scharf
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States
| | - Russell L. Groves
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, United States
| | - Douglas S. Richmond
- Department of Entomology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
|
9
|
Rangaswamy B, Ji CW, Kim WS, Park JW, Kim YJ, Kwak IS. Profiling Analysis of Filter Feeder Polypedilum (Chironomidae) Gut Contents Using eDNA Metabarcoding Following Contrasting Habitat Types-Weir and Stream. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10945. [PMID: 36078662 PMCID: PMC9517803 DOI: 10.3390/ijerph191710945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
We analyzed the dietary composition of Polypedilum larvae among two contrasting habitats (river and weir). Our approach was (i) to apply eDNA-based sampling to reveal the gut content of the chironomid larvae, (ii) the diversity of gut contents in the two aquatic habitats, and (iii) assessment of habitat sediment condition with the food sources in the gut. The most abundant food was Chlorophyta in the gut of the river (20%) and weir (39%) chironomids. The average ratio of fungi, protozoa, and zooplankton in river chironomids gut was 5.9%, 7.2%, and 3.8%, while it was found decreased to 1.2%, 2.5%, and 0.1% in weir chironomids. Aerobic fungi in river midge guts were 3.6% and 10.34% in SC and IS, while they were in the range of 0.34-2.58% in weir midges. The hierarchical clustering analysis showed a relationship of environmental factors with food contents. Abiotic factors (e.g., pH) in the river and weir habitats correlated the clustered pattern with phytoplankton and minor groups of fungi. This study could help understand the food source diversity in the chironomid and habitat environmental conditions by using eDNA metabarcoding as an effective tool to determine dietary composition.
Collapse
Affiliation(s)
- Boobal Rangaswamy
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea
| | - Chang Woo Ji
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea
| | - Won-Seok Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| | - Jae-Won Park
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| | - Yong Jun Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| |
Collapse
|
10
|
Drosophila melanogaster as an emerging model host for entomopathogenic fungi. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Bizarria R, de Castro Pietrobon T, Rodrigues A. Uncovering the Yeast Communities in Fungus-Growing Ant Colonies. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02099-1. [PMID: 35962280 DOI: 10.1007/s00248-022-02099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Yeast-insect interactions are compelling models to study the evolution, ecology, and diversification of yeasts. Fungus-growing (attine) ants are prominent insects in the Neotropics that evolved an ancient fungiculture of basidiomycete fungi over 55-65 million years, supplying an environment for a hidden yeast diversity. Here we assessed the yeast diversity in the attine ant environment by thoroughly sampling fungus gardens across four out of five ant fungiculture systems: Acromyrmex coronatus and Mycetomoellerius tucumanus standing for leaf-cutting and higher-attine fungicultures, respectively; Apterostigma sp., Mycetophylax sp., and Mycocepurus goeldii as ants from the lower-attine fungiculture. Among the fungus gardens of all fungus-growing ants examined, we found taxonomically unique and diverse microbial yeast communities across the different fungicultures. Ascomycete yeasts were the core taxa in fungus garden samples, with Saccharomycetales as the most frequent order. The genera Aureobasidium, Candida, Papiliotrema, Starmerella, and Sugiyamaella had the highest incidence in fungus gardens. Despite the expected similarity within the same fungiculture system, colonies of the same ant species differed in community structure. Among Saccharomycotina yeasts, few were distinguishable as killer yeasts, with a classical inhibition pattern for the killer phenotype, differing from earlier observations in this environment, which should be further investigated. Yeast mycobiome in fungus gardens is distinct between colonies of the same fungiculture and each ant colony harbors a distinguished and unique yeast community. Fungus gardens of attine ants are emergent environments to study the diversity and ecology of yeasts associated with insects.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Tatiane de Castro Pietrobon
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil.
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
12
|
Tadioto V, Milani LM, Barrilli ÉT, Baptista CW, Bohn L, Dresch A, Harakava R, Fogolari O, Mibielli GM, Bender JP, Treichel H, Stambuk BU, Müller C, Alves SL. Analysis of glucose and xylose metabolism in new indigenous Meyerozyma caribbica strains isolated from corn residues. World J Microbiol Biotechnol 2022; 38:35. [PMID: 34989919 DOI: 10.1007/s11274-021-03221-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/22/2021] [Indexed: 11/26/2022]
Abstract
Aiming to broaden the base of knowledge about wild yeasts, four new indigenous strains were isolated from corn residues, and phylogenetic-tree assemblings on ITS and LSU regions indicated they belong to Meyerozyma caribbica. Yeasts were cultivated under full- and micro-aerobiosis, starting with low or high cell-density inoculum, in synthetic medium or corn hydrolysate containing glucose and/or xylose. Cells were able to assimilate both monosaccharides, albeit by different metabolic routes (fermentative or respiratory). They grew faster in glucose, with lag phases ~ 10 h shorter than in xylose. The hexose exhaustion occurred between 24 and 34 h, while xylose was entirely consumed in the last few hours of cultivation (44-48 h). In batch fermentation in synthetic medium with high cell density, under full-aerobiosis, 18-20 g glucose l-1 were exhausted in 4-6 h, with a production of 6.5-7.0 g ethanol l-1. In the xylose medium, cells needed > 12 h to consume the carbohydrate, and instead of ethanol, cells released 4.4-6.4 g l-1 xylitol. Under micro-aerobiosis, yeasts were unable to assimilate xylose, and glucose was more slowly consumed, although the ethanol yield was the theoretical maximum. When inoculated into the hydrolysate, cells needed 4-6 h to deplete glucose, and xylose had a maximum consumption of 57%. Considering that the hydrolysate contained ~ 3 g l-1 acetic acid, it probably has impaired sugar metabolism. Thus, this study increases the fund of knowledge regarding indigenous yeasts and reveals the biotechnological potential of these strains.
