1
|
Eaton DL, Williams DE, Coulombe RA. Species Differences in the Biotransformation of Aflatoxin B1: Primary Determinants of Relative Carcinogenic Potency in Different Animal Species. Toxins (Basel) 2025; 17:30. [PMID: 39852983 PMCID: PMC11768628 DOI: 10.3390/toxins17010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
It has been known since the early days of the discovery of aflatoxin B1 (AFB1) that there were large species differences in susceptibility to AFB1. It was also evident early on that AFB1 itself was not toxic but required bioactivation to a reactive form. Over the past 60 years there have been thousands of studies to delineate the role of ~10 specific biotransformation pathways of AFB1, both phase I (oxidation, reduction) and phase II (hydrolysis, conjugation, secondary oxidations, and reductions of phase I metabolites). This review provides a historical context and substantive analysis of each of these pathways as contributors to species differences in AFB1 hepatoxicity and carcinogenicity. Since the discovery of AFB1 as the toxic contaminant in groundnut meal that led to Turkey X diseases in 1960, there have been over 15,000 publications related to aflatoxins, of which nearly 8000 have addressed the significance of biotransformation (metabolism, in the older literature) of AFB1. While it is impossible to give justice to all of these studies, this review provides a historical perspective on the major discoveries related to species differences in the biotransformation of AFB1 and sets the stage for discussion of other papers in this Special Issue of the important role that AFB1 metabolites have played as biomarkers of exposure and effect in thousands of human studies on the toxic effects of aflatoxins. Dr. John Groopman has played a leading role in every step of the way-from initial laboratory studies on specific AFB1 metabolites to the application of molecular biomarkers in epidemiological studies associating dietary AFB1 exposure with liver cancer, and the design and conduct of chemoprevention clinical trials to reduce cancer risk from unavoidable aflatoxin exposures by alteration of specific AFB1 biotransformation pathways. This article is written in honor of Dr. Groopman's many contributions in this area.
Collapse
Affiliation(s)
- David L. Eaton
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - David E. Williams
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvalis, OR 97331, USA;
| | - Roger A. Coulombe
- Graduate Toxicology Program, Department of Veterinary Sciences, Utah State University, Logan, UT 84322, USA;
| |
Collapse
|
2
|
The Mechanism Underlying the Extreme Sensitivity of Duck to Aflatoxin B1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/9996503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most metabolites of aflatoxin B1 (AFB1), especially exo-AFB1-8,9-epoxide (AFBO), can induce the production of reactive oxygen species (ROS) to vary degrees, causing oxidative stress and liver damage, and ultimately induce liver cancer in humans and animals. Duck is one of the most sensitive animals to AFB1, and severe economic losses are caused by duck AFB1 poisoning every year, but the exact mechanism of this high sensitivity is still unclear. This review highlights significant advances in our understanding of the AFB1 metabolic activation, like cytochrome P450s (CYPs), and AFB1 metabolic detoxification, like glutathione S-transferases (GSTs) in poultry. In addition, AFB1 may have other metabolic pathways in poultry, such as the mutual conversion of AFB1 and aflatoxicol (AFL) and the process of AFBO to produce AFB1-8,9-dihydrodiol (AFB1-dhd) and further metabolize it into detoxification substances. This review also summarized some exogenous regulatory substances that can alleviate AFB1-induced oxidative stress.
