1
|
Tate HM, Barone V, Schrankel CS, Hamdoun A, Lyons DC. Localization and origins of juvenile skeletogenic cells in the sea urchin Lytechinuspictus. Dev Biol 2024; 514:12-27. [PMID: 38862087 DOI: 10.1016/j.ydbio.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
The development of the sea urchin larval body plan is well understood from extensive studies of embryonic patterning. However, fewer studies have investigated the late larval stages during which the unique pentaradial adult body plan develops. Previous work on late larval development highlights major tissue changes leading up to metamorphosis, but the location of specific cell types during juvenile development is less understood. Here, we improve on technical limitations by applying highly sensitive hybridization chain reaction fluorescent in situ hybridization (HCR-FISH) to the fast-developing and transparent sea urchin Lytechinus pictus, with a focus on skeletogenic cells. First, we show that HCR-FISH can be used in L. pictus to precisely localize skeletogenic cells in the rudiment. In doing so, we provide a detailed staging scheme for the appearance of skeletogenic cells around the rudiment prior to and during biomineralization and show that many skeletogenic cells unassociated with larval rods localize outside of the rudiment prior to localizing inside. Second, we show that downstream biomineralization genes have similar expression patterns during larval and juvenile skeletogenesis, suggesting some conservation of skeletogenic mechanisms during development between stages. Third, we find co-expression of blastocoelar and skeletogenic cell markers around juvenile skeleton located outside of the rudiment, which is consistent with data showing that cells from the non-skeletogenic mesoderm embryonic lineage contribute to the juvenile skeletogenic cell lineage. This work sets the foundation for subsequent studies of other cell types in the late larva of L. pictus to better understand juvenile body plan development, patterning, and evolution.
Collapse
Affiliation(s)
- Heidi M Tate
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Vanessa Barone
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Catherine S Schrankel
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA; San Diego State University, San Diego, CA, USA
| | - Amro Hamdoun
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Deirdre C Lyons
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Komoto T, Ikeo K, Yaguchi S, Yamamoto T, Sakamoto N, Awazu A. Assembly of continuous high-resolution draft genome sequence of Hemicentrotus pulcherrimus using long-read sequencing. Dev Growth Differ 2024; 66:297-304. [PMID: 38634255 PMCID: PMC11457506 DOI: 10.1111/dgd.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The update of the draft genome assembly of sea urchin, Hemicentrotus pulcherrimus, which is widely studied in East Asia as a model organism of early development, was performed using Oxford nanopore long-read sequencing. The updated assembly provided ~600-Mb genome sequences divided into 2,163 contigs with N50 = 516 kb. BUSCO completeness score and transcriptome model mapping ratio (TMMR) of the present assembly were obtained as 96.5% and 77.8%, respectively. These results were more continuous with higher resolution than those by the previous version of H. pulcherrimus draft genome, HpulGenome_v1, where the number of scaffolds = 16,251 with a total of ~100 Mb, N50 = 143 kb, BUSCO completeness score = 86.1%, and TMMR = 55.4%. The obtained genome contained 36,055 gene models that were consistent with those in other echinoderms. Additionally, two tandem repeat sequences of early histone gene locus containing 47 copies and 34 copies of all histone genes, and 185 of the homologous sequences of the interspecifically conserved region of the Ars insulator, ArsInsC, were obtained. These results provide further advance for genome-wide research of development, gene regulation, and intranuclear structural dynamics of multicellular organisms using H. pulcherrimus.
Collapse
Affiliation(s)
- Tetsushi Komoto
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary BiologyNational Institute of GeneticsShizuokaJapan
| | | | - Takashi Yamamoto
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Research Center for the Mathematics on Chromatin Live DynamicsHiroshima UniversityHigashi‐HiroshimaJapan
| | - Naoaki Sakamoto
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Research Center for the Mathematics on Chromatin Live DynamicsHiroshima UniversityHigashi‐HiroshimaJapan
| | - Akinori Awazu
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Research Center for the Mathematics on Chromatin Live DynamicsHiroshima UniversityHigashi‐HiroshimaJapan
| |
Collapse
|
3
|
Sakamoto N, Watanabe K, Awazu A, Yamamoto T. CRISPR-Cas9-Mediated Gene Knockout in a Non-Model Sea Urchin, Heliocidaris crassispina. Zoolog Sci 2024; 41:159-166. [PMID: 38587910 DOI: 10.2108/zs230052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/25/2023] [Indexed: 04/10/2024]
Abstract
Sea urchins have been used as model organisms in developmental biology research and the genomes of several sea urchin species have been sequenced. Recently, genome editing technologies have become available for sea urchins, and methods for gene knockout using the CRISPRCas9 system have been established. Heliocidaris crassispina is an important marine fishery resource with edible gonads. Although H. crassispina has been used as a biological research material, its genome has not yet been published, and it is a non-model sea urchin for molecular biology research. However, as recent advances in genome editing technology have facilitated genome modification in non-model organisms, we applied genome editing using the CRISPR-Cas9 system to H. crassispina. In this study, we targeted genes encoding ETS transcription factor (HcEts) and pigmentation-related polyketide synthase (HcPks1). Gene fragments were isolated using primers designed by inter-specific sequence comparisons within Echinoidea. When Ets gene was targeted using two sgRNAs, one successfully introduced mutations and impaired skeletogenesis. In the Pks1 gene knockout, when two sgRNAs targeting the close vicinity of the site corresponding to the target site that showed 100% mutagenesis efficiency of the Pks1 gene in Hemicentrotus pulcherrimus, mutagenesis was not observed. However, two other sgRNAs targeting distant sites efficiently introduced mutations. In addition, Pks1 knockout H. crassispina exhibited an albino phenotype in the pluteus larvae and adult sea urchins after metamorphosis. This indicates that the CRISPRCas9 system can be used to modify the genome of the non-model sea urchin H. crassispina.
Collapse
Affiliation(s)
- Naoaki Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan,
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Kaichi Watanabe
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Akinori Awazu
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
4
|
Kim H, Choi H, Lee D, Kim J. A review on gene regulatory network reconstruction algorithms based on single cell RNA sequencing. Genes Genomics 2024; 46:1-11. [PMID: 38032470 DOI: 10.1007/s13258-023-01473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Understanding gene regulatory networks (GRNs) is essential for unraveling the molecular mechanisms governing cellular behavior. With the advent of high-throughput transcriptome measurement technology, researchers have aimed to reverse engineer the biological systems, extracting gene regulatory rules from their outputs, which represented by gene expression data. Bulk RNA sequencing, a widely used method for measuring gene expression, has been employed for GRN reconstruction. However, it falls short in capturing dynamic changes in gene expression at the level of individual cells since it averages gene expression across mixed cell populations. OBJECTIVE In this review, we provide an overview of 15 GRN reconstruction tools and discuss their respective strengths and limitations, particularly in the context of single cell RNA sequencing (scRNA-seq). METHODS Recent advancements in scRNA-seq break new ground of GRN reconstruction. They offer snapshots of the individual cell transcriptomes and capturing dynamic changes. We emphasize how these technological breakthroughs have enhanced GRN reconstruction. CONCLUSION GRN reconstructors can be classified based on their requirement for cellular trajectory, which represents a dynamical cellular process including differentiation, aging, or disease progression. Benchmarking studies support the superiority of GRN reconstructors that do not require trajectory analysis in identifying regulator-target relationships. However, methods equipped with trajectory analysis demonstrate better performance in identifying key regulatory factors. In conclusion, researchers should select a suitable GRN reconstructor based on their specific research objectives.
Collapse
Affiliation(s)
- Hyeonkyu Kim
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Hwisoo Choi
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Daewon Lee
- School of Art and Technology, Chung-Ang University, 4726 Seodong-Daero, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Junil Kim
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea.
| |
Collapse
|
5
|
Watanabe K, Fujita M, Okamoto K, Yoshioka H, Moriwaki M, Tagashira H, Awazu A, Yamamoto T, Sakamoto N. The crucial role of CTCF in mitotic progression during early development of sea urchin. Dev Growth Differ 2023; 65:395-407. [PMID: 37421304 DOI: 10.1111/dgd.12875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
CCCTC-binding factor (CTCF), an insulator protein with 11 zinc fingers, is enriched at the boundaries of topologically associated domains (TADs) in eukaryotic genomes. In this study, we isolated and analyzed the cDNAs encoding HpCTCF, the CTCF homolog in the sea urchin Hemicentrotus pulcherrimus, to investigate its expression patterns and functions during the early development of sea urchin. HpCTCF contains nine zinc fingers corresponding to fingers 2-10 of the vertebrate CTCF. Expression pattern analysis revealed that HpCTCF mRNA was detected at all developmental stages and in the entire embryo. Upon expressing the HpCTCF-GFP fusion protein in early embryos, we observed its uniform distribution within interphase nuclei. However, during mitosis, it disappeared from the chromosomes and subsequently reassembled on the chromosome during telophase. Moreover, the morpholino-mediated knockdown of HpCTCF resulted in mitotic arrest during the morula to blastula stage. Most of the arrested chromosomes were not phospholylated at serine 10 of histone H3, indicating that mitosis was arrested at the telophase by HpCTCF depletion. Furthermore, impaired sister chromatid segregation was observed using time-lapse imaging of HpCTCF-knockdown embryos. Thus, HpCTCF is essential for mitotic progression during the early development of sea urchins, especially during the telophase-to-interphase transition. However, the normal development of pluteus larvae in CRISPR-mediated HpCTCF-knockout embryos suggests that disruption of zygotic HpCTCF expression has little effect on embryonic and larval development.