Collapse
Affiliation(s)
- Viviani Tadioto
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Letícia M Milani
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Évelyn T Barrilli
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Cristina W Baptista
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Letícia Bohn
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Aline Dresch
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Ricardo Harakava
- Laboratory of Phytopathological Biochemistry, Biological Institute, São Paulo, SP, Brazil
| | - Odinei Fogolari
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Guilherme M Mibielli
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - João P Bender
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Campus Erechim, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | - Boris U Stambuk
- Laboratory of Biochemistry and Molecular Biotechnology of Yeasts, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Caroline Müller
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Sérgio L Alves
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
13
|
Cai S, Jia J, He C, Zeng L, Fang Y, Qiu G, Lan X, Su J, He X. Multi-Omics of Pine Wood Nematode Pathogenicity Associated With Culturable Associated Microbiota Through an Artificial Assembly Approach. FRONTIERS IN PLANT SCIENCE 2022; 12:798539. [PMID: 35046983 PMCID: PMC8762061 DOI: 10.3389/fpls.2021.798539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Pinewood nematode (PWN), the causal agent of pine wilt disease (PWD), causes massive global losses of Pinus species each year. Bacteria and fungi existing in symbiosis with PWN are closely linked with the pathogenesis of PWD, but the relationship between PWN pathogenicity and the associated microbiota is still ambiguous. This study explored the relationship between microbes and the pathogenicity of PWN by establishing a PWN-associated microbe library, and used this library to generate five artificial PWN-microbe symbiont (APMS) assemblies with gnotobiotic PWNs. The fungal and bacterial communities of different APMSs (the microbiome) were explored by next-generation sequencing. Furthermore, different APMSs were used to inoculate the same Masson pine (Pinus massoniana) cultivar, and multi-omics (metabolome, phenomics, and transcriptome) data were obtained to represent the pathogenicity of different APMSs at 14 days post-inoculation (dpi). Significant positive correlations were observed between microbiome and transcriptome or metabolome data, but microbiome data were negatively correlated with the reactive oxygen species (ROS) level in the host. Five response genes, four fungal genera, four bacterial genera, and nineteen induced metabolites were positively correlated with the ROS level, while seven induced metabolites were negatively correlated. To further explore the function of PWN-associated microbes, single genera of functional microbes (Mb1-Mb8) were reloaded onto gnotobiotic PWNs and used to inoculate pine tree seedlings. Three of the genera (Cladophialophora, Ochroconis, and Flavobacterium) decreased the ROS level of the host pine trees, while only one genus (Penicillium) significantly increased the ROS level of the host pine tree seedlings. These results demonstrate a clear relationship between associated microbes and the pathogenicity of PWN, and expand the knowledge on the interaction between PWD-induced forest decline and the PWN-associated microbiome.
Collapse
Affiliation(s)
- Shouping Cai
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Jiayu Jia
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenyang He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liqiong Zeng
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Yu Fang
- Institute of Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Guowen Qiu
- Natural Resources Bureau of Shanghang County, Longyan, China
| | - Xiang Lan
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Jun Su
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyou He
- Fujian Academy of Forestry Sciences, Fuzhou, China
| |
Collapse
|
14
|
Schapheer C, Pellens R, Scherson R. Arthropod-Microbiota Integration: Its Importance for Ecosystem Conservation. Front Microbiol 2021; 12:702763. [PMID: 34408733 PMCID: PMC8365148 DOI: 10.3389/fmicb.2021.702763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Recent reports indicate that the health of our planet is getting worse and that genuine transformative changes are pressing. So far, efforts to ameliorate Earth's ecosystem crises have been insufficient, as these often depart from current knowledge of the underlying ecological processes. Nowadays, biodiversity loss and the alterations in biogeochemical cycles are reaching thresholds that put the survival of our species at risk. Biological interactions are fundamental for achieving biological conservation and restoration of ecological processes, especially those that contribute to nutrient cycles. Microorganism are recognized as key players in ecological interactions and nutrient cycling, both free-living and in symbiotic associations with multicellular organisms. This latter assemblage work as a functional ecological unit called "holobiont." Here, we review the emergent ecosystem properties derived from holobionts, with special emphasis on detritivorous terrestrial arthropods and their symbiotic microorganisms. We revisit their relevance in the cycling of recalcitrant organic compounds (e.g., lignin and cellulose). Finally, based on the interconnection between biodiversity and nutrient cycling, we propose that a multicellular organism and its associates constitute an Ecosystem Holobiont (EH). This EH is the functional unit characterized by carrying out key ecosystem processes. We emphasize that in order to meet the challenge to restore the health of our planet it is critical to reduce anthropic pressures that may threaten not only individual entities (known as "bionts") but also the stability of the associations that give rise to EH and their ecological functions.
Collapse
Affiliation(s)
- Constanza Schapheer
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santiago, Chile
- Laboratorio de Sistemática y Evolución, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| | - Roseli Pellens
- UMR 7205, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Ecole Pratique de Hautes Etudes, Institut de Systématique, Évolution, Biodiversité, Sorbonne Université, Université des Antilles, Paris, France
| | - Rosa Scherson
- Laboratorio de Sistemática y Evolución, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Ali SS, Al-Tohamy R, Koutra E, Kornaros M, Khalil M, Elsamahy T, El-Shetehy M, Sun J. Coupling azo dye degradation and biodiesel production by manganese-dependent peroxidase producing oleaginous yeasts isolated from wood-feeding termite gut symbionts. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:61. [PMID: 33685508 PMCID: PMC7938474 DOI: 10.1186/s13068-021-01906-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Textile industry represents one prevalent activity worldwide, generating large amounts of highly contaminated and rich in azo dyes wastewater, with severe effects on natural ecosystems and public health. However, an effective and environmentally friendly treatment method has not yet been implemented, while concurrently, the increasing demand of modern societies for adequate and sustainable energy supply still remains a global challenge. Under this scope, the purpose of the present study was to isolate promising species of yeasts inhabiting wood-feeding termite guts, for combined azo dyes and textile wastewater bioremediation, along with biodiesel production. RESULTS Thirty-eight yeast strains were isolated, molecularly identified and subsequently tested for desired enzymatic activity, lipid accumulation, and tolerance to lignin-derived metabolites. The most promising species were then used for construction of a novel yeast consortium, which was further evaluated for azo dyes degradation, under various culture conditions, dye levels, as well as upon the addition of heavy metals, different carbon and nitrogen sources, and lastly agro-waste as an inexpensive and environmentally friendly substrate alternative. The novel yeast consortium, NYC-1, which was constructed included the manganese-dependent peroxidase producing oleaginous strains Meyerozyma caribbica, Meyerozyma guilliermondii, Debaryomyces hansenii, and Vanrija humicola, and showed efficient azo dyes decolorization, which was further enhanced depending on the incubation conditions. Furthermore, enzymatic activity, fatty acid profile and biodiesel properties were thoroughly investigated. Lastly, a dye degradation pathway coupled to biodiesel production was proposed, including the formation of phenol-based products, instead of toxic aromatic amines. CONCLUSION In total, this study might be the first to explore the application of MnP and lipid-accumulating yeasts for coupling dye degradation and biodiesel production.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China.
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Maha Khalil
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China
| | - Mohamed El-Shetehy
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China.
| |
Collapse
|
16
|
Pessotti RDC, Hansen BL, Reaso JN, Ceja-Navarro JA, El-Hifnawi L, Brodie EL, Traxler MF. Multiple lineages of Streptomyces produce antimicrobials within passalid beetle galleries across eastern North America. eLife 2021; 10:65091. [PMID: 33942718 PMCID: PMC8096431 DOI: 10.7554/elife.65091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Some insects form symbioses in which actinomycetes provide defense against pathogens by making antimicrobials. The range of chemical strategies employed across these associations, and how these strategies relate to insect lifestyle, remains underexplored. We assessed subsocial passalid beetles of the species Odontotaenius disjunctus, and their frass (fecal material), which is an important food resource within their galleries, as a model insect/actinomycete system. Through chemical and phylogenetic analyses, we found that O. disjunctus frass collected across eastern North America harbored multiple lineages of Streptomyces and diverse antimicrobials. Metabolites detected in frass displayed synergistic and antagonistic inhibition of a fungal entomopathogen, Metarhizium anisopliae, and multiple streptomycete isolates inhibited this pathogen when co-cultivated directly in frass. These findings support a model in which the lifestyle of O. disjunctus accommodates multiple Streptomyces lineages in their frass, resulting in a rich repertoire of antimicrobials that likely insulates their galleries against pathogenic invasion.
Collapse
Affiliation(s)
- Rita de Cassia Pessotti
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Bridget L Hansen
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Jewel N Reaso
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Javier A Ceja-Navarro
- Bioengineering and Biomedical Sciences Department, Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States,Institute for Biodiversity Science and Sustainability, California Academy of SciencesBerkeleyUnited States
| | - Laila El-Hifnawi
- Department of Molecular and Cellular Biology, University of California, BerkeleyBerkeleyUnited States
| | - Eoin L Brodie
- Ecology Department, Earth and Environmental Sciences, Lawrence Berkeley National LaboratoryBerkeleyUnited States,Department of Environmental Science, Policy and Management, University of California, BerkeleyBerkeleyUnited States
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
17
|
Quintana S, Plischuk S, Brasesco C, Revainera P, Genchi García ML, Bravi ME, Reynaldi F, Eguaras M, Maggi M. Lotmaria passim (Kinetoplastea: Trypanosomatidae) in honey bees from Argentina. Parasitol Int 2020; 81:102244. [PMID: 33217549 DOI: 10.1016/j.parint.2020.102244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023]
Abstract
Lotmaria passim (Kinetoplastea) is considered the most prevalent as well as the most virulent trypanosomatid associated to the European honey bee Apis mellifera. We used qPCR to screen for the presence of this parasite in 57 samples from ten Argentinian provinces, and were able to detect its presence throughout most of the country with 41% of the samples testing positive. In a retrospective analysis, we detected L. passim in 73% of honey bee samples from 2006 showing that this flagellate has been widely present in Argentina for at least ~15 years. Additionally, three primer sets for L. passim detection were compared, with the pair that produced smallest PCR product having the best detection capability. Finally, we also found L. passim DNA in 100% (n = 6) of samples of the mite Varroa destructor. The role of this ectoparasite in the lifecycle of Lotmaria, if any, remains unrevealed.
Collapse
Affiliation(s)
- Silvina Quintana
- Centro de Investigación en Abejas Sociales, Laboratorio de Artrópodos, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina; Laboratorio de Biología Molecular, Instituto de Análisis Fares Taie, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Santiago Plischuk
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina; Centro de Estudios Parasitológicos y de Vectores (CEPAVE) (CONICET-UNLP), La Plata, Argentina.
| | - Constanza Brasesco
- Centro de Investigación en Abejas Sociales, Laboratorio de Artrópodos, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Pablo Revainera
- Centro de Investigación en Abejas Sociales, Laboratorio de Artrópodos, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - María Laura Genchi García
- Laboratorio de Virología (LAVIR), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina; Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Argentina
| | - María Emilia Bravi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina; Laboratorio de Virología (LAVIR), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Francisco Reynaldi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina; Laboratorio de Virología (LAVIR), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín Eguaras
- Centro de Investigación en Abejas Sociales, Laboratorio de Artrópodos, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales, Laboratorio de Artrópodos, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| |
Collapse
|
18
|
Meriggi N, Di Paola M, Cavalieri D, Stefanini I. Saccharomyces cerevisiae - Insects Association: Impacts, Biogeography, and Extent. Front Microbiol 2020; 11:1629. [PMID: 32760380 PMCID: PMC7372139 DOI: 10.3389/fmicb.2020.01629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Over the last few years, an increasing number of studies have reported the existence of an association between the budding yeast Saccharomyces cerevisiae and insects. The discovery of this relationship has called into question the hypothesis that S. cerevisiae is unable to survive in nature and that the presence of S. cerevisiae strains in natural specimens is the result of contamination from human-related environments. S. cerevisiae cells benefit from this association as they find in the insect intestine a shelter, but also a place where they can reproduce themselves through mating, the latter being an event otherwise rarely observed in natural environments. On the other hand, insects also take advantage in hosting S. cerevisiae as they rely on yeasts as nutriment to properly develop, to localize suitable food, and to enhance their immune system. Despite the relevance of this relationship on both yeast and insect ecology, we are still far from completely appreciating its extent and effects. It has been shown that other yeasts are able to colonize only one or a few insect species. Is it the same for S. cerevisiae cells or is this yeast able to associate with any insect? Similarly, is this association geographically or topographically limited in areas characterized by specific physical features? With this review, we recapitulate the nature of the S. cerevisiae-insect association, disclose its extent in terms of geographical distribution and species involved, and present YeastFinder, a cured online database providing a collection of information on this topic.
Collapse
Affiliation(s)
| | - Monica Di Paola
- Department of Biology, University of Florence, Florence, Italy
| | | | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Baig F, Farnier K, Piper AM, Speight R, Cunningham JP. Yeasts Influence Host Selection and Larval Fitness in Two Frugivorous Carpophilus Beetle Species. J Chem Ecol 2020; 46:675-687. [DOI: 10.1007/s10886-020-01167-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
|
20
|
Geijer C, Faria-Oliveira F, Moreno AD, Stenberg S, Mazurkewich S, Olsson L. Genomic and transcriptomic analysis of Candida intermedia reveals the genetic determinants for its xylose-converting capacity. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:48. [PMID: 32190113 PMCID: PMC7068945 DOI: 10.1186/s13068-020-1663-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/21/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND An economically viable production of biofuels and biochemicals from lignocellulose requires microorganisms that can readily convert both the cellulosic and hemicellulosic fractions into product. The yeast Candida intermedia displays a high capacity for uptake and conversion of several lignocellulosic sugars including the abundant pentose d-xylose, an underutilized carbon source since most industrially relevant microorganisms cannot naturally ferment it. Thus, C. intermedia constitutes an important source of knowledge and genetic information that could be transferred to industrial microorganisms such as Saccharomyces cerevisiae to improve their capacity to ferment lignocellulose-derived xylose. RESULTS To understand the genetic determinants that underlie the metabolic properties of C. intermedia, we sequenced the genomes of both the in-house-isolated strain CBS 141442 and the reference strain PYCC 4715. De novo genome assembly and subsequent analysis revealed C. intermedia to be a haploid species belonging to the CTG clade of ascomycetous yeasts. The two strains have highly similar genome sizes and number of protein-encoding genes, but they differ on the chromosomal level due to numerous translocations of large and small genomic segments. The transcriptional profiles for CBS 141442 grown in medium with either high or low concentrations of glucose and xylose were determined through RNA-sequencing analysis, revealing distinct clusters of co-regulated genes in response to different specific growth rates, carbon sources and osmotic stress. Analysis of the genomic and transcriptomic data also identified multiple xylose reductases, one of which displayed dual NADH/NADPH co-factor specificity that likely plays an important role for co-factor recycling during xylose fermentation. CONCLUSIONS In the present study, we performed the first genomic and transcriptomic analysis of C. intermedia and identified several novel genes for conversion of xylose. Together the results provide insights into the mechanisms underlying saccharide utilization in C. intermedia and reveal potential target genes to aid in xylose fermentation in S. cerevisiae.
Collapse
Affiliation(s)
- Cecilia Geijer
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Fábio Faria-Oliveira
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Antonio D. Moreno
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Present Address: Biofuels Unit, Department of Energy, CIEMAT, Madrid, Spain
| | - Simon Stenberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Scott Mazurkewich
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
21
|
Bioprospection of Enzymes and Microorganisms in Insects to Improve Second-Generation Ethanol Production. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2019.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
22
|
Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nat Microbiol 2019; 4:864-875. [PMID: 30858574 DOI: 10.1038/s41564-019-0384-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/22/2019] [Indexed: 11/08/2022]
Abstract
Beneficial microbial associations enhance the fitness of most living organisms, and wood-feeding insects offer some of the most striking examples of this. Odontotaenius disjunctus is a wood-feeding beetle that possesses a digestive tract with four main compartments, each of which contains well-differentiated microbial populations, suggesting that anatomical properties and separation of these compartments may enhance energy extraction from woody biomass. Here, using integrated chemical analyses, we demonstrate that lignocellulose deconstruction and fermentation occur sequentially across compartments, and that selection for microbial groups and their metabolic pathways is facilitated by gut anatomical features. Metaproteogenomics showed that higher oxygen concentration in the midgut drives lignocellulose depolymerization, while a thicker gut wall in the anterior hindgut reduces oxygen diffusion and favours hydrogen accumulation, facilitating fermentation, homoacetogenesis and nitrogen fixation. We demonstrate that depolymerization continues in the posterior hindgut, and that the beetle excretes an energy- and nutrient-rich product on which its offspring subsist and develop. Our results show that the establishment of beneficial microbial partners within a host requires both the acquisition of the microorganisms and the formation of specific habitats within the host to promote key microbial metabolic functions. Together, gut anatomical properties and microbial functional assembly enable lignocellulose deconstruction and colony subsistence on an extremely nutrient-poor diet.
Collapse
|
23
|
Kijpornyongpan T, Urbina H, Suh SO, Luangsa-ard J, Aime MC, Blackwell M. TheSuhomycesclade: from single isolate to multiple species to disintegrating sex loci. FEMS Yeast Res 2018; 19:5212297. [DOI: 10.1093/femsyr/foy125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/27/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Teeratas Kijpornyongpan
- Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette IN 47907-2054, USA
| | - Hector Urbina
- Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette IN 47907-2054; Florida Department of Agriculture & Consumer Services, Division of Plant Industry, Gainesville, Florida 32608-7100, USA
| | - Sung-Oui Suh
- Manufacturing Science and Technology Program, ATCC, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Jennifer Luangsa-ard
- Microbe Interaction and Ecology Laboratory, BIOTEC, 113 Thailand Science Park, Phahonyothin Rd., Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette IN 47907-2054, USA
| | - Meredith Blackwell
- Department of Biological Sciences, Louisiana State University; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
24
|
The digestive tract of Phylloicus (Trichoptera: Calamoceratidae) harbours different yeast taxa in Cerrado streams, Brazil. Symbiosis 2018. [DOI: 10.1007/s13199-018-0577-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Benbow ME, Barton PS, Ulyshen MD, Beasley JC, DeVault TL, Strickland MS, Tomberlin JK, Jordan HR, Pechal JL. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1331] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M. Eric Benbow
- Department of Entomology; Michigan State University; East Lansing Michigan 48824 USA
- Department of Osteopathic Medical Specialties; Michigan State University; East Lansing Michigan 48824 USA
- Ecology, Evolutionary Biology and Behavior Program; Michigan State University; East Lansing Michigan 48824 USA
| | - Philip S. Barton
- Fenner School of Environment and Society; Australian National University; Canberra Australian Capital Territory 2601 Australia
| | | | - James C. Beasley
- Savannah River Ecology Laboratory and Warnell School of Forestry and Natural Resources; University of Georgia; Aiken South Carolina 29802 USA
| | - Travis L. DeVault
- U.S. Department of Agriculture; National Wildlife Research Center; Sandusky Ohio 44870 USA
| | | | | | - Heather R. Jordan
- Department of Biological Sciences; Mississippi State University; Mississippi Mississippi 39762 USA
| | - Jennifer L. Pechal
- Department of Entomology; Michigan State University; East Lansing Michigan 48824 USA
| |
Collapse
|
26
|
Su YK, Willis LB, Rehmann L, Smith DR, Jeffries TW. Spathaspora passalidarum selected for resistance to AFEX hydrolysate shows decreased cell yield. FEMS Yeast Res 2018; 18:5042277. [DOI: 10.1093/femsyr/foy011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yi-Kai Su
- Department of Biological Systems Engineering, University of Wisconsin, Madison, WI 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53705, USA
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 3K, Canada
| | - Laura B Willis
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53705, USA
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
- Department of Bacteriology, University of Madison, WI, 53705, USA
| | - Lars Rehmann
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 3K, Canada
| | - David R Smith
- Department of Biology, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Thomas W Jeffries
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53705, USA
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
- Department of Bacteriology, University of Madison, WI, 53705, USA
| |
Collapse
|
27
|
Haase MAB, Kominek J, Langdon QK, Kurtzman CP, Hittinger CT. Genome sequence and physiological analysis of Yamadazyma laniorum f.a. sp. nov. and a reevaluation of the apocryphal xylose fermentation of its sister species, Candida tenuis. FEMS Yeast Res 2018; 17:3737663. [PMID: 28419220 DOI: 10.1093/femsyr/fox019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/11/2017] [Indexed: 11/12/2022] Open
Abstract
Xylose fermentation is a rare trait that is immensely important to the cellulosic biofuel industry, and Candida tenuis is one of the few yeasts that has been reported with this trait. Here we report the isolation of two strains representing a candidate sister species to C. tenuis. Integrated analysis of genome sequence and physiology suggested the genetic basis of a number of traits, including variation between the novel species and C. tenuis in lactose metabolism due to the loss of genes encoding lactose permease and β-galactosidase in the former. Surprisingly, physiological characterization revealed that neither the type strain of C. tenuis nor this novel species fermented xylose in traditional assays. We reexamined three xylose-fermenting strains previously identified as C. tenuis and found that these strains belong to the genus Scheffersomyces and are not C. tenuis. We propose Yamadazyma laniorum f.a. sp. nov. to accommodate our new strains and designate its type strain as yHMH7 (=CBS 14780 = NRRL Y-63967T). Furthermore, we propose the transfer of Candida tenuis to the genus Yamadazyma as Yamadazyma tenuis comb. nov. This approach provides a roadmap for how integrated genome sequence and physiological analysis can yield insight into the mechanisms that generate yeast biodiversity.
Collapse
Affiliation(s)
- Max A B Haase
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Quinn K Langdon
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cletus P Kurtzman
- National Center for Agricultural Utilization Research, ARS-USDA, 1815 North University St., Peoria, IL 61604, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
28
|
Birkemoe T, Jacobsen RM, Sverdrup-Thygeson A, Biedermann PHW. Insect-Fungus Interactions in Dead Wood Systems. SAPROXYLIC INSECTS 2018. [DOI: 10.1007/978-3-319-75937-1_12] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
29
|
Cadete R, Melo-Cheab M, Dussán K, Rodrigues R, da Silva S, Gomes F, Rosa C. Production of bioethanol in sugarcane bagasse hemicellulosic hydrolysate byScheffersomyces parashehatae,Scheffersomyces illinoinensisandSpathaspora arborariaeisolated from Brazilian ecosystems. J Appl Microbiol 2017; 123:1203-1213. [DOI: 10.1111/jam.13559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/29/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Affiliation(s)
- R.M. Cadete
- Departamento de Microbiologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
- Departamento de Biotecnologia; Escola de Engenharia de Lorena; Universidade de São Paulo; Lorena SP Brazil
| | - M.A. Melo-Cheab
- Departamento de Microbiologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - K.J. Dussán
- Departamento de Biotecnologia; Escola de Engenharia de Lorena; Universidade de São Paulo; Lorena SP Brazil
- Departamento de Bioquímica e Química Tecnológica; Instituto de Química; Universidade Estadual Paulista; Araraquara SP Brazil
| | - R.C.L.B. Rodrigues
- Departamento de Biotecnologia; Escola de Engenharia de Lorena; Universidade de São Paulo; Lorena SP Brazil
| | - S.S. da Silva
- Departamento de Biotecnologia; Escola de Engenharia de Lorena; Universidade de São Paulo; Lorena SP Brazil
| | - F.C.O. Gomes
- Departamento de Química; Centro Federal de Educação Tecnológica de Minas Gerais; Belo Horizonte MG Brazil
| | - C.A. Rosa
- Departamento de Microbiologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| |
Collapse
|
30
|
Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE, Blackwell M. The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0053-2016. [PMID: 28917057 PMCID: PMC11687545 DOI: 10.1128/microbiolspec.funk-0053-2016] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 12/23/2022] Open
Abstract
The kingdom Fungi is one of the more diverse clades of eukaryotes in terrestrial ecosystems, where they provide numerous ecological services ranging from decomposition of organic matter and nutrient cycling to beneficial and antagonistic associations with plants and animals. The evolutionary relationships of the kingdom have represented some of the more recalcitrant problems in systematics and phylogenetics. The advent of molecular phylogenetics, and more recently phylogenomics, has greatly advanced our understanding of the patterns and processes associated with fungal evolution, however. In this article, we review the major phyla, subphyla, and classes of the kingdom Fungi and provide brief summaries of ecologies, morphologies, and exemplar taxa. We also provide examples of how molecular phylogenetics and evolutionary genomics have advanced our understanding of fungal evolution within each of the phyla and some of the major classes. In the current classification we recognize 8 phyla, 12 subphyla, and 46 classes within the kingdom. The ancestor of fungi is inferred to be zoosporic, and zoosporic fungi comprise three lineages that are paraphyletic to the remainder of fungi. Fungi historically classified as zygomycetes do not form a monophyletic group and are paraphyletic to Ascomycota and Basidiomycota. Ascomycota and Basidiomycota are each monophyletic and collectively form the subkingdom Dikarya.
Collapse
Affiliation(s)
- Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598
| | - Francis Martin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'Excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Jason E Stajich
- Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521
| | - Meredith Blackwell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
31
|
Isolation and Characterization of Yeasts Able to Assimilate Sugarcane Bagasse Hemicellulosic Hydrolysate and Produce Xylitol Associated with Veturius transversus (Passalidae, Coleoptera, and Insecta). Int J Microbiol 2017; 2017:5346741. [PMID: 28676827 PMCID: PMC5476882 DOI: 10.1155/2017/5346741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/10/2017] [Indexed: 11/18/2022] Open
Abstract
Yeasts are an important component of insect gut microbial content, playing roles such as degradation of polymers and toxic compounds, biological control, and hormone, vitamin, and digestive enzyme production. The xylophagous beetle gut is a hyperdiverse habitat and a potential source of new species with industrial abilities such as enzyme production, pentose fermentation, and biodetoxification. In this work, samples of Veturius transversus (Passalidae, Coleoptera, and Insecta) were collected from the Central Amazon Rainforest. Their guts were dissected and a total of 20 microbial colonies were isolated using sugarcane bagasse hemicellulosic hydrolysate. They were identified as having 10 distinct biochemical profiles, and genetic analysis allowed identification as three clades in the genera Candida, Williopsis, and Geotrichum. All colonies were able to assimilate D-xylose and 18 were able to produce xylitol, especially a strain of Geotrichum, with a maximum yield of 0.502 g·g−1. These results agree with a previous prediction that the microbial community associated with xylophagous insects is a promising source of species of biotechnological interest.
Collapse
|
32
|
Blackwell M. Made for Each Other: Ascomycete Yeasts and Insects. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0081-2016. [PMID: 28597823 PMCID: PMC11687504 DOI: 10.1128/microbiolspec.funk-0081-2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Indexed: 11/20/2022] Open
Abstract
Fungi and insects live together in the same habitats, and many species of both groups rely on each other for success. Insects, the most successful animals on Earth, cannot produce sterols, essential vitamins, and many enzymes; fungi, often yeast-like in growth form, make up for these deficits. Fungi, however, require constantly replenished substrates because they consume the previous ones, and insects, sometimes lured by volatile fungal compounds, carry fungi directly to a similar, but fresh, habitat. Yeasts associated with insects include Ascomycota (Saccharomycotina, Pezizomycotina) and a few Basidiomycota. Beetles, homopterans, and flies are important associates of fungi, and in turn the insects carry yeasts in pits, specialized external pouches, and modified gut pockets. Some yeasts undergo sexual reproduction within the insect gut, where the genetic diversity of the population is increased, while others, well suited to their stable environment, may never mate. The range of interactions extends from dispersal of yeasts on the surface of insects (e.g., cactus-Drosophila-yeast and ephemeral flower communities, ambrosia beetles, yeasts with holdfasts) to extremely specialized associations of organisms that can no longer exist independently, as in the case of yeast-like symbionts of planthoppers. In a few cases yeast-like fungus-insect associations threaten butterflies and other species with extinction. Technical advances improve discovery and identification of the fungi but also inform our understanding of the evolution of yeast-insect symbioses, although there is much more to learn.
Collapse
Affiliation(s)
- Meredith Blackwell
- Departments of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 and University of South Carolina, Columbia, SC 29208
| |
Collapse
|
33
|
Batista TM, Moreira RG, Hilário HO, Morais CG, Franco GR, Rosa LH, Rosa CA. Draft genome sequence of Sugiyamaella xylanicola UFMG-CM-Y1884 T, a xylan-degrading yeast species isolated from rotting wood samples in Brazil. GENOMICS DATA 2017; 11:120-121. [PMID: 28180086 PMCID: PMC5279996 DOI: 10.1016/j.gdata.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 11/16/2022]
Abstract
We present the draft genome sequence of the type strain of the yeast Sugiyamaella xylanicola UFMG-CM-Y1884T (= UFMG-CA-32.1T = CBS 12683T), a xylan-degrading species capable of fermenting d-xylose to ethanol. The assembled genome has a size of ~ 13.7 Mb and a GC content of 33.8% and contains 5971 protein-coding genes. We identified 15 genes with significant similarity to the d-xylose reductase gene from several other fungal species. The draft genome assembled from whole-genome shotgun sequencing of the yeast Sugiyamaella xylanicola UFMG-CM-Y1884T (= UFMG-CA-32.1T = CBS 12683T) has been deposited at DDBJ/ENA/GenBank under the accession number MQSX00000000 under version MQSX01000000.