Collapse
|
3
|
Liu S, Yang T, Ming TW, Gaun TKW, Zhou T, Wang S, Ye B. Isosteroid alkaloids from Fritillaria cirrhosa bulbus as inhibitors of cigarette smoke-induced oxidative stress. Fitoterapia 2019; 140:104434. [PMID: 31760067 DOI: 10.1016/j.fitote.2019.104434] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Fritillaria cirrhosa bulbus is a Chinese folk herb famous for its antitussive, expectorant, anti-asthma and anti-inflammatory properties, and is widely used to treat respiratory diseases. However, the impacts of F. cirrhosa bulbus on oxidative stress are still unkown. In the present study, we investigated the potential effect and mechanism of six isosteroid alkaloids with different chemical structures from F. cirrhosa bulbus on protection against cigarette smoke-induced oxidative stress in RAW264.7 macrophages. The results showed that six isosteroid alkaloids reduced reactive oxygen species (ROS) production, elevated glutathione (GSH) level and promoted heme oxygenase (HO-1) expression, which is in association with induction of NF-E2-related factor 2 (Nrf2) nuclear translocation and up-regulation of Nrf2 expression. Among these alkaloids, verticinone, verticine, imperialine-3-β-D-glucoside, delavine and peimisine exhibited more potent effect against CSE-induced oxidative stress than that of imperialine. These findings for the first time demonstrated that F. cirrhosa bulbus may play a protective role in cellular oxidative stress by activating Nrf2-mediated antioxidant pathway. Furthermore, the differences in antioxidant effects of these alkaloids were compared, as well as the corresponding structure-activity relationships were preliminarily elucidated. This suggested that F. cirrhosa bulbus might be a promising therapeutic treatment for the prevent of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Simei Liu
- Key Laboratory of Drug-Targeting, Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tiechui Yang
- Nin Jiom Medicine Manufactory (H.K.) Limited, Hongkong, China
| | - Tse Wai Ming
- Nin Jiom Medicine Manufactory (H.K.) Limited, Hongkong, China
| | | | - Ting Zhou
- Key Laboratory of Drug-Targeting, Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shu Wang
- Key Laboratory of Drug-Targeting, Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bengui Ye
- Key Laboratory of Drug-Targeting, Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Scalf CS, Chariker JH, Rouchka EC, Ashley NT. Transcriptomic analysis of immune response to bacterial lipopolysaccharide in zebra finch (Taeniopygia guttata). BMC Genomics 2019; 20:647. [PMID: 31412766 PMCID: PMC6693190 DOI: 10.1186/s12864-019-6016-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Despite the convergence of rapid technological advances in genomics and the maturing field of ecoimmunology, our understanding of the genes that regulate immunity in wild populations is still nascent. Previous work to assess immune function has relied upon relatively crude measures of immunocompetence. However, with next-generation RNA-sequencing, it is now possible to create a profile of gene expression in response to an immune challenge. In this study, captive zebra finch (Taeniopygia guttata; adult males) were challenged with bacterial lipopolysaccharide (LPS) or vehicle to stimulate the innate immune system. 2 hours after injection, birds were euthanized and hypothalami, spleen, and red blood cells (RBCs) were collected. Taking advantage of the fully sequenced genome of zebra finch, total RNA was isolated, sequenced, and partially annotated in these tissue/cells. RESULTS In hypothalamus, there were 707 significantly upregulated transcripts, as well as 564 and 144 in the spleen and RBCs, respectively, relative to controls. Also, 155 transcripts in the hypothalamus, 606 in the spleen, and 61 in the RBCs were significantly downregulated. More specifically, a number of immunity-related transcripts (e.g., IL-1β, RSAD2, SOCS3) were upregulated among tissues/cells. Additionally, transcripts involved in metabolic processes (APOD, LRAT, RBP4) were downregulated. CONCLUSIONS These results suggest a potential trade-off in expression of genes that regulate immunity and metabolism in birds challenged with LPS. This finding is consistent with a hypothermic response to LPS treatment in small birds. Unlike mammals, birds have nucleated RBCs, and these results support a novel transcriptomic response of avian RBCs to immune challenge.
Collapse
Affiliation(s)
- Cassandra S Scalf
- Department of Biology, Western Kentucky University, Bowling Green, KY, 42101-1800, USA
| | - Julia H Chariker
- Department of Neuroscience Training, University of Louisville, Louisville, KY, 40292, USA
| | - Eric C Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, 42101-1800, USA.
| |
Collapse
|
5
|
Liu N, Ding K, Wang JQ, Jia SC, Wang JP, Xu TS. Detoxification, metabolism, and glutathione pathway activity of aflatoxin B1 by dietary lactic acid bacteria in broiler chickens. J Anim Sci 2018; 95:4399-4406. [PMID: 29108062 DOI: 10.2527/jas2017.1644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) and the glutathione (GSH) pathway are protective against aflatoxin, but information on the effect of LAB on aflatoxin metabolism and GSH activity in farm animals is scarce. This study aimed to investigate the effects of LAB and aflatoxin B (AFB) on growth performance, aflatoxin metabolism, and GSH pathway activity using 480 male Arbor Acres broiler chickens from d 1 to 35 of age. Diets were arranged in a 2 × 2 factorial design, including AFB at 0 or 40 µg/kg of feed and LAB at 0 or 3 × 10 cfu/kg of feed, and the LAB was a mixture of equal amounts of , , and . The results showed that there were highly significant ( < 0.01) effects of AFB toxicity, LAB protection, and their interaction on ADFI, ADG, and G:F of broilers during d 1 to 35. Compared with the AFB diet, the LAB diet reduced ( < 0.05) the residues of AFB in the liver, kidney, serum, ileal digesta, and excreta on d 14 by 121.5, 80.6, 43.7, 47.0, and 26.5%, respectively, and on d 35 by 40.6, 60.2, 131.7, 37.9, and 32.9%, respectively, whereas the LAB diet increased ( < 0.05) the contents of aflatoxin M, a metabolite of AFB, in the liver, kidney, serum, and ileal digesta on d 14 by 98.2, 154.2, 168.6, 19.1, and 34.1%, respectively, and in the kidney and serum on d 35 by 32.6 and 142.2%, respectively. For the activity of the GSH pathway in the liver and duodenal mucosa, there were significant ( ≤ 0.01) effects of LAB and AFB on reduced GSH, glutathione S-transferases (GST), and glutathione reductase (GR) on d 14 and 35; compared with the control diet, the LAB diet increased ( < 0.05) GSH, GST, and GR by a range of 11.6 to 86.1%, and compared with the AFB diet, the LAB diet increased ( < 0.05) GSH, GST, and GR by a range of 24.1 to 146.9%. In the liver, there were interactions ( < 0.05) on GSH and GST on d 14 and on GSH on d 35; in the mucosa, interactions were significant ( ≤ 0.01) on GSH and GR on d 14 and on GST on d 35. It can be concluded that LAB is effective in the detoxification of AFB by modulating toxin metabolism and activating the GSH pathway in animals.
Collapse
|
6
|
Wang H, Li W, Muhammad I, Sun X, Cui X, Cheng P, Qayum A, Zhang X. Biochemical basis for the age-related sensitivity of broilers to aflatoxin B1. Toxicol Mech Methods 2018; 28:361-368. [PMID: 29327633 DOI: 10.1080/15376516.2018.1428258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, we investigated the mechanism underlying age-related susceptibility in broilers to aflatoxin B1 (AFB1). The results showed that AFB1 induced significant changes in serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT) activity & liver superoxide dismutase (SOD), malonaldehyde (MDA), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST) activity at day 7, 21 and 42 relative to control group. However, AFB1-induced changes in serum biochemical parameters and liver antioxidant activities become less severe with increasing age of broilers. Particularly, liver cytosolic GST activity increases with the age of broilers, crucial for the detoxification of AFB1. The mRNA expression level of Cytochrome P450 (CYP) enzymes was significantly higher at day 7, and decreases at day 21 and 42. While, the mRNA expression level of liver GSTA3, GSTA4 and EPHX1 increases with age of broilers. Maximum AFB1 residues level was detected at day 42 relative to day 7 and 21. While, AFM1 residues level increases (p < 0.05) from day 7 to 21, but decreases (p > 0.05) at day 42. Most importantly, our data confirmed the efficient AFB1-bioactivation by CYP enzymes and deficient detoxification of GST enzymes at younger age (∼7-day old) compared to older age. In summary, the age-related changes particularly in phase-I and phase-II enzymes mainly responsible for AFB1 bioactivation and detoxification may be partially accountable for the increased susceptibility of younger broilers (∼7-day old) compared to older broilers.
Collapse
Affiliation(s)
- He Wang
- a Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science , College of Veterinary Medicine, Northeast Agricultural University , Harbin , PR China
| | - Wei Li
- a Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science , College of Veterinary Medicine, Northeast Agricultural University , Harbin , PR China
| | - Ishfaq Muhammad
- a Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science , College of Veterinary Medicine, Northeast Agricultural University , Harbin , PR China
| | - Xiaoqi Sun
- a Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science , College of Veterinary Medicine, Northeast Agricultural University , Harbin , PR China
| | - Xiaoxu Cui
- b Changchun Dirui Medical Company Ltd , Changchun , PR China
| | - Ping Cheng
- a Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science , College of Veterinary Medicine, Northeast Agricultural University , Harbin , PR China
| | - Abdul Qayum
- c College of Food Science , Northeast Agricultural University , Harbin , PR China
| | - Xiuying Zhang
- a Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science , College of Veterinary Medicine, Northeast Agricultural University , Harbin , PR China
| |
Collapse
|
7
|
Li H, He H, Wang Z, Cai J, Sun B, Wu Q, Zhang Y, Zhou G, Yang L. Rice protein suppresses ROS generation and stimulates antioxidant gene expression via Nrf2 activation in adult rats. Gene 2016; 585:256-64. [DOI: 10.1016/j.gene.2016.03.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
|
8
|
Monson MS, Cardona CJ, Coulombe RA, Reed KM. Hepatic Transcriptome Responses of Domesticated and Wild Turkey Embryos to Aflatoxin B₁. Toxins (Basel) 2016; 8:toxins8010016. [PMID: 26751476 PMCID: PMC4728538 DOI: 10.3390/toxins8010016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 11/16/2022] Open
Abstract
The mycotoxin, aflatoxin B₁ (AFB₁) is a hepatotoxic, immunotoxic, and mutagenic contaminant of food and animal feeds. In poultry, AFB₁ can be maternally transferred to embryonated eggs, affecting development, viability and performance after hatch. Domesticated turkeys (Meleagris gallopavo) are especially sensitive to aflatoxicosis, while Eastern wild turkeys (M. g. silvestris) are likely more resistant. In ovo exposure provided a controlled AFB₁ challenge and comparison of domesticated and wild turkeys. Gene expression responses to AFB₁ in the embryonic hepatic transcriptome were examined using RNA-sequencing (RNA-seq). Eggs were injected with AFB₁ (1 μg) or sham control and dissected for liver tissue after 1 day or 5 days of exposure. Libraries from domesticated turkey (n = 24) and wild turkey (n = 15) produced 89.2 Gb of sequence. Approximately 670 M reads were mapped to a turkey gene set. Differential expression analysis identified 1535 significant genes with |log₂ fold change| ≥ 1.0 in at least one pair-wise comparison. AFB₁ effects were dependent on exposure time and turkey type, occurred more rapidly in domesticated turkeys, and led to notable up-regulation in cell cycle regulators, NRF2-mediated response genes and coagulation factors. Further investigation of NRF2-response genes may identify targets to improve poultry resistance.
Collapse
Affiliation(s)
- Melissa S Monson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Carol J Cardona
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Roger A Coulombe
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture, Utah State University, Logan, UT 84322, USA.
| | - Kent M Reed
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
9
|
Gregorio MCD, Bordin K, Souto PCMDC, Corassin CH, Oliveira CAF. Comparative biotransformation of aflatoxin B1in swine, domestic fowls, and humans. TOXIN REV 2015. [DOI: 10.3109/15569543.2015.1091979] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Cai J, Yang L, He HJ, Xu T, Liu HB, Wu Q, Ma Y, Liu QH, Nie MH. Antioxidant capacity responsible for a hypocholesterolemia is independent of dietary cholesterol in adult rats fed rice protein. Gene 2013; 533:57-66. [PMID: 24120393 DOI: 10.1016/j.gene.2013.09.124] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 01/02/2023]
Abstract
Dietary cholesterol and aging are major risk factors to accelerate oxidation process for developing hypercholesterolemia. The major aim of this study is to elucidate the effects of rice protein on cholesterol level and oxidative stress in adult rats fed with and without cholesterol. After 2 weeks of feeding, hepatic and plasma contents of cholesterol, reduced glutathione (GSH), oxidized glutathione (GSSG), malondialdehyde (MDA) and protein carbonyl (PCO) were measured. In liver, total antioxidative capacity (T-AOC), activities of antioxidant enzymes (total superoxide dismutase, T-SOD; catalase, CAT), glutathione metabolizing enzyme activities and gene expression levels (γ-glutamylcysteine synthetase, γ-GCS; glutathione reductase, GR; glutathione peroxidase, GPx) were determined. Under cholesterol-free/enriched dietary condition, T-AOC, activities of T-SOD and CAT, glutathione metabolism related enzymes' activities and mRNA levels (γ-GCS, GR and GPx) were effectively stimulated by rice proteins as compared to caseins. Compared with caseins, rice proteins significantly increased hepatic and plasma GSH contents, whereas hepatic and plasma accumulations of MDA, PCO and GSSG were significantly reduced by rice protein-feedings. As a result, the marked reductions of cholesterol in the plasma and in the liver were observed in adult rats fed rice proteins with and without cholesterol. The present study demonstrates that the hypocholesterolemic effect of rice protein is attributable to inducing antioxidative response and depressing oxidative damage in adult rats fed cholesterol-free/enriched diets. Results suggest that the antioxidant capability involved in the hypocholesterolemic action exerted by rice protein is independent of dietary cholesterol during adult period.
Collapse
Affiliation(s)
- Jixiang Cai
- Department of Food Science, School of Food Science and Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bunderson BR, Kim JE, Croasdell A, Mendoza KM, Reed KM, Coulombe RA. Heterologous expression and functional characterization of avian mu-class glutathione S-transferases. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:109-16. [PMID: 23712008 DOI: 10.1016/j.cbpc.2013.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022]
Abstract
Hepatic glutathione S-transferases (GSTs: EC2.5.1.1.8) catalyze the detoxification of reactive electrophilic compounds, many of which are toxic and carcinogenic intermediates, via conjugation with the endogenous tripeptide glutathione (GSH). Glutathione S-transferase (GST)-mediated detoxification is a critical determinant of species susceptibility to the toxic and carcinogenic mycotoxin aflatoxin B1 (AFB1), which in resistant animals efficiently detoxifies the toxic intermediate produced by hepatic cytochrome P450 bioactivation, the exo-AFB1-8,9-epoxide (AFBO). Domestic turkeys (Meleagris gallopavo) are one of the most sensitive animals known to AFB1, a condition associated with a deficiency of hepatic GST-mediated detoxification of AFBO. We have recently shown that unlike their domestic counterparts, wild turkeys (Meleagris gallopavo silvestris), which are relatively resistant, express hepatic GST-mediated detoxification activity toward AFBO. Because of the importance of GSTs in species susceptibility, and to explore possible GST classes involved in AFB1 detoxification, we amplified, cloned, expressed and functionally characterized the hepatic mu-class GSTs tGSTM3 (GenBank accession no. JF340152), tGSTM4 (JF340153) from domestic turkeys, and a GSTM4 variant (ewGSTM4, JF340154) from Eastern wild turkeys. Predicted molecular masses of tGSTM3 and two tGSTM4 variants were 25.6 and 25.8kDa, respectively. Multiple sequence comparisons revealed four GSTM motifs and the mu-loop in both proteins. tGSTM4 has 89% amino acid sequence identity to chicken GSTM2, while tGSTM3 has 73% sequence identity to human GSTM3 (hGSTM3). Specific activities of Escherichia coli-expressed tGSTM3 toward 1-chloro-2,4-dinitrobenzene (CDNB) and peroxidase activity toward cumene hydroperoxide were five-fold greater than tGSTM4 while tGSTM4 possessed more than three-fold greater activity toward 1,2-dichloro-4-nitrobenzene (DCNB). The two enzymes displayed equal activity toward ethacrynic acid (ECA). However, none of the GSTM proteins had AFBO detoxification capability, in contrast to recombinant alpha-class GSTs shown in our recent study to possess this important activity. In total, our data indicate that although turkey hepatic GSTMs may contribute to xenobiotic detoxification, they probably play no role in detoxification of AFBO in the liver.
Collapse
Affiliation(s)
- Brett R Bunderson
- Graduate Toxicology Program, Department of Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | | | | | | | | | | |
Collapse
|
12
|
Alpha-class glutathione S-transferases in wild turkeys (Meleagris gallopavo): characterization and role in resistance to the carcinogenic mycotoxin aflatoxin B1. PLoS One 2013; 8:e60662. [PMID: 23613737 PMCID: PMC3628786 DOI: 10.1371/journal.pone.0060662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/26/2013] [Indexed: 11/19/2022] Open
Abstract
Domestic turkeys (Meleagris gallopavo) are one of the most susceptible animals known to the toxic effects of the mycotoxin aflatoxin B1 (AFB1), a potent human hepatocarcinogen, and universal maize contaminant. We have demonstrated that such susceptibility is associated with the inability of hepatic glutathione S-transferases (GSTs) to detoxify the reactive electrophilic metabolite exo-AFB1-8,9-epoxide (AFBO). Unlike their domestic counterparts, wild turkeys, which are relatively AFB1-resistant, possess hepatic GST-mediated AFBO conjugating activity. Here, we characterized the molecular and functional properties of hepatic alpha-class GSTs (GSTAs) from wild and domestic turkeys to shed light on the differences in resistance between these closely related strains. Six alpha-class GST genes (GSTA) amplified from wild turkeys (Eastern and Rio Grande subspecies), heritage breed turkeys (Royal Palm) and modern domestic (Nicholas strain) turkeys were sequenced, and catalytic activities of heterologously-expressed recombinant enzymes determined. Alpha-class identity was affirmed by conserved GST domains and four signature motifs. All GSTAs contained single nucleotide polymorphisms (SNPs) in their coding regions: GSTA1.1 (5 SNPs), GSTA1.2 (7), GSTA1.3 (3), GSTA2 (3), GSTA3 (1) and GSTA4 (2). E. coli-expressed GSTAs possessed varying activities toward GST substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (ECA), cumene hydroperoxide (CHP). As predicted by their relative resistance, livers from domestic turkeys lacked detectable GST-mediated AFBO detoxification activity, whereas those from wild and heritage birds possessed this critical activity, suggesting that intensive breeding and selection resulted in loss of AFB1-protective alleles during domestication. Our observation that recombinant tGSTAs detoxify AFBO, whereas their hepatic forms do not, implies that the hepatic forms of these enzymes are down-regulated, silenced, or otherwise modified by one or more mechanisms. These data may inform of possible molecular mechanisms of resistance to AFB1, and may also have the benefit of identifying genetic markers which could be used to enhance AFB1 resistance in modern domestic strains.
Collapse
|
13
|
Kim JE, Bunderson BR, Croasdell A, Coulombe RA. Functional characterization of alpha-class glutathione s-transferases from the Turkey (meleagris gallopavo). Toxicol Sci 2011; 124:45-53. [PMID: 21876218 DOI: 10.1093/toxsci/kfr212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Six Alpha-class glutathione S-transferase (GST) subunits were cloned from domestic turkey livers, which are one of the most susceptible animals known to the carcinogenic mycotoxin aflatoxin B₁. In most animals, GST dysfunction is a risk factor for susceptibility toward AFB₁, and we have shown that turkeys lack GSTs with affinity toward the carcinogenic intermediate exo-aflatoxin B(1)-8-9-epoxide (AFBO). Conversely, mice are resistant to AFB₁ carcinogenesis, due to high constitutive expression of mGSTA3 that has high affinity toward AFBO. When expressed in Escherichia coli, all six tGSTA subunits possessed conjugating activities toward substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (ECA), and cumene hydroperoxide (CHP) with tGSTA1.2 appearing most active. Interestingly, tGSTA1.1, which lacks one of the four Alpha-class signature motifs, possessed enzymatic activities toward all substrates. All had comparable activities toward AFBO conjugation, an activity absent in turkey liver cytosols. E. coli-expressed mGSTA3 conjugated AFBO with more than 3-fold greater activity than that of tGSTAs and had higher activity toward GST prototype substrates. Mouse hepatic cytosols had approximately 900-fold higher catalytic activity toward AFBO compared with those from turkey. There was no apparent amino acid profile in tGSTAs that might correspond to specificity toward AFBO, although tGSTA1.2, which had slightly higher AFBO-trapping ability, shared Tyr¹⁰⁸ with mGSTA3, a residue postulated to be critical for AFBO trapping activity in mammalian systems. The observation that recombinant tGSTAs detoxify AFBO, whereas their hepatic forms do not, implies that the hepatic forms of these enzymes are silenced by one or more regulatory mechanisms.
Collapse
Affiliation(s)
- Ji Eun Kim
- Graduate Toxicology Program, Department of Veterinary Sciences, School of Veterinary Medicine, Utah State University, Logan, Utah, 84322-4620
| | | | | | | