1
|
Shen J, Lin H, Mo K, Liang Z, Zhang Y, Quan H, Wang X, Zhang C, Chen C. Bidirectional roles of neutrophil extracellular traps in oral microbiota carcinogenesis: A systematic review. Transl Oncol 2025; 56:102361. [PMID: 40239243 PMCID: PMC12022684 DOI: 10.1016/j.tranon.2025.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are network structures composed of DNA, histones, and antimicrobial proteins,released by activated neutrophils to trap and eliminate extracellular pathogens. Recent research has demonstrated a strong correlation between NETs and various diseases, including immune dysregulation, thrombosis, and malignancies. This review synthesizes current research on NETs, focusing on its biological role in oral squamous cell carcinoma (OSCC) and explores its potential in treating. METHODS A literature review in the PubMed database was conducted to examine the impact of NETs on the homeostasis of oral microbiota and the involvement in the development of oral microbiota-related carcinogenesis. RESULTS Various microorganisms, including Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus spp., along with Candida albicans, as well as certain viruses such as Human papillomavirus (HPV), Human herpes virus 8 (HHV-8), and Herpes simplex virus-1 (HSV-1)are regulated by NETs during oral colonization and proliferation and have been identified as contributors to the pathogenesis of oral squamous cell carcinoma. NETs have been shown to play a dual role in the carcinogenic process of oral microbiota in humans. At the initial stage of tumor formation, NETs inhibit tumorigenesis by eliminating tumorigenic bacteria that infiltrated the tumor; however, following tumor establishment, various cytokines and chemokines that promote tumor progression are released by neutrophils during the NETs formation. CONCLUSION This article reviews the oncogenic mechanisms of NETs in the oral microbiota, with potential implications for early tumor detection and the development of microbe-targeted therapies.
Collapse
Affiliation(s)
- Jie Shen
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Haitao Lin
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Kangnan Mo
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Zhong Liang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yan Zhang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huatao Quan
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Xing Wang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chenping Zhang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Chao Chen
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
2
|
Zhou Q, Luo J, Chai X, Yang J, Zhong S, Zhang Z, Chang X, Wang H. Therapeutic targeting the cGAS-STING pathway associated with protein and gene: An emerging and promising novel strategy for aging-related neurodegenerative disease. Int Immunopharmacol 2025; 156:114679. [PMID: 40252469 DOI: 10.1016/j.intimp.2025.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Neurodegenerative diseases (NDDs) represent a rapidly escalating global health challenge, contributing significantly to the worldwide disease burden and posing substantial threats to public health systems across nations. Among the many risk factors for neurodegeneration, aging is the major risk factor. In the context of aging, multiple factors lead to the release of endogenous DNA (especially mitochondrial DNA, mtDNA), which is an important trigger for the activation of the cGAS-STING innate immune pathway. Recent studies have identified an increasing role for activation of the cGAS-STING signaling pathway as a driver of senescence-associated secretory phenotypes (SASPs) in aging and NDDs. The cGAS-STING pathway mediates the immune sensing of DNA and is a key driver of chronic inflammation and functional decline during the aging process. Blocking cGAS-STING signaling may reduce the inflammatory response by preventing mtDNA release and enhancing mitophagy. Targeted inhibition of the cGAS-STING pathway by biological macromolecules such as natural products shows promise in therapeutic strategies for age-related NDDs. This review aims to systematically and comprehensively introduces the role of the cGAS-STING pathway in age-related NDDs in the context of aging while revealing the molecular mechanisms of the cGAS-STING pathway and its downstream signaling pathways and to develop more targeted and effective therapeutic strategies for NDDs.
Collapse
Affiliation(s)
- Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jinghao Luo
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xueting Chai
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
3
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Babu A, Uthaiah CA, Wasnik PN, Verma NR, Vijay-Kumar M, Abraham J. Leveraging circulating DNase I activity to detect silent coronary artery disease among hypertensive diabetes individuals. Am J Physiol Heart Circ Physiol 2025; 328:H973-H977. [PMID: 40066830 DOI: 10.1152/ajpheart.00088.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
In individuals with diabetic hypertension, silent coronary artery disease (CAD) is common due to underlying chronic inflammation, but there is no biomarker to monitor this high-risk group of individuals before noticeable symptoms emerge clinically. cfDNA from dying endothelial cells triggers chronic inflammation, leading us to hypothesize that enzymes that degrade cfDNA, DNase I and/or II, could serve as more sensitive biomarkers for silent CAD. To test this, we conducted a study with 30 hypertensive diabetic patients with clinical symptoms of CAD (CAD-HTN-DM) and 30 controls without CAD (HTN-DM). Negligible serum DNase II activity was detected in both groups. Student's t test was used to compare cfDNA, DNase I activity, and groups. We observed elevated serum DNase I activity in the CAD-HTN-DM group (1.71 ± 0.1 U/mL) compared with the HTN-DM group (1.12 ± 0.1 U/mL) (P < 0.0001). Among the CAD-HTN-DM group, DNase I activity was significantly higher in patients with all three coronary arteries blocked, even though the cfDNA levels were similar in both groups. Elevated DNase I activity was associated with a 1.5-fold increased risk of major adverse cardiac events despite ongoing treatment with statins, antihypertensive medications, and antidiabetic therapies. Surprisingly, serum DNase I activity was lower in patients who suffered a myocardial infarction. By leveraging our observations, we hope that regular monitoring of serum DNase I activity will identify individuals at high risk for the clinical onset of CAD, enabling early intervention to mitigate its adverse effects and slow its progression.NEW & NOTEWORTHY Our observation suggests that the progression of cardiac disease among hypertensive patients with diabetes is associated with elevated DNase I activity that maintains optimal cfDNA levels, thereby reducing its inflammatory potential and worsening of cardiac dysfunction. Thus, DNase I activity may be both a protective factor early on and a potential biomarker for cardiac health among hypertensive patients with diabetes.
Collapse
Affiliation(s)
- Amit Babu
- Department of Biochemistry, All India Institute of Medical Sciences-Raipur, Raipur, India
| | - Chinnappa A Uthaiah
- Department of Biochemistry, All India Institute of Medical Sciences-Raipur, Raipur, India
| | - Preetam Narayan Wasnik
- Department of General Medicine, All India Institute of Medical Sciences-Raipur, Raipur, India
| | - Neha Rani Verma
- Department of Biochemistry, All India Institute of Medical Sciences-Raipur, Raipur, India
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Jessy Abraham
- Department of Biochemistry, All India Institute of Medical Sciences-Raipur, Raipur, India
| |
Collapse
|
5
|
Zhou L, Wu Z, Yi X, Xie D, Wang J, Wu W. Serum starvation induces cytosolic DNA trafficking via exosome and autophagy-lysosome pathway in microglia. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119905. [PMID: 39880132 DOI: 10.1016/j.bbamcr.2025.119905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
The imbalance of microglial homeostasis is highly associated with age-related neurological diseases, where cytosolic endogenous DNA is also likely to be found. As the main medium for storing biological information, endogenous DNA could be localized to cellular compartments normally free of DNA when cells are stimulated. However, the intracellular trafficking of endogenous DNA remains unidentified. In this study, we demonstrated that nuclear DNA (nDNA) and mitochondrial DNA (mtDNA), as the components of endogenous DNA, undergo different intracellular trafficking under conditions of microglial homeostasis imbalance induced by serum starvation. Upon detecting various components of endogenous DNA in the cytoplasmic and extracellular microglia, we found that cytosolic nDNA primarily exists in a free form and undergoes degradation through the autophagy-lysosome pathway. In contrast, cytosolic mtDNA predominantly exists in a membrane-wrapped form and is trafficked through both exosome and autophagy-lysosome pathways, with the exosome pathway serving as the primary one. When the autophagy-lysosome pathway was inhibited, there was an increase in exosomes. More importantly, the inhibition of the autophagy-lysosome pathway resulted in enhanced trafficking of mtDNA through the exosome pathway. These findings unveiled the crosstalk between these two pathways in the trafficking of microglial cytosolic DNA and thus provide new insights into intervening in age-related neurological diseases.
Collapse
Affiliation(s)
- Liyan Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zilong Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoqing Yi
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dongxue Xie
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jufen Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenhe Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
6
|
Li LJ, Liang SY, Sun XY, Zhu J, Niu XY, Du XY, Huang YR, Liu RT. Microglial double stranded DNA accumulation induced by DNase II deficiency drives neuroinflammation and neurodegeneration. J Neuroinflammation 2025; 22:11. [PMID: 39833906 PMCID: PMC11745000 DOI: 10.1186/s12974-025-03333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Deoxyribonuclease 2 (DNase II) is pivotal in the clearance of cytoplasmic double stranded DNA (dsDNA). Its deficiency incurs DNA accumulation in cytoplasm, which is a hallmark of multiple neurodegenerative diseases. Our previous study showed that neuronal DNase II deficiency drove tau hyperphosphorylation and neurodegeneration (Li et al., Transl Neurodegener 13:39, 2024). Although it has been verified that DNase II participates in type I interferons (IFN-I) mediated autoinflammation and senescence in peripheral systems, the role of microglial DNase II in neuroinflammation and neurodegenerative diseases such as Alzheimer's disease (AD) is still unknown. METHODS The levels of microglial DNase II in triple transgenic AD mice (3xTg-AD) were measured by immunohistochemistry. The cognitive performance of microglial DNase II deficient WT and AD mice was determined using the Morris water maze test, Y-maze test, novel object recognition test and open filed test. To investigate the impact of microglial DNase II deficiency on microglial morphology, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway and IFN-I pathway, neuroinflammation, synapses loss, amyloid pathology and tauopathy, the levels of cGAS-STING and IFN-I pathway related protein, gliosis and proinflammatory cytokines, synaptic protein, complement protein, Aβ levels, phosphorylated tau in the brains of the microglial DNase II deficient WT and AD mice were evaluated by immunolabeling, immunoblotting, q-PCR or ELISA. RESULTS We found that the levels of DNase II were significantly decreased in the microglia of 3xTg-AD mice. Microglial DNase II deficiency altered microglial morphology and transcriptional signatures, activated the cGAS-STING and IFN-I pathway, initiated neuroinflammation, led to synapse loss via complement-dependent pathway, increased Aβ levels and tauopathy, and induced cognitive decline. CONCLUSIONS Our study shows the effect of microglial DNase II deficiency and cytoplasmic accumulated dsDNA on neuroinflammation, and reveals the initiatory mechanism of AD pathology, suggesting that DNase II is a potential target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling-Jie Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Yu Liang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ying Sun
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Jie Zhu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yun Niu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Xiao-Yu Du
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Ru Huang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
| | - Rui-Tian Liu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
| |
Collapse
|
7
|
Zhuang J, Du X, Liu K, Hao J, Wang H, An R, Liang X. DNase II Can Efficiently Digest RNA and Needs to Be Redefined as a Nuclease. Cells 2024; 13:1525. [PMID: 39329709 PMCID: PMC11430429 DOI: 10.3390/cells13181525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
DNase II, identified in 1947 and named in 1953, is an acidic DNA endonuclease prevalent across organisms and crucial for normal growth. Despite its expression in nearly all human tissues, as well as its biological significance, DNase II's detailed functions and corresponding mechanisms remain unclear. Although many groups are trying to figure this out, progress is very limited. It is very hard to connect its indispensability with its DNA cleavage activity. In this study, we find that DNase II secreted to saliva can digest RNA in mildly acidic conditions, prompting us to hypothesize that salivary DNase II might digest RNA in the stomach. This finding is consistent with the interesting discovery reported in 1964 that RNA could inhibit DNase II's activity, which has been largely overlooked. This RNA digestion activity is further confirmed by using purified DNase II, showing activity to digest both DNA and RNA effectively. Here, we suggest redesignating DNase II as DNase II (RNase). The biological functions of DNase II are suggested to recycle intracellular RNA or digest external nucleic acids (both RNA and DNA) as nutrients. This discovery may untangle the mystery of DNase II and its significant biofunctions.
Collapse
Affiliation(s)
- Jingyun Zhuang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Xinmei Du
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Kehan Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Jing Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Haoyu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Ran An
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266404, China
| | - Xingguo Liang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266404, China
| |
Collapse
|
8
|
Li LJ, Sun XY, Huang YR, Lu S, Xu YM, Yang J, Xie XX, Zhu J, Niu XY, Wang D, Liang SY, Du XY, Hou SJ, Yu XL, Liu RT. Neuronal double-stranded DNA accumulation induced by DNase II deficiency drives tau phosphorylation and neurodegeneration. Transl Neurodegener 2024; 13:39. [PMID: 39095921 PMCID: PMC11295666 DOI: 10.1186/s40035-024-00427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Deoxyribonuclease 2 (DNase II) plays a key role in clearing cytoplasmic double-stranded DNA (dsDNA). Deficiency of DNase II leads to DNA accumulation in the cytoplasm. Persistent dsDNA in neurons is an early pathological hallmark of senescence and neurodegenerative diseases including Alzheimer's disease (AD). However, it is not clear how DNase II and neuronal cytoplasmic dsDNA influence neuropathogenesis. Tau hyperphosphorylation is a key factor for the pathogenesis of AD. The effect of DNase II and neuronal cytoplasmic dsDNA on neuronal tau hyperphosphorylation remains unclarified. METHODS The levels of neuronal DNase II and dsDNA in WT and Tau-P301S mice of different ages were measured by immunohistochemistry and immunolabeling, and the levels of DNase II in the plasma of AD patients were measured by ELISA. To investigate the impact of DNase II on tauopathy, the levels of phosphorylated tau, phosphokinase, phosphatase, synaptic proteins, gliosis and proinflammatory cytokines in the brains of neuronal DNase II-deficient WT mice, neuronal DNase II-deficient Tau-P301S mice and neuronal DNase II-overexpressing Tau-P301S mice were evaluated by immunolabeling, immunoblotting or ELISA. Cognitive performance was determined using the Morris water maze test, Y-maze test, novel object recognition test and open field test. RESULTS The levels of DNase II were significantly decreased in the brains and the plasma of AD patients. DNase II also decreased age-dependently in the neurons of WT and Tau-P301S mice, along with increased dsDNA accumulation in the cytoplasm. The DNA accumulation induced by neuronal DNase II deficiency drove tau phosphorylation by upregulating cyclin-dependent-like kinase-5 (CDK5) and calcium/calmodulin activated protein kinase II (CaMKII) and downregulating phosphatase protein phosphatase 2A (PP2A). Moreover, DNase II knockdown induced and significantly exacerbated neuron loss, neuroinflammation and cognitive deficits in WT and Tau-P301S mice, respectively, while overexpression of neuronal DNase II exhibited therapeutic benefits. CONCLUSIONS DNase II deficiency and cytoplasmic dsDNA accumulation can initiate tau phosphorylation, suggesting DNase II as a potential therapeutic target for tau-associated disorders.
Collapse
Affiliation(s)
- Ling-Jie Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ying Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ya-Ru Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuai Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Ming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Yang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xi-Xiu Xie
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yun Niu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Dan Wang
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD, Beijing, 100081, China
| | - Shi-Yu Liang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yu Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Jie Hou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Lin Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
9
|
Greitens C, Leroux JC, Burger M. The intracellular visualization of exogenous DNA in fluorescence microscopy. Drug Deliv Transl Res 2024; 14:2242-2261. [PMID: 38526634 PMCID: PMC11208204 DOI: 10.1007/s13346-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
In the development of non-viral gene delivery vectors, it is essential to reliably localize and quantify transfected DNA inside the cell. To track DNA, fluorescence microscopy methods are commonly applied. These mostly rely on fluorescently labeled DNA, DNA binding proteins fused to a fluorescent protein, or fluorescence in situ hybridization (FISH). In addition, co-stainings are often used to determine the colocalization of the DNA in specific cellular compartments, such as the endolysosomes or the nucleus. We provide an overview of these DNA tracking methods, advice on how they should be combined, and indicate which co-stainings or additional methods are required to draw precise conclusions from a DNA tracking experiment. Some emphasis is given to the localization of exogenous DNA inside the nucleus, which is the last step of DNA delivery. We argue that suitable tools which allow for the nuclear detection of faint signals are still missing, hampering the rational development of more efficient non-viral transfection systems.
Collapse
Affiliation(s)
- Christina Greitens
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
10
|
Bhat M, Nambiar A, Edakkandiyil L, Abraham IM, Sen R, Negi M, Manjithaya R. A genetically-encoded fluorescence-based reporter to spatiotemporally investigate mannose-6-phosphate pathway. Mol Biol Cell 2024; 35:mr6. [PMID: 38888935 PMCID: PMC11321044 DOI: 10.1091/mbc.e23-09-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Maintenance of a pool of active lysosomes with acidic pH and degradative hydrolases is crucial for cell health. Abnormalities in lysosomal function are closely linked to diseases, such as lysosomal storage disorders, neurodegeneration, intracellular infections, and cancer among others. Emerging body of research suggests the malfunction of lysosomal hydrolase trafficking pathway to be a common denominator of several disease pathologies. However, available conventional tools to assess lysosomal hydrolase trafficking are insufficient and fail to provide a comprehensive picture about the trafficking flux and location of lysosomal hydrolases. To address some of the shortcomings, we designed a genetically-encoded fluorescent reporter containing a lysosomal hydrolase tandemly tagged with pH sensitive and insensitive fluorescent proteins, which can spatiotemporally trace the trafficking of lysosomal hydrolases. As a proof of principle, we demonstrate that the reporter can detect perturbations in hydrolase trafficking, that are induced by pharmacological manipulations and pathophysiological conditions like intracellular protein aggregates. This reporter can effectively serve as a probe for mapping the mechanistic intricacies of hydrolase trafficking pathway in health and disease and is a utilitarian tool to identify genetic and pharmacological modulators of this pathway, with potential therapeutic implications.
Collapse
Affiliation(s)
- Mallika Bhat
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | | | - Irine Maria Abraham
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Ritoprova Sen
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Mamta Negi
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
- Professor and chair, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| |
Collapse
|
11
|
Yuan M, Peng L, Huang D, Gavin A, Luan F, Tran J, Feng Z, Zhu X, Matteson J, Wilson IA, Nemazee D. Structural and mechanistic insights into disease-associated endolysosomal exonucleases PLD3 and PLD4. Structure 2024; 32:766-779.e7. [PMID: 38537643 PMCID: PMC11162324 DOI: 10.1016/j.str.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024]
Abstract
Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a "link-and-release" two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3-phosphohistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda Gavin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fangkun Luan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jenny Tran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeanne Matteson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Yang K, Jeltema D, Yan N. Innate immune sensing of macromolecule homeostasis. Adv Immunol 2024; 161:17-51. [PMID: 38763701 DOI: 10.1016/bs.ai.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors to recognize molecular patterns initially thought to be unique to microbial invaders, named pathogen-associated molecular patterns. The concept was later further developed to include similar molecular patterns originating from host cells during tissue damage, known as damage-associated molecular patterns. However, recent advances in the mechanism of monogenic inflammatory diseases have highlighted a much more expansive repertoire of cellular functions that are monitored by innate immunity. Here, we summarize several examples in which an innate immune response is triggered when homeostasis of macromolecule in the cell is disrupted in non-infectious or sterile settings. These ever-growing sensing mechanisms expand the repertoire of innate immune recognition, positioning it not only as a key player in host defense but also as a gatekeeper of cellular homeostasis. Therapeutics inspired by these advances to restore cellular homeostasis and correct the immune system could have far-reaching implications.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
13
|
Roske Y, Cappel C, Cremer N, Hoffmann P, Koudelka T, Tholey A, Heinemann U, Daumke O, Damme M. Structural analysis of PLD3 reveals insights into the mechanism of lysosomal 5' exonuclease-mediated nucleic acid degradation. Nucleic Acids Res 2024; 52:370-384. [PMID: 37994783 PMCID: PMC10783504 DOI: 10.1093/nar/gkad1114] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3.
Collapse
Affiliation(s)
- Yvette Roske
- Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Cedric Cappel
- Biochemical Institute, Kiel University, Kiel, Germany
| | - Nils Cremer
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straβe 10, 13125 Berlin, Germany
| | | | - Tomas Koudelka
- Institute of Experimental Medicine, Kiel University, 24188 Kiel, Germany
| | - Andreas Tholey
- Institute of Experimental Medicine, Kiel University, 24188 Kiel, Germany
| | - Udo Heinemann
- Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Oliver Daumke
- Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Markus Damme
- Biochemical Institute, Kiel University, Kiel, Germany
| |
Collapse
|
14
|
Faiad S, Laurent Q, Prinzen AL, Asohan J, Saliba D, Toader V, Sleiman HF. Impact of the Core Chemistry of Self-Assembled Spherical Nucleic Acids on their In Vitro Fate. Angew Chem Int Ed Engl 2023; 62:e202315768. [PMID: 37905978 DOI: 10.1002/anie.202315768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Nucleic acid therapeutics (NATs), such as mRNA, small interfering RNA or antisense oligonucleotides are extremely efficient tools to modulate gene expression and tackle otherwise undruggable diseases. Spherical nucleic acids (SNAs) can efficiently deliver small NATs to cells while protecting their payload from nucleases, and have improved biodistribution and muted immune activation. Self-assembled SNAs have emerged as nanostructures made from a single DNA-polymer conjugate with similar favorable properties as well as small molecule encapsulation. However, because they maintain their structure by non-covalent interactions, they might suffer from disassembly in biologically relevant conditions, especially with regard to their interaction with serum proteins. Here, we report a systematic study of the factors that govern the fate of self-assembled SNAs. Varying the core chemistry and using stimuli-responsive disulfide crosslinking, we show that extracellular stability upon binding with serum proteins is important for recognition by membrane receptors, triggering cellular uptake. At the same time, intracellular dissociation is required for efficient therapeutic release. Disulfide-crosslinked SNAs combine these two properties and result in efficient and non-toxic unaided gene silencing therapeutics. We anticipate these investigations will help the translation of promising self-assembled structures towards in vivo gene silencing applications.
Collapse
Affiliation(s)
- Sinan Faiad
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| | - Quentin Laurent
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| | - Alexander L Prinzen
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| | - Jathavan Asohan
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| | - Daniel Saliba
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| | - Violeta Toader
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St West, H3A 0B8, Montreal, Québec, Canada
| |
Collapse
|
15
|
Elahi R, Hozhabri S, Moradi A, Siahmansouri A, Jahani Maleki A, Esmaeilzadeh A. Targeting the cGAS-STING pathway as an inflammatory crossroad in coronavirus disease 2019 (COVID-19). Immunopharmacol Immunotoxicol 2023; 45:639-649. [PMID: 37335770 DOI: 10.1080/08923973.2023.2215405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/14/2023] [Indexed: 06/21/2023]
Abstract
CONTEXT AND OBJECTIVE The emerging pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has imposed significant mortality and morbidity on the world. An appropriate immune response is necessary to inhibit SARS-CoV-2 spread throughout the body. RESULTS During the early stages of infection, the pathway of stimulators of interferon genes (STING), known as the cGAS-STING pathway, has a significant role in the induction of the antiviral immune response by regulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Interferon regulatory factor 3 (IRF3), two key pathways responsible for proinflammatory cytokines and type I IFN secretion, respectively. DISCUSSION During the late stages of COVID-19, the uncontrolled inflammatory responses, also known as cytokine storm, lead to the progression of the disease and poor prognosis. Hyperactivity of STING, leading to elevated titers of proinflammatory cytokines, including Interleukin-I (IL-1), IL-4, IL-6, IL-18, and tissue necrosis factor-α (TNF-α), is considered one of the primary mechanisms contributing to the cytokine storm in COVID-19. CONCLUSION Exploring the underlying molecular processes involved in dysregulated inflammation can bring up novel anti-COVID-19 therapeutic options. In this article, we aim to discuss the role and current studies targeting the cGAS/STING signaling pathway in both early and late stages of COVID-19 and COVID-19-related complications and the therapeutic potential of STING agonists/antagonists. Furthermore, STING agonists have been discussed as a vaccine adjuvant to induce a potent and persistent immune response.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Salar Hozhabri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amirhosein Moradi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
16
|
Liu J, Zhang S, Jing Y, Zou W. Neutrophil extracellular traps in intracerebral hemorrhage: implications for pathogenesis and therapeutic targets. Metab Brain Dis 2023; 38:2505-2520. [PMID: 37486436 DOI: 10.1007/s11011-023-01268-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Intracerebral hemorrhage is a common neurological disease, and its pathological mechanism is complex. As the first recruited leukocyte subtype after intracerebral hemorrhage, neutrophils play an important role in tissue damage. In the past, it was considered that neutrophils performed their functions through phagocytosis, chemotaxis, and degranulation. In recent years, studies have found that neutrophils also have the function of secreting extracellular traps. Extracellular traps are fibrous structure composed of chromatin and granular proteins, which plays an important role in innate immunity. Studies have shown a large number of neutrophil extracellular traps in hematoma samples, plasma samples, and drainage samples after intracerebral hemorrhage. In this paper, we summarized the related mechanisms of neutrophil external traps and injury after intracerebral hemorrhage. Neutrophil extracellular traps are involved in the process of brain injury after intracerebral hemorrhage. The application of related inhibitors to inhibit the formation of neutrophil external traps or promote their dissolution can effectively alleviate the pathological damage caused by intracerebral hemorrhage.
Collapse
Affiliation(s)
- Jiawei Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shuang Zhang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yunnan Jing
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
17
|
Basu S, Sil A, Jindal AK, Tyagi R, Arafath MY, Vyas S, Rawat A. A young boy with rash, arthritis, and developmental delay: Monogenic lupus due to DNASE2 gene defect. Int J Rheum Dis 2023; 26:2599-2602. [PMID: 37431703 DOI: 10.1111/1756-185x.14826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/17/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
Monogenic causes are increasingly being recognized in patients with lupus, especially in early-onset disease. We herein report a boy with a novel mutation in the DNase 2 (DNASE2) gene presenting with monogenic lupus. A 6-year-old boy with a global developmental delay with microcephaly presented with chronic febrile illness with anemia, rash, polyarthritis, renal involvement, and hepatosplenomegaly. Laboratory investigations revealed positive antinuclear antibody, high anti-dsDNA antibody titers, hypocomplementemia, hypergammaglobulinemia, nephrotic range proteinuria, and diffuse proliferative glomerulonephritis. Magnetic resonance imaging of brain showed altered signal intensity in subcortical white matter in bilateral fronto-parieto-temporal lobes. Targeted next-generation sequencing revealed a novel pathogenic variant in DNASE2. He was treated with oral prednisolone, mycophenolate mofetil, cyclosporine, and hydroxychloroquine and is doing well on follow up. DNASE2 deficiency has been reported as a rare genetic cause of monogenic lupus. DNASE2 deficiency should be suspected in patients with early-onset lupus with polyarthritis, erythematous rash, and neurological involvement.
Collapse
Affiliation(s)
- Suprit Basu
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Archan Sil
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Kumar Jindal
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Tyagi
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mohamed Yaser Arafath
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sameer Vyas
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
18
|
Yuan M, Peng L, Huang D, Gavin A, Luan F, Tran J, Feng Z, Zhu X, Matteson J, Wilson IA, Nemazee D. Structural and mechanistic insights into disease-associated endolysosomal exonucleases PLD3 and PLD4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567917. [PMID: 38045427 PMCID: PMC10690185 DOI: 10.1101/2023.11.20.567917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a 'link-and-release' two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3' phosphistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- These authors contribute equally
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- These authors contribute equally
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- These authors contribute equally
- Present address: Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Amanda Gavin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fangkun Luan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jenny Tran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeanne Matteson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Kanaujia R, Sharma V, Biswal M, Singh S, Ray P, Angrup A. Microbial cell-free DNA detection: Minimally invasive diagnosis of infectious diseases. Indian J Med Microbiol 2023; 46:100433. [PMID: 37945127 DOI: 10.1016/j.ijmmb.2023.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Detection of infectious diseases, especially among immunocompromised and patients on prolonged anti-microbial treatment, remains challenging, limited by conventional techniques with low sensitivity and long-turnaround time. Molecular detection by polymerase chain reaction (PCR) also has limited utility as it requires a targeted approach with prior suspicion of the infecting organism. Advancements in sequencing methodologies, specifically next-generation sequencing (NGS), have presented a promising opportunity to identify pathogens in cases where conventional techniques may be inadequate. However, the direct application of these techniques for diagnosing invasive infections is still limited by the need for invasive sampling, highlighting the pressing need to develop and implement non-invasive or minimally invasive approaches to improve the diagnosis of invasive infections. OBJECTIVES The objectives of this article are to explore the notable features, clinical utility, and constraints associated with the detection of microbial circulating cell-free DNA (mcfDNA) as a minimally invasive diagnostic tool for infectious diseases. CONTENT The mcfDNA detection provides an opportunity to identify micro-organisms in the blood of a patient. It is especially beneficial in immunocompromised patients where invasive sampling is not possible or where repeated cultures are negative. This review will discuss the applications and constraints of detecting mcfDNA for diagnosing infections and the various platforms available for its detection.
Collapse
Affiliation(s)
| | - Vikas Sharma
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Manisha Biswal
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, AIMS, Mohali, India
| | - Pallab Ray
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Archana Angrup
- Department of Medical Microbiology, PGIMER, Chandigarh, India.
| |
Collapse
|
20
|
Hume DA, Teakle N, Keshvari S, Irvine KM. Macrophage deficiency in CSF1R-knockout rat embryos does not compromise placental or embryo development. J Leukoc Biol 2023; 114:421-433. [PMID: 37167456 DOI: 10.1093/jleuko/qiad052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
Macrophages are an abundant cell population in the placenta and developing embryo and appear to be involved in processes of vascularization, morphogenesis, organogenesis, and hematopoiesis. The proliferation, differentiation, and survival are dependent on signals from the macrophage colony-stimulating factor receptor, CSF1R. Aside from the role in macrophages, Csf1r mRNA is highly expressed in placental trophoblasts. To explore the function of macrophages and Csf1r in placental and embryonic development, we analyzed the impact of homozygous Csf1r null mutation (Csf1rko) in the rat. In late gestation, IBA1+ macrophages were abundant in control embryos in all tissues, including the placenta, and greatly reduced in the Csf1rko. CSF1R was also detected in stellate macrophage-like cells and in neurons using anti-CSF1R antibody but was undetectable in trophoblasts. However, the neuronal signal was not abolished in the Csf1rko. CD163 was most abundant in cells forming the center of erythroblastic islands in the liver and was also CSF1R dependent. Despite the substantial reduction in macrophage numbers, we detected no effect of the Csf1rko on development of the placenta or any organs, the relative abundance of vascular elements (CD31 staining), or cell proliferation (Ki67 staining). The loss of CD163+ erythroblastic island macrophages in the liver was not associated with anemia or any reduction in the proliferative activity in the liver, but there was a premature expansion of CD206+ cells, presumptive precursors of liver sinusoidal endothelial cells. We suggest that many functions of macrophages in development of the placenta and embryo can be provided by other cell types in their absence.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woollongabba, Brisbane, Qld 4102, Australia
| | - Ngari Teakle
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woollongabba, Brisbane, Qld 4102, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woollongabba, Brisbane, Qld 4102, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woollongabba, Brisbane, Qld 4102, Australia
| |
Collapse
|
21
|
Kobayashi M, Wakaguri H, Shimizu M, Higasa K, Matsuda F, Honjo T. Ago2 and a miRNA reduce Topoisomerase 1 for enhancing DNA cleavage in antibody diversification by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2023; 120:e2216918120. [PMID: 37094168 PMCID: PMC10161001 DOI: 10.1073/pnas.2216918120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is the essential enzyme for imprinting immunological memory through class switch recombination (CSR) and somatic hypermutation (SHM) of the immunoglobulin (Ig) gene. AID-dependent reduction of Topoisomerase 1 (Top1) promotes DNA cleavage that occurs upon Ig gene diversification, whereas the mechanism behind AID-induced Top1 reduction remains unclear. Here, we clarified the contribution of the microRNA-Ago2 complex in AID-dependent Top1 decrease. Ago2 binds to Top1 3'UTR with two regions of AID-dependent Ago2-binding sites (5'- and 3'dABs). Top1 3'UTR knockout (3'UTRKO) in B lymphoma cells leads to decreases in DNA break efficiency in the IgH gene accompanied by a reduction in CSR and SHM frequencies. Furthermore, AID-dependent Top1 protein reduction and Ago2-binding to Top1 mRNA are down-regulated in 3'UTRKO cells. Top1 mRNA in the highly translated fractions of the sucrose gradient is decreased in an AID-dependent and Top1 3'UTR-mediated manner, resulting in a decrease in Top1 protein synthesis. Both AID and Ago2 localize in the mRNA-binding protein fractions and they interact with each other. Furthermore, we found some candidate miRNAs which possibly bind to 5'- and 3'dAB in Top1 mRNA. Among them, miR-92a-3p knockdown induces the phenotypes of 3'UTRKO cells to wild-type cells whereas it does not impact on 3'UTRKO cells. Taken together, the Ago2-miR-92a-3p complex will be recruited to Top1 3'UTR in an AID-dependent manner and posttranscriptionally reduces Top1 protein synthesis. These consequences cause the increase in a non-B-DNA structure, enhance DNA cleavage by Top1 in the Ig gene and contribute to immunological memory formation.
Collapse
Affiliation(s)
- Maki Kobayashi
- Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Hiroyuki Wakaguri
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Masakazu Shimizu
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Koichiro Higasa
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Tasuku Honjo
- Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|
22
|
Molecular Mechanisms of Neutrophil Extracellular Trap (NETs) Degradation. Int J Mol Sci 2023; 24:ijms24054896. [PMID: 36902325 PMCID: PMC10002918 DOI: 10.3390/ijms24054896] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Although many studies have been exploring the mechanisms driving NETs formation, much less attention has been paid to the degradation and elimination of these structures. The NETs clearance and the effective removal of extracellular DNA, enzymatic proteins (neutrophil elastase, proteinase 3, myeloperoxidase) or histones are necessary to maintain tissue homeostasis, to prevent inflammation and to avoid the presentation of self-antigens. The persistence and overabundance of DNA fibers in the circulation and tissues may have dramatic consequences for a host leading to the development of various systemic and local damage. NETs are cleaved by a concerted action of extracellular and secreted deoxyribonucleases (DNases) followed by intracellular degradation by macrophages. NETs accumulation depends on the ability of DNase I and DNAse II to hydrolyze DNA. Furthermore, the macrophages actively engulf NETs and this event is facilitated by the preprocessing of NETs by DNase I. The purpose of this review is to present and discuss the current knowledge about the mechanisms of NETs degradation and its role in the pathogenesis of thrombosis, autoimmune diseases, cancer and severe infections, as well as to discuss the possibilities for potential therapeutic interventions. Several anti-NETs approaches had therapeutic effects in animal models of cancer and autoimmune diseases; nevertheless, the development of new drugs for patients needs further study for an effective development of clinical compounds that are able to target NETs.
Collapse
|
23
|
Zhao Y, Simon M, Seluanov A, Gorbunova V. DNA damage and repair in age-related inflammation. Nat Rev Immunol 2023; 23:75-89. [PMID: 35831609 PMCID: PMC10106081 DOI: 10.1038/s41577-022-00751-y] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Genomic instability is an important driver of ageing. The accumulation of DNA damage is believed to contribute to ageing by inducing cell death, senescence and tissue dysfunction. However, emerging evidence shows that inflammation is another major consequence of DNA damage. Inflammation is a hallmark of ageing and the driver of multiple age-related diseases. Here, we review the evidence linking DNA damage, inflammation and ageing, highlighting how premature ageing syndromes are associated with inflammation. We discuss the mechanisms by which DNA damage induces inflammation, such as through activation of the cGAS-STING axis and NF-κB activation by ATM. The triggers for activation of these signalling cascades are the age-related accumulation of DNA damage, activation of transposons, cellular senescence and the accumulation of persistent R-loops. We also discuss how epigenetic changes triggered by DNA damage can lead to inflammation and ageing via redistribution of heterochromatin factors. Finally, we discuss potential interventions against age-related inflammation.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Matthew Simon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
24
|
Song X, Song X, Lai W, Wang H. Hyperactive DNA Cutting for Unbiased UHPLC-MS/MS Quantification of Epigenetic DNA Marks by Engineering DNase I Mutants. Anal Chem 2022; 94:17670-17676. [PMID: 36490323 DOI: 10.1021/acs.analchem.2c04485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epigenetic DNA modifications, such as 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine, are associated with a variety of diseases and potential biomarkers for cancer diagnosis and therapy. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays are considered to be the gold standard for qualitative and quantitative detection of DNA modifications. DNA digestion for converting long DNA polymer into 2'-deoxynucleosides is an important preprocessing step to achieve sensitive and accurate LC-MS/MS quantification. Here, we showed that, as stimulated by divalent metal ions, Mg2+ and Mn2+, the engineered human DNase I Q9R:E13R:N74K mutant can efficiently digest DNA in the presence of monovalent metal ions at a high concentration (e.g., 1 M NaCl), showing hyperactivity on DNA cutting. We also found that the engineered DNase I mutants display exceptional DNA-cutting activity over a wider pH range (5.5-9.5). Due to their hyperactivity and high salt tolerance, the engineered DNase I mutants cut DNA 5mC and dC efficiently. Benefitting from this DNA-cutting hyperactivity, we demonstrated an LC-MS/MS assay for unbiased and accurate quantification of DNA 5mC.
Collapse
Affiliation(s)
- Xingrui Song
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinyue Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Aguilera RJ. A virus changed my life. Mol Biol Cell 2022; 33:ae2. [PMID: 36441842 PMCID: PMC9727801 DOI: 10.1091/mbc.e22-08-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The E. E. Just Award commemorates the great African-American cell biologist Dr. Ernest Everett Just, who was a successful pioneer in an era of systemic exclusion of minorities in science and academia. Receiving this award is not only an honor but a recognition of my long-standing commitment to helping Persons Excluded due to Ethnicity or Race (PEERS) to achieve success in biomedical careers. As a proud member of this group, I have devoted most of my career to training underrepresented undergraduate and graduate students to pursue scientific careers. My early work as a molecular immunologist focused on the search for enzymes involved in antigen-receptor gene recombination, as well as the characterization of nuclear factors involved in recombination and the transcriptional regulation of the murine recombination-activating genes. Over the past two decades, my research has focused on discovering and evaluating novel anticancer agents that can be used to treat various cancer types.
Collapse
Affiliation(s)
- Renato J. Aguilera
- Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519,*Address correspondence to: Renato J. Aguilera ()
| |
Collapse
|
26
|
Cui Z, Chen ZH, Zhang QH, Gribova V, Filaretov VF, Huang DS. RMSCNN: A Random Multi-Scale Convolutional Neural Network for Marine Microbial Bacteriocins Identification. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3663-3672. [PMID: 34699364 DOI: 10.1109/tcbb.2021.3122183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The abuse of traditional antibiotics has led to an increase in the resistance of bacteria and viruses. Similar to the function of antibacterial peptides, bacteriocins are more common as a kind of peptides produced by bacteria that have bactericidal or bacterial effects. More importantly, the marine environment is one of the most abundant resources for extracting marine microbial bacteriocins (MMBs). Identifying bacteriocins from marine microorganisms is a common goal for the development of new drugs. Effective use of MMBs will greatly alleviate the current antibiotic abuse problem. In this work, deep learning is used to identify meaningful MMBs. We propose a random multi-scale convolutional neural network method. In the scale setting, we set a random model to update the scale value randomly. The scale selection method can reduce the contingency caused by artificial setting under certain conditions, thereby making the method more extensive. The results show that the classification performance of the proposed method is better than the state-of-the-art classification methods. In addition, some potential MMBs are predicted, and some different sequence analyses are performed on these candidates. It is worth mentioning that after sequence analysis, the HNH endonucleases of different marine bacteria are considered as potential bacteriocins.
Collapse
|
27
|
Anindya R. Cytoplasmic DNA in cancer cells: Several pathways that potentially limit DNase2 and TREX1 activities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119278. [PMID: 35489653 DOI: 10.1016/j.bbamcr.2022.119278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The presence of DNA in the cytoplasm of tumor cells induces the dendritic cell to produce type-I IFNs. Classically, the presence of foreign DNA in host cells' cytoplasm during viral infection elicits cGAS-STING mediated type-I IFN signaling and cytokine production. It is likely that cytosolic DNA leads to senescence and immune surveillance in transformed cells during the early stages of carcinogenesis. However, multiple factors, such as loss of cell-cycle checkpoint, mitochondrial damage and chromosomal instability, can lead to persistent accumulation of DNA in the cytoplasm of metastatic tumor cells. That is why aberrant activation of the type I IFN pathway is frequently associated with highly aggressive tumors. Intriguingly, two powerful intracellular deoxyribonucleases, DNase2 and TREX1, can target the cytoplasmic DNA for degradation. Yet the tumor cells consistently accumulate cytoplasmic DNA. This review highlights recent work connecting the lack of DNase2 and TREX1 function to innate immune signaling. It also summarizes the possible mechanisms that limit the activity of DNase2 and TREX1 in tumor cells and contributes to chronic inflammation.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India.
| |
Collapse
|
28
|
Liao C, Mao F, Qian M, Wang X. Pathogen-Derived Nucleases: An Effective Weapon for Escaping Extracellular Traps. Front Immunol 2022; 13:899890. [PMID: 35865526 PMCID: PMC9294136 DOI: 10.3389/fimmu.2022.899890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Since the 2004 publication of the first study describing extracellular traps (ETs) from human neutrophils, several reports have shown the presence of ETs in a variety of different animals and plants. ETs perform two important functions of immobilizing and killing invading microbes and are considered a novel part of the phagocytosis-independent, innate immune extracellular defense system. However, several pathogens can release nucleases that degrade the DNA backbone of ETs, reducing their effectiveness and resulting in increased pathogenicity. In this review, we examined the relevant literature and summarized the results on bacterial and fungal pathogens and parasites that produce nucleases to evade the ET-mediated host antimicrobial mechanism.
Collapse
Affiliation(s)
- Chengshui Liao
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Chengshui Liao, ; Xiaoli Wang,
| | - Fuchao Mao
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Vocational and Technical College, Luoyang, China
| | - Man Qian
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Chengshui Liao, ; Xiaoli Wang,
| |
Collapse
|
29
|
Mathur D, Rogers KE, Díaz SA, Muroski ME, Klein WP, Nag OK, Lee K, Field LD, Delehanty JB, Medintz IL. Determining the Cytosolic Stability of Small DNA Nanostructures In Cellula. NANO LETTERS 2022; 22:5037-5045. [PMID: 35580267 PMCID: PMC9233082 DOI: 10.1021/acs.nanolett.2c00917] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
DNA nanostructures have proven potential in biomedicine. However, their intracellular interactions─especially cytosolic stability─remain mostly unknown and attempts to discern this are confounded by the complexities of endocytic uptake and entrapment. Here, we bypass the endocytic uptake and evaluate the DNA structural stability directly in live cells. Commonly used DNA structures─crosshairs and a tetrahedron─were labeled with a multistep Förster resonance energy transfer dye cascade and microinjected into the cytosol of transformed and primary cells. Energy transfer loss, as monitored by fluorescence microscopy, reported the structure's direct time-resolved breakdown in cellula. The results showed rapid degradation of the DNA crosshair within 20 min, while the tetrahedron remained consistently intact for at least 1 h postinjection. Nuclease assays in conjunction with a current understanding of the tetrahedron's torsional rigidity confirmed its higher stability. Such studies can inform design parameters for future DNA nanostructures where programmable degradation rates may be required.
Collapse
Affiliation(s)
- Divita Mathur
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Katherine E Rogers
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Megan E Muroski
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- American Society of Engineering Education, Washington, DC 20036, United States
| | - William P Klein
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- National Research Council, Washington, DC 20001, United States
| | - Okhil K Nag
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Kwahun Lee
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- American Society of Engineering Education, Washington, DC 20036, United States
| | - Lauren D Field
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- National Research Council, Washington, DC 20001, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| |
Collapse
|
30
|
Mori G, Delfino D, Pibiri P, Rivetti C, Percudani R. Origin and significance of the human DNase repertoire. Sci Rep 2022; 12:10364. [PMID: 35725583 PMCID: PMC9208542 DOI: 10.1038/s41598-022-14133-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The human genome contains four DNase1 and two DNase2 genes. The origin and functional specialization of this repertoire are not fully understood. Here we use genomics and transcriptomics data to infer the evolutionary history of DNases and investigate their biological significance. Both DNase1 and DNase2 families have expanded in vertebrates since ~ 650 million years ago before the divergence of jawless and jawed vertebrates. DNase1, DNase1L1, and DNase1L3 co-existed in jawless fish, whereas DNase1L2 originated in amniotes by tandem duplication of DNase1. Among the non-human DNases, DNase1L4 and newly identified DNase1L5 derived from early duplications that were lost in terrestrial vertebrates. The ancestral gene of the DNase2 family, DNase2b, has been conserved in synteny with the Uox gene across 700 million years of animal evolution,while DNase2 originated in jawless fish. DNase1L1 acquired a GPI-anchor for plasma membrane attachment in bony fishes, and DNase1L3 acquired a C-terminal basic peptide for the degradation of microparticle DNA in jawed vertebrates. The appearance of DNase1L2, with a distinct low pH optimum and skin localization, is among the amniote adaptations to life on land. The expansion of the DNase repertoire in vertebrates meets the diversified demand for DNA debris removal in complex multicellular organisms.
Collapse
Affiliation(s)
- Giulia Mori
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Danila Delfino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Paola Pibiri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Claudio Rivetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| |
Collapse
|
31
|
Aslan E, Arslanyolu M. Discovery of deoxyribonuclease II-like proteins in bacteria. Mol Phylogenet Evol 2022; 174:107554. [PMID: 35714926 DOI: 10.1016/j.ympev.2022.107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022]
Abstract
Deoxyribonuclease II (DNase II) is one of the earliest enzymes discovered in the history of biochemistry. Its role in apoptosis and development has been documented with great detail in eukaryotes. Prior in silico analyses showed its complete absence in bacterial genomes, with the exception of single bacterial genus: Burkholderia. It is therefore considered to be a eukaryotic enzyme. Here we show that the presence of DNase II is not limited to Burkholderia, as we find over one hundred DNase II-like sequences spanning 90 bacteria species belonging to 54 different genera and seven phyla. The majority of the significant hits (85%) come from Bacteroidetes and Proteobacteria phyla. Sequence analyses reveal that bacterial DNase II-like proteins possess a signature catalytic motif of eukaryotic DNase II. In phylogenetic analyses, we find that bacterial DNase II-like proteins are divided into two distinct clades. Our structural analyses reveal high levels of similarity between experimentally determined crystal structures of recombinant Burkholderia thailandensis DNase II and candidate bacterial DNase II-like proteins. We also biochemically show that Chromobacterium violaceum cell lysate possesses acidic DNase II-like activities. Collectively, our results indicate that DNase II has deeper evolutionary roots than previously thought. We argue that either some prokaryotic lineages have undergone losses of DNase II genes, resulting in rare conservation, or some lineages have acquired DNase II genes from eukaryotes through lateral gene transfer. We also discuss the possible involvement of DNase II as a part of an anti-phage defense system in bacteria.
Collapse
Affiliation(s)
- Erhan Aslan
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Iki Eylul Campus, 26555 Eskisehir, Turkey.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunus Emre Campus, 26470 Eskisehir, Turkey
| |
Collapse
|
32
|
Li X, Omonova Tuychi Qizi C, Mohamed Khamis A, Zhang C, Su Z. Nanotechnology for Enhanced Cytoplasmic and Organelle Delivery of Bioactive Molecules to Immune Cells. Pharm Res 2022; 39:1065-1083. [PMID: 35661086 DOI: 10.1007/s11095-022-03284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Immune cells stand as a critical component of the immune system to maintain the internal environment homeostasis. The dysfunction of immune cells can result in various life-threatening diseases, including refractory infection, diabetes, cardiovascular disease, and cancer. Therefore, strategies to standardize or even enhance the function of immune cells are critical. Recently, nanotechnology has been highly researched and extensively applied for enhancing the cytoplasmic delivery of bioactive molecules to immune cells, providing efficient approaches to correct in vivo and in vitro dysfunction of immune cells. This review focuses on the technologies and challenges involved in improving endo-lysosomal escape, cytoplasmic release and organelle targeted delivery of different bioactive molecules in immune cells. Furthermore, it will elaborate on the broader vision of applying nanotechnology for treating immune cell-related diseases and constructing immune therapies and cytopharmaceuticals as potential treatments for diseases.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Charos Omonova Tuychi Qizi
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Amari Mohamed Khamis
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhigui Su
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
33
|
Valenzuela A, Tardiveau C, Ayuso M, Buyssens L, Bars C, Van Ginneken C, Fant P, Leconte I, Braendli-Baiocco A, Parrott N, Schmitt G, Tessier Y, Barrow P, Van Cruchten S. Safety Testing of an Antisense Oligonucleotide Intended for Pediatric Indications in the Juvenile Göttingen Minipig, including an Evaluation of the Ontogeny of Key Nucleases. Pharmaceutics 2021; 13:1442. [PMID: 34575518 PMCID: PMC8470776 DOI: 10.3390/pharmaceutics13091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
The adult Göttingen Minipig is an acknowledged model for safety assessment of antisense oligonucleotide (ASO) drugs developed for adult indications. To assess whether the juvenile Göttingen Minipig is also a suitable nonclinical model for pediatric safety assessment of ASOs, we performed an 8-week repeat-dose toxicity study in different age groups of minipigs ranging from 1 to 50 days of age. The animals received a weekly dose of a phosphorothioated locked-nucleic-acid-based ASO that was assessed previously for toxicity in adult minipigs. The endpoints included toxicokinetic parameters, in-life monitoring, clinical pathology, and histopathology. Additionally, the ontogeny of key nucleases involved in ASO metabolism and pharmacologic activity was investigated using quantitative polymerase chain reaction and nuclease activity assays. Similar clinical chemistry and toxicity findings were observed; however, differences in plasma and tissue exposures as well as pharmacologic activity were seen in the juvenile minipigs when compared with the adult data. The ontogeny study revealed a differential nuclease expression and activity, which could affect the metabolic pathway and pharmacologic effect of ASOs in different tissues and age groups. These data indicate that the juvenile Göttingen Minipig is a promising nonclinical model for safety assessment of ASOs intended to treat disease in the human pediatric population.
Collapse
Affiliation(s)
- Allan Valenzuela
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (A.V.); (M.A.); (L.B.); (C.B.); (C.V.G.)
| | - Claire Tardiveau
- Charles River Laboratories France Safety Assessment SAS, 69210 Saint-Germain-Nuelles, France; (C.T.); (P.F.); (I.L.)
| | - Miriam Ayuso
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (A.V.); (M.A.); (L.B.); (C.B.); (C.V.G.)
| | - Laura Buyssens
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (A.V.); (M.A.); (L.B.); (C.B.); (C.V.G.)
| | - Chloe Bars
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (A.V.); (M.A.); (L.B.); (C.B.); (C.V.G.)
| | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (A.V.); (M.A.); (L.B.); (C.B.); (C.V.G.)
| | - Pierluigi Fant
- Charles River Laboratories France Safety Assessment SAS, 69210 Saint-Germain-Nuelles, France; (C.T.); (P.F.); (I.L.)
| | - Isabelle Leconte
- Charles River Laboratories France Safety Assessment SAS, 69210 Saint-Germain-Nuelles, France; (C.T.); (P.F.); (I.L.)
| | - Annamaria Braendli-Baiocco
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La-Roche, Ltd., 4070 Basel, Switzerland; (A.B.-B.); (N.P.); (G.S.); (Y.T.); (P.B.)
| | - Neil Parrott
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La-Roche, Ltd., 4070 Basel, Switzerland; (A.B.-B.); (N.P.); (G.S.); (Y.T.); (P.B.)
| | - Georg Schmitt
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La-Roche, Ltd., 4070 Basel, Switzerland; (A.B.-B.); (N.P.); (G.S.); (Y.T.); (P.B.)
| | - Yann Tessier
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La-Roche, Ltd., 4070 Basel, Switzerland; (A.B.-B.); (N.P.); (G.S.); (Y.T.); (P.B.)
| | - Paul Barrow
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La-Roche, Ltd., 4070 Basel, Switzerland; (A.B.-B.); (N.P.); (G.S.); (Y.T.); (P.B.)
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (A.V.); (M.A.); (L.B.); (C.B.); (C.V.G.)
| |
Collapse
|
34
|
Abdo SE, Gewaily MS, Abo-Al-Ela HG, Almeer R, Soliman AA, Elkomy AH, Dawood MAO. Vitamin C rescues inflammation, immunosuppression, and histopathological alterations induced by chlorpyrifos in Nile tilapia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28750-28763. [PMID: 33548043 DOI: 10.1007/s11356-021-12711-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Chlorpyrifos (CPF) is an extensive environmental contaminant and disrupts the physiological status of living organisms. CPF is found to hinder the health of aquatic organisms and ecological function in aquatic systems. The current study aimed at evaluating the protective effects of vitamin C (VC) on the immune response, hematological parameters, and histopathological alterations in Nile tilapia exposed to CPF. Nile tilapia were exposed to waterborne CPF (15 μg/L) for 30 days. Fish were divided into control group: received basal diet; CPF group: received basal diet and exposed to waterborne CPF; VC group: received basal diet plus 0.8 mg VC/kg; and CPF/VC group: received basal diet plus 0.8 mg VC/kg and exposed to waterborne CPF. Blood samples were taken after 15 days and 30 days of the treatment. Liver, gills, and intestine tissues were collected on the 30th day of treatment. CPF showed a deleterious effect on fish's growth performance; it decreased the weight gain by 6%, while VC increased it by 17-23% compared to the control group. CPF group recorded the lowest survival rate (83%), while VC achieved survivability of 96.7% and 93.3% in VC and CPF/VC groups, respectively. The blood picture revealed moderate changes in the CPF group, where the marked alteration was in the hemoglobin concentration and white blood cells. CPF disrupted the hepatic and renal function. Serum lysozyme activity, phagocytic activity, and phagocytic index displayed a dramatic decline in the CPF group but enhanced in VC and CPF/VC groups. An upregulation was observed in antioxidant genes (catalase and glutathione peroxidase), heat shock protein 70, caspase-3, and the cytokines interleukin 1β, interleukin 8, and interferon-gamma in the CPF group. Simultaneously, moderate or normal levels were shown in the VC and CPF/VC groups. CPF altered the histoarchitecture of gills, intestine, and hepatopancreas with apparent degenerative changes possibly resulted from the oxidative stress. At the same time, VC retained the normal structure of the studied tissues. This study raises concerns about the safety of CPF and its impact on the aquatic environment. VC has a high potential to restore the normal physiology of fish exposed to CPF.
Collapse
Affiliation(s)
- Safaa E Abdo
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mahmoud S Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, Egypt
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ali A Soliman
- Fish Nutrition Laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Azza H Elkomy
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
35
|
Matsui H, Ito J, Matsui N, Uechi T, Onodera O, Kakita A. Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson's disease. Nat Commun 2021; 12:3101. [PMID: 34035300 PMCID: PMC8149644 DOI: 10.1038/s41467-021-23452-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/28/2021] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunction and lysosomal dysfunction have been implicated in Parkinson's disease (PD), but the links between these dysfunctions in PD pathogenesis are still largely unknown. Here we report that cytosolic dsDNA of mitochondrial origin escaping from lysosomal degradation was shown to induce cytotoxicity in cultured cells and PD phenotypes in vivo. The depletion of PINK1, GBA and/or ATP13A2 causes increases in cytosolic dsDNA of mitochondrial origin and induces type I interferon (IFN) responses and cell death in cultured cell lines. These phenotypes are rescued by the overexpression of DNase II, a lysosomal DNase that degrades discarded mitochondrial DNA, or the depletion of IFI16, which acts as a sensor for cytosolic dsDNA of mitochondrial origin. Reducing the abundance of cytosolic dsDNA by overexpressing human DNase II ameliorates movement disorders and dopaminergic cell loss in gba mutant PD model zebrafish. Furthermore, IFI16 and cytosolic dsDNA puncta of mitochondrial origin accumulate in the brain of patients with PD. These results support a common causative role for the cytosolic leakage of mitochondrial DNA in PD pathogenesis.
Collapse
Affiliation(s)
- Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan. .,Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
| | - Junko Ito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Noriko Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
36
|
Yu L, Feng Y, Zheng S, Li J, Liu R, Jin D. Cloning and characterization of a novel DNase gene from Trichogramma pretiosum. Protein Expr Purif 2021; 185:105896. [PMID: 33945845 DOI: 10.1016/j.pep.2021.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
DNase is a powerful tool for a series of molecular biology applications. Developing a strategy for large-scale production of DNase with high purity and activity is critical for scientific research. In this study, a previously uncharacterized gene with nuclease activity was found in Trichogramma pretiosum genome. Pichia pastoris GS115 was preferred as the host to overcome the issues related to prokaryotic expression. Under the optimal conditions, the activity of T. pretiosum DNase (Tp-DNase) reached 1940 U/mL of culture supernatant in fed-batch fermentation. Using ion-exchange chromatography and adsorption chromatography, Tp-DNase was produced with a purity of >99% and molecular weight of 45 kDa. In vitro DNA degradation experiments showed that Tp-DNase could effectively degrade dsDNA, and its activity was slightly higher than that of bovine pancreas DNase I under the same conditions. Moreover, Tp-DNase can be used to eliminate nucleic acid contamination and improve the accuracy of nucleic acid detection.
Collapse
Affiliation(s)
- Lijuan Yu
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Yi Feng
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Suxiang Zheng
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Jie Li
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Ruocen Liu
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Dayong Jin
- School of Life Sciences, Nantong University, Nantong, 226019, China.
| |
Collapse
|
37
|
Tarakanchikova YV, Linnik DS, Mashel T, Muslimov AR, Pavlov S, Lepik KV, Zyuzin MV, Sukhorukov GB, Timin AS. Boosting transfection efficiency: A systematic study using layer-by-layer based gene delivery platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112161. [PMID: 34082966 DOI: 10.1016/j.msec.2021.112161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Nowadays, the nanoparticle-based delivery approach is becoming more and more attractive in gene therapy due to its low toxicity and immunogenicity, sufficient packaging capacity, targeting, and straightforward, low-cost, large-scale good manufacturing practice (GMP) production. A number of research works focusing on multilayer structures have explored different factors and parameters that can affect the delivery efficiency of pDNA. However, there are no systematic studies on the performance of these structures for enhanced gene delivery regarding the gene loading methods, the use of additional organic components and cell/particle incubation conditions. Here, we conducted a detailed analysis of different parameters such as (i) strategy for loading pDNA into carriers, (ii) incorporating both pDNA and organic additives within one carrier and (iii) variation of cell/particle incubation conditions, to evaluate their influence on the efficiency of pDNA delivery with multilayer structures consisting of inorganic cores and polymer layers. Our results reveal that an appropriate combination of all these parameters leads to the development of optimized protocols for high transfection efficiency, compared to the non-optimized process (> 70% vs. < 7%), and shows a good safety profile. In conclusion, we provide the proof-of-principle that these multilayer structures with the developed parameters are a promising non-viral platform for an efficient delivery of nucleic acids.
Collapse
Affiliation(s)
- Yana V Tarakanchikova
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation; Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
| | - Dmitrii S Linnik
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation
| | - Tatiana Mashel
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation; Department of Applied Optics, ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russian Federation
| | - Albert R Muslimov
- Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
| | - Sergey Pavlov
- Ioffe Institute, Politekhnicheskaya Ulitsa, 26, 194021 St. Petersburg, Russian Federation
| | - Kirill V Lepik
- R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation, Pavlov University, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation
| | - Mikhail V Zyuzin
- Department of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russian Federation
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russian Federation; School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom.
| | - Alexander S Timin
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation; National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russian Federation.
| |
Collapse
|
38
|
Merchut-Maya JM, Maya-Mendoza A. The Contribution of Lysosomes to DNA Replication. Cells 2021; 10:cells10051068. [PMID: 33946407 PMCID: PMC8147142 DOI: 10.3390/cells10051068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Lysosomes, acidic, membrane-bound organelles, are not only the core of the cellular recycling machinery, but they also serve as signaling hubs regulating various metabolic pathways. Lysosomes maintain energy homeostasis and provide pivotal substrates for anabolic processes, such as DNA replication. Every time the cell divides, its genome needs to be correctly duplicated; therefore, DNA replication requires rigorous regulation. Challenges that negatively affect DNA synthesis, such as nucleotide imbalance, result in replication stress with severe consequences for genome integrity. The lysosomal complex mTORC1 is directly involved in the synthesis of purines and pyrimidines to support DNA replication. Numerous drugs have been shown to target lysosomal function, opening an attractive avenue for new treatment strategies against various pathologies, including cancer. In this review, we focus on the interplay between lysosomal function and DNA replication through nucleic acid degradation and nucleotide biosynthesis and how these could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Joanna Maria Merchut-Maya
- DNA Replication and Cancer Group, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark;
- Genome Integrity, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Apolinar Maya-Mendoza
- DNA Replication and Cancer Group, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark;
- Correspondence: ; Tel.: +45-35-25-73-10
| |
Collapse
|
39
|
On-site processing of single chromosomal DNA molecules using optically driven microtools on a microfluidic workbench. Sci Rep 2021; 11:7961. [PMID: 33846479 PMCID: PMC8042024 DOI: 10.1038/s41598-021-87238-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022] Open
Abstract
We developed optically driven microtools for processing single biomolecules using a microfluidic workbench composed of a microfluidic platform that functions under an optical microscope. The optically driven microtools have enzymes immobilized on their surfaces, which catalyze chemical reactions for molecular processing in a confined space. Optical manipulation of the microtools enables them to be integrated with a microfluidic device for controlling the position, orientation, shape of the target sample. Here, we describe the immobilization of enzymes on the surface of microtools, the microfluidics workbench, including its microtool storage and sample positioning functions, and the use of this system for on-site cutting of single chromosomal DNA molecules. We fabricated microtools by UV lithography with SU-8 and selected ozone treatments for immobilizing enzymes. The microfluidic workbench has tool-stock chambers for tool storage and micropillars to trap and extend single chromosomal DNA molecules. The DNA cutting enzymes DNaseI and DNaseII were immobilized on microtools that were manipulated using optical tweezers. The DNaseI tool shows reliable cutting for on-site processing. This pinpoint processing provides an approach for analyzing chromosomal DNA at the single-molecule level. The flexibility of the microtool design allows for processing of various samples, including biomolecules and single cells.
Collapse
|
40
|
Picca A, Calvani R, Coelho-Junior HJ, Marzetti E. Cell Death and Inflammation: The Role of Mitochondria in Health and Disease. Cells 2021; 10:cells10030537. [PMID: 33802550 PMCID: PMC7998762 DOI: 10.3390/cells10030537] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria serve as a hub for a multitude of vital cellular processes. To ensure an efficient deployment of mitochondrial tasks, organelle homeostasis needs to be preserved. Mitochondrial quality control (MQC) mechanisms (i.e., mitochondrial dynamics, biogenesis, proteostasis, and autophagy) are in place to safeguard organelle integrity and functionality. Defective MQC has been reported in several conditions characterized by chronic low-grade inflammation. In this context, the displacement of mitochondrial components, including mitochondrial DNA (mtDNA), into the extracellular compartment is a possible factor eliciting an innate immune response. The presence of bacterial-like CpG islands in mtDNA makes this molecule recognized as a damaged-associated molecular pattern by the innate immune system. Following cell death-triggering stressors, mtDNA can be released from the cell and ignite inflammation via several pathways. Crosstalk between autophagy and apoptosis has emerged as a pivotal factor for the regulation of mtDNA release, cell’s fate, and inflammation. The repression of mtDNA-mediated interferon production, a powerful driver of immunological cell death, is also regulated by autophagy–apoptosis crosstalk. Interferon production during mtDNA-mediated inflammation may be exploited for the elimination of dying cells and their conversion into elements driving anti-tumor immunity.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, 17165 Stockholm, Sweden
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, 17165 Stockholm, Sweden
- Correspondence: ; Tel.: +39-(06)-3015-5559; Fax: +39-(06)-3051-911
| | - Hélio José Coelho-Junior
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, 00168 Rome, Italy;
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.)
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, 00168 Rome, Italy;
| |
Collapse
|
41
|
Efficient Gene Suppression by DNA/DNA Double-Stranded Oligonucleotide In Vivo. Mol Ther 2021; 29:838-847. [PMID: 33290725 PMCID: PMC7854292 DOI: 10.1016/j.ymthe.2020.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
We recently reported the antisense properties of a DNA/RNA heteroduplex oligonucleotide consisting of a phosphorothioate DNA-gapmer antisense oligonucleotide (ASO) strand and its complementary phosphodiester RNA/phosphorothioate 2′-O-methyl RNA strand. When α-tocopherol was conjugated with the complementary strand, the heteroduplex oligonucleotide silenced the target RNA more efficiently in vivo than did the parent single-stranded ASO. In this study, we designed a new type of the heteroduplex oligonucleotide, in which the RNA portion of the complementary strand was replaced with phosphodiester DNA, yielding an ASO/DNA double-stranded structure. The ASO/DNA heteroduplex oligonucleotide showed similar activity and liver accumulation as did the original ASO/RNA design. Structure-activity relationship studies of the complementary DNA showed that optimal increases in the potency and the accumulation were seen when the flanks of the phosphodiester DNA complement were protected using 2′-O-methyl RNA and phosphorothioate modifications. Furthermore, evaluation of the degradation kinetics of the complementary strands revealed that the DNA-complementary strand as well as the RNA strand were completely cleaved in vivo. Our results expand the repertoire of chemical modifications that can be used with the heteroduplex oligonucleotide technology, providing greater design flexibility for future therapeutic applications.
Collapse
|
42
|
Cappel C, Gonzalez AC, Damme M. Quantification and characterization of the 5' exonuclease activity of the lysosomal nuclease PLD3 by a novel cell-based assay. J Biol Chem 2020; 296:100152. [PMID: 33288674 PMCID: PMC7857491 DOI: 10.1074/jbc.ra120.015867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 01/09/2023] Open
Abstract
Phospholipase D3 (PLD3) and phospholipase D4 (PLD4), the most recently described lysosomal nucleases, are associated with Alzheimer’s disease, spinocerebellar ataxia, and systemic lupus erythematosus. They exhibit 5′ exonuclease activity on single-stranded DNA, hydrolyzing it at the acidic pH associated with the lysosome. However, their full cellular function is inadequately understood. To examine these enzymes, we developed a robust and automatable cell-based assay based on fluorophore- and fluorescence-quencher-coupled oligonucleotides for the quantitative determination of acidic 5′ exonuclease activity. We validated the assay under knockout and PLD-overexpression conditions and then applied it to characterize PLD3 and PLD4 biochemically. Our experiments revealed PLD3 as the principal acid 5′ exonuclease in HeLa cells, where it showed a markedly higher specific activity compared with PLD4. We further used our newly developed assay to determine the substrate specificity and inhibitory profile of PLD3 and found that proteolytic processing of PLD3 is dispensable for its hydrolytic activity. We followed the expression, proteolytic processing, and intracellular distribution of genetic PLD3 variants previously associated with Alzheimer’s disease and investigated each variant's effect on the 5′ nuclease activity of PLD3, finding that some variants lead to reduced activity, but others not. The development of a PLD3/4-specific biochemical assay will be instrumental in understanding better both nucleases and their incompletely understood roles in vitro and in vivo.
Collapse
Affiliation(s)
- Cedric Cappel
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Markus Damme
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany.
| |
Collapse
|
43
|
Fahmi T, Wang X, Zhdanov DD, Islam I, Apostolov EO, Savenka AV, Basnakian AG. DNase I Induces Other Endonucleases in Kidney Tubular Epithelial Cells by Its DNA-Degrading Activity. Int J Mol Sci 2020; 21:ijms21228665. [PMID: 33212932 PMCID: PMC7698339 DOI: 10.3390/ijms21228665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/03/2023] Open
Abstract
Endonuclease-mediated DNA fragmentation is both an immediate cause and a result of apoptosis and of all other types of irreversible cell death after injury. It is produced by nine enzymes including DNase I, DNase 2, their homologs, caspase-activated DNase (CAD) and endonuclease G (EndoG). The endonucleases act simultaneously during cell death; however, regulatory links between these enzymes have not been established. We hypothesized that DNase I, the most abundant of endonucleases, may regulate other endonucleases. To test this hypothesis, rat kidney tubular epithelial NRK-52E cells were transfected with the DNase I gene or its inactive mutant in a pECFP expression vector, while control cells were transfected with the empty vector. mRNA expression of all nine endonucleases was studied using real-time RT-PCR; DNA strand breaks in endonuclease genes were determined by PCR and protein expression of the enzymes was measured by Western blotting and quantitative immunocytochemistry. Our data showed that DNase I, but not its inactive mutant, induces all other endonucleases at varying time periods after transfection, causes DNA breaks in endonuclease genes, and elevates protein expression of several endonucleases. This is the first evidence that endonucleases seem to be induced by the DNA-degrading activity of DNase I.
Collapse
Affiliation(s)
- Tariq Fahmi
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Xiaoying Wang
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Dmitry D. Zhdanov
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Intisar Islam
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Eugene O. Apostolov
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Alena V. Savenka
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Alexei G. Basnakian
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
- Central Arkansas Veterans Healthcare System, 4300 West 7th Street, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-352-2870
| |
Collapse
|
44
|
Abstract
The nuclear envelope is often depicted as a static barrier that regulates access between the nucleus and the cytosol. However, recent research has identified many conditions in cultured cells and in vivo in which nuclear membrane ruptures cause the loss of nuclear compartmentalization. These conditions include some that are commonly associated with human disease, such as migration of cancer cells through small spaces and expression of nuclear lamin disease mutations in both cultured cells and tissues undergoing nuclear migration. Nuclear membrane ruptures are rapidly repaired in the nucleus but persist in nuclear compartments that form around missegregated chromosomes called micronuclei. This review summarizes what is known about the mechanisms of nuclear membrane rupture and repair in both the main nucleus and micronuclei, and highlights recent work connecting the loss of nuclear integrity to genome instability and innate immune signaling. These connections link nuclear membrane rupture to complex chromosome alterations, tumorigenesis, and laminopathy etiologies.
Collapse
Affiliation(s)
- John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Emily M Hatch
- Division of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| |
Collapse
|
45
|
Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E. Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9080647. [PMID: 32707949 PMCID: PMC7466131 DOI: 10.3390/antiox9080647] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress develops as a response to injury and reflects a breach in the cell’s antioxidant capacity. Therefore, the fine-tuning of reactive oxygen species (ROS) generation is crucial for preserving cell’s homeostasis. Mitochondria are a major source and an immediate target of ROS. Under different stimuli, including oxidative stress and impaired quality control, mitochondrial constituents (e.g., mitochondrial DNA, mtDNA) are displaced toward intra- or extracellular compartments. However, the mechanisms responsible for mtDNA unloading remain largely unclear. While shuttling freely within the cell, mtDNA can be delivered into the extracellular compartment via either extrusion of entire nucleoids or the generation and release of extracellular vesicles. Once discarded, mtDNA may act as a damage-associated molecular pattern (DAMP) and trigger an innate immune inflammatory response by binding to danger-signal receptors. Neuroinflammation is associated with a large array of neurological disorders for which mitochondrial DAMPs could represent a common thread supporting disease progression. The exploration of non-canonical pathways involved in mitochondrial quality control and neurodegeneration may unveil novel targets for the development of therapeutic agents. Here, we discuss these processes in the setting of two common neurodegenerative diseases (Alzheimer’s and Parkinson’s disease) and Down syndrome, the most frequent progeroid syndrome.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Correspondence: (R.C.); (R.B.); Tel.: +39-06-3015-5559 (R.C. & R.B.); Fax: +39-06-3051-911 (R.C. & R.B.)
| | | | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Correspondence: (R.C.); (R.B.); Tel.: +39-06-3015-5559 (R.C. & R.B.); Fax: +39-06-3051-911 (R.C. & R.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
46
|
Liu Y, Wang J, Chen D, Kam WR, Sullivan DA. The Role of Hypoxia-Inducible Factor 1α in the Regulation of Human Meibomian Gland Epithelial Cells. Invest Ophthalmol Vis Sci 2020; 61:1. [PMID: 32150252 PMCID: PMC7401459 DOI: 10.1167/iovs.61.3.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose We recently discovered that a hypoxic environment is beneficial for meibomian gland (MG) function. The mechanisms underlying this effect are unknown, but we hypothesize that it is due to an increase in the levels of hypoxia-inducible factor 1α (HIF1α). In other tissues, HIF1α is the primary regulator of cellular responses to hypoxia, and HIF1α expression can be induced by multiple stimuli, including hypoxia and hypoxia-mimetic agents. The objective of this study was to test our hypothesis. Methods Human eyelid tissues were stained for HIF1α. Immortalized human MG epithelial cells (IHMGECs) were cultured for varying time periods under normoxic (21% O2) or hypoxic (1% O2) conditions, in the presence or absence of the hypoxia-mimetic agent roxadustat (Roxa). IHMGECs were then processed for the analysis of cell number, HIF1α expression, lipid-containing vesicles, neutral and polar lipid content, DNase II activity, and intracellular pH. Results Our results show that HIF1α protein is present in human MG acinar epithelial cells in vivo. Our findings also demonstrate that exposure to 1% O2 or to Roxa increases the expression of HIF1α, the number of lipid-containing vesicles, the content of neutral lipids, and the activity of DNase II and decreases the pH in IHMGECs in vitro. Conclusions Our data support our hypothesis that the beneficial effect of hypoxia on the MG is mediated through an increased expression of HIF1α.
Collapse
|
47
|
Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells 2020; 9:cells9051131. [PMID: 32375321 PMCID: PMC7290337 DOI: 10.3390/cells9051131] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
Collapse
Affiliation(s)
- Purvi C. Trivedi
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Jordan J. Bartlett
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
- Correspondence: ; Tel.: +1-(506)-636-6973
| |
Collapse
|
48
|
Inhibition of nuclease activity by a splice-switching oligonucleotide targeting deoxyribonuclease 1 mRNA prevents apoptosis progression and prolong viability of normal human CD4 + T-lymphocytes. Biochimie 2020; 174:34-43. [PMID: 32315661 DOI: 10.1016/j.biochi.2020.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 04/10/2020] [Indexed: 11/21/2022]
Abstract
The nuclease activity of deoxyribonuclease 1 (DNase I) is regulated by alternative splicing (AS) of its mRNA. The aim of this study was to define the ability of a splice-switching oligonucleotide (SSO) that base-paired with DNase I pre-mRNA to induce AS and inhibit nuclease activity in human T, B and NK lymphocytes. The SSO for DNase I could significantly downregulate the expression of full-length active DNase I and upregulate a truncated splice variant with a deleted exon 4. Such an induction of AS resulted in inhibition of nuclease activity and slowed apoptosis progression in anti-CD95/FAS stimulated lymphocytes. These results should facilitate further investigations of apoptosis regulation in lymphocytes and demonstrate that SSOs for DNase I are promising cytoprotective agents.
Collapse
|
49
|
Han D, Li R, Shi J, Tan P, Zhang R, Li J. Liquid biopsy for infectious diseases: a focus on microbial cell-free DNA sequencing. Theranostics 2020; 10:5501-5513. [PMID: 32373224 PMCID: PMC7196304 DOI: 10.7150/thno.45554] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022] Open
Abstract
Metagenomic next-generation sequencing (mNGS) of microbial cell-free DNA (mcfDNA sequencing) is becoming an attractive diagnostic modality for infectious diseases, allowing broad-range pathogen detection, noninvasive sampling, and rapid diagnosis. At this key juncture in the translation of metagenomics into clinical practice, an integrative perspective is needed to understand the significance of emerging mcfDNA sequencing technology. In this review, we summarized the actual performance of the mcfDNA sequencing tests recently used in health care settings for the diagnosis of a variety of infectious diseases and further focused on the practice considerations (challenges and solutions) for improving the accuracy and clinical relevance of the results produced by this evolving technique. Such knowledge will be helpful for physicians, microbiologists and researchers to understand what is going on in this quickly progressing field of non-invasive pathogen diagnosis by mcfDNA sequencing and promote the routine implementation of this technique in the diagnosis of infectious disease.
Collapse
Affiliation(s)
- Dongsheng Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Rui Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jiping Shi
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- Peking University Fifth School of Clinical Medicine, National Center for Clinical Laboratories, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Ping Tan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| |
Collapse
|
50
|
Jiang L, Poon IKH. Methods for monitoring the progression of cell death, cell disassembly and cell clearance. Apoptosis 2020; 24:208-220. [PMID: 30684146 DOI: 10.1007/s10495-018-01511-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell death through apoptosis, necrosis, necroptosis and pyroptosis, as well as the clearance of dead cells are crucial biological processes in the human body. Likewise, disassembly of dying cells during apoptosis to generate cell fragments known as apoptotic bodies may also play important roles in regulating cell clearance and intercellular communication. Recent advances in the field have led to the development of new experimental systems to identify cells at different stages of cell death, measure the levels of apoptotic cell disassembly, and monitor the cell clearance process using a range of in vitro, ex vivo and in vivo models. In this article, we will provide a comprehensive review of the methods for monitoring the progression of cell death, cell disassembly and cell clearance.
Collapse
Affiliation(s)
- Lanzhou Jiang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|