Collapse
Affiliation(s)
- Thiago M Batista
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Rennan G Moreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Heron O Hilário
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Camila G Morais
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Carlos A Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil
| |
Collapse
|
34
|
Liu XJ, Yi ZH, Ren YC, Li Y, Hui FL. Five novel species in the Lodderomyces clade associated with insects. Int J Syst Evol Microbiol 2016; 66:4881-4889. [DOI: 10.1099/ijsem.0.001446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xiao-Jing Liu
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Ze-Hao Yi
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Yong-Cheng Ren
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Ying Li
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Feng-Li Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
35
|
Liu XJ, Wang Y, Ren YC, Hui FL. Wickerhamiella brachini f.a., sp. nov., Wickerhamiella pterostichi f.a., sp. nov. and Wickerhamiella qilinensis f.a., sp. nov., three yeast species isolated from insects. Int J Syst Evol Microbiol 2016; 66:3995-4001. [DOI: 10.1099/ijsem.0.001300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xiao-Jing Liu
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Yun Wang
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Yong-Cheng Ren
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Feng-Li Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
36
|
Stefani FO, Klimaszewski J, Morency MJ, Bourdon C, Labrie P, Blais M, Venier L, Séguin A. Fungal community composition in the gut of rove beetles (Coleoptera: Staphylinidae) from the Canadian boreal forest reveals possible endosymbiotic interactions for dietary needs. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Ren YC, Liu XJ, Yi ZH, Hui FL. Nematodospora anomalae sp. nov., a novel and D-xylose-fermenting yeast species in the Lodderomyces clade. Int J Syst Evol Microbiol 2016; 66:4046-4050. [DOI: 10.1099/ijsem.0.001308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yong-Cheng Ren
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Xiao-Jing Liu
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Ze-Hao Yi
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Feng-Li Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
38
|
D-Xylose fermentation, xylitol production and xylanase activities by seven new species of Sugiyamaella. Antonie van Leeuwenhoek 2016; 110:53-67. [PMID: 27688209 DOI: 10.1007/s10482-016-0775-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
Sixteen yeast isolates identified as belonging to the genus Sugiyamaella were studied in relation to D-xylose fermentation, xylitol production, and xylanase activities. The yeasts were recovered from rotting wood and sugarcane bagasse samples in different Brazilian regions. Sequence analyses of the internal transcribed spacer (ITS) region and the D1/D2 domains of large subunit rRNA gene showed that these isolates belong to seven new species. The species are described here as Sugiyamaella ayubii f.a., sp. nov. (UFMG-CM-Y607T = CBS 14108T), Sugiyamaella bahiana f.a., sp. nov. (UFMG-CM-Y304T = CBS 13474T), Sugiyamaella bonitensis f.a., sp. nov. (UFMG-CM-Y608T = CBS 14270T), Sugiyamaella carassensis f.a., sp. nov. (UFMG-CM-Y606T = CBS 14107T), Sugiyamaella ligni f.a., sp. nov. (UFMG-CM-Y295T = CBS 13482T), Sugiyamaella valenteae f.a., sp. nov. (UFMG-CM-Y609T = CBS 14109T) and Sugiyamaella xylolytica f.a., sp. nov. (UFMG-CM-Y348T = CBS 13493T). Strains of the described species S. boreocaroliniensis, S. lignohabitans, S. novakii and S. xylanicola, isolated from rotting wood of Brazilian ecosystems, were also compared for traits relevant to xylose metabolism. S. valenteae sp. nov., S. xylolytica sp. nov., S. bahiana sp. nov., S. bonitensis sp. nov., S. boreocarolinensis, S. lignohabitans and S. xylanicola were able to ferment D-xylose to ethanol. Xylitol production was observed for all Sugiyamaella species studied, except for S. ayubii sp. nov. All species studied showed xylanolytic activity, with S. xylanicola, S. lignohabitans and S. valenteae sp. nov. having the highest values. Our results suggest these Sugiyamaella species have good potential for biotechnological applications.
Collapse
|
39
|
Wang Y, Ren YC, Zhang ZT, Ke T, Hui FL. Spathaspora allomyrinae sp. nov., a d-xylose-fermenting yeast species isolated from a scarabeid beetle Allomyrina dichotoma. Int J Syst Evol Microbiol 2016; 66:2008-2012. [DOI: 10.1099/ijsem.0.000979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yun Wang
- School of Life Science and Technology, Nanyang Normal University,Nanyang 473061, PRChina
| | - Yong-Cheng Ren
- School of Life Science and Technology, Nanyang Normal University,Nanyang 473061, PRChina
| | - Zheng-Tian Zhang
- School of Life Science and Technology, Nanyang Normal University,Nanyang 473061, PRChina
| | - Tao Ke
- School of Life Science and Technology, Nanyang Normal University,Nanyang 473061, PRChina
| | - Feng-Li Hui
- School of Life Science and Technology, Nanyang Normal University,Nanyang 473061, PRChina
| |
Collapse
|
40
|
Mishima T, Wada N, Iwata R, Anzai H, Hosoya T, Araya K. Super-Protective Child-Rearing by Japanese Bess Beetles, Cylindrocaulus patalis: Adults Provide Their Larvae with Chewed and Predigested Wood. INSECTS 2016; 7:insects7020018. [PMID: 27128944 PMCID: PMC4931430 DOI: 10.3390/insects7020018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 11/16/2022]
Abstract
Beetles of the family Passalidae (Coleoptera: Scarabaeoidea) are termed subsocial. The insects inhabit rotten wood as family groups consisting of the parents and their offspring. The Japanese species Cylindrocaulus patalis has the lowest fecundity among passalids because siblicide occurs among the first-instar larvae; accordingly, parental care toward the survived larva is the highest among Passalidae. To clarify the nutritional relationships between the parents and their offspring, we investigated their ability to digest three types of polysaccharides that are components of wood (cellulose and β-1,4-xylan) and fungal cell walls (β-1,3-glucan). Although carboxymethyl-cellulase activity was barely detectable, β-xylosidase, β-glucosidase, β-1,4-xylanase and β-1,3-glucanase activities were clearly detected in both adults and larvae. Because the activities of enzymes that digest β-1,3-glucan were much higher than those for degrading β-1,4-xylan, in both adults and larvae, it is concluded that they are mainly fungivorous. Furthermore, these digestive enzymatic activities in second- and third-instar larvae were much lower than they were in adults. Although all larval instars grew rapidly when fed chewed wood by their parents, larvae ceased growing and died when fed only artificially ground wood meals. We conclude that the larvae are assumed to be provided with chewed predigested wood in which β-1,3-glucan is degraded by parental enzymes.
Collapse
Affiliation(s)
- Tatsuya Mishima
- Biosystematics Laboratory, Graduate School of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan.
| | - Noriko Wada
- Laboratory of Biotechnology in Daily Life, Department of Bioscience in Daily Life, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Ryûtarô Iwata
- Laboratory of Forest Zoology, Department of Forest Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Hirosi Anzai
- Laboratory of Biotechnology in Daily Life, Department of Bioscience in Daily Life, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Tadatsugu Hosoya
- Institute of Decision Science for a Sustainable Society, Kyushu University, Fukuoka 819-0395, Japan.
| | - Kunio Araya
- Biosystematics Laboratory, Graduate School of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
41
|
Bellasio M, Peymann A, Steiger MG, Valli M, Sipiczki M, Sauer M, Graf AB, Marx H, Mattanovich D. Complete genome sequence and transcriptome regulation of the pentose utilizing yeastSugiyamaella lignohabitans. FEMS Yeast Res 2016; 16:fow037. [DOI: 10.1093/femsyr/fow037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/17/2023] Open
|
42
|
Ren YC, Xu LL, Zhang L, Hui FL. Candida baotianmanensis sp. nov. and Candida pseudoviswanathii sp. nov., two ascosporic yeast species isolated from the gut of beetles. Int J Syst Evol Microbiol 2015; 65:3580-3585. [PMID: 26297152 DOI: 10.1099/ijsem.0.000460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four yeast strains were isolated from the gut of beetles collected on Baotianman Mountain and People's Park of Nanyang in Henan Province, China. These strains produced unconjugated asci with one or two ellipsoidal to elongate ascospores in a persistent ascus. Phylogenetic analysis of the D1/D2 domains of the LSU rRNA gene sequences indicated that the isolates represent two novel sexual species in the Candida/Lodderomyces clade. Candida baotianmanensis sp. nov. was located in a statistically well-supported branch together with Candida maltosa. Candida pseudoviswanathii sp. nov. formed a subclade with its closest relative Candida viswanathii supported by a strong bootstrap value. The two novel species were distinguished from their most closely related described species, Candida maltosa and Candida viswanathii, in the D1/D2 LSU rRNA gene and internal transcribed spacer (ITS) sequences and in phenotypic traits. The type strain of Candida baotianmanensis sp. nov. is NYNU 14719T ( = CBS 13915T = CICC 33052T), and the type strain of Candida pseudoviswanathii sp. nov. is NYNU 14772T ( = CBS 13916T = CICC 33053T). The MycoBank numbers for Candida baotianmanensis sp. nov. and Candida pseudoviswanathii sp. nov. are MB 812621 and MB 812622.
Collapse
Affiliation(s)
- Yong-Cheng Ren
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Long-Long Xu
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Lin Zhang
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Feng-Li Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
43
|
Ulyshen MD. Wood decomposition as influenced by invertebrates. Biol Rev Camb Philos Soc 2014; 91:70-85. [PMID: 25424353 DOI: 10.1111/brv.12158] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/18/2014] [Accepted: 10/15/2014] [Indexed: 11/29/2022]
Abstract
The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically.
Collapse
Affiliation(s)
- Michael D Ulyshen
- USDA Forest Service, Southern Research Station, Athens, GA, 30602, U.S.A
| |
Collapse
|
44
|
Molecular phylogenetic analysis reveals the new genus Hemisphaericaspora of the family Debaryomycetaceae. PLoS One 2014; 9:e103737. [PMID: 25075963 PMCID: PMC4116224 DOI: 10.1371/journal.pone.0103737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022] Open
Abstract
Four strains of a novel ascomycetous yeast species were recovered from the frass of wood-boring beetles collected from the Baotianman Nature Reserve and the Laojieling Nature Reserve in Henan Province, China. This species produced unconjugated and deliquescent asci with hemispheroid or helmet-shaped ascospores. Analysis of gene sequences for the D1/D2 domain of the large subunit (LSU) rRNA, as well as analysis of concatenated gene sequences for the nearly complete small subunit (SSU) rRNA and D1/D2 domain of the large subunit (LSU) rRNA placed the novel species in a small clade including only one recognised species, Candida insectamans, in the family Debaryomycetaceae (Saccharomycotina, Ascomycota). DNA sequence analyses demonstrated that the novel species was distinct from all currently recognised teleomorphic yeast genus. The name Hemisphaericaspora nanyangensis gen nov., sp. nov. is proposed to accommodate the novel genus and species. The new genus can be distinguished from closely related teleomorphic genera Lodderomyces and Spathaspora through sequence comparison and ascospore morphology. The ex-type strain of H. nanyangensis is CBS 13020T ( = CICC 33021 = NYNU 13717). Furthermore, based on phenotypic and genotypic characteristics, C. insectamans is transferred to the newly described genus as Hemisphaericaspora insectamans comb. nov., in accordance with the changes in the International Code of Nomenclature for algae, fungi and plants.
Collapse
|