Collapse
Affiliation(s)
- Kaichi Watanabe
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Megumi Fujita
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuko Okamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hajime Yoshioka
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miki Moriwaki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hideki Tagashira
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akinori Awazu
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima, Japan
| | - Naoaki Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
6
|
Davidson PL, Guo H, Swart JS, Massri AJ, Edgar A, Wang L, Berrio A, Devens HR, Koop D, Cisternas P, Zhang H, Zhang Y, Byrne M, Fan G, Wray GA. Recent reconfiguration of an ancient developmental gene regulatory network in Heliocidaris sea urchins. Nat Ecol Evol 2022; 6:1907-1920. [PMID: 36266460 DOI: 10.1038/s41559-022-01906-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Changes in developmental gene regulatory networks (dGRNs) underlie much of the diversity of life, but the evolutionary mechanisms that operate on regulatory interactions remain poorly understood. Closely related species with extreme phenotypic divergence provide a valuable window into the genetic and molecular basis for changes in dGRNs and their relationship to adaptive changes in organismal traits. Here we analyse genomes, epigenomes and transcriptomes during early development in two Heliocidaris sea urchin species that exhibit highly divergent life histories and in an outgroup species. Positive selection and chromatin accessibility modifications within putative regulatory elements are enriched on the branch leading to the derived life history, particularly near dGRN genes. Single-cell transcriptomes reveal a dramatic delay in cell fate specification in the derived state, which also has far fewer open chromatin regions, especially near conserved cell fate specification genes. Experimentally perturbing key transcription factors reveals profound evolutionary changes to early embryonic patterning events, disrupting regulatory interactions previously conserved for ~225 million years. These results demonstrate that natural selection can rapidly reshape developmental gene expression on a broad scale when selective regimes abruptly change. More broadly, even highly conserved dGRNs and patterning mechanisms in the early embryo remain evolvable under appropriate ecological circumstances.
Collapse
Affiliation(s)
| | - Haobing Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jane S Swart
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Allison Edgar
- Department of Biology, Duke University, Durham, NC, USA
| | - Lingyu Wang
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | - Demian Koop
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Paula Cisternas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - He Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Watanabe K, Yasui Y, Kurose Y, Fujii M, Yamamoto T, Sakamoto N, Awazu A. Partial exogastrulation due to apical‐basal polarity of F‐actin distribution disruption in sea urchin embryo by omeprazole. Genes Cells 2022; 27:392-408. [PMID: 35347809 PMCID: PMC9325501 DOI: 10.1111/gtc.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Kaichi Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi‐Hiroshima Japan
| | - Yuhei Yasui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi‐Hiroshima Japan
| | - Yuta Kurose
- Department of Mathematical and Life Sciences Graduate School of Science, Hiroshima University, Higashi‐Hiroshima Japan
| | - Masashi Fujii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi‐Hiroshima Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi‐Hiroshima Japan
| | - Naoaki Sakamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi‐Hiroshima Japan
| | - Akinori Awazu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi‐Hiroshima Japan
- Research Center for the Mathematics on Chromatin Live Dynamics Hiroshima University, Higashi‐Hiroshima Hiroshima Japan
| |
Collapse
|
8
|
Rothenberg EV, Göttgens B. How haematopoiesis research became a fertile ground for regulatory network biology as pioneered by Eric Davidson. Curr Opin Hematol 2021; 28:1-10. [PMID: 33229891 PMCID: PMC7755131 DOI: 10.1097/moh.0000000000000628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This historical perspective reviews how work of Eric H. Davidson was a catalyst and exemplar for explaining haematopoietic cell fate determination through gene regulation. RECENT FINDINGS Researchers studying blood and immune cells pioneered many of the early mechanistic investigations of mammalian gene regulatory processes. These efforts included the characterization of complex gene regulatory sequences exemplified by the globin and T-cell/B-cell receptor gene loci, as well as the identification of many key regulatory transcription factors through the fine mapping of chromosome translocation breakpoints in leukaemia patients. As the repertoire of known regulators expanded, assembly into gene regulatory network models became increasingly important, not only to account for the truism that regulatory genes do not function in isolation but also to devise new ways of extracting biologically meaningful insights from even more complex information. Here we explore how Eric H. Davidson's pioneering studies of gene regulatory network control in nonvertebrate model organisms have had an important and lasting impact on research into blood and immune cell development. SUMMARY The intellectual framework developed by Davidson continues to contribute to haematopoietic research, and his insistence on demonstrating logic and causality still challenges the frontier of research today.
Collapse
Affiliation(s)
- Ellen V. Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| |
Collapse
|
9
|
Hatleberg WL, Hinman VF. Modularity and hierarchy in biological systems: Using gene regulatory networks to understand evolutionary change. Curr Top Dev Biol 2021; 141:39-73. [DOI: 10.1016/bs.ctdb.2020.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
|
11
|
Kipryushina YO, Yakovlev KV. Maternal control of early patterning in sea urchin embryos. Differentiation 2020; 113:28-37. [PMID: 32371341 DOI: 10.1016/j.diff.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Sea urchin development has been studied extensively for more than a century and considered regulative since the first experimental evidence. Further investigations have repeatedly supported this standpoint by revealing the presence of inductive mechanisms that alter cell fate decisions at early cleavage stages and flexibility of development in response to environmental conditions. Some features indicate that sea urchin development is not completely regulative, but actually includes determinative events. In 16-cell embryos, mesomeres and macromeres represent multipotency, while the cell fate of most vegetal micromeres is restricted. It is known that the mature sea urchin eggs are polarized by the asymmetrical distribution of some maternal mRNAs and proteins. Spatially-distributed maternal factors are necessary for the orientation of the primary animal-vegetal axis, which is established by both maternal and zygotic mechanisms later in development. The secondary dorsal-ventral axis is conditionally specified later in development. Dorsal-ventral polarity is very liable during the early cleavages, though more recent data argue that its direction may be oriented by maternal asymmetry. In this review, we focus on the role of maternal factors in initial embryonic patterning during the first cleavages of sea urchin embryos before activation of the embryonic genome.
Collapse
Affiliation(s)
- Yulia O Kipryushina
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia; Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
12
|
Van der Mude A. Structure encoding in DNA. J Theor Biol 2020; 492:110205. [PMID: 32070719 DOI: 10.1016/j.jtbi.2020.110205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/29/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
It is proposed that transposons and related long non-coding RNA define the fine structure of body parts. Although morphogens have long been known to direct the formation of many gross structures in early embryonic development, they do not have the necessary precision to define a structure down to the individual cellular level. Using the distinction between procedural and declarative knowledge in information processing as an analogy, it is hypothesized that DNA encodes fine structure in a manner that is different from the genetic code for proteins. The hypothesis states that repeated or near-repeated sequences that are in transposons and non-coding RNA define body part structures. As the cells in a body part go through the epigenetic process of differentiation, the action of methylation serves to inactivate all but the relevant structure definitions and some associated cell type genes. The transposons left active will then physically modify the DNA sequence in the heterochromatin to establish the local context in the three-dimensional body part structure. This brings the encoded definition of the cell type to the histone. The histone code for that cell type starts the regulatory cascade that turns on the genes associated with that particular type of cell, transforming it from a multipotent cell to a fully differentiated cell. This mechanism creates structures in the musculoskeletal system, the organs of the body, the major parts of the brain, and other systems.
Collapse
|
13
|
Liu D, Awazu A, Sakuma T, Yamamoto T, Sakamoto N. Establishment of knockout adult sea urchins by using a CRISPR‐Cas9 system. Dev Growth Differ 2019; 61:378-388. [DOI: 10.1111/dgd.12624] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Daming Liu
- Department of Mathematical and Life Sciences Graduate School of Science Hiroshima University Hiroshima Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences Graduate School of Science Hiroshima University Hiroshima Japan
- Division of Integrated Sciences for Life Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences Graduate School of Science Hiroshima University Hiroshima Japan
- Division of Integrated Sciences for Life Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences Graduate School of Science Hiroshima University Hiroshima Japan
- Division of Integrated Sciences for Life Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
| | - Naoaki Sakamoto
- Department of Mathematical and Life Sciences Graduate School of Science Hiroshima University Hiroshima Japan
- Division of Integrated Sciences for Life Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
| |
Collapse
|
14
|
Moses MM, Behringer RR. A gene regulatory network for Müllerian duct regression. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz017. [PMID: 31579527 PMCID: PMC6760261 DOI: 10.1093/eep/dvz017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 05/03/2023]
Abstract
Mammalian embryos initially develop progenitor tissues for both male and female reproductive tract organs, known as the Wolffian ducts and the Müllerian ducts, respectively. Ultimately, each individual develops a single set of male or female reproductive tract organs. Therefore, an essential step for sex differentiation is the regression of one duct and growth and differentiation of the other duct. In males, this requires Müllerian duct regression and Wolffian duct growth and differentiation. Müllerian duct regression is induced by the expression of Amh, encoding anti-Müllerian hormone, from the fetal testes. Subsequently, receptor-mediated signal transduction in mesenchymal cells surrounding the Müllerian duct epithelium leads to duct elimination. The genes that induce Amh transcription and the downstream signaling that results from Amh activity form a pathway. However, the molecular details of this pathway are currently unknown. A set of essential genes for AMH pathway function has been identified. More recently, transcriptome analysis of male and female Müllerian duct mesenchyme at an initial stage of regression has identified new genes that may mediate elimination of the Müllerian system. The evidence taken together can be used to generate an initial gene regulatory network describing the Amh pathway for Müllerian duct regression. An Amh gene regulatory network will be a useful tool to study Müllerian duct regression, sex differentiation, and its relationship to environmental influences.
Collapse
Affiliation(s)
- Malcolm M Moses
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Correspondence address. Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA. Tel: +713-834-6327; Fax: +713-834-6339; E-mail:
| |
Collapse
|
15
|
Verd B, Monk NAM, Jaeger J. Modularity, criticality, and evolvability of a developmental gene regulatory network. eLife 2019; 8:e42832. [PMID: 31169494 PMCID: PMC6645726 DOI: 10.7554/elife.42832] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/05/2019] [Indexed: 01/16/2023] Open
Abstract
The existence of discrete phenotypic traits suggests that the complex regulatory processes which produce them are functionally modular. These processes are usually represented by networks. Only modular networks can be partitioned into intelligible subcircuits able to evolve relatively independently. Traditionally, functional modularity is approximated by detection of modularity in network structure. However, the correlation between structure and function is loose. Many regulatory networks exhibit modular behaviour without structural modularity. Here we partition an experimentally tractable regulatory network-the gap gene system of dipteran insects-using an alternative approach. We show that this system, although not structurally modular, is composed of dynamical modules driving different aspects of whole-network behaviour. All these subcircuits share the same regulatory structure, but differ in components and sensitivity to regulatory interactions. Some subcircuits are in a state of criticality, while others are not, which explains the observed differential evolvability of the various expression features in the system.
Collapse
Affiliation(s)
- Berta Verd
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Konrad Lorenz Institute for Evolution and Cognition Research (KLI)KlosterneuburgAustria
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Nicholas AM Monk
- School of Mathematics and StatisticsUniversity of SheffieldSheffieldUnited States
| | - Johannes Jaeger
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Konrad Lorenz Institute for Evolution and Cognition Research (KLI)KlosterneuburgAustria
- School of Mathematics and StatisticsUniversity of SheffieldSheffieldUnited States
- Wissenschaftskolleg zu BerlinBerlinGermany
- Center for Systems Biology Dresden (CSBD)DresdenGermany
- Complexity Science Hub (CSH)ViennaAustria
- Centre de Recherches Interdisciplinaires (CRI)ParisFrance
| |
Collapse
|
16
|
Osborne CC, Perry KJ, Shankland M, Henry JQ. Ectomesoderm and epithelial-mesenchymal transition-related genes in spiralian development. Dev Dyn 2018; 247:1097-1120. [PMID: 30133032 DOI: 10.1002/dvdy.24667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Spiralians (e.g., annelids, molluscs, and flatworms) possess two sources of mesoderm. One is from endodermal precursors (endomesoderm), which is considered to be the ancestral source in metazoans. The second is from ectoderm (ectomesoderm) and may represent a novel cell type in the Spiralia. In the mollusc Crepidula fornicata, ectomesoderm is derived from micromere daughters within the A and B cell quadrants. Their progeny lie along the anterolateral edges of the blastopore. There they undergo epithelial-mesenchymal transition (EMT), become rounded and undergo delamination/ingression. Subsequently, they assume the mesenchymal phenotype, and migrate beneath the surface ectoderm to differentiate various cell types, including muscles and pigment cells. RESULTS We examined expression of several genes whose homologs are known to regulate Type 1 EMT in other metazoans. Most of these genes were expressed within spiralian ectomesoderm during EMT. CONCLUSIONS We propose that spiralian ectomesoderm, which exhibits analogous cellular behaviors to other populations of mesenchymal cells, may be controlled by the same genes that drive EMT in other metazoans. Perhaps these genes comprise a conserved metazoan EMT gene regulatory network (GRN). This study represents the first step in elucidating the GRN controlling the development of a novel spiralian cell type (ectomesoderm). Developmental Dynamics 247:1097-1120, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- C Cornelia Osborne
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | - Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | - Marty Shankland
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
17
|
Chassé H, Aubert J, Boulben S, Le Corguillé G, Corre E, Cormier P, Morales J. Translatome analysis at the egg-to-embryo transition in sea urchin. Nucleic Acids Res 2018; 46:4607-4621. [PMID: 29660001 PMCID: PMC5961321 DOI: 10.1093/nar/gky258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/09/2018] [Accepted: 03/28/2018] [Indexed: 11/12/2022] Open
Abstract
Early embryogenesis relies on the translational regulation of maternally stored mRNAs. In sea urchin, fertilization triggers a dramatic rise in translation activity, necessary for the onset of cell division. Here, the full spectrum of the mRNAs translated upon fertilization was investigated by polysome profiling and sequencing. The translatome of the early sea urchin embryo gave a complete picture of the polysomal recruitment dynamics following fertilization. Our results indicate that only a subset of maternal mRNAs were selectively recruited onto polysomes, with over-represented functional categories in the translated set. The increase in translation upon fertilization depends on the formation of translation initiation complexes following mTOR pathway activation. Surprisingly, mTOR pathway inhibition differentially affected polysomal recruitment of the newly translated mRNAs, which thus appeared either mTOR-dependent or mTOR-independent. Therefore, our data argue for an alternative to the classical cap-dependent model of translation in early development. The identification of the mRNAs translated following fertilization helped assign translational activation events to specific mRNAs. This translatome is the first step to a comprehensive analysis of the molecular mechanisms governing translation upon fertilization and the translational regulatory networks that control the egg-to-embryo transition as well as the early steps of embryogenesis.
Collapse
Affiliation(s)
- Héloïse Chassé
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Julie Aubert
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Sandrine Boulben
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Gildas Le Corguillé
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | - Patrick Cormier
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Julia Morales
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| |
Collapse
|
18
|
Slota LA, McClay DR. Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo. Dev Biol 2018; 435:138-149. [PMID: 29331498 PMCID: PMC5837949 DOI: 10.1016/j.ydbio.2017.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
Correct patterning of the nervous system is essential for an organism's survival and complex behavior. Embryologists have used the sea urchin as a model for decades, but our understanding of sea urchin nervous system patterning is incomplete. Previous histochemical studies identified multiple neurotransmitters in the pluteus larvae of several sea urchin species. However, little is known about how, where and when neural subtypes are differentially specified during development. Here, we examine the molecular mechanisms of neuronal subtype specification in 3 distinct neural subtypes in the Lytechinus variegatus larva. We show that these subtypes are specified through Delta/Notch signaling and identify a different transcription factor required for the development of each neural subtype. Our results show achaete-scute and neurogenin are proneural for the serotonergic neurons of the apical organ and cholinergic neurons of the ciliary band, respectively. We also show that orthopedia is not proneural but is necessary for the differentiation of the cholinergic/catecholaminergic postoral neurons. Interestingly, these transcription factors are used similarly during vertebrate neurogenesis. We believe this study is a starting point for building a neural gene regulatory network in the sea urchin and for finding conserved deuterostome neurogenic mechanisms.
Collapse
Affiliation(s)
- Leslie A Slota
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
19
|
Hinman VF, Burke RD. Embryonic neurogenesis in echinoderms. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e316. [PMID: 29470839 DOI: 10.1002/wdev.316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023]
Abstract
The phylogenetic position of echinoderms is well suited to revealing shared features of deuterostomes that distinguish them from other bilaterians. Although echinoderm neurobiology remains understudied, genomic resources, molecular methods, and systems approaches have enabled progress in understanding mechanisms of embryonic neurogenesis. Even though the morphology of echinoderm larvae is diverse, larval nervous systems, which arise during gastrulation, have numerous similarities in their organization. Diverse neural subtypes and specialized sensory neurons have been identified and details of neuroanatomy using neuron-specific labels provide hypotheses for neural function. The early patterning of ectoderm and specification of axes has been well studied in several species and underlying gene regulatory networks have been established. The cells giving rise to central and peripheral neural components have been identified in urchins and sea stars. Neurogenesis includes typical metazoan features of asymmetric division of neural progenitors and in some cases limited proliferation of neural precursors. Delta/Notch signaling has been identified as having critical roles in regulating neural patterning and differentiation. Several transcription factors functioning in pro-neural phases of specification, neural differentiation, and sub-type specification have been identified and structural or functional components of neurons are used as differentiation markers. Several methods for altering expression in embryos have revealed aspects of a regulatory hierarchy of transcription factors in neurogenesis. Interfacing neurogenic gene regulatory networks to the networks regulating ectodermal domains and identifying the spatial and temporal inputs that pattern the larval nervous system is a major challenge that will contribute substantially to our understanding of the evolution of metazoan nervous systems. This article is categorized under: Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| |
Collapse
|
20
|
Matsushita M, Ochiai H, Suzuki KIT, Hayashi S, Yamamoto T, Awazu A, Sakamoto N. Dynamic changes in the interchromosomal interaction of early histone gene loci during development of sea urchin. J Cell Sci 2017; 130:4097-4107. [PMID: 29084822 DOI: 10.1242/jcs.206862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/22/2017] [Indexed: 12/21/2022] Open
Abstract
The nuclear positioning and chromatin dynamics of eukaryotic genes are closely related to the regulation of gene expression, but they have not been well examined during early development, which is accompanied by rapid cell cycle progression and dynamic changes in nuclear organization, such as nuclear size and chromatin constitution. In this study, we focused on the early development of the sea urchin Hemicentrotus pulcherrimus and performed three-dimensional fluorescence in situ hybridization of gene loci encoding early histones (one of the types of histone in sea urchin). There are two non-allelic early histone gene loci per sea urchin genome. We found that during the morula stage, when the early histone gene expression levels are at their maximum, interchromosomal interactions were often formed between the early histone gene loci on separate chromosomes and that the gene loci were directed to locate to more interior positions. Furthermore, these interactions were associated with the active transcription of the early histone genes. Thus, such dynamic interchromosomal interactions may contribute to the efficient synthesis of early histone mRNA during the morula stage of sea urchin development.
Collapse
Affiliation(s)
- Masaya Matsushita
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Ochiai
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.,JST, PRESTO, Higashi-Hiroshima 739-8530, Japan
| | - Ken-Ichi T Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Sayaka Hayashi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Naoaki Sakamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan .,Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
21
|
A bipolar role of the transcription factor ERG for cnidarian germ layer formation and apical domain patterning. Dev Biol 2017; 430:346-361. [PMID: 28818668 DOI: 10.1016/j.ydbio.2017.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/29/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Germ layer formation and axial patterning are biological processes that are tightly linked during embryonic development of most metazoans. In addition to canonical WNT, it has been proposed that ERK-MAPK signaling is involved in specifying oral as well as aboral territories in cnidarians. However, the effector and the molecular mechanism underlying latter phenomenon is unknown. By screening for potential effectors of ERK-MAPK signaling in both domains, we identified a member of the ETS family of transcription factors, Nverg that is bi-polarily expressed prior to gastrulation. We further describe the crucial role of NvERG for gastrulation, endomesoderm as well as apical domain formation. The molecular characterization of the obtained NvERG knock-down phenotype using previously described as well as novel potential downstream targets, provides evidence that a single transcription factor, NvERG, simultaneously controls expression of two different sets of downstream targets, leading to two different embryonic gene regulatory networks (GRNs) in opposite poles of the developing embryo. We also highlight the molecular interaction of cWNT and MEK/ERK/ERG signaling that provides novel insight into the embryonic axial organization of Nematostella, and show a cWNT repressive role of MEK/ERK/ERG signaling in segregating the endomesoderm in two sub-domains, while a common input of both pathways is required for proper apical domain formation. Taking together, we build the first blueprint for a global cnidarian embryonic GRN that is the foundation for additional gene specific studies addressing the evolution of embryonic and larval development.
Collapse
|
22
|
Minokawa T. Comparative studies on the skeletogenic mesenchyme of echinoids. Dev Biol 2017; 427:212-218. [PMID: 27856261 DOI: 10.1016/j.ydbio.2016.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 11/16/2022]
Abstract
Skeletogenic mesenchyme cells in echinoids are suitable for studying developmental mechanisms, and have been used extensively. Most of these studies have been performed on species in the order Camarodonta, which are modern echinoids (subclass Euechinoidea) and are considered "model" echinoid species. In contrast, species belonging to other orders are studied less frequently, especially investigations of their molecular developmental biology such as gene regulatory networks. Recent studies on mesenchyme development in non-camarodont species suggest that these species are potential sources of comparative information to elucidate the mechanisms underlying skeletogenic mesenchyme development. In this review, the importance of using comparative data to understand development and evolution is discussed.
Collapse
Affiliation(s)
- Takuya Minokawa
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori, Aomori 039-3501, Japan.
| |
Collapse
|
23
|
Antagonistic BMP-cWNT signaling in the cnidarian Nematostella vectensis reveals insight into the evolution of mesoderm. Proc Natl Acad Sci U S A 2017; 114:E5608-E5615. [PMID: 28652368 DOI: 10.1073/pnas.1701607114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gastrulation was arguably the key evolutionary innovation that enabled metazoan diversification, leading to the formation of distinct germ layers and specialized tissues. Differential gene expression specifying cell fate is governed by the inputs of intracellular and/or extracellular signals. Beta-catenin/Tcf and the TGF-beta bone morphogenetic protein (BMP) provide critical molecular signaling inputs during germ layer specification in bilaterian metazoans, but there has been no direct experimental evidence for a specific role for BMP signaling during endomesoderm specification in the early branching metazoan Nematostella vectensis (an anthozoan cnidarian). Using forward transcriptomics, we show that beta-catenin/Tcf signaling and BMP2/4 signaling provide differential inputs into the cnidarian endomesodermal gene regulatory network (GRN) at the onset of gastrulation (24 h postfertilization) in N. vectensis Surprisingly, beta-catenin/Tcf signaling and BMP2/4 signaling regulate a subset of common downstream target genes in the GRN in opposite ways, leading to the spatial and temporal differentiation of fields of cells in the developing embryo. Thus, we show that regulatory interactions between beta-catenin/Tcf signaling and BMP2/4 signaling are required for the specification and determination of different embryonic regions and the patterning of the oral-aboral axis in Nematostella We also show functionally that the conserved "kernel" of the bilaterian heart mesoderm GRN is operational in N. vectensis, which reinforces the hypothesis that the endoderm and mesoderm in triploblastic bilaterians evolved from the bifunctional endomesoderm (gastrodermis) of a diploblastic ancestor, and that slow rhythmic contractions might have been one of the earliest functions of mesodermal tissue.
Collapse
|
24
|
Martin O, Krzywicki A, Zagorski M. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function. Phys Life Rev 2016; 17:124-58. [DOI: 10.1016/j.plrev.2016.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/23/2022]
|
25
|
Abstract
Eric Harris Davidson was a unique and creative intellectual force who grappled with the diversity of developmental processes used by animal embryos and wrestled them into an intelligible set of principles, then spent his life translating these process elements into molecularly definable terms through the architecture of gene regulatory networks. He took speculative risks in his theoretical writing but ran a highly organized, rigorous experimental program that yielded an unprecedentedly full characterization of a developing organism. His writings created logical order and a framework for mechanism from the complex phenomena at the heart of advanced multicellular organism development. This is a reminiscence of intellectual currents in his work as observed by the author through the last 30-35 years of Davidson's life.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
26
|
Andrikou C, Pai CY, Su YH, Arnone MI. Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm. eLife 2015. [PMID: 26218224 PMCID: PMC4549668 DOI: 10.7554/elife.07343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Evolutionary origin of muscle is a central question when discussing mesoderm evolution. Developmental mechanisms underlying somatic muscle development have mostly been studied in vertebrates and fly where multiple signals and hierarchic genetic regulatory cascades selectively specify myoblasts from a pool of naive mesodermal progenitors. However, due to the increased organismic complexity and distant phylogenetic position of the two systems, a general mechanistic understanding of myogenesis is still lacking. In this study, we propose a gene regulatory network (GRN) model that promotes myogenesis in the sea urchin embryo, an early branching deuterostome. A fibroblast growth factor signaling and four Forkhead transcription factors consist the central part of our model and appear to orchestrate the myogenic process. The topological properties of the network reveal dense gene interwiring and a multilevel transcriptional regulation of conserved and novel myogenic genes. Finally, the comparison of the myogenic network architecture among different animal groups highlights the evolutionary plasticity of developmental GRNs. DOI:http://dx.doi.org/10.7554/eLife.07343.001 Muscles, bones, and blood vessels all develop from a tissue called the mesoderm, which forms early on in the development of an embryo. Networks of genes control which parts of the mesoderm transform into different cell types. The gene networks that control the development of muscle cells from the mesoderm have so far been investigated in flies and several species of animals with backbones. However, these species are complex, which makes it difficult to work out the general principles that control muscle cell development. Sea urchins are often studied in developmental biology as they have many of the same genes as more complex animals, but are much simpler and easier to study in the laboratory. Andrikou et al. therefore investigated the ‘gene regulatory network’ that controls muscle development in sea urchins. This revealed that proteins called Forkhead transcription factors and a process called FGF signaling are crucial for controlling muscle development in sea urchins. These are also important factors for developing muscles in other animals. Andrikou et al. then produced models that show the interactions between the genes that control muscle formation at three different stages of embryonic development. These models reveal several important features of the muscle development gene regulatory network. For example, the network is robust: if one gene fails, the network is connected in a way that allows it to still make muscle. This also allows the network to adapt and evolve without losing the ability to perform any of its existing roles. Comparing the gene regulatory network that controls muscle development in sea urchins with the networks found in other animals showed that many of the same genes are used across different species, but are connected into different network structures. Investigating the similarities and differences of the regulatory networks in different species could help us to understand how muscles have evolved and could ultimately lead to a better understanding of the causes of developmental diseases. DOI:http://dx.doi.org/10.7554/eLife.07343.002
Collapse
Affiliation(s)
- Carmen Andrikou
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Chih-Yu Pai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
27
|
|
28
|
Chen H, Guo J, Mishra SK, Robson P, Niranjan M, Zheng J. Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development. ACTA ACUST UNITED AC 2014; 31:1060-6. [PMID: 25416748 DOI: 10.1093/bioinformatics/btu777] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/17/2014] [Indexed: 11/12/2022]
Abstract
MOTIVATION Transcriptional regulatory networks controlling cell fate decisions in mammalian embryonic development remain elusive despite a long time of research. The recent emergence of single-cell RNA profiling technology raises hope for new discovery. Although experimental works have obtained intriguing insights into the mouse early development, a holistic and systematic view is still missing. Mathematical models of cell fates tend to be concept-based, not designed to learn from real data. To elucidate the regulatory mechanisms behind cell fate decisions, it is highly desirable to synthesize the data-driven and knowledge-driven modeling approaches. RESULTS We propose a novel method that integrates the structure of a cell lineage tree with transcriptional patterns from single-cell data. This method adopts probabilistic Boolean network (PBN) for network modeling, and genetic algorithm as search strategy. Guided by the 'directionality' of cell development along branches of the cell lineage tree, our method is able to accurately infer the regulatory circuits from single-cell gene expression data, in a holistic way. Applied on the single-cell transcriptional data of mouse preimplantation development, our algorithm outperforms conventional methods of network inference. Given the network topology, our method can also identify the operational interactions in the gene regulatory network (GRN), corresponding to specific cell fate determination. This is one of the first attempts to infer GRNs from single-cell transcriptional data, incorporating dynamics of cell development along a cell lineage tree. AVAILABILITY AND IMPLEMENTATION Implementation of our algorithm is available from the authors upon request. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Haifen Chen
- School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore, Genome Institute of Singapore, Biopolis, Singapore 138672, Singapore and School of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Jing Guo
- School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore, Genome Institute of Singapore, Biopolis, Singapore 138672, Singapore and School of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Shital K Mishra
- School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore, Genome Institute of Singapore, Biopolis, Singapore 138672, Singapore and School of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Paul Robson
- School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore, Genome Institute of Singapore, Biopolis, Singapore 138672, Singapore and School of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Mahesan Niranjan
- School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore, Genome Institute of Singapore, Biopolis, Singapore 138672, Singapore and School of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Jie Zheng
- School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore, Genome Institute of Singapore, Biopolis, Singapore 138672, Singapore and School of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore, Genome Institute of Singapore, Biopolis, Singapore 138672, Singapore and School of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
29
|
Kalampoki LG, Flytzanis CN. Cis-regulatory control of the nuclear receptor Coup-TF gene in the sea urchin Paracentrotus lividus embryo. PLoS One 2014; 9:e109274. [PMID: 25386650 PMCID: PMC4227642 DOI: 10.1371/journal.pone.0109274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/04/2014] [Indexed: 12/13/2022] Open
Abstract
Coup-TF, an orphan member of the nuclear receptor super family, has a fundamental role in the development of metazoan embryos. The study of the gene's regulatory circuit in the sea urchin embryo will facilitate the placement of this transcription factor in the well-studied embryonic Gene Regulatory Network (GRN). The Paracentrotus lividus Coup-TF gene (PlCoup-TF) is expressed throughout embryonic development preferentially in the oral ectoderm of the gastrula and the ciliary band of the pluteus stage. Two overlapping λ genomic clones, containing three exons and upstream sequences of PlCoup-TF, were isolated from a genomic library. The transcription initiation site was determined and 5′ deletions and individual segments of a 1930 bp upstream region were placed ahead of a GFP reporter cassette and injected into fertilized P.lividus eggs. Module a (−532 to −232), was necessary and sufficient to confer ciliary band expression to the reporter. Comparison of P.lividus and Strongylocentrotus purpuratus upstream Coup-TF sequences, revealed considerable conservation, but none within module a. 5′ and internal deletions into module a, defined a smaller region that confers ciliary band specific expression. Putative regulatory cis-acting elements (RE1, RE2 and RE3) within module a, were specifically bound by proteins in sea urchin embryonic nuclear extracts. Site-specific mutagenesis of these elements resulted in loss of reporter activity (RE1) or ectopic expression (RE2, RE3). It is proposed that sea urchin transcription factors, which bind these three regulatory sites, are necessary for spatial and quantitative regulation of the PlCoup-TF gene at pluteus stage sea urchin embryos. These findings lead to the future identification of these factors and to the hierarchical positioning of PlCoup-TF within the embryonic GRN.
Collapse
|
30
|
Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida). EvoDevo 2014; 5:39. [PMID: 25908956 PMCID: PMC4407770 DOI: 10.1186/2041-9139-5-39] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/17/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Metazoan digestive systems develop from derivatives of ectoderm, endoderm and mesoderm, and vary in the relative contribution of each germ layer across taxa and between gut regions. In a small number of well-studied model systems, gene regulatory networks specify endoderm and mesoderm of the gut within a bipotential germ layer precursor, the endomesoderm. Few studies have examined expression of endomesoderm genes outside of those models, and thus, it is unknown whether molecular specification of gut formation is broadly conserved. In this study, we utilize a sequenced genome and comprehensive fate map to correlate the expression patterns of six transcription factors with embryonic germ layers and gut subregions during early development in Capitella teleta. RESULTS The genome of C. teleta contains the five core genes of the sea urchin endomesoderm specification network. Here, we extend a previous study and characterize expression patterns of three network orthologs and three additional genes by in situ hybridization during cleavage and gastrulation stages and during formation of distinct gut subregions. In cleavage stage embryos, Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a are expressed in all four macromeres, the endoderm precursors. Ct-otx, Ct-blimp1, and Ct-nkx2.1a are also expressed in presumptive endoderm of gastrulae and later during midgut development. Additional gut-specific expression patterns include Ct-otx, Ct-bra, Ct-foxAB and Ct-gsc in oral ectoderm; Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a in the foregut; and both Ct-bra and Ct-nkx2.1a in the hindgut. CONCLUSIONS Identification of core sea urchin endomesoderm genes in C. teleta indicates they are present in all three bilaterian superclades. Expression of Ct-otx, Ct-blimp1 and Ct-bra, combined with previously published Ct-foxA and Ct-gataB1 patterns, provide the most comprehensive comparison of these five orthologs from a single species within Spiralia. Each ortholog is likely involved in endoderm specification and midgut development, and several may be essential for establishment of the oral ectoderm, foregut and hindgut, including specification of ectodermal and mesodermal contributions. When the five core genes are compared across the Metazoa, their conserved expression patterns suggest that 'gut gene' networks evolved to specify distinct digestive system subregions, regardless of species-specific differences in gut architecture or germ layer contributions within each subregion.
Collapse
|
31
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
32
|
Peng CJ, Wikramanayake AH. Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling. PLoS One 2013; 8:e80693. [PMID: 24236196 PMCID: PMC3827468 DOI: 10.1371/journal.pone.0080693] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/08/2013] [Indexed: 12/25/2022] Open
Abstract
Pattern formation along the animal-vegetal (AV) axis in sea urchin embryos is initiated when canonical Wnt (cWnt) signaling is activated in vegetal blastomeres. The mechanisms that restrict cWnt signaling to vegetal blastomeres are not well understood, but there is increasing evidence that the egg's vegetal cortex plays a critical role in this process by mediating localized "activation" of Disheveled (Dsh). To investigate how Dsh activity is regulated along the AV axis, sea urchin-specific Dsh antibodies were used to examine expression, subcellular localization, and post-translational modification of Dsh during development. Dsh is broadly expressed during early sea urchin development, but immunolocalization studies revealed that this protein is enriched in a punctate pattern in a novel vegetal cortical domain (VCD) in the egg. Vegetal blastomeres inherit this VCD during embryogenesis, and at the 60-cell stage Dsh puncta are seen in all cells that display nuclear β-catenin. Analysis of Dsh post-translational modification using two-dimensional Western blot analysis revealed that compared to Dsh pools in the bulk cytoplasm, this protein is differentially modified in the VCD and in the 16-cell stage micromeres that partially inherit this domain. Dsh localization to the VCD is not directly affected by disruption of microfilaments and microtubules, but unexpectedly, microfilament disruption led to degradation of all the Dsh pools in unfertilized eggs over a period of incubation suggesting that microfilament integrity is required for maintaining Dsh stability. These results demonstrate that a pool of differentially modified Dsh in the VCD is selectively inherited by the vegetal blastomeres that activate cWnt signaling in early embryos, and suggests that this domain functions as a scaffold for localized Dsh activation. Localized cWnt activation regulates AV axis patterning in many metazoan embryos. Hence, it is possible that the VCD is an evolutionarily conserved cytoarchitectural domain that specifies the AV axis in metazoan ova.
Collapse
Affiliation(s)
- ChiehFu Jeff Peng
- Department of Biology, University of Miami, Coral Gables, Florida, United States of America
| | | |
Collapse
|
33
|
Röttinger E, Dahlin P, Martindale MQ. A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling. PLoS Genet 2012; 8:e1003164. [PMID: 23300467 PMCID: PMC3531958 DOI: 10.1371/journal.pgen.1003164] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/27/2012] [Indexed: 12/03/2022] Open
Abstract
Understanding the functional relationship between intracellular factors and
extracellular signals is required for reconstructing gene regulatory networks
(GRN) involved in complex biological processes. One of the best-studied
bilaterian GRNs describes endomesoderm specification and predicts that both
mesoderm and endoderm arose from a common GRN early in animal evolution.
Compelling molecular, genomic, developmental, and evolutionary evidence supports
the hypothesis that the bifunctional gastrodermis of the cnidarian-bilaterian
ancestor is derived from the same evolutionary precursor of both endodermal and
mesodermal germ layers in all other triploblastic bilaterian animals. We have
begun to establish the framework of a provisional cnidarian
“endomesodermal” gene regulatory network in the sea anemone,
Nematostella vectensis, by using a genome-wide microarray
analysis on embryos in which the canonical Wnt/ß-catenin pathway was
ectopically targeted for activation by two distinct pharmaceutical agents
(lithium chloride and 1-azakenpaullone) to identify potential targets of
endomesoderm specification. We characterized 51 endomesodermally expressed
transcription factors and signaling molecule genes (including 18 newly
identified) with fine-scale temporal (qPCR) and spatial (in
situ) analysis to define distinct co-expression domains within the
animal plate of the embryo and clustered genes based on their earliest zygotic
expression. Finally, we determined the input of the canonical
Wnt/ß-catenin pathway into the cnidarian endomesodermal GRN using
morpholino and mRNA overexpression experiments to show that NvTcf/canonical Wnt
signaling is required to pattern both the future endomesodermal and ectodermal
domains prior to gastrulation, and that both BMP and FGF (but not Notch)
pathways play important roles in germ layer specification in this animal. We
show both evolutionary conserved as well as profound differences in
endomesodermal GRN structure compared to bilaterians that may provide
fundamental insight into how GRN subcircuits have been adopted, rewired, or
co-opted in various animal lineages that give rise to specialized endomesodermal
cell types. Cnidarians (anemones, corals, and “jellyfish”) are an animal group
whose adults possess derivatives of only two germ layers: ectoderm and a
bifunctional (absorptive and contractile) gastrodermal (gut) layer. Cnidarians
are the closest living relatives to bilaterally symmetrical animals that possess
all three germ layers (ecto, meso, and endoderm); and compelling molecular,
genomic, developmental, and evolutionary evidence exists to demonstrate that the
cnidarian gastrodermis is evolutionarily related to both endodermal and
mesodermal germ layers in all other triploblastic bilaterian animals. Little is
known about endomesoderm specification in cnidarians. In this study, we
constructed the framework of a cnidarian endomesodermal gene regulatory network
in the sea anemone, Nematostella vectensis, using a combination
of experimental approaches. We identified and characterized by both qPCR and
in situ hybridization 51 genes expressed in defined domains
within the presumptive endomesoderm. In addition, we functionally demonstrate
that Wnt/Tcf signaling is crucial for regionalized expression of a defined
subset of these genes prior to gut formation and endomesoderm maintenance. Our
results support the idea of an ancient gene regulatory network underlying
endomesoderm specification that involves inputs from multiple signaling pathways
(Wnt, FGF, BMP, but not Notch) early in development, that are temporarily
uncoupled in bilaterian animals.
Collapse
Affiliation(s)
- Eric Röttinger
- Kewalo Marine Laboratory, Pacific Biosciences Research Center,
University of Hawai'i, Honolulu, Hawai'i, United States of
America
| | - Paul Dahlin
- Kewalo Marine Laboratory, Pacific Biosciences Research Center,
University of Hawai'i, Honolulu, Hawai'i, United States of
America
| | - Mark Q. Martindale
- Kewalo Marine Laboratory, Pacific Biosciences Research Center,
University of Hawai'i, Honolulu, Hawai'i, United States of
America
- * E-mail:
| |
Collapse
|
34
|
Vaughn R, Garnhart N, Garey JR, Thomas WK, Livingston BT. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii. EvoDevo 2012; 3:19. [PMID: 22938175 PMCID: PMC3492025 DOI: 10.1186/2041-9139-3-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/13/2012] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED BACKGROUND The gastrula stage represents the point in development at which the three primary germ layers diverge. At this point the gene regulatory networks that specify the germ layers are established and the genes that define the differentiated states of the tissues have begun to be activated. These networks have been well-characterized in sea urchins, but not in other echinoderms. Embryos of the brittle star Ophiocoma wendtii share a number of developmental features with sea urchin embryos, including the ingression of mesenchyme cells that give rise to an embryonic skeleton. Notable differences are that no micromeres are formed during cleavage divisions and no pigment cells are formed during development to the pluteus larval stage. More subtle changes in timing of developmental events also occur. To explore the molecular basis for the similarities and differences between these two echinoderms, we have sequenced and characterized the gastrula transcriptome of O. wendtii. METHODS Development of Ophiocoma wendtii embryos was characterized and RNA was isolated from the gastrula stage. A transcriptome data base was generated from this RNA and was analyzed using a variety of methods to identify transcripts expressed and to compare those transcripts to those expressed at the gastrula stage in other organisms. RESULTS Using existing databases, we identified brittle star transcripts that correspond to 3,385 genes, including 1,863 genes shared with the sea urchin Strongylocentrotus purpuratus gastrula transcriptome. We characterized the functional classes of genes present in the transcriptome and compared them to those found in this sea urchin. We then examined those members of the germ-layer specific gene regulatory networks (GRNs) of S. purpuratus that are expressed in the O. wendtii gastrula. Our results indicate that there is a shared 'genetic toolkit' central to the echinoderm gastrula, a key stage in embryonic development, though there are also differences that reflect changes in developmental processes. CONCLUSIONS The brittle star expresses genes representing all functional classes at the gastrula stage. Brittle stars and sea urchins have comparable numbers of each class of genes and share many of the genes expressed at gastrulation. Examination of the brittle star genes in which sea urchin orthologs are utilized in germ layer specification reveals a relatively higher level of conservation of key regulatory components compared to the overall transcriptome. We also identify genes that were either lost or whose temporal expression has diverged from that of sea urchins.
Collapse
Affiliation(s)
- Roy Vaughn
- Department of Biological, Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90815, USA.
| | | | | | | | | |
Collapse
|
35
|
Lhomond G, McClay DR, Gache C, Croce JC. Frizzled1/2/7 signaling directs β-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis. Development 2012; 139:816-25. [PMID: 22274701 DOI: 10.1242/dev.072215] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In sea urchins, the nuclear accumulation of β-catenin in micromeres and macromeres at 4th and 5th cleavage activates the developmental gene regulatory circuits that specify all of the vegetal tissues (i.e. skeletogenic mesoderm, endoderm and non-skeletogenic mesoderm). Here, through the analysis of maternal Frizzled receptors as potential contributors to these processes, we found that, in Paracentrotus lividus, the receptor Frizzled1/2/7 is required by 5th cleavage for β-catenin nuclearisation selectively in macromere daughter cells. Perturbation analyses established further that Frizzled1/2/7 signaling is required subsequently for the specification of the endomesoderm and then the endoderm but not for that of the non-skeletogenic mesoderm, even though this cell type also originates from the endomesoderm lineage. Complementary analyses on Wnt6 showed that this maternal ligand is similarly required at 5th cleavage for the nuclear accumulation of β-catenin exclusively in the macromeres and for endoderm but not for non-skeletogenic mesoderm specification. In addition, Wnt6 misexpression reverses Frizzled1/2/7 downregulation-induced phenotypes. Thus, the results indicate that Wnt6 and Frizzled1/2/7 are likely to behave as the ligand-receptor pair responsible for initiating β-catenin nuclearisation in macromeres at 5th cleavage and that event is necessary for endoderm specification. They show also that β-catenin nuclearisation in micromeres and macromeres takes place through a different mechanism, and that non-skeletogenic mesoderm specification occurs independently of the nuclear accumulation of β-catenin in macromeres at the 5th cleavage. Evolutionarily, this analysis outlines further the conserved involvement of the Frizzled1/2/7 subfamily, but not of specific Wnts, in the activation of canonical Wnt signaling during early animal development.
Collapse
Affiliation(s)
- Guy Lhomond
- UPMC Université Paris 06, UMR7009, CNRS, Biologie du Développement, Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | | | | | | |
Collapse
|
36
|
Select microRNAs are essential for early development in the sea urchin. Dev Biol 2011; 362:104-13. [PMID: 22155525 DOI: 10.1016/j.ydbio.2011.11.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 10/22/2011] [Accepted: 11/22/2011] [Indexed: 11/22/2022]
Abstract
microRNAs (miRNAs) are small noncoding RNAs that mediate post-transcriptional gene regulation and have emerged as essential regulators of many developmental events. The transcriptional network during early embryogenesis of the purple sea urchin, Strongylocentrotus purpuratus, is well described and can serve as an excellent model to test functional contributions of miRNAs in embryogenesis. We examined the loss of function phenotypes of major components of the miRNA biogenesis pathway. Inhibition of de novo synthesis of Drosha and Dicer in the embryo led to consistent developmental defects, a failure to gastrulate, and embryonic lethality, including changes in the steady state levels of transcription factors and signaling molecules involved in germ layer specification. We annotated and profiled small RNA expression from the ovary and several early embryonic stages by deep sequencing followed by computational analysis. miRNAs as well as a large population of putative piRNAs (piwi-interacting RNAs) had dynamic accumulation profiles through early development. Defects in morphogenesis caused by loss of Drosha could be rescued with four miRNAs. Taken together our results indicate that post-transcriptional gene regulation directed by miRNAs is functionally important for early embryogenesis and is an integral part of the early embryonic gene regulatory network in S. purpuratus.
Collapse
|
37
|
Romano G, Costantini M, Buttino I, Ianora A, Palumbo A. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS One 2011; 6:e25980. [PMID: 22022485 PMCID: PMC3191173 DOI: 10.1371/journal.pone.0025980] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/14/2011] [Indexed: 11/18/2022] Open
Abstract
Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.
Collapse
Affiliation(s)
- Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Maria Costantini
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Isabella Buttino
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Adrianna Ianora
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| |
Collapse
|
38
|
Kranz AL, Eils R, König R. Enhancers regulate progression of development in mammalian cells. Nucleic Acids Res 2011; 39:8689-702. [PMID: 21785139 PMCID: PMC3203619 DOI: 10.1093/nar/gkr602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During development and differentiation of an organism, accurate gene regulation is central for cells to maintain and balance their differentiation processes. Transcriptional interactions between cis-acting DNA elements such as promoters and enhancers are the basis for precise and balanced transcriptional regulation. We identified modules of combinations of binding sites in proximal and distal regulatory regions upstream of all transcription start sites (TSSs) in silico and applied these modules to gene expression time-series of mouse embryonic development and differentiation of human stem cells. In addition to tissue-specific regulation controlled by combinations of transcription factors (TFs) binding at promoters, we observed that in particular the combination of TFs binding at promoters together with TFs binding at the respective enhancers regulate highly specifically temporal progression during development: whereas 40% of TFs were specific for time intervals, 79% of TF pairs and even 97% of promoter-enhancer modules showed specificity for single time intervals of the human stem cells. Predominantly SP1 and E2F contributed to temporal specificity at promoters and the forkhead (FOX) family of TFs at enhancer regions. Altogether, we characterized three classes of TFs: with binding sites being enriched at the TSS (like SP1), depleted at the TSS (like FOX), and rather uniformly distributed.
Collapse
Affiliation(s)
- Anna-Lena Kranz
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, INF 267, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
39
|
Papatsenko D, Levine M, Goltsev Y. Clusters of temporal discordances reveal distinct embryonic patterning mechanisms in Drosophila and anopheles. PLoS Biol 2011; 9:e1000584. [PMID: 21283609 PMCID: PMC3026761 DOI: 10.1371/journal.pbio.1000584] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/08/2010] [Indexed: 12/13/2022] Open
Abstract
Evolutionary innovations can be driven by spatial and temporal changes in gene expression. Several such differences have been documented in the embryos of lower and higher Diptera. One example is the reduction of the ancient extraembryonic envelope composed of amnion and serosa as seen in mosquitoes to the single amnioserosa of fruit flies. We used transcriptional datasets collected during the embryonic development of the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, to search for whole-genome changes in gene expression underlying differences in their respective embryonic morphologies. We found that many orthologous gene pairs could be clustered based on the presence of coincident discordances in their temporal expression profiles. One such cluster contained genes expressed specifically in the mosquito serosa. As shown previously, this cluster is re-deployed later in development at the time of cuticle synthesis. In addition, there is a striking difference in the temporal expression of a subset of maternal genes. Specifically, maternal transcripts that exhibit a sharp reduction at the time of the maternal-zygotic transition in Drosophila display sustained expression in the Anopheles embryo. We propose that gene clustering by local temporal discordance can be used for the de novo identification of the gene batteries underlying morphological diversity.
Collapse
Affiliation(s)
- Dmitri Papatsenko
- Department of Molecular and Cell Biology, Division of Genetics Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, California, United States of America
| | - Michael Levine
- Department of Molecular and Cell Biology, Division of Genetics Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, California, United States of America
| | - Yury Goltsev
- Department of Molecular and Cell Biology, Division of Genetics Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Emmert-Streib F, Glazko GV. Network biology: a direct approach to study biological function. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:379-91. [PMID: 21197659 DOI: 10.1002/wsbm.134] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this paper we discuss the dualism of gene networks and their role in systems biology. We argue that gene networks (1) can serve as a conceptual framework, forming a fundamental level of a phenomenological description, and (2) are a means to represent and analyze data. The latter point does not only allow a systems analysis but is even amenable for a direct approach to study biological function. Here we focus on the clarity of our main arguments and conceptual meaning of gene networks, rather than the causal inference of gene networks from data. WIREs Syst Biol Med 2011 3 379-391 DOI: 10.1002/wsbm.134 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Frank Emmert-Streib
- Computational Biology and Machine Learning, Center for Cancer Research and Cell Biology, School of Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | | |
Collapse
|
41
|
Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet 2010; 6:e1001259. [PMID: 21203442 PMCID: PMC3009687 DOI: 10.1371/journal.pgen.1001259] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 11/22/2010] [Indexed: 12/13/2022] Open
Abstract
Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN) regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood. Here, we report a large-scale analysis of the GRN deployed in response to the activity of this signaling center in the embryos of the Mediterranean sea urchin Paracentrotus lividus, in which studies with high spatial resolution are possible. By using a combination of in situ hybridization screening, overexpression of mRNA, recombinant ligand treatments, and morpholino-based loss-of-function studies, we identified a cohort of transcription factors and signaling molecules expressed in the ventral ectoderm, dorsal ectoderm, and interposed neurogenic ("ciliary band") region in response to the known key signaling molecules Nodal and BMP2/4 and defined the epistatic relationships between the most important genes. The resultant GRN showed a number of striking features. First, Nodal was found to be essential for the expression of all ventral and dorsal marker genes, and BMP2/4 for all dorsal genes. Second, goosecoid was identified as a central player in a regulatory sub-circuit controlling mouth formation, while tbx2/3 emerged as a critical factor for differentiation of the dorsal ectoderm. Finally, and unexpectedly, a neurogenic ectoderm regulatory circuit characterized by expression of "ciliary band" genes was triggered in the absence of TGF beta signaling. We propose a novel model for ectoderm regionalization, in which neural ectoderm is the default fate in the absence of TGF beta signaling, and suggest that the stomodeal and neural subcircuits that we uncovered may represent ancient regulatory pathways controlling embryonic patterning.
Collapse
Affiliation(s)
- Alexandra Saudemont
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Emmanuel Haillot
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Flavien Mekpoh
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Nathalie Bessodes
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Magali Quirin
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - François Lapraz
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Véronique Duboc
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Eric Röttinger
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Ryan Range
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Arnaud Oisel
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Patrick Wincker
- Génoscope (CEA), UMR8030, CNRS and Université d'Evry, Evry, France
| | - Thierry Lepage
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
- * E-mail:
| |
Collapse
|
42
|
Okamitsu Y, Yamamoto T, Fujii T, Ochiai H, Sakamoto N. Dicer is required for the normal development of sea urchin, Hemicentrotus pulcherrimus. Zoolog Sci 2010; 27:477-86. [PMID: 20528154 DOI: 10.2108/zsj.27.477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MicroRNAs are single-stranded RNA molecules with a length of 19-25 nucleotides, which play roles in various biological phenomena, including development, differentiation, apoptosis, by regulating target gene expression. Although the presence of microRNA molecules in sea urchin and the expression of genes involved in microRNA biogenesis during sea urchin development have been reported recently, the function of microRNA in sea urchin development remains to be elucidated. In this study, to understand the function of microRNA in the early development of sea urchin, we focused on Dicer, an essential enzyme for biosynthesis of mature microRNA. We determined the nucleotide sequence of cDNA for a Dicer homolog in the sea urchin, Hemicentrotus pulcherrimus, HpDcr, and found that functional domains of Dicer proteins are conserved in HpDcr. Analyses of its pattern of expression showed that HpDcr mRNA is expressed in embryos at all developmental stages analyzed, and seems to distribute asymmetrically at the morula and later stages. Knockdown of HpDcr resulted in anomalous morphogenesis, such as impairment of gastrulation and skeletogenesis at the mesenchyme blastula stage and later stages, and alteration of mRNA levels of cell type-specific genes. Thus, HpDcr plays important roles in morphogenesis in sea urchin embryos, suggesting that miRNA could be involved in the early development of sea urchin by regulating target gene expression.
Collapse
Affiliation(s)
- Yuka Okamitsu
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | |
Collapse
|
43
|
Boyle MJ, Seaver EC. Expression of FoxA and GATA transcription factors correlates with regionalized gut development in two lophotrochozoan marine worms: Chaetopterus (Annelida) and Themiste lageniformis (Sipuncula). EvoDevo 2010; 1:2. [PMID: 20849645 PMCID: PMC2938726 DOI: 10.1186/2041-9139-1-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 07/05/2010] [Indexed: 12/04/2022] Open
Abstract
Background A through gut is present in almost all metazoans, and most likely represents an ancient innovation that enabled bilaterian animals to exploit a wide range of habitats. Molecular developmental studies indicate that Fox and GATA regulatory genes specify tissue regions along the gut tube in a broad diversity of taxa, although little is known about gut regionalization within the Lophotrochozoa. In this study, we isolated FoxA and GATA456 orthologs and used whole mount in situ hybridization during larval gut formation in two marine worms: the segmented, polychaete annelid Chaetopterus, which develops a planktotrophic larva with a tripartite gut, and the non-segmented sipunculan Themiste lageniformis, which develops a lecithotrophic larva with a U-shaped gut. Results FoxA and GATA456 transcripts are predominantly restricted to gut tissue, and together show regional expression spanning most of the alimentary canal in each of these lophotrochozoans, although neither FoxA nor GATA456 is expressed in the posterior intestine of Chaetopterus. In both species, FoxA is expressed at the blastula stage, transiently in presumptive endoderm before formation of a definitive gut tube, and throughout early larval development in discrete foregut and hindgut domains. GATA456 genes are expressed during endoderm formation, and in endoderm and mesoderm associated with the midgut in each species. Several species-specific differences were detected, including an overlap of FoxA and GATA456 expression in the intestinal system of Themiste, which is instead complimentary in Chaetopterus. Other differences include additional discrete expression domains of FoxA in ectodermal trunk cells in Themiste but not Chaetopterus, and expression of GATA456 in anterior ectoderm and midgut cells unique to Chaetopterus. Conclusions This study of gene expression in a sipunculan contributes new comparative developmental insights from lophotrochozoans, and shows that FoxA and GATA456 transcription factors are part of an ancient patterning mechanism that was deployed during early evolution of the metazoan through gut. The common utilization of FoxA and GATA456 throughout gut formation by species with contrasting life history modes indicates that both genes are core components of a gut-specific gene regulatory network in spiralians. Despite a highly conserved pattern of early development, and probably similar ontogenic origins of gut tissue, there are molecular differences in gut regionalization between lophotrochozoan species.
Collapse
Affiliation(s)
- Michael J Boyle
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96813, USA.
| | | |
Collapse
|
44
|
Banerjee I, Maiti S, Parashurama N, Yarmush M. An integer programming formulation to identify the sparse network architecture governing differentiation of embryonic stem cells. ACTA ACUST UNITED AC 2010; 26:1332-9. [PMID: 20363729 DOI: 10.1093/bioinformatics/btq139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Primary purpose of modeling gene regulatory networks for developmental process is to reveal pathways governing the cellular differentiation to specific phenotypes. Knowledge of differentiation network will enable generation of desired cell fates by careful alteration of the governing network by adequate manipulation of cellular environment. RESULTS We have developed a novel integer programming-based approach to reconstruct the underlying regulatory architecture of differentiating embryonic stem cells from discrete temporal gene expression data. The network reconstruction problem is formulated using inherent features of biological networks: (i) that of cascade architecture which enables treatment of the entire complex network as a set of interconnected modules and (ii) that of sparsity of interconnection between the transcription factors. The developed framework is applied to the system of embryonic stem cells differentiating towards pancreatic lineage. Experimentally determined expression profile dynamics of relevant transcription factors serve as the input to the network identification algorithm. The developed formulation accurately captures many of the known regulatory modes involved in pancreatic differentiation. The predictive capacity of the model is tested by simulating an in silico potential pathway of subsequent differentiation. The predicted pathway is experimentally verified by concurrent differentiation experiments. Experimental results agree well with model predictions, thereby illustrating the predictive accuracy of the proposed algorithm. CONTACT ipb1@pitt.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ipsita Banerjee
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, 51 Blossom Street, Boston, MA-02114, USA.
| | | | | | | |
Collapse
|
45
|
Darabos C, Tomassini M, Giacobini M. Dynamics of unperturbed and noisy generalized Boolean networks. J Theor Biol 2009; 260:531-44. [DOI: 10.1016/j.jtbi.2009.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 05/07/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
|
46
|
Peter IS, Davidson EH. Genomic control of patterning. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:707-16. [PMID: 19378258 DOI: 10.1387/ijdb.072495ip] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The development of multicellular organisms involves the partitioning of the organism into territories of cells of specific structure and function. The information for spatial patterning processes is directly encoded in the genome. The genome determines its own usage depending on stage and position, by means of interactions that constitute gene regulatory networks (GRNs). The GRN driving endomesoderm development in sea urchin embryos illustrates different regulatory strategies by which developmental programs are initiated, orchestrated, stabilized or excluded to define the pattern of specified territories in the developing embryo.
Collapse
|
47
|
Byrum CA, Xu R, Bince JM, McClay DR, Wikramanayake AH. Blocking Dishevelled signaling in the noncanonical Wnt pathway in sea urchins disrupts endoderm formation and spiculogenesis, but not secondary mesoderm formation. Dev Dyn 2009; 238:1649-65. [PMID: 19449300 PMCID: PMC3057072 DOI: 10.1002/dvdy.21978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dishevelled (Dsh) is a phosphoprotein key to beta-catenin dependent (canonical) and beta-catenin independent (noncanonical) Wnt signaling. Whereas canonical Wnt signaling has been intensively studied in sea urchin development, little is known about other Wnt pathways. To examine roles of these beta-catenin independent pathways in embryogenesis, we used Dsh-DEP, a deletion construct blocking planar cell polarity (PCP) and Wnt/Ca(2+) signaling. Embryos overexpressing Dsh-DEP failed to gastrulate or undergo skeletogenesis, but produced pigment cells. Although early mesodermal gene expression was largely unperturbed, embryos exhibited reduced expression of genes regulating endoderm specification and differentiation. Overexpressing activated beta-catenin failed to rescue Dsh-DEP embryos, indicating that Dsh-DEP blocks endoderm formation downstream of initial canonical Wnt signaling. Because Dsh-DEP-like constructs block PCP signaling in other metazoans, and disrupting RhoA or Fz 5/8 in echinoids blocks subsets of the Dsh-DEP phenotypes, our data suggest that noncanonical Wnt signaling is crucial for sea urchin endoderm formation and skeletogenesis.
Collapse
Affiliation(s)
- Christine A. Byrum
- Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii
- Developmental, Cell and Molecular Biology Group, Duke University, Durham, North Carolina
- Department of Biology, College of Charleston, Charleston, South Carolina
| | - Ronghui Xu
- Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Joanna M. Bince
- Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - David R. McClay
- Developmental, Cell and Molecular Biology Group, Duke University, Durham, North Carolina
| | - Athula H. Wikramanayake
- Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii
- Department of Biology, The University of Miami, Coral Gables, Florida
| |
Collapse
|
48
|
Stöbe P, Stein SMA, Habring-Müller A, Bezdan D, Fuchs AL, Hueber SD, Wu H, Lohmann I. Multifactorial regulation of a hox target gene. PLoS Genet 2009; 5:e1000412. [PMID: 19282966 PMCID: PMC2646128 DOI: 10.1371/journal.pgen.1000412] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 02/09/2009] [Indexed: 01/27/2023] Open
Abstract
Hox proteins play fundamental roles in controlling morphogenetic diversity along the anterior-posterior body axis of animals by regulating distinct sets of target genes. Within their rather broad expression domains, individual Hox proteins control cell diversification and pattern formation and consequently target gene expression in a highly localized manner, sometimes even only in a single cell. To achieve this high-regulatory specificity, it has been postulated that Hox proteins co-operate with other transcription factors to activate or repress their target genes in a highly context-specific manner in vivo. However, only a few of these factors have been identified. Here, we analyze the regulation of the cell death gene reaper (rpr) by the Hox protein Deformed (Dfd) and suggest that local activation of rpr expression in the anterior part of the maxillary segment is achieved through a combinatorial interaction of Dfd with at least eight functionally diverse transcriptional regulators on a minimal enhancer. It follows that context-dependent combinations of Hox proteins and other transcription factors on small, modular Hox response elements (HREs) could be responsible for the proper spatio-temporal expression of Hox targets. Thus, a large number of transcription factors are likely to be directly involved in Hox target gene regulation in vivo.
Collapse
Affiliation(s)
- Petra Stöbe
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sokrates M. A. Stein
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anette Habring-Müller
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Daniela Bezdan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Aurelia L. Fuchs
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- BIOQUANT Center, Heidelberg, Germany
| | - Stefanie D. Hueber
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Haijia Wu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ingrid Lohmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- BIOQUANT Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
49
|
Abstract
Sea urchin embryos are characterized by an extremely simple mode of development, rapid cleavage, high transparency, and well-defined cell lineage. Although they are not suitable for genetic studies, other approaches are successfully used to unravel mechanisms and molecules involved in cell fate specification and morphogenesis. Microinjection is the elective method to study gene function in sea urchin embryos. It is used to deliver precise amounts of DNA, RNA, oligonucleotides, peptides, or antibodies into the eggs or even into blastomeres. Here we describe microinjection as it is currently applied in our laboratory and show how it has been used in gene perturbation analyses and dissection of cis-regulatory DNA elements.
Collapse
|
50
|
Salzer CL, Kumar JP. Position dependent responses to discontinuities in the retinal determination network. Dev Biol 2009; 326:121-30. [PMID: 19061881 PMCID: PMC3968074 DOI: 10.1016/j.ydbio.2008.10.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 10/05/2008] [Accepted: 10/28/2008] [Indexed: 11/17/2022]
Abstract
The development of any cell and/or tissue is dependent upon interconnections between several signaling pathways and myriad transcription factors. It is becoming more apparent that these inputs are best studied, not as individual components, but rather as elements of a gene regulatory network. Over the last decade several networks governing the specification of single cells, individual organs and entire stages of development have been described. The current incarnations of these networks are the products of the continual addition of newly discovered genetic, molecular and biochemical interactions. However, as currently envisaged, network diagrams may not sufficiently describe the spatial and temporal dynamics that underlie developmental processes. We have conducted a developmental analysis of a sub circuit of the Drosophila retinal determination network. This sub circuit is comprised of three genes, two (sine oculis and dachshund) of which code for DNA binding proteins and one (eyes absent) that encodes a transcriptional co-activator. We demonstrate here that the nature of the regulatory relationships that exist between these three genes changes as retinal development progresses. We also demonstrate that the response of the tissue to the loss of any of these three RD genes is dependent upon the position of the mutant cells within the eye field. Depending upon its location, mutant tissue will either overproliferate itself or will signal to surrounding cells instructing them to propagate and compensate for the eventual loss through apoptosis of the mutant clone. Taken together these results suggest that the complexities of development are best appreciated when spatial and temporal information is incorporated when describing gene regulatory networks.
Collapse
Affiliation(s)
- Claire L Salzer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|