1
|
Johnsson H, Cole J, McInnes IB, Graham G, Siebert S. Differences in transcriptional changes in psoriasis and psoriatic arthritis skin with immunoglobulin gene enrichment in psoriatic arthritis. Rheumatology (Oxford) 2024; 63:218-225. [PMID: 37137278 PMCID: PMC10765156 DOI: 10.1093/rheumatology/kead195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVES Approximately 20% of people with psoriasis develop PsA. Although genetic, clinical and environmental risk factors have been identified, it is not known why some people with psoriasis develop PsA. The skin disease is traditionally considered the same in both. This study compares transcriptional changes in psoriasis and PsA skin for the first time. METHODS Skin biopsies were collected from healthy controls (HC), and uninvolved and lesional skin from patients with PsA. Bulk tissue sequencing was performed and analysed using the pipeline Searchlight 2.0. Transcriptional changes in PsA skin were compared with existing sequencing data from participants with psoriasis without PsA (GSE121212). Psoriasis and PsA datasets could not be directly compared as different analysis methods were used. Data from participants with PsA in the GSE121212 dataset were used for validation. RESULTS Skin samples from 9 participants with PsA and 9 HC were sequenced, analysed and compared with available transcriptomic data for 16 participants with psoriasis compared with 16 HC. Uninvolved skin in psoriasis shared transcriptional changes with lesional skin in psoriasis, but uninvolved skin in PsA did not. Most transcriptional changes in psoriasis and PsA lesional skin were shared, but immunoglobulin genes were upregulated in PsA lesional skin specifically. The transcription factor POU2F1, which regulates immunoglobulin gene expression, was enriched in PsA lesional skin. This was confirmed in the validation cohort. CONCLUSIONS Immunoglobulin genes are upregulated in PsA but not in psoriasis skin lesions. This may have implications for the spread from the cutaneous compartment to other tissues.
Collapse
Affiliation(s)
- Hanna Johnsson
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - John Cole
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Iain B McInnes
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Gerard Graham
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Stefan Siebert
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Son SH, Kim MY, Choi S, Kim JS, Lee YS, Lee S, Lee YJ, Lee JY, Lee SE, Lim YS, Ha DH, Oh E, Won YB, Ji CJ, Park MA, Kim B, Byun KT, Chung MS, Jeong J, Choi D, Baek EJ, Cho EH, Kim SB, Je AR, Kweon HS, Park HS, Park D, Bae JS, Jang SJ, Yun CO, Chae JH, Lee JW, Lee SJ, Kim CG, Kang HC, Uversky VN, Kim CG. A Cell-Penetrant Peptide Disrupting the Transcription Factor CP2c Complexes Induces Cancer-Specific Synthetic Lethality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305096. [PMID: 37845006 PMCID: PMC10667816 DOI: 10.1002/advs.202305096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Indexed: 10/18/2023]
Abstract
Despite advances in precision oncology, cancer remains a global public health issue. In this report, proof-of-principle evidence is presented that a cell-penetrable peptide (ACP52C) dissociates transcription factor CP2c complexes and induces apoptosis in most CP2c oncogene-addicted cancer cells through transcription activity-independent mechanisms. CP2cs dissociated from complexes directly interact with and degrade YY1, leading to apoptosis via the MDM2-p53 pathway. The liberated CP2cs also inhibit TDP2, causing intrinsic genome-wide DNA strand breaks and subsequent catastrophic DNA damage responses. These two mechanisms are independent of cancer driver mutations but are hindered by high MDM2 p60 expression. However, resistance to ACP52C mediated by MDM2 p60 can be sensitized by CASP2 inhibition. Additionally, derivatives of ACP52C conjugated with fatty acid alone or with a CASP2 inhibiting peptide show improved pharmacokinetics and reduced cancer burden, even in ACP52C-resistant cancers. This study enhances the understanding of ACP52C-induced cancer-specific apoptosis induction and supports the use of ACP52C in anticancer drug development.
Collapse
Affiliation(s)
- Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Sungwoo Choi
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Ji Sook Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
- Department of Pathology, Hanyang University College of Medicine, Seoul, 04763, South Korea
| | - Yong Sang Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Sangwon Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Yeon Ju Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jin Youn Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Seol Eui Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Young Su Lim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Dae Hyun Ha
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Eonju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Young-Bin Won
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Chang-Jun Ji
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Mi Ae Park
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Boram Kim
- Department of Biotechnology and Research Institute for Biomedical and Health Science, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, 27478, South Korea
| | - Kyu Tae Byun
- Department of Biotechnology and Research Institute for Biomedical and Health Science, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, 27478, South Korea
| | - Min Sung Chung
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, South Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, South Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, South Korea
| | - Eun Jung Baek
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, 04763, South Korea
| | - Eung-Ho Cho
- Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, South Korea
| | - Sang-Bum Kim
- Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, South Korea
| | - A Reum Je
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | - Hee-Seok Kweon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | | | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju, Chungbuk, 29173, South Korea
| | - June Sung Bae
- Department of Research and Development, OncoClew Co. Ltd, Seoul, 04778, South Korea
| | - Se Jin Jang
- Department of Research and Development, OncoClew Co. Ltd, Seoul, 04778, South Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul, 05505, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Ji Hyung Chae
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jin-Won Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Su-Jae Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Chan Gil Kim
- Department of Biotechnology and Research Institute for Biomedical and Health Science, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, 27478, South Korea
| | - Ho Chul Kang
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer`s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
- CGK Biopharma Co. Ltd., Seoul, 04763, South Korea
| |
Collapse
|
3
|
Cha CD, Son SH, Kim CG, Park H, Chung MS. Prognostic Implication of YY1 and CP2c Expression in Patients with Primary Breast Cancer. Cancers (Basel) 2023; 15:3495. [PMID: 37444605 PMCID: PMC10340759 DOI: 10.3390/cancers15133495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Yin Yang 1 (YY1) is a transcription factor that regulates epigenetic pathways and protein modifications. CP2c is a transcription factor that functions as an oncogene to regulate cell proliferation. YY1 is known to interact with CP2c to suppress CP2c's transcriptional activity. This study aimed to investigate YY1 and CP2c expression in breast cancer and prognostic implications. In this study, YY1 and CP2c expression was evaluated using immunohistochemical staining, Western blot and RT-PCR assays. Of 491 patients with primary breast cancer, 138 patients showed YY1 overexpression. Luminal subtype and early stage were associated with overexpression (p < 0.001). After a median follow-up of 68 months, YY1 overexpression was found to be associated with a better prognosis (disease-free survival rates of 92.0% vs. 79.2%, p = 0.014). In Cox proportional hazards model, YY1 overexpression functioned as an independent prognostic factor after adjustment of hormone receptor/HER2 status and tumor size (hazard ratio of 0.50, 95% CI 0.26-0.98, p = 0.042). Quantitative analysis of YY1 and CP2c protein expression in tumors revealed a negative correlation between them. In conclusion, YY1 overexpression is a favorable prognostic biomarker in patients with breast cancer, and it has a negative correlation with CP2c at the protein level.
Collapse
Affiliation(s)
- Chihwan David Cha
- Department of Surgery, Hanyang University College of Medicine, Seoul 04764, Republic of Korea;
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04764, Republic of Korea;
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04764, Republic of Korea;
| | - Hosub Park
- Department of Pathology, Hanyang University College of Medicine, Seoul 04764, Republic of Korea;
| | - Min Sung Chung
- Department of Surgery, Hanyang University College of Medicine, Seoul 04764, Republic of Korea;
| |
Collapse
|
4
|
Basu A, Champagne RN, Patel NG, Nicholson ED, Weiss RJ. TFCP2 is a transcriptional regulator of heparan sulfate assembly and melanoma cell growth. J Biol Chem 2023; 299:104713. [PMID: 37061003 PMCID: PMC10200990 DOI: 10.1016/j.jbc.2023.104713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
Heparan sulfate (HS) is a long, linear polysaccharide that is ubiquitously expressed in all animal cells and plays a key role in many cellular processes, including cell signaling and development. Dysregulation of HS assembly has been implicated in pathophysiological conditions, such as tumorigenesis and rare genetic disorders. HS biosynthesis occurs in a non-template-driven manner in the endoplasmic reticulum and Golgi through the activity of a large group of biosynthetic enzymes. While much is known about its biosynthesis, little is understood about the regulation of HS assembly across diverse tissue types and disease states. To address this gap in knowledge, we recently performed genome-wide CRISPR/Cas9 screens to identify novel regulatory factors of HS biosynthesis. From these screens, we identified the alpha globin transcription factor, TFCP2, as a top hit. To investigate the role of TFCP2 in HS assembly, we targeted TFCP2 expression in human melanoma cells using the CRISPR/Cas9 system. TFCP2 knockout cells exhibited decreased fibroblast growth factor binding to cell surface HS, alterations in HS composition, and slowed cell growth compared to wild-type cells. Additionally, RNA sequencing revealed that TFCP2 regulates the expression of multiple enzymes involved in HS assembly, including the secreted endosulfatase, SULF1. Pharmacological targeting of TFCP2 activity similarly reduced growth factor binding and increased SULF1 expression, and the knockdown of SULF1 expression in TFCP2 mutant cells restored melanoma cell growth. Overall, these studies identify TFCP2 as a novel transcriptional regulator of HS and highlight HS-protein interactions as a possible target to slow melanoma growth.
Collapse
Affiliation(s)
- Amrita Basu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Rachel N Champagne
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Neil G Patel
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Elijah D Nicholson
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ryan J Weiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
5
|
Son SH, Kim MY, Lim YS, Jin HC, Shin JH, Yi JK, Choi S, Park MA, Chae JH, Kang HC, Lee YJ, Uversky VN, Kim CG. SUMOylation-mediated PSME3-20 S proteasomal degradation of transcription factor CP2c is crucial for cell cycle progression. SCIENCE ADVANCES 2023; 9:eadd4969. [PMID: 36706181 PMCID: PMC9882985 DOI: 10.1126/sciadv.add4969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Transcription factor CP2c (also known as TFCP2, α-CP2, LSF, and LBP-1c) is involved in diverse ubiquitous and tissue/stage-specific cellular processes and in human malignancies such as cancer. Despite its importance, many fundamental regulatory mechanisms of CP2c are still unclear. Here, we uncover an unprecedented mechanism of CP2c degradation via a previously unidentified SUMO1/PSME3/20S proteasome pathway and its biological meaning. CP2c is SUMOylated in a SUMO1-dependent way, and SUMOylated CP2c is degraded through the ubiquitin-independent PSME3 (also known as REGγ or PA28)/20S proteasome system. SUMOylated PSME3 could also interact with CP2c to degrade CP2c via the 20S proteasomal pathway. Moreover, precisely timed degradation of CP2c via the SUMO1/PSME3/20S proteasome axis is required for accurate progression of the cell cycle. Therefore, we reveal a unique SUMO1-mediated uncanonical 20S proteasome degradation mechanism via the SUMO1/PSME3 axis involving mutual SUMO-SIM interaction of CP2c and PSME3, providing previously unidentified mechanistic insights into the roles of dynamic degradation of CP2c in cell cycle progression.
Collapse
Affiliation(s)
- Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Su Lim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Hyeon Cheol Jin
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - June Ho Shin
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jae Kyu Yi
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sungwoo Choi
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Mi Ae Park
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ji Hyung Chae
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ho Chul Kang
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Jin Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- CGK Biopharma Co. Ltd., Seoul 04763, Korea
| |
Collapse
|
6
|
Liu J, Fu N, Yang Z, Li A, Wu H, Jin Y, Song Q, Ji S, Xu H, Zhang Z, Zhang X. The genetic and epigenetic regulation of CD55 and its pathway analysis in colon cancer. Front Immunol 2023; 13:947136. [PMID: 36741376 PMCID: PMC9889927 DOI: 10.3389/fimmu.2022.947136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Background CD55 plays an important role in the development of colon cancer. This study aims to evaluate the expression of CD55 in colon cancer and discover how it is regulated by transcriptional factors and miRNA. Methods The expression of CD55 was explored by TIMER2.0, UALCAN, and Human Protein Atlas (HPA) databases. TRANSFAC and Contra v3 were used to predict the potential binding sites of transcription factors in the CD55 promoter. TargetScan and starBase v2.0 were used to predict the potential binding ability of miRNAs to the 3' untranslated region (3'UTR) of CD55. SurvivalMeth was used to explore the differentially methylated sites in the CD55 promoter. Western blotting was used to detect the expression of TFCP2 and CD55. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were performed to determine the targeting relationship of TFCP2, NF-κB, or miR-27a-3p with CD55. CD55-related genes were explored by constructing a protein-protein interaction (PPI) network and performing pathway analysis by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Results CD55 was highly expressed in colon cancer tissues. The mRNA and protein expression levels of TFCP2 were reduced by si-TFCP2. NF-κB mRNA was obviously reduced by NF-κB inhibitor and increased by NF-κB activator. CD55 protein was also inhibited by miR-27a-3p. Dual-luciferase reporter assays showed that after knocking down TFCP2 or inhibiting NF-κB, the promoter activity of CD55 was decreased by 21% and 70%, respectively; after activating NF-κB, the promoter activity of CD55 increased by 2.3 times. As TFCP2 or NF-κB binding site was mutated, the transcriptional activity of CD55 was significantly decreased. ChIP assay showed that TFCP2 and NF-κB combined to the promoter of CD55. The luciferase activity of CD55 3'UTR decreased after being co-transfected with miR-27a-3p mimics and increased by miR-27a-3p antagomir. As the miR-27a-3p binding site was mutated, we did not find any significant effect of miR-27a-3p on reporter activity. PPI network assay revealed a set of CD55-related genes, which included CFP, CFB, C4A, and C4B. GO and KEGG analyses revealed that the target genes occur more frequently in immune-related pathways. Conclusion Our results indicated that CD55 is regulated by TFCP2, NF-κB, miR-27a-3p, and several immune-related genes, which in turn affects colon cancer.
Collapse
Affiliation(s)
- Jiawei Liu
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Ning Fu
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Zhenbang Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ang Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hongjiao Wu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ye Jin
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Qinqin Song
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Shanshan Ji
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Hongxue Xu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
7
|
Rivière Q, Corso M, Ciortan M, Noël G, Verbruggen N, Defrance M. Exploiting Genomic Features to Improve the Prediction of Transcription Factor-Binding Sites in Plants. PLANT & CELL PHYSIOLOGY 2022; 63:1457-1473. [PMID: 35799371 DOI: 10.1093/pcp/pcac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The identification of transcription factor (TF) target genes is central in biology. A popular approach is based on the location by pattern matching of potential cis-regulatory elements (CREs). During the last few years, tools integrating next-generation sequencing data have been developed to improve the performance of pattern matching. However, such tools have not yet been comprehensively evaluated in plants. Hence, we developed a new streamlined method aiming at predicting CREs and target genes of plant TFs in specific organs or conditions. Our approach implements a supervised machine learning strategy, which allows decision rule models to be learnt using TF ChIP-chip/seq experimental data. Different layers of genomic features were integrated in predictive models: the position on the gene, the DNA sequence conservation, the chromatin state and various CRE footprints. Among the tested features, the chromatin features were crucial for improving the accuracy of the method. Furthermore, we evaluated the transferability of predictive models across TFs, organs and species. Finally, we validated our method by correctly inferring the target genes of key TFs controlling metabolite biosynthesis at the organ level in Arabidopsis. We developed a tool-Wimtrap-to reproduce our approach in plant species and conditions/organs for which ChIP-chip/seq data are available. Wimtrap is a user-friendly R package that supports an R Shiny web interface and is provided with pre-built models that can be used to quickly get predictions of CREs and TF gene targets in different organs or conditions in Arabidopsis thaliana, Solanum lycopersicum, Oryza sativa and Zea mays.
Collapse
Affiliation(s)
- Quentin Rivière
- Brussels Bioengineering School, Laboratory of Plant Physiology and molecular Genetics, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Massimiliano Corso
- Brussels Bioengineering School, Laboratory of Plant Physiology and molecular Genetics, Université Libre de Bruxelles, Brussels 1050, Belgium
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles 78000, France
| | - Madalina Ciortan
- Interuniversity Institute of Bioinformatics in Brussels, Machine Learning Group, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Grégoire Noël
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium
| | - Nathalie Verbruggen
- Brussels Bioengineering School, Laboratory of Plant Physiology and molecular Genetics, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Machine Learning Group, Université Libre de Bruxelles, Brussels 1050, Belgium
| |
Collapse
|
8
|
Lotfollahzadeh S, Lo D, York EA, Napoleon MA, Yin W, Elzinad N, Le J, Zhang M, Yang X, Morrissey A, Elsadawi M, Zhao Q, Schaus SE, Hansen U, Chitalia VC. Pharmacologic Manipulation of Late SV40 Factor Suppresses Wnt Signaling and Inhibits Growth of Allogeneic and Syngeneic Colon Cancer Xenografts. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1167-1185. [PMID: 35710032 PMCID: PMC9379689 DOI: 10.1016/j.ajpath.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Aberrant hyperactivation of Wnt signaling, driven by nuclear β-catenin in the colonic epithelium, represents the seminal event in the initiation and progression of colorectal cancer (CRC). Despite its established role in CRC tumorigenesis, clinical translation of Wnt inhibitors remains unsuccessful. Late SV40 factor (LSF; encoded by TFCP2) is a transcription factor and a potent oncogene. The current study identified a chemotype, named factor quinolinone inhibitors (FQIs), that specifically inhibits LSF DNA-binding, partner protein-binding, and transactivation activities. The role of LSF and FQIs in CRC tumor growth was examined. Herein, the study showed that LSF and β-catenin interacted in several CRC cell lines irrespective of their mutational profile, which was disrupted by FQI2-34. FQI2-34 suppressed Wnt activity in CRC cells in a dose-dependent manner. Leveraging both allogeneic and syngeneic xenograft models showed that FQI2-34 suppressed CRC tumor growth, significantly reduced nuclear β-catenin, and down-regulated Wnt targets such as axis inhibition protein 2 (AXIN-2) and SRY-box transcription factor 9, in the xenograft cells. FQI2-34 suppressed the proliferation of xenograft cells. Adenocarcinomas from a series of stage IV CRC patients revealed a positive correlation between LSF expression and Wnt targets (AXIN-2 and SRY-box transcription factor 9) within the CRC cells. Collectively, this study uncovers the Wnt inhibitory and CRC growth-suppressive effects of these LSF inhibitors in CRC cells, revealing a novel target in CRC therapeutics.
Collapse
Affiliation(s)
- Saran Lotfollahzadeh
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Dominic Lo
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Emily A York
- Center for Molecular Discovery, Department of Chemistry, Boston University, Boston, Massachusetts
| | - Marc A Napoleon
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Wenqing Yin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nagla Elzinad
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - John Le
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Mengwei Zhang
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Xiaosheng Yang
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Austin Morrissey
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Murad Elsadawi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Qing Zhao
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Scott E Schaus
- Center for Molecular Discovery, Department of Chemistry, Boston University, Boston, Massachusetts
| | - Ulla Hansen
- Department of Biology, Boston University, Boston, Massachusetts
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Veterans Affairs Boston Healthcare System, Boston, Massachusetts; Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
9
|
Structural and Functional Insights into CP2c Transcription Factor Complexes. Int J Mol Sci 2022; 23:ijms23126369. [PMID: 35742810 PMCID: PMC9223585 DOI: 10.3390/ijms23126369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023] Open
Abstract
CP2c, also known as TFCP2, α-CP2, LSF, and LBP-1c, is a prototypic member of the transcription factor (TF) CP2 subfamily involved in diverse ubiquitous and tissue/stage-specific cellular processes and in human malignancies including cancer. Despite its importance, many fundamental regulatory mechanisms of CP2c are still unclear. Here, we uncover unprecedented structural and functional aspects of CP2c using DSP crosslinking and Western blot in addition to conventional methods. We found that a monomeric form of a CP2c homotetramer (tCP2c; [C4]) binds to the known CP2c-binding DNA motif (CNRG-N(5~6)-CNRG), whereas a dimeric form of a CP2c, CP2b, and PIAS1 heterohexamer ([C2B2P2]2) binds to the three consecutive CP2c half-sites or two staggered CP2c binding motifs, where the [C4] exerts a pioneering function for recruiting the [C2B2P2]2 to the target. All CP2c exists as a [C4], or as a [C2B2P2]2 or [C2B2P2]4 in the nucleus. Importantly, one additional cytosolic heterotetrameric CP2c and CP2a complex, ([C2A2]), exerts some homeostatic regulation of the nuclear complexes. These data indicate that these findings are essential for the transcriptional regulation of CP2c in cells within relevant timescales, providing clues not only for the transcriptional regulation mechanism by CP2c but also for future therapeutics targeting CP2c function.
Collapse
|
10
|
Cheon YP, Choi D, Lee SH, Kim CG. YY1 and CP2c in Unidirectional Spermatogenesis and Stemness. Dev Reprod 2021; 24:249-262. [PMID: 33537512 PMCID: PMC7837418 DOI: 10.12717/dr.2020.24.4.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/21/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022]
Abstract
Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Institute for Basic Sciences, Sungshin University, Seoul 02844, Korea
| | - Donchan Choi
- Department of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Sung-Ho Lee
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
11
|
Chrisinger JSA, Wehrli B, Dickson BC, Fasih S, Hirbe AC, Shultz DB, Zadeh G, Gupta AA, Demicco EG. Epithelioid and spindle cell rhabdomyosarcoma with FUS-TFCP2 or EWSR1-TFCP2 fusion: report of two cases. VIRCHOWS ARCHIV : AN INTERNATIONAL JOURNAL OF PATHOLOGY 2020. [PMID: 32556562 DOI: 10.1007/s00428‐020‐02870‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The WHO Classification of Tumors of Soft Tissue and Bone divides rhabdomyosarcoma (RMS) into alveolar, embryonal, pleomorphic, and spindle cell/sclerosing types. Advances in molecular diagnostics have allowed for further refinement of RMS classification including the identification of new subtypes. Very rare RMS with epithelioid and spindle cell morphology, female predominance, marked osseous predilection, ALK expression, EWSR1/FUS-TFCP2 gene fusions, and highly aggressive clinical behavior have recently been recognized with only 23 cases reported in the English language literature. Herein, we report two additional cases with detailed clinicopathologic description and molecular confirmation. In brief, two young women presented each with a primary bone tumor-one with a frontal bone tumor and another with an osseous pelvic tumor. Both tumors showed epithelioid to spindle cell morphology, ALK expression, and EWSR1/FUS-TFCP2 gene fusions. Both patients died of disease less than 17 months from diagnosis despite administration of multiple lines of aggressive treatment. In addition, we review the literature and discuss differential diagnostic and potential treatment considerations.
Collapse
Affiliation(s)
- John S A Chrisinger
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Bret Wehrli
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, Western University, London, ON, Canada
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Samir Fasih
- Princess Margaret Cancer Centre, Division of Medical Oncology, University of Toronto, Toronto, ON, Canada
| | - Angela C Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - David B Shultz
- Department of Radiation Oncology, Princess Margaret Cancer Centre & Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON, Canada
- MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Abha A Gupta
- Princess Margaret Cancer Centre, Division of Medical Oncology, University of Toronto, Toronto, ON, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Chrisinger JSA, Wehrli B, Dickson BC, Fasih S, Hirbe AC, Shultz DB, Zadeh G, Gupta AA, Demicco EG. Epithelioid and spindle cell rhabdomyosarcoma with FUS-TFCP2 or EWSR1-TFCP2 fusion: report of two cases. Virchows Arch 2020; 477:725-732. [PMID: 32556562 DOI: 10.1007/s00428-020-02870-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
The WHO Classification of Tumors of Soft Tissue and Bone divides rhabdomyosarcoma (RMS) into alveolar, embryonal, pleomorphic, and spindle cell/sclerosing types. Advances in molecular diagnostics have allowed for further refinement of RMS classification including the identification of new subtypes. Very rare RMS with epithelioid and spindle cell morphology, female predominance, marked osseous predilection, ALK expression, EWSR1/FUS-TFCP2 gene fusions, and highly aggressive clinical behavior have recently been recognized with only 23 cases reported in the English language literature. Herein, we report two additional cases with detailed clinicopathologic description and molecular confirmation. In brief, two young women presented each with a primary bone tumor-one with a frontal bone tumor and another with an osseous pelvic tumor. Both tumors showed epithelioid to spindle cell morphology, ALK expression, and EWSR1/FUS-TFCP2 gene fusions. Both patients died of disease less than 17 months from diagnosis despite administration of multiple lines of aggressive treatment. In addition, we review the literature and discuss differential diagnostic and potential treatment considerations.
Collapse
Affiliation(s)
- John S A Chrisinger
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Bret Wehrli
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, Western University, London, ON, Canada
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Samir Fasih
- Princess Margaret Cancer Centre, Division of Medical Oncology, University of Toronto, Toronto, ON, Canada
| | - Angela C Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - David B Shultz
- Department of Radiation Oncology, Princess Margaret Cancer Centre & Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON, Canada.,MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Abha A Gupta
- Princess Margaret Cancer Centre, Division of Medical Oncology, University of Toronto, Toronto, ON, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Zhao Y, Kaushik N, Kang JH, Kaushik NK, Son SH, Uddin N, Kim MJ, Kim CG, Lee SJ. A Feedback Loop Comprising EGF/TGFα Sustains TFCP2-Mediated Breast Cancer Progression. Cancer Res 2020; 80:2217-2229. [PMID: 32193292 DOI: 10.1158/0008-5472.can-19-2908] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/04/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022]
Abstract
Stemness and epithelial-mesenchymal transition (EMT) are two fundamental characteristics of metastasis that are controlled by diverse regulatory factors, including transcription factors. Compared with other subtypes of breast cancer, basal-type or triple-negative breast cancer (TNBC) has high frequencies of tumor relapse. However, the role of alpha-globin transcription factor CP2 (TFCP2) has not been reported as an oncogenic driver in those breast cancers. Here, we show that TFCP2 is a potent factor essential for EMT, stemness, and metastasis in breast cancer. TFCP2 directly bound promoters of EGF and TGFα to regulate their expression and stimulate autocrine signaling via EGFR. These findings indicate that TFCP2 is a new antimetastatic target and reveal a novel regulatory mechanism in which a positive feedback loop comprising EGF/TGFα and AKT can control malignant breast cancer progression. SIGNIFICANCE: TFCP2 is a new antimetastatic target that controls TNBC progression via a positive feedback loop between EGF/TGFα and the AKT signaling axis.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Neha Kaushik
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Jae-Hyeok Kang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, South Korea
| | - Seung Han Son
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Nizam Uddin
- Center for Cell Analysis & Modeling, University of Connecticut Health Center, Farmington, Connecticut
| | - Min-Jung Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Chul Geun Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea.
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea.
| |
Collapse
|
14
|
Le Loarer F, Cleven AHG, Bouvier C, Castex MP, Romagosa C, Moreau A, Salas S, Bonhomme B, Gomez-Brouchet A, Laurent C, Le Guellec S, Audard V, Giraud A, Ramos-Oliver I, Cleton-Jansen AM, Savci-Heijink DC, Kroon HM, Baud J, Pissaloux D, Pierron G, Sherwood A, Coindre JM, Bovée JVMG, Larousserie F, Tirode F. A subset of epithelioid and spindle cell rhabdomyosarcomas is associated with TFCP2 fusions and common ALK upregulation. Mod Pathol 2020; 33:404-419. [PMID: 31383960 DOI: 10.1038/s41379-019-0323-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022]
Abstract
Rhabdomyosarcomas with TFCP2 fusions represent an emerging subtype of tumors, initially discovered by RNA-sequencing. We report herein the clinicopathological, transcriptional, and genomic features of a series of 14 cases. Cases were retrospectively and prospectively recruited and studied by immunohistochemistry (MYF4, MYOD1, S100, AE1/E3, ALK), fluorescence in situ hybridization with TFCP2 break-apart probe (n = 10/14), array-comparative genomic hybridization (Agilent), whole RNA-sequencing (Truseq Exome, Illumina), or anchored multiplex PCR-based targeted next-generation sequencing (Archer® FusionPlex® Sarcoma kit). Patient's age ranged between 11 and 86 years, including 5 pediatric cases. Tumors were located in the bone (n = 12/14) and soft tissue (n = 2/14). Most bone tumors invaded surrounding soft tissue. Craniofacial bones were over-represented (n = 8/12). Median survival was 8 months and five patients are currently alive with a median follow-up of 20 months. Most tumors displayed a mixed spindle cell and epithelioid pattern with frequent vesicular nuclei. All tumors expressed keratins and showed a rhabdomyogenic phenotype (defined as expression of MYF4 and/or MYOD1). ALK was overexpressed in all but three cases without underlying ALK fusion on break-apart FISH (n = 5) nor next-generation sequencing (n = 14). ALK upregulation was frequently associated with an internal deletion at genomic level. TFCP2 was fused in 5' either to EWSR1 (n = 6) or FUS (n = 8). EWSR1 was involved in both soft tissue cases. FISH with TFCP2 break-apart probe was positive in all tested cases (n = 8), including one case with unbalanced signal. On array-CGH, all tested tumors displayed complex genetic profiles with genomic indexes ranging from 13 to 107.55 and recurrent CDKN2A deletions. FET-TFCP2 rhabdomyosarcomas clustered together and distinctly from other rhabdomyosarcomas subgroups. Altogether, our data confirm and expand the spectrum of the new family of FET-TFCP2 rhabdomyosarcomas, which are associated with a predilection for the craniofacial bones, an aggressive course, and recurrent pathological features. Their association with ALK overexpression might represent a therapeutic vulnerability.
Collapse
Affiliation(s)
- François Le Loarer
- Department of Pathology, Institut Bergonié, Bordeaux, France. .,Université de Bordeaux, Talence, France. .,INSERM U1218 ACTION, Institut Bergonie, Bordeaux, France.
| | - Arjen H G Cleven
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Corinne Bouvier
- Department of Pathology, Hôpital La Timone, APHM, Marseille, France
| | | | - Cleofe Romagosa
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Anne Moreau
- Department of Pathology, CHU Nantes, Nantes, France
| | | | | | - Anne Gomez-Brouchet
- Department of Pathology, Institut Claudius Regaud-Institut universitaire du cancer-Oncopôle, Toulouse, France
| | - Camille Laurent
- Department of Pathology, Institut Claudius Regaud-Institut universitaire du cancer-Oncopôle, Toulouse, France
| | - Sophie Le Guellec
- Department of Pathology, Institut Claudius Regaud-Institut universitaire du cancer-Oncopôle, Toulouse, France
| | - Virginie Audard
- Department of Pathology, Hôpital Cochin, APHP, Paris, France
| | - Antoine Giraud
- Department of Clinical Trials, Institut Bergonié, Bordeaux, France
| | - Irma Ramos-Oliver
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | - Herman M Kroon
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica Baud
- Université de Bordeaux, Talence, France.,INSERM U1218 ACTION, Institut Bergonie, Bordeaux, France
| | - Daniel Pissaloux
- Department of Biopathologie, Centre Léon Bérard, Lyon, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS 5286, INSERM U1052, Cancer Research Center of Lyon, Lyon, France
| | - Gaëlle Pierron
- Department of Biology of Tumors, Institut Curie, Paris, France
| | - Anand Sherwood
- Department of Conservative Dentistry and Endodontics, CSI College of Dental Sciences, Madurai, India
| | - Jean Michel Coindre
- Department of Pathology, Institut Bergonié, Bordeaux, France.,Université de Bordeaux, Talence, France.,INSERM U1218 ACTION, Institut Bergonie, Bordeaux, France
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Franck Tirode
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS 5286, INSERM U1052, Cancer Research Center of Lyon, Lyon, France
| |
Collapse
|
15
|
Expanding the Spectrum of Intraosseous Rhabdomyosarcoma: Correlation Between 2 Distinct Gene Fusions and Phenotype. Am J Surg Pathol 2020; 43:695-702. [PMID: 30720533 DOI: 10.1097/pas.0000000000001227] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Primary intraosseous rhabdomyosarcomas (RMSs) are extremely rare. Recently 2 studies reported 4 cases of primary intraosseous RMS with EWSR1/FUS-TFCP2 gene fusions, associated with somewhat conflicting histologic features, ranging from spindle to epithelioid. In this study we sought to further investigate the pathologic and molecular abnormalities of a larger group of intraosseous RMSs by a combined approach using targeted RNA sequencing analysis and fluorescence in situ hybridization (FISH). We identified 7 cases, 3 males and 4 females, all in young adults, age range 20 to 39 years (median, 27 y). Three cases involved the pelvis, 2 involved the femur and 1 each involved the maxilla and the skull. Molecular studies identified recurrent gene fusions in all 7 cases tested, including: a novel MEIS1-NCOA2 fusion in 2 cases, EWSR1-TFCP2 in 3 cases, and FUS-TFCP2 gene fusions in 1 case. One case showed a FUS gene rearrangement, without a TFCP2 gene abnormality by FISH. The MEIS1-NCOA2-positive cases were characterized by a more primitive and fascicular spindle cell appearance, while the EWSR1/FUS rearranged tumors had a hybrid spindle and epithelioid phenotype, with more abundant eosinophilic cytoplasm and mild nuclear pleomorphism. Immunohistochemically, all tumors were positive for desmin and myogenin (focal). In addition, 4 tumors with TFCP2-associated gene fusions also coexpressed ALK and cytokeratin. In conclusion, our results suggest a high incidence of gene fusions in primary RMSs of bone, with 2 molecular subsets emerging, defined by either MEIS1-NCOA2 or EWSR1/FUS-TFCP2 fusions, showing distinct morphology and immunophenotype. Additional studies with larger numbers of cases and longer follow-up data are required to definitively evaluate the biological behavior of these tumors and to establish their relationship to other spindle cell RMS genetic groups.
Collapse
|
16
|
Kim MY, Kim JS, Son SH, Lim CS, Eum HY, Ha DH, Park MA, Baek EJ, Ryu BY, Kang HC, Uversky VN, Kim CG. Mbd2-CP2c loop drives adult-type globin gene expression and definitive erythropoiesis. Nucleic Acids Res 2019; 46:4933-4949. [PMID: 29547954 PMCID: PMC6007553 DOI: 10.1093/nar/gky193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/12/2018] [Indexed: 01/18/2023] Open
Abstract
During hematopoiesis, red blood cells originate from the hematopoietic stem cell reservoir. Although the regulation of erythropoiesis and globin expression has been intensively investigated, the underlining mechanisms are not fully understood, including the interplay between transcription factors and epigenetic factors. Here, we uncover that the Mbd2-free NuRD chromatin remodeling complex potentiates erythroid differentiation of proerythroblasts via managing functions of the CP2c complexes. We found that both Mbd2 and Mbd3 expression is downregulated during differentiation of MEL cells in vitro and in normal erythropoiesis in mouse bone marrow, and Mbd2 downregulation is crucial for erythropoiesis. In uninduced MEL cells, the Mbd2-NuRD complex is recruited to the promoter via Gata1/Fog1, and, via direct binding through p66α, it acts as a transcriptional inhibitor of the CP2c complexes, preventing their DNA binding and promoting degradation of the CP2c family proteins to suppress globin gene expression. Conversely, during erythropoiesis in vitro and in vivo, the Mbd2-free NuRD does not dissociate from the chromatin and acts as a transcriptional coactivator aiding the recruitment of the CP2c complexes to chromatin, and thereby leading to the induction of the active hemoglobin synthesis and erythroid differentiation. Our study highlights the regulation of erythroid differentiation by the Mbd2-CP2c loop.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ji Sook Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Seung Han Son
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Chang Su Lim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Hea Young Eum
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Dae Hyun Ha
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Mi Ae Park
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Eun Jung Baek
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea
| | - Ho Chul Kang
- Department of Physiology and Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Chul Geun Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
17
|
Neglected Functions of TFCP2/TFCP2L1/UBP1 Transcription Factors May Offer Valuable Insights into Their Mechanisms of Action. Int J Mol Sci 2018; 19:ijms19102852. [PMID: 30241344 PMCID: PMC6213935 DOI: 10.3390/ijms19102852] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, the TFCP2 (transcription factor cellular promoter 2)/TFCP2L1 (TFCP2-like 1)/UBP1 (upstream binding protein 1) subfamily of transcription factors has been attracting increasing attention in the scientific community. These factors are very important in cancer, Alzheimer’s disease, and other human conditions, and they can be attractive targets for drug development. However, the interpretation of experimental results is complicated, as in principle, any of these factors could substitute for the lack of another. Thus, studying their hitherto little known functions should enhance our understanding of mechanisms of their functioning, and analogous mechanisms might govern their functioning in medically relevant contexts. For example, there are numerous parallels between placental development and cancer growth; therefore, investigating the roles of TFCP2, TFCP2L1, and UBP1 in the placenta may help us better understand their functioning in cancer, as is evidenced by the studies of various other proteins and pathways. Our review article aims to call the attention of the scientific community to these neglected functions, and encourage further research in this field. Here, we present a systematic review of current knowledge of the TFCP2/TFCP2L1/UBP1 subfamily in reproduction, embryonic development, renal function, blood-pressure regulation, brain function, and other processes, where their involvement has not been studied much until now.
Collapse
|
18
|
Watson S, Perrin V, Guillemot D, Reynaud S, Coindre JM, Karanian M, Guinebretière JM, Freneaux P, Le Loarer F, Bouvet M, Galmiche-Rolland L, Larousserie F, Longchampt E, Ranchere-Vince D, Pierron G, Delattre O, Tirode F. Transcriptomic definition of molecular subgroups of small round cell sarcomas. J Pathol 2018; 245:29-40. [PMID: 29431183 DOI: 10.1002/path.5053] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 02/02/2018] [Indexed: 01/02/2023]
Abstract
Sarcoma represents a highly heterogeneous group of tumours. We report here the first unbiased and systematic search for gene fusions combined with unsupervised expression analysis of a series of 184 small round cell sarcomas. Fusion genes were detected in 59% of samples, with half of them being observed recurrently. We identified biologically homogeneous groups of tumours such as the CIC-fused (to DUX4, FOXO4 or NUTM1) and BCOR-rearranged (BCOR-CCNB3, BCOR-MAML3, ZC3H7B-BCOR, and BCOR internal duplication) tumour groups. VGLL2-fused tumours represented a more biologically and pathologically heterogeneous group. This study also refined the characteristics of some entities such as EWSR1-PATZ1 spindle cell sarcoma or FUS-NFATC2 bone tumours that are different from EWSR1-NFATC2 tumours and transcriptionally resemble CIC-fused tumour entities. We also describe a completely novel group of epithelioid and spindle-cell rhabdomyosarcomas characterized by EWSR1- or FUS-TFCP2 fusions. Finally, expression data identified some potentially new therapeutic targets or pathways. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sarah Watson
- INSERM U830, Laboratory of Genetics and Biology of Cancer, Paris, France.,Institut Curie, Paris Sciences et Lettres, Paris, France
| | - Virginie Perrin
- INSERM U830, Laboratory of Genetics and Biology of Cancer, Paris, France.,Institut Curie, Paris Sciences et Lettres, Paris, France
| | | | | | - Jean-Michel Coindre
- Institut Bergonié, Department of Pathology, Bordeaux, France.,Université Bordeaux 2, Bordeaux, France
| | - Marie Karanian
- Centre Leon Bérard, Department of Pathology, Lyon, France
| | | | - Paul Freneaux
- Département de Biologie des Tumeurs, Institut Curie, Service d'Anatomie Pathologique, Paris, France
| | - François Le Loarer
- Institut Bergonié, Department of Pathology, Bordeaux, France.,Université Bordeaux 2, Bordeaux, France
| | - Megane Bouvet
- Institut Curie, Unité de Génétique Somatique, Paris, France
| | - Louise Galmiche-Rolland
- Service d'Anatomie Pathologique, Hôpital Necker Enfants Malades, Paris, France.,Université Paris Descartes, Paris, France
| | | | - Elisabeth Longchampt
- Service d'Anatomie et de Cytologie Pathologiques, Hôpital Foch, Suresnes, France
| | | | - Gaelle Pierron
- Institut Curie, Unité de Génétique Somatique, Paris, France
| | - Olivier Delattre
- INSERM U830, Laboratory of Genetics and Biology of Cancer, Paris, France.,Institut Curie, Paris Sciences et Lettres, Paris, France.,Institut Curie, Unité de Génétique Somatique, Paris, France.,Ligue Contre le Cancer, Equipe Labellisée
| | - Franck Tirode
- INSERM U830, Laboratory of Genetics and Biology of Cancer, Paris, France.,Institut Curie, Paris Sciences et Lettres, Paris, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| |
Collapse
|
19
|
Kotarba G, Krzywinska E, Grabowska AI, Taracha A, Wilanowski T. TFCP2/TFCP2L1/UBP1 transcription factors in cancer. Cancer Lett 2018; 420:72-79. [PMID: 29410248 DOI: 10.1016/j.canlet.2018.01.078] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022]
Abstract
The TFCP2/Grainyhead family of transcription factors is divided into two distinct subfamilies, one of which includes the Grainyhead-like 1-3 (GRHL1-3) proteins and the other consists of TFCP2 (synonyms: CP2, LSF, LBP-1c), TFCP2L1 (synonyms: CRTR-1, LBP-9) and UBP1 (synonyms: LBP-1a, NF2d9). Transcription factors from the TFCP2/TFCP2L1/UBP1 subfamily are involved in various aspects of cancer development. TFCP2 is a pro-oncogenic factor in hepatocellular carcinoma, pancreatic cancer and breast cancer, may be important in cervical carcinogenesis and in colorectal cancer. TFCP2 can also act as a tumor suppressor, for example, it inhibits melanoma growth. Furthermore, TFCP2 is involved in epithelial-mesenchymal transition and enhances angiogenesis. TFCP2L1 maintains pluripotency and self-renewal of embryonic stem cells and was implicated in a wide variety of cancers, including clear cell renal cell carcinoma, breast cancer and thyroid cancer. Here we present a systematic review of current knowledge of this protein subfamily in the context of cancer. We also discuss potential challenges in investigating this family of transcription factors. These challenges include redundancies between these factors as well as their interactions with each other and their ability to modulate each other's activity.
Collapse
Affiliation(s)
- Grzegorz Kotarba
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Ewa Krzywinska
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna I Grabowska
- Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Agnieszka Taracha
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Tomasz Wilanowski
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
20
|
Transcription factor LSF-DNMT1 complex dissociation by FQI1 leads to aberrant DNA methylation and gene expression. Oncotarget 2018; 7:83627-83640. [PMID: 27845898 PMCID: PMC5347793 DOI: 10.18632/oncotarget.13271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
The transcription factor LSF is highly expressed in hepatocellular carcinoma (HCC) and promotes oncogenesis. Factor quinolinone inhibitor 1 (FQI1), inhibits LSF DNA-binding activity and exerts anti-proliferative activity. Here, we show that LSF binds directly to the maintenance DNA (cytosine-5) methyltransferase 1 (DNMT1) and its accessory protein UHRF1 both in vivo and in vitro. Binding of LSF to DNMT1 stimulated DNMT1 activity and FQI1 negated the methyltransferase activation. Addition of FQI1 to the cell culture disrupted LSF bound DNMT1 and UHRF1 complexes, resulting in global aberrant CpG methylation. Differentially methylated regions (DMR) containing at least 3 CpGs, were significantly altered by FQI1 compared to control cells. The DMRs were mostly concentrated in CpG islands, proximal to transcription start sites, and in introns and known genes. These DMRs represented both hypo and hypermethylation, correlating with altered gene expression. FQI1 treatment elicits a cascade of effects promoting altered cell cycle progression. These findings demonstrate a novel mechanism of FQI1 mediated alteration of the epigenome by DNMT1-LSF complex disruption, leading to aberrant DNA methylation and gene expression.
Collapse
|
21
|
Liu S, Liu F, Huang W, Gu L, Meng L, Ju Y, Wu Y, Li J, Liu L, Sang M. MAGE-A11 is activated through TFCP2/ZEB1 binding sites de-methylation as well as histone modification and facilitates ESCC tumor growth. Oncotarget 2017; 9:3365-3378. [PMID: 29423052 PMCID: PMC5790469 DOI: 10.18632/oncotarget.22973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Recently, we have reported that the product of Melanoma Antigens Genes (MAGE) family member MAGE-A11 is an independent poor prognostic marker for esophageal squamous cell carcinoma (ESCC). However, the reason how MAGE-A11 is activated in ESCC progression still remains unclear. In the current study, we demonstrated that DNA methylation and the subsequent histone posttranslational modifications play crucial roles in the regulation of MAGE-A11 in ESCC progression. We found that the methylation rate of TFCP2/ZEB1 binding site on MAGE-A11 promoter in ESCC tissues and cells is higher than the normal esophageal epithelial tissues and cells. Transcription factors TFCP2 and ZEB1 directly bind MAGE-A11 promoter and regulate the endogenous MAGE-A11 expression in a methylation-dependent manner in ESCC cells. Following MAGE-A11 promoter methylation, the methyl-CpG-binding protein MeCP2 was found to bind the methylated MAGE-A11 promoter to mediate histone deactylation by recruiting HDAC1 and HDAC2. Simultaneously, histone inactivation marks including H3K27me3 as well as H3K9me3 were increased, whereas histone activation mark H3K4me3 was decreased. HDAC inhibitor Trichostatin A (TSA) increased DNA methylase inhibitor Decitabine (DAC)-induced MAGE-A11 expression. siRNA-mediated knockdown of histone methltransferase EZH2 or DZNep (a EZH2 inhibitor) treatment increased DAC-induced MAGE-A11 expression. Our results indicate that MAGE-A11 is activated through DNA demethylation, histone acetylation and histone methylation in ESCC, and its activation promotes ESCC tumor growth.
Collapse
Affiliation(s)
- Shina Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Fei Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Weina Huang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Lina Gu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Lingjiao Meng
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Yingchao Ju
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China.,Animal Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Yunyan Wu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Juan Li
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Lihua Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Meixiang Sang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China.,Tumor Research Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| |
Collapse
|
22
|
Zhang J, Geng Y, Guo F, Zhang F, Liu M, Song L, Ma Y, Li D, Zhang Y, Xu H, Yang H. Screening and identification of critical transcription factors involved in the protection of cardiomyocytes against hydrogen peroxide-induced damage by Yixin-shu. Sci Rep 2017; 7:13867. [PMID: 29066842 PMCID: PMC5655617 DOI: 10.1038/s41598-017-10131-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/04/2017] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress initiates harmful cellular responses, such as DNA damage and protein denaturation, triggering a series of cardiovascular disorders. Systematic investigations of the transcription factors (TFs) involved in oxidative stress can help reveal the underlying molecular mechanisms and facilitate the discovery of effective therapeutic targets in related diseases. In this study, an integrated strategy which integrated RNA-seq-based transcriptomics techniques and a newly developed concatenated tandem array of consensus TF response elements (catTFREs)-based proteomics approach and then combined with a network pharmacology analysis, was developed and this integrated strategy was used to investigate critical TFs in the protection of Yixin-shu (YXS), a standardized medical product used for ischaemic heart disease, against hydrogen peroxide (H2O2)-induced damage in cardiomyocytes. Importantly, YXS initiated biological process such as anti-apoptosis and DNA repair to protect cardiomyocytes from H2O2-induced damage. By using the integrated strategy, DNA-(apurinic or apyrimidinic site) lyase (Apex1), pre B-cell leukemia transcription factor 3 (Pbx3), and five other TFs with their functions involved in anti-oxidation, anti-apoptosis and DNA repair were identified. This study offers a new understanding of the mechanism underlying YXS-mediated protection against H2O2-induced oxidative stress in cardiomyocytes and reveals novel targets for oxidative stress-related diseases.
Collapse
Affiliation(s)
- Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ya Geng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Defeng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
23
|
Zhang H, Gao G, Zhang Y, Sun Y, Li H, Dong S, Ma W, Liu B, Wang W, Wu H, Zhang H. Glucose Deficiency Elevates Acid-Sensing Ion Channel 2a Expression and Increases Seizure Susceptibility in Temporal Lobe Epilepsy. Sci Rep 2017; 7:5870. [PMID: 28725010 PMCID: PMC5517604 DOI: 10.1038/s41598-017-05038-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/24/2017] [Indexed: 01/09/2023] Open
Abstract
Brain hypometabolism is a common epilepsy-related finding in both patients and animal models. Fluorodeoxyglucose positron emission tomography studies have shown that recurrent seizures lead to reduced glucose metabolism in certain brain regions, but no studies have definitively determined whether this induces epileptogenesis. There is evidence that acid-sensing ion channel 2a (ASIC2a) affects epilepsy susceptibility. Transcription factor CP2 (TFCP2) regulates ASIC2a expression. We report that suppressed TFCP2 expression and elevated ASIC2a expression were associated with glucose hypometabolism in the hippocampi of humans with epilepsy and of rat epilepsy model brains. In cultured PC12 cells, we determined that glucose deficiency led to TFCP2 downregulating ASIC2a. Moreover, electrophysiological recordings from cultured rat hippocampal slices showed that ASIC2a overexpression resulted in more action potentials in CA1 pyramidal neurons and increased seizure susceptibility. Our findings suggest that hippocampal glucose hypometabolism elevates ASIC2a expression by suppressing TFCP2 expression, which further enhances the intrinsic excitability of CA1 pyramidal neurons and increases seizure susceptibility in patients with temporal lobe epilepsy.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Yu Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Yang Sun
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Huanfa Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Shan Dong
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Wei Ma
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Bei Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Weiwen Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Hao Wu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China.
| | - Hua Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China.
| |
Collapse
|
24
|
Kim JS, Son SH, Kim MY, Choi D, Jang IS, Paik SS, Chae JH, Uversky VN, Kim CG. Diagnostic and prognostic relevance of CP2c and YY1 expression in hepatocellular carcinoma. Oncotarget 2017; 8:24389-24400. [PMID: 28412749 PMCID: PMC5421856 DOI: 10.18632/oncotarget.15462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/02/2017] [Indexed: 12/23/2022] Open
Abstract
Recent studies have demonstrated an oncogenic role of the transcription factor (TF) CP2c in hepatocellular carcinoma (HCC) based on a strong correlation between CP2c expression, tumor grade, and aggressiveness. We recently found that CP2c directly interacts with another TF, YY1, which is also overexpressed in multiple cancers, including HCC. To evaluate if these proteins are co-regulated in carcinogenesis, we analyzed the expression of CP2c and YY1 in HCC (n = 136) tissues and examined the correlation between their expression and clinicopathological characteristics of HCC. Receiver operating characteristic analysis exhibited the validity of CP2c and nuclear YY1 expression as a diagnostic factor in HCC tissues. High expression of CP2c was significantly correlated with patient age, and higher histological grade, American Joint Committee on Cancer (AJCC) stage, and small and large vessel invasion in HCC tissues, whereas high expression of nuclear YY1 was significantly associated with higher AJCC stage and small vessel invasion. In univariate and multivariate analyses, high expression of CP2c was significantly correlated with disease free survival (DFS), indicating that CP2c expression is an independent prognostic factor for DFS in HCC patients. Patients with high expression of both CP2c and nuclear YY1 usually had a shorter median survival time and worse DFS prognosis than other patients, suggesting that combined detection of CP2c and nuclear YY1 is a useful prognostic marker in HCC patients.
Collapse
Affiliation(s)
- Ji Sook Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - DongHo Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Ik-Soon Jang
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon 34133, Korea
| | - Seung Sam Paik
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Ji Hyung Chae
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
25
|
TFCP2 Genetic Polymorphism Is Associated with Predisposition to and Transplant Prognosis of Hepatocellular Carcinoma. Gastroenterol Res Pract 2017; 2017:6353248. [PMID: 28348581 PMCID: PMC5350294 DOI: 10.1155/2017/6353248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
TFCP2 is an oncogene and plays crucial roles in the incidence and progression of hepatocellular carcinoma (HCC). However, no reports are available on the impact of TFCP2 genetic polymorphism on the susceptibility to and the transplant prognosis of HCC. Here, we genotyped 7 SNPs of TFCP2 in a case-control study of 119 patients with HCC and 200 patients with chronic liver disease. Of the 7 SNPs in TFCP2, rs7959378 distributed differentially between patients with versus patients without HCC. The patients with the CA (OR = 0.58, 95% CI = 0.35–0.96), the CC (OR = 0.39, 95% CI = 0.20–0.76), and the CA/CC (OR = 0.52, 95% CI = 0.32–0.83) genotypes had significantly decreased risk for HCC compared with those carrying the rs7959378 AA genotype. After adjusting for confounding factors, rs7959378 still conferred significant risk for HCC. Furthermore, the patients who carried rs7959378 AC/CC had a higher overall survival and lower relapse-free survival than those with the rs7959378 AA genotype. Similar results were found in the multivariate analysis adjusted by AFP, tumor size and tumor number, and differentiation. These findings indicate that rs7959378 is associated with the risk of HCC in patient with chronic liver disease and prognosis of HCC patients after liver transplantation.
Collapse
|
26
|
A Transcriptomic Study of Maternal Thyroid Adaptation to Pregnancy in Rats. Int J Mol Sci 2015; 16:27339-49. [PMID: 26580608 PMCID: PMC4661888 DOI: 10.3390/ijms161126030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 01/22/2023] Open
Abstract
Thyroid disorders are relatively frequently observed in pregnant women. However, the impact of pregnancy on maternal thyroid has not been systematically evaluated. In the present study, using the rat as an animal model, we observed that the weight of maternal thyroid increased by about 18% in late pregnancy. To gain an insight into the molecular mechanisms, we took advantage of RNA-seq approaches to investigate global gene expression changes in the maternal thyroid. We identified a total of 615 differentially expressed genes, most of which (558 genes or 90.7%) were up-regulated in late pregnancy compared to the non-pregnant control. Gene ontology analysis showed that genes involved in cell cycle and metabolism were significantly enriched among up-regulated genes. Unexpectedly, pathway analysis revealed that expression levels for key components of the thyroid hormone synthesis pathway were not significantly altered. In addition, by examining of the promoter regions of up-regulated genes, we identified MAZ (MYC-associated zinc finger protein) and TFCP2 (transcription factor CP2) as two causal transcription factors. Our study contributes to an increase in the knowledge on the maternal thyroid adaptation to pregnancy.
Collapse
|
27
|
Xu X, Liu Z, Zhou L, Xie H, Cheng J, Ling Q, Wang J, Guo H, Wei X, Zheng S. Characterization of genome-wide TFCP2 targets in hepatocellular carcinoma: implication of targets FN1 and TJP1 in metastasis. J Exp Clin Cancer Res 2015; 34:6. [PMID: 25609232 PMCID: PMC4311423 DOI: 10.1186/s13046-015-0121-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/04/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transcription factor CP2 (TFCP2) is overexpressed in hepatocellular carcinoma(HCC) and correlated with the progression of the disease. Here we report the use of an integrated systems biology approach to identify genome-wide scale map of TFCP2 targets as well as the molecular function and pathways regulated by TFCP2 in HCC. METHODS We combined Chromatin immunoprecipitation (ChIP) on chip along with gene expression microarrays to study global transcriptional regulation of TFCP2 in HCC. The biological functions, molecular pathways, and networks associated with TFCP2 were identified using computational approaches. Validation of selected target gene expression and direct binding of TFCP2 to promoters were performed by ChIP -PCR and promoter reporter. RESULTS TFCP2 fostered a highly aggressive and metastatic phenotype in different HCC cells. Transcriptome analysis showed that alteration of TFCP2 in HCC cells led to change of genes in biological functions involved in cancer, cellular growth and proliferation, angiogenesis, cell movement and attachment. Pathways related to cell movement and cancer progression were also enriched. A quest for TFCP2-regulated factors contributing to metastasis, by integration of transcriptome and ChIP on chip assay, identified fibronectin 1 (FN1) and tight junction protein 1 (TJP1) as targets of TFCP2, and as key mediators of HCC metastasis. Promoter reporter identified the TFCP2-responsive region, and located the motifs of TFCP2-binding sites in the FN1 promoter, which then was confirmed by ChIP-PCR. We further showed that FN1 inhibition blocks the TFCP2-induced increase in HCC cell aggression, and that overexpression of TFCP2 can rescue the effects of FN1 inhibition. Knock down of TJP1 could also rescue, at least in part, the aggressive effect of TFCP2 knockdown in HCC cells. CONCLUSIONS The identification of global targets, molecular pathways and networks associated with TFCP2, together with the discovery of the effect of TFCP2 on FN1 and TJP1 that are involved in metastasis, adds to our understanding of the mechanisms that determine a highly aggressive and metastatic phenotype in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, HangZhou, China.
| | - Zhikun Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, HangZhou, China.
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, HangZhou, China.
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, HangZhou, China.
| | - Jun Cheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, HangZhou, China.
| | - Qi Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, HangZhou, China.
| | - Jianguo Wang
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, HangZhou, China.
| | - Haijun Guo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, HangZhou, China.
| | - Xuyong Wei
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, HangZhou, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, HangZhou, China.
| |
Collapse
|
28
|
Kuster DW, Merkus D, Blonden LA, Kremer A, van IJcken WF, Verhoeven AJ, Duncker DJ. Gene reprogramming in exercise-induced cardiac hypertrophy in swine: A transcriptional genomics approach. J Mol Cell Cardiol 2014; 77:168-74. [DOI: 10.1016/j.yjmcc.2014.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
|
29
|
Jiang H, Du J, Jin J, Qi X, Pu Y, Fei B. LSF expression and its prognostic implication in colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:6024-6031. [PMID: 25337247 PMCID: PMC4203218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/20/2014] [Indexed: 06/04/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the fourth most common cause of cancer death. Therapy failure was the first cause of death. LSF is a transcription factor regulating gene expression of angiogenesis, tumor invasion and proliferation, and is identified as a chemoresistant gene. Real-time PCR and Western blot to analyze mRNA and protein expression of LSF in 23 paired CRC samples. Immunohistochemistry was used to detect protein expression of LSF in 166 paired CRC samples. Both LSF mRNA and protein were upregulated in CRC. High LSF expression in CRC correlated with large tumor size, advanced pN stage, advanced AJCC stage and high Ki-67 index (P < 0.001). High expression of LSF favored worse prognosis. 5-year survival rates of LSF high and low expression were 39.6% and 78.6%, respectively. The 5-year median OS were 34 months and 57 months, respectively. LSF is an important mediator in CRC tumorigenesis and progression, and LSF expression is an important index for and prognostic prediction.
Collapse
Affiliation(s)
- Hui Jiang
- Department of General Surgery, The Affiliated Hospital of Jiangnan University200 Huihe Road, Wuxi 214062, China
- Department of General Surgery, The 4 People’s Hospital of Wuxi200 Huihe Road, Wuxi 214062, China
| | - Jun Du
- Department of General Surgery, The Affiliated Hospital of Jiangnan University200 Huihe Road, Wuxi 214062, China
- Department of General Surgery, The 4 People’s Hospital of Wuxi200 Huihe Road, Wuxi 214062, China
| | - Jianqiang Jin
- Department of Clinical Pathology, The Affiliated Hospital of Jiangnan University200 Huihe Road, Wuxi 214062, China
- Department of Clinical Pathology, The 4 People’s Hospital of Wuxi200 Huihe Road, Wuxi 214062, China
| | - Xiaowei Qi
- Department of Clinical Pathology, The Affiliated Hospital of Jiangnan University200 Huihe Road, Wuxi 214062, China
- Department of Clinical Pathology, The 4 People’s Hospital of Wuxi200 Huihe Road, Wuxi 214062, China
| | - Yong Pu
- Department of Clinical Pathology, The Affiliated Hospital of Jiangnan University200 Huihe Road, Wuxi 214062, China
- Department of Clinical Pathology, The 4 People’s Hospital of Wuxi200 Huihe Road, Wuxi 214062, China
| | - Bojian Fei
- Department of General Surgery, The Affiliated Hospital of Jiangnan University200 Huihe Road, Wuxi 214062, China
- Department of Clinical Pathology, The 4 People’s Hospital of Wuxi200 Huihe Road, Wuxi 214062, China
| |
Collapse
|
30
|
Jo KS, Jo HR, Kim CG, Kim CG, Won HS. Intrinsically disordered fold of a PIAS1-binding domain of CP2b. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2014. [DOI: 10.6564/jkmrs.2014.18.1.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Abstract
Hepatocellular carcinoma (HCC) is a highly virulent malignancy with diverse etiology. Identification of a common mediator of aggressive progression of HCC would be extremely beneficial not only for diagnostic/prognostic purposes but also for developing targeted therapies. AEG-1/MTDH/LYRIC gene is amplified in human HCC patients, and overexpression of AEG-1/MTDH/LYRIC has been identified in a high percentage of both hepatitis B virus and hepatitis C virus positive HCC cases, suggesting its key role in regulating hepatocarcinogenesis. Important insights into the molecular mechanisms mediating oncogenic properties of AEG-1/MTDH/LYRIC, especially regulating chemoresistance, angiogenesis, and metastasis, have been obtained from studies using HCC model. Additionally, analysis of HCC model has facilitated the identification of AEG-1/MTDH/LYRIC downstream genes and interacting proteins, thereby unraveling novel players regulating HCC development and progression leading to the development of novel interventional strategies. Characterization of a hepatocyte-specific AEG-1/MTDH/LYRIC transgenic mouse (Alb/AEG-1) has revealed novel aspects of AEG-1/MTDH/LYRIC function in in vivo contexts. Combination of AEG-1/MTDH/LYRIC inhibition and chemotherapy has documented significant efficacy in abrogating human HCC xenografts in nude mice indicating the need for developing effective AEG-1/MTDH/LYRIC inhibition strategies to obtain objective response and survival benefits in terminal HCC patients.
Collapse
Affiliation(s)
- Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
32
|
Broniarczyk JK, Warowicka A, Kwaśniewska A, Wohuń-Cholewa M, Kwaśniewski W, Goździcka-Józefiak A. Expression of TSG101 protein and LSF transcription factor in HPV-positive cervical cancer cells. Oncol Lett 2014; 7:1409-1413. [PMID: 24765146 PMCID: PMC3997686 DOI: 10.3892/ol.2014.1967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/07/2014] [Indexed: 11/23/2022] Open
Abstract
Our previous study demonstrated a decreased expression of tumor susceptibility gene 101 (TSG101) in cervical cancer cells. To identify the mechanism responsible for TSG101 downregulation during cervical cancer development, we analyzed the TSG101 promoter using cis-element cluster finder software. One of the transcription factors whose binding site was detected in the TSG101 promoter was late SV40 factor (LSF). The aim of this study was to analyze the TSG101 protein and LSF expression levels during cervical cancer development. Immunohistochemical analysis confirmed a previously observed decreased expression of TSG101, whereas quantitative polymerase chain reaction (qPCR) and immunohistochemistry analysis revealed high expression of LSF in cervical, precancer and cancer cells compared with human papillomavirus (HPV)-negative non-cancer samples. High expression of LSF in cervical cancer HPV-positive cells suggests that this protein may be important in the regulation of TSG101 expression, as well as in cervical carcinogenesis. The role of LSF as a mediator in cervical cancer development must be confirmed in future studies.
Collapse
Affiliation(s)
| | - Alicja Warowicka
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań 61-614, Poland
| | - Anna Kwaśniewska
- Department of Obstetrics and Gynecology, Medical University of Lublin, Lublin 20-081, Poland
| | - Maria Wohuń-Cholewa
- Department of Cell Biology, University of Medical Science, Poznan 60-806, Poland
| | - Wojciech Kwaśniewski
- First Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin 20-081, Poland
| | | |
Collapse
|
33
|
Kim MY, Chae JH, Oh CH, Kim CG. A DNA immunoprecipitation assay used in quantitative detection of in vitro DNA-protein complex binding. Anal Biochem 2013; 441:147-51. [PMID: 23871997 DOI: 10.1016/j.ab.2013.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/30/2013] [Accepted: 07/07/2013] [Indexed: 11/25/2022]
Abstract
To begin gene transcription, several transcription factors must bind to specific DNA sequences to form a complex via DNA-protein interactions. We established an in vitro method for specific and sensitive analyses of DNA-protein interactions based on a DNA immunoprecipitation (DIP) method. We verified the accuracy and efficiency of the DIP assay in quantitatively measuring DNA-protein binding using transcription factor CP2c as a model. With our DIP assay, we could detect specific interactions within a DNA-CP2c complex, with reproducible and quantitative binding values. In addition, we were able to effectively measure the changes in DNA-CP2c binding by the addition of a small molecule, FQI1 (factor quinolinone inhibitor 1), previously identified as a specific inhibitor of this binding. To identify a new regulator of DNA-CP2c binding, we analyzed several CP2c binding peptides and found that only one class of peptide severely inhibits DNA-CP2c binding. These data show that our DIP assay is very useful in quantitatively detecting the binding dynamics of DNA-protein complex. Because DNA-protein interaction is very dynamic in different cellular environments, our assay can be applied to the detection of active transcription factors, including promoter occupancy in normal and disease conditions. Moreover, it may be used to develop a targeted regulator of specific DNA-protein interaction.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Life Science and Research Institute of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | | | | | | |
Collapse
|
34
|
Akerman L, Ludvigsson J, Casas R. Low C-peptide levels and decreased expression of TNF and CD45 in children with high risk of type 1 diabetes. Clin Immunol 2013; 148:4-15. [PMID: 23644451 DOI: 10.1016/j.clim.2013.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes (T1D) patients have numeral and functional defects in peripheral immune cells, but the pre-diabetic period is fairly uncharacterized. Our aim was to analyze expression of immunological markers in T1D high risk children and relate it to clinical/immunological parameters. Children from ABIS (All Babies in Southeast Sweden) with ≥2 diabetes related autoantibodies were considered at high risk. Age-matched controls and new-onset T1D patients were included. Expression of genes related to immune cell function and different arms of the immune system was assessed in peripheral blood mononuclear cells using PCR array. Risk children had lower TNF and CD45, and although there were few differences between the groups, expression of many genes differed when comparing children with regard to residual insulin secretion. Hence, expression of immune related genes seemed related not only to the autoimmune process but rather to residual β-cell function, which was decreased already during the pre-diabetic phase.
Collapse
Affiliation(s)
- Linda Akerman
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | |
Collapse
|
35
|
Pinney SE, Ganapathy K, Bradfield J, Stokes D, Sasson A, Mackiewicz K, Boodhansingh K, Hughes N, Becker S, Givler S, Macmullen C, Monos D, Ganguly A, Hakonarson H, Stanley CA. Dominant form of congenital hyperinsulinism maps to HK1 region on 10q. Horm Res Paediatr 2013; 80:18-27. [PMID: 23859901 PMCID: PMC3876732 DOI: 10.1159/000351943] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/10/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/AIMS In a family with congenital hyperinsulinism (HI), first described in the 1950s by McQuarrie, we examined the genetic locus and clinical phenotype of a novel form of dominant HI. METHODS We surveyed 25 affected individuals, 7 of whom participated in tests of insulin dysregulation (24-hour fasting, oral glucose and protein tolerance tests). To identify the disease locus and potential disease-associated mutations we performed linkage analysis, whole transcriptome sequencing, whole genome sequencing, gene capture, and next generation sequencing. RESULTS Most affecteds were diagnosed with HI before age one and 40% presented with a seizure. All affecteds responded well to diazoxide. Affecteds failed to adequately suppress insulin secretion following oral glucose tolerance test or prolonged fasting; none had protein-sensitive hypoglycemia. Linkage analysis mapped the HI locus to Chr10q21-22, a region containing 48 genes. Three novel noncoding variants were found in hexokinase 1 (HK1) and one missense variant in the coding region of DNA2. CONCLUSION Dominant, diazoxide-responsive HI in this family maps to a novel locus on Chr10q21-22. HK1 is the more attractive disease gene candidate since a mutation interfering with the normal suppression of HK1 expression in beta-cells could readily explain the hypoglycemia phenotype of this pedigree.
Collapse
Affiliation(s)
- Sara E. Pinney
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Karthik Ganapathy
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jonathan Bradfield
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - David Stokes
- Translational Core Facility, Clinical and Translational Research Center, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Ariella Sasson
- Center for Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Katarzyna Mackiewicz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kara Boodhansingh
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nkecha Hughes
- Translational Core Facility, Clinical and Translational Research Center, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Susan Becker
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Stephanie Givler
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Courtney Macmullen
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Dimitrios Monos
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA,Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Hakon Hakonarson
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA,Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Charles A. Stanley
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
36
|
The functions of grainy head-like proteins in animals and fungi and the evolution of apical extracellular barriers. PLoS One 2012; 7:e36254. [PMID: 22590528 PMCID: PMC3348937 DOI: 10.1371/journal.pone.0036254] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
The Grainy head (GRH) family of transcription factors are crucial for the development and repair of epidermal barriers in all animals in which they have been studied. This is a high-level functional conservation, as the known structural and enzymatic genes regulated by GRH proteins differ between species depending on the type of epidermal barrier being formed. Interestingly, members of the CP2 superfamily of transcription factors, which encompasses the GRH and LSF families in animals, are also found in fungi--organisms that lack epidermal tissues. To shed light on CP2 protein function in fungi, we characterized a Neurospora crassa mutant lacking the CP2 member we refer to as grainy head-like (grhl). We show that Neurospora GRHL has a DNA-binding specificity similar to that of animal GRH proteins and dissimilar to that of animal LSF proteins. Neurospora grhl mutants are defective in conidial-spore dispersal due to an inability to remodel the cell wall, and we show that grhl mutants and the long-known conidial separation-2 (csp-2) mutants are allelic. We then characterized the transcriptomes of both Neurospora grhl mutants and Drosophila grh mutant embryos to look for similarities in the affected genes. Neurospora grhl appears to play a role in the development and remodeling of the cell wall, as well as in the activation of genes involved in defense and virulence. Drosophila GRH is required to activate the expression of many genes involved in cuticular/epidermal-barrier formation. We also present evidence that GRH plays a role in adult antimicrobial defense. These results, along with previous studies of animal GRH proteins, suggest the fascinating possibility that the apical extracellular barriers of some animals and fungi might share an evolutionary connection, and that the formation of physical barriers in the last common ancestor was under the control of a transcriptional code that included GRH-like proteins.
Collapse
|
37
|
Santhekadur PK, Rajasekaran D, Siddiq A, Gredler R, Chen D, Schaus SE, Hansen U, Fisher PB, Sarkar D. The transcription factor LSF: a novel oncogene for hepatocellular carcinoma. Am J Cancer Res 2012; 2:269-285. [PMID: 22679558 PMCID: PMC3365805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/05/2012] [Indexed: 06/01/2023] Open
Abstract
The transcription factor LSF (Late SV40 Factor), also known as TFCP2, belongs to the LSF/CP2 family related to Grainyhead family of proteins and is involved in many biological events, including regulation of cellular and viral promoters, cell cycle, DNA synthesis, cell survival and Alzheimer's disease. Our recent studies establish an oncogenic role of LSF in Hepatocellular carcinoma (HCC). LSF overexpression is detected in human HCC cell lines and in more than 90% cases of human HCC patients, compared to normal hepatocytes and liver, and its expression level showed significant correlation with the stages and grades of the disease. Forced overexpression of LSF in less aggressive HCC cells resulted in highly aggressive, angiogenic and multi-organ metastatic tumors in nude mice. Conversely, inhibition of LSF significantly abrogated growth and metastasis of highly aggressive HCC cells in nude mice. Microarray studies revealed that as a transcription factor LSF modulated specific genes regulating invasion, angiogenesis, chemoresistance and senescence. LSF transcriptionally regulates thymidylate synthase (TS) gene, thus contributing to cell cycle regulation and chemoresistance. Our studies identify a network of proteins, including osteopontin (OPN), Matrix metalloproteinase-9 (MMP-9), c-Met and complement factor H (CFH), that are directly regulated by LSF and play important role in LSF-induced hepatocarcinogenesis. A high throughput screening identified small molecule inhibitors of LSF DNA binding and the prototype of these molecules, Factor Quinolinone inhibitor 1 (FQI1), profoundly inhibited cell viability and induced apoptosis in human HCC cells without exerting harmful effects to normal immortal human hepatocytes and primary mouse hepatocytes. In nude mice xenograft studies, FQI1 markedly inhibited growth of human HCC xenografts as well as angiogenesis without exerting any toxicity. These studies establish a key role of LSF in hepatocarcinogenesis and usher in a novel therapeutic avenue for HCC, an invariably fatal disease.
Collapse
Affiliation(s)
- Prasanna K Santhekadur
- Department of Human and Molecular Genetics,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| | - Devaraja Rajasekaran
- Department of Human and Molecular Genetics,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| | - Ayesha Siddiq
- Department of Human and Molecular Genetics,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| | - Rachel Gredler
- Department of Human and Molecular Genetics,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| | - Dong Chen
- Department of Pathology,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| | - Scott E Schaus
- Department of Chemistry, Center for Chemical Methodology and Library Development at Boston University (CMLDBU)Boston, MA 02215, USA
| | - Ulla Hansen
- Department of Biology, Boston UniversityBoston, MA 02215, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
- VCU Massey Cancer Center,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
- Department of Pathology,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
- VCU Massey Cancer Center,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| |
Collapse
|
38
|
Pozzesi N, Pierangeli S, Vacca C, Falchi L, Pettorossi V, Martelli MP, Thuy TT, Ninh PT, Liberati AM, Riccardi C, Sung TV, Delfino DV. Maesopsin 4-O-beta-D-glucoside, a natural compound isolated from the leaves of Artocarpus tonkinensis, inhibits proliferation and up-regulates HMOX1, SRXN1 and BCAS3 in acute myeloid leukemia. J Chemother 2011; 23:150-7. [PMID: 21742584 DOI: 10.1179/joc.2011.23.3.150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The leaves of Artocarpus tonkinensis are used in Vietnamese traditional medicine for treatment of arthritis, and the compound maesopsin 4-O-β-D-glucoside (TAT-2), isolated from them, inhibits the proliferation of activated T cells. Our goal was to test the anti-proliferative activity of TAT-2 on the T-cell leukemia, Jurkat, and on the acute myeloid leukemia, OCI-AML. TAT-2 inhibited the growth of OCI-AML (and additional acute myeloid leukemia cells) but not Jurkat cells. Growth inhibition was shown to be due to inhibition of proliferation rather than increase in cell death. Analysis of cytokine release showed that TAT-2 stimulated the release of TGF-β, yet TGF-β neutralization did not reverse the maesopsin-dependent effect. Gene expression profiling determined that maesopsin modulated 19 identifiable genes. Transcription factor CP2 was the gene most significantly modulated. Real-time PCR validated that up-regulation of sulphiredoxin 1 homolog (SRXN1), hemeoxygenase 1 (HMOX1), and breast carcinoma amplified sequence 3 (BCAS3) were consistently modulated.
Collapse
Affiliation(s)
- N Pozzesi
- Section of Pharmacology, Toxicology and Chemotherapy, Department of Clinical and Experimental Medicine, University of Perugia, Via del Giochetto, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yoo BK, Gredler R, Chen D, Santhekadur PK, Fisher PB, Sarkar D. c-Met activation through a novel pathway involving osteopontin mediates oncogenesis by the transcription factor LSF. J Hepatol 2011; 55:1317-24. [PMID: 21703197 PMCID: PMC3183108 DOI: 10.1016/j.jhep.2011.02.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/17/2011] [Accepted: 02/25/2011] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Understanding the molecular pathogenesis of hepatocellular carcinoma (HCC) would facilitate development of targeted and effective therapies for this fatal disease. We recently demonstrated that the cellular transcription factor Late SV40 Factor (LSF) is overexpressed in more than 90% of human HCC cases, compared to the normal liver, and plays a seminal role in hepatocarcinogenesis. LSF transcriptionally upregulates osteopontin (OPN) that plays a significant role in mediating the oncogenic function of LSF. The present study aims at a better understanding of LSF function by analyzing the signaling pathway modulated by LSF. METHODS Phospho-receptor tyrosine kinase (RTK) array was performed to identify which receptor tyrosine kinases are activated by LSF. Immunohistochemical analysis using tissue microarray was performed to establish correlation among LSF, OPN, and phospho-c-Met levels in HCC patients. Co-immunoprecipitation analysis was performed to check OPN-induced CD44 and c-Met interaction. Inhibition studies using chemicals and siRNAs were performed in vitro and in vivo using nude mice xenograft models to establish the importance of c-Met activation in mediating LSF function. RESULTS Secreted OPN, induced by LSF, activates c-Met via a potential interaction between OPN and its cell surface receptor CD44. A significant correlation was observed among LSF, OPN, and activated c-Met levels in HCC patients. Chemical or genetic inhibition of c-Met resulted in profound abrogation of LSF-mediated tumorigenesis and metastasis in nude mice xenograft studies. CONCLUSIONS The present findings elucidate a novel pathway of c-Met activation during hepatocarcinogenesis and support the rationale of using c-Met inhibitors as potential HCC therapeutics.
Collapse
Affiliation(s)
- Byoung Kwon Yoo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Rachel Gredler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Dong Chen
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Prasanna K. Santhekadur
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
40
|
Bagu ET, Santos MM. Friend of GATA suppresses the GATA-induced transcription of hepcidin in hepatocytes through a GATA-regulatory element in the HAMP promoter. J Mol Endocrinol 2011; 47:299-313. [PMID: 21971825 PMCID: PMC3307792 DOI: 10.1530/jme-11-0060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hepcidin is an antimicrobial peptide hormone involved in the metabolism of iron, encoded for by the HAMP gene mainly in hepatocytes. It's expressed at lower levels in other cells such as the macrophages. The mechanisms that determine tissue-specific expression of hepcidin remain unclear. GATA- and its co-factor Friend of GATA (FOG) modulate the tissue-specific transcription of other genes involved in the metabolism of iron. GATA proteins are group of evolutionary conserved transcriptional regulators that bind to the consensus motif -WGATAR- in the promoter. We characterized a 1.3 kb fragment of the 5'-flanking sequence of the HAMP gene in Huh7 cells, which express HAMP. Transfection of 5'-deletions of the HAMP promoter in Huh7 cells revealed two regions, -932/-878 and -155/-96, that when deleted decreased promoter activity. Using site-directed mutations in the HAMP promoter region -155/-96 we identified two subregions, -138/-125 and -103/-98, which when mutated suppressed promoter activity by 70 and 90% respectively. Site -103/-98 with a sequence -TTATCT- to which endogenous GATA proteins 4 and 6 bind and transactivate HAMP is a GATA-regulatory element (RE). Mutation of the GATA-RE abrogated binding of GATA proteins 4 and 6 to the promoter and blunted the GATA transactivation of HAMP. FOG proteins 1 and 2 suppressed the endogenous and exogenous GATA activation of the HAMP promoter. We concluded that the GATA-RE, -TTATCT- in the HAMP promoter region -103/-98 is crucial for the GATA-4 and GATA-6 driven transcription of hepcidin in Huh7 cells and that FOG proteins moderate the transcription by suppressing the GATA transactivation of HAMP.
Collapse
Affiliation(s)
- Edward T Bagu
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
41
|
Fan R, Chen P, Zhao D, Tong JL, Li J, Liu F. Cooperation of deregulated Notch signaling and Ras pathway in human hepatocarcinogenesis. J Mol Histol 2011; 42:473-81. [PMID: 21892768 DOI: 10.1007/s10735-011-9353-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/17/2011] [Indexed: 01/10/2023]
Abstract
Aberrant Notch signaling and Ras pathway had been highlighted a potential role for in human cancers. Yet, relatively little was known about the roles of wild type Notch signaling and Ras in human hepatocarcinogenesis. The aim of this study was to investigate the roles of Ras-Notch signaling cooperation in hepatic cells transformation and proliferation. Hepatocellular carcinoma specimens from 25 patients were analyzed for Notch-1, Ras and Late Simian Virus 40 Factor (LSF) expression using immunohistochemistry. Results showed that Notch-1(76%, 19/25, P < 0.0001), Ras (40%, 10/25, P < 0.01) and LSF (84%, 21/25, P < 0.0001) were significantly up-regulated in hepatocellular carcinoma compared with non-cancer samples. The correlations between the expression and the biological effects of Notch1 and Ras were analyzed by genetic and pharmacological methods. Constitutively active Notch1 alone failed to transform immortalized L02 cells in vivo, it synergized with the Ras pathway to promote hepatic cells transformation. However, their cooperation increased the levels of LSF mRNA and protein, which stimulates L02 cells proliferation. These results exhibited highly aggressive progression, suggesting that Notch-Ras cooperation maybe lead to poor prognosis. Thus, combining the inhibition of the two pathways provided an attractive avenue for therapeutic intervention to overcome this advanced disease.
Collapse
Affiliation(s)
- Renhua Fan
- Department of Pathology, School of Medicine, Southeast University, Nanjing 210009, China
| | | | | | | | | | | |
Collapse
|
42
|
Fan RH, Li J, Wu N, Chen PS. Late SV40 factor: A key mediator of Notch signaling in human hepatocarcinogenesis. World J Gastroenterol 2011; 17:3420-30. [PMID: 21876634 PMCID: PMC3160568 DOI: 10.3748/wjg.v17.i29.3420] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/26/2011] [Accepted: 03/05/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between late SV40 factor (LSF) and Notch signaling in the development and progress of hepatocellular carcinoma (HCC).
METHODS: Liver cancer tissue specimens from 25 patients were analyzed for Notch-1 and LSF expression by immunohistochemistry. The correlation between expression and the biological effects of Notch-1 and LSF were analyzed using genetic and pharmacological strategies in HCC cell lines and human normal cell lines, including hepatic stellate cells (HSC) and human embryonic kidney epithelial cells (HEK).
RESULTS: Immunohistochemistry showed that both Notch-1 and LSF were significantly upregulated in HCC samples (76%, 19/25, P < 0.0001 and 84%, 21/25, P < 0.0001, respectively) compared with non-cancer samples. Activation of Notch-1 by exogenous transfection of Notch1 intracellular domain increased LSF expression in HSC and HEK cells to levels similar to those seen in HepG2 cells. Furthermore, blocking Notch-1 activation with a γ-secretase inhibitor, DAPT, downregulated LSF expression in HepG2 cells. Additionally, a biological behavior assay showed that forced overexpression of LSF promoted HepG2 cell proliferation and invasion.
CONCLUSION: LSF is a key mediator of the Notch signaling pathway, suggesting that it might be a novel therapeutic target for the treatment of HCC.
Collapse
|
43
|
Abstract
Fibronectins are cell-secreted glycoproteins that modulate cell attachment, spreading, migration, morphology, differentiation and oncogenic transformation. Fibronectin expression is activated during EMT (epithelial-mesenchymal transition) and is a hallmark of mesenchymal cells. It is shown in the present study that a transcription factor previously unrelated with EMT, TFCP2c/LSF/LBP-1c, was translocated to the nucleus and bound to the fibronectin promoter upon EMT induction by Snail1. Consequently, the interference of TFCP2c/LSF/LBP-1c's activity prevented fibronectin expression. Moreover, TFCP2c/LSF/LBP-1c was detected in nuclei of embryonic dermal mesenchymal cells adjacent to the hair bud, a cell population that expresses endogenous nuclear Snail1 and fibronectin. Therefore we indicate a new molecular role for TFCP2c/LSF/LBP-1c in fibronectin expression.
Collapse
|
44
|
Tang P, Frankenberg S, Argentaro A, Graves JM, Familari M. Comparative analysis of the ATRX promoter and 5' regulatory region reveals conserved regulatory elements which are linked to roles in neurodevelopment, alpha-globin regulation and testicular function. BMC Res Notes 2011; 4:200. [PMID: 21676266 PMCID: PMC3144453 DOI: 10.1186/1756-0500-4-200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 06/15/2011] [Indexed: 12/18/2022] Open
Abstract
Background ATRX is a tightly-regulated multifunctional protein with crucial roles in mammalian development. Mutations in the ATRX gene cause ATR-X syndrome, an X-linked recessive developmental disorder resulting in severe mental retardation and mild alpha-thalassemia with facial, skeletal and genital abnormalities. Although ubiquitously expressed the clinical features of the syndrome indicate that ATRX is not likely to be a global regulator of gene expression but involved in regulating specific target genes. The regulation of ATRX expression is not well understood and this is reflected by the current lack of identified upstream regulators. The availability of genomic data from a range of species and the very highly conserved 5' regulatory regions of the ATRX gene has allowed us to investigate putative transcription factor binding sites (TFBSs) in evolutionarily conserved regions of the mammalian ATRX promoter. Results We identified 12 highly conserved TFBSs of key gene regulators involved in biologically relevant processes such as neural and testis development and alpha-globin regulation. Conclusions Our results reveal potentially important regulatory elements in the ATRX gene which may lead to the identification of upstream regulators of ATRX and aid in the understanding of the molecular mechanisms that underlie ATR-X syndrome.
Collapse
Affiliation(s)
- Paisu Tang
- Department of Zoology, University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
45
|
Sebé-Pedrós A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 2010; 28:1241-1254. [PMID: 21087945 DOI: 10.1093/molbev/msq309] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How animals (metazoans) originated from their single-celled ancestors remains a major question in biology. As transcriptional regulation is crucial to animal development, deciphering the early evolution of associated transcription factors (TFs) is critical to understanding metazoan origins. In this study, we uncovered the repertoire of 17 metazoan TFs in the amoeboid holozoan Capsaspora owczarzaki, a representative of a unicellular lineage that is closely related to choanoflagellates and metazoans. Phylogenetic and comparative genomic analyses with the broadest possible taxonomic sampling allowed us to formulate new hypotheses regarding the origin and evolution of developmental metazoan TFs. We show that the complexity of the TF repertoire in C. owczarzaki is strikingly high, pushing back further the origin of some TFs formerly thought to be metazoan specific, such as T-box or Runx. Nonetheless, TF families whose beginnings antedate the origin of the animal kingdom, such as homeodomain or basic helix-loop-helix, underwent significant expansion and diversification along metazoan and eumetazoan stems.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
| | - Alex de Mendoza
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
| | - B Franz Lang
- Department of Biochemistry, Université de Montréal, H3C 3J7 Montréal, Canada
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Iñaki Ruiz-Trillo
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain.,Institució Catalana per a la Recerca i Estudis Avançats (ICREA); Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
46
|
Modulation of CP2 family transcriptional activity by CRTR-1 and sumoylation. PLoS One 2010; 5:e11702. [PMID: 20661472 PMCID: PMC2908540 DOI: 10.1371/journal.pone.0011702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 06/22/2010] [Indexed: 12/13/2022] Open
Abstract
CRTR-1 is a member of the CP2 family of transcription factors. Unlike other members of the family which are widely expressed, CRTR-1 expression shows specific spatio-temporal regulation. Gene targeting demonstrates that CRTR-1 plays a central role in the maturation and function of the salivary glands and the kidney. CRTR-1 has also recently been identified as a component of the complex transcriptional network that maintains pluripotency in embryonic stem (ES) cells. CRTR-1 was previously shown to be a repressor of transcription. We examine the activity of CRTR-1 in ES and other cells and show that CRTR-1 is generally an activator of transcription and that it modulates the activity of other family members, CP2, NF2d9 and altNF2d9, in a cell specific manner. We also demonstrate that CRTR-1 activity is regulated by sumoylation at a single major site, residue K30. These findings imply that functional redundancy with other family members may mask important roles for CRTR-1 in other tissues, including the blastocyst stage embryo and embryonic stem cells.
Collapse
|
47
|
Yoo BK, Emdad L, Gredler R, Fuller C, Dumur CI, Jones KH, Jackson-Cook C, Su ZZ, Chen D, Saxena UH, Hansen U, Fisher PB, Sarkar D. Transcription factor Late SV40 Factor (LSF) functions as an oncogene in hepatocellular carcinoma. Proc Natl Acad Sci U S A 2010; 107:8357-62. [PMID: 20404171 PMCID: PMC2889542 DOI: 10.1073/pnas.1000374107] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive cancer with no currently available effective treatment. Understanding of the molecular mechanism of HCC development and progression is imperative for developing novel, effective, and targeted therapies for this lethal disease. In this article, we document that the cellular transcription factor Late SV40 Factor (LSF) plays an important role in HCC pathogenesis. LSF protein was significantly overexpressed in human HCC cells compared to normal hepatocytes. In 109 HCC patients, LSF protein was overexpressed in >90% cases, compared to normal liver, and LSF expression level showed significant correlation with the stages and grades of the disease. Forced overexpression of LSF in less aggressive HCC cells resulted in highly aggressive, angiogenic, and multiorgan metastatic tumors in nude mice. Conversely, inhibition of LSF significantly abrogated growth and metastasis of highly aggressive HCC cells in nude mice. Microarray studies revealed that as a transcription factor, LSF modulated specific genes regulating invasion, angiogenesis, chemoresistance, and senescence. The expression of osteopontin (OPN), a gene regulating every step in tumor progression and metastasis, was robustly up-regulated by LSF. It was documented that LSF transcriptionally up-regulates OPN, and loss-of-function studies demonstrated that OPN plays an important role in mediating the oncogenic functions of LSF. Together, these data establish a regulatory role of LSF in cancer, particularly HCC pathogenesis, and validate LSF as a viable target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Luni Emdad
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY 10029; and
| | | | | | | | | | - Colleen Jackson-Cook
- Departments of Human and Molecular Genetics and
- Pathology
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | | | | | | | - Ulla Hansen
- Department of Biology, Boston University, Boston, MA 02215
| | - Paul B. Fisher
- Departments of Human and Molecular Genetics and
- Virginia Commonwealth University Institute of Molecular Medicine, and
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Devanand Sarkar
- Departments of Human and Molecular Genetics and
- Pathology
- Virginia Commonwealth University Institute of Molecular Medicine, and
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
48
|
Kang HC, Chae JH, Jeon J, Kim W, Ha DH, Shin JH, Kim CG, Kim CG. PIAS1 regulates CP2c localization and active promoter complex formation in erythroid cell-specific alpha-globin expression. Nucleic Acids Res 2010; 38:5456-71. [PMID: 20421208 PMCID: PMC2938217 DOI: 10.1093/nar/gkq286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Data presented here extends our previous observations on α-globin transcriptional regulation by the CP2 and PIAS1 proteins. Using RNAi knockdown, we have now shown that CP2b, CP2c and PIAS1 are each necessary for synergistic activation of endogenous α-globin gene expression in differentiating MEL cells. In this system, truncated PIAS1 mutants lacking the ring finger domain recruited CP2c to the nucleus, as did wild-type PIAS1, demonstrating that this is a sumoylation-independent process. In vitro, recombinant CP2c, CP2b and PIAS1 bound DNA as a stable CBP (CP2c/CP2b/PIAS1) complex. Following PIAS1 knockdown in MEL cells, however, the association of endogenous CP2c and CP2b with the α-globin promoter simultaneously decreased. By mapping the CP2b- and CP2c-binding domains on PIAS1, and the PIAS1-binding domains on CP2b and CP2c, we found that two regions of PIAS1 that interact with CP2c/CP2b are required for its co-activator function. We propose that CP2c, CP2b, and PIAS1 form a hexametric complex with two units each of CP2c, CP2b, and PIAS1, in which PIAS1 serves as a clamp between two CP2 proteins, while CP2c binds directly to the target DNA and CP2b mediates strong transactivation.
Collapse
Affiliation(s)
- Ho Chul Kang
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 133-791, Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Traylor-Knowles N, Hansen U, Dubuc TQ, Martindale MQ, Kaufman L, Finnerty JR. The evolutionary diversification of LSF and Grainyhead transcription factors preceded the radiation of basal animal lineages. BMC Evol Biol 2010; 10:101. [PMID: 20398424 PMCID: PMC2873413 DOI: 10.1186/1471-2148-10-101] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 04/18/2010] [Indexed: 11/10/2022] Open
Abstract
Background The transcription factors of the LSF/Grainyhead (GRH) family are characterized by the possession of a distinctive DNA-binding domain that bears no clear relationship to other known DNA-binding domains, with the possible exception of the p53 core domain. In triploblastic animals, the LSF and GRH subfamilies have diverged extensively with respect to their biological roles, general expression patterns, and mechanism of DNA binding. For example, Grainyhead (GRH) homologs are expressed primarily in the epidermis, and they appear to play an ancient role in maintaining the epidermal barrier. By contrast, LSF homologs are more widely expressed, and they regulate general cellular functions such as cell cycle progression and survival in addition to cell-lineage specific gene expression. Results To illuminate the early evolution of this family and reconstruct the functional divergence of LSF and GRH, we compared homologs from 18 phylogenetically diverse taxa, including four basal animals (Nematostella vectensis, Vallicula multiformis, Trichoplax adhaerens, and Amphimedon queenslandica), a choanoflagellate (Monosiga brevicollis) and several fungi. Phylogenetic and bioinformatic analyses of these sequences indicate that (1) the LSF/GRH gene family originated prior to the animal-fungal divergence, and (2) the functional diversification of the LSF and GRH subfamilies occurred prior to the divergence between sponges and eumetazoans. Aspects of the domain architecture of LSF/GRH proteins are well conserved between fungi, choanoflagellates, and metazoans, though within the Metazoa, the LSF and GRH families are clearly distinct. We failed to identify a convincing LSF/GRH homolog in the sequenced genomes of the algae Volvox carteri and Chlamydomonas reinhardtii or the amoebozoan Dictyostelium purpureum. Interestingly, the ancestral GRH locus has become split into two separate loci in the sea anemone Nematostella, with one locus encoding a DNA binding domain and the other locus encoding the dimerization domain. Conclusions In metazoans, LSF and GRH proteins play a number of roles that are essential to achieving and maintaining multicellularity. It is now clear that this protein family already existed in the unicellular ancestor of animals, choanoflagellates, and fungi. However, the diversification of distinct LSF and GRH subfamilies appears to be a metazoan invention. Given the conserved role of GRH in maintaining epithelial integrity in vertebrates, insects, and nematodes, it is noteworthy that the evolutionary origin of Grh appears roughly coincident with the evolutionary origin of the epithelium.
Collapse
|
50
|
Hansen U, Owens L, Saxena UH. Transcription factors LSF and E2Fs: tandem cyclists driving G0 to S? Cell Cycle 2009; 8:2146-51. [PMID: 19556876 DOI: 10.4161/cc.8.14.9089] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell cycle progression in mammalian cells from G(1) into S phase requires sensing and integration of multiple inputs, in order to determine whether to continue to cellular DNA replication and subsequently, to cell division. Passage to S requires transition through the restriction point, which at a molecular level consists of a bistable switch involving E2Fs and pRb family members. At the G(1)/S boundary, a number of genes essential for DNA replication and cell cycle progression are upregulated, promoting entry into S phase. Although the activating E2Fs are the most extensively characterized transcription factors driving G(1)/S expression, LSF is also a transcription factor essential for stimulating G(1)/S gene expression. A critical LSF target gene at this stage, Tyms, encodes thymidylate synthetase. In investigating how LSF is activated in a cell cycle-dependent manner, we recently identified a novel time delay mechanism for regulating its activity during G(1) progression, which is apparently independent of the E2F/pRb axis. This involves inhibition of LSF in early G(1) by two major proliferative signaling pathways: ERK and cyclin C/CDK, followed by gradual dephosphorylation during mid- to late-G(1). Whether LSF and E2F act independently or in concert to promote G(1)/S progression remains to be determined.
Collapse
Affiliation(s)
- Ulla Hansen
- Department of Biology and Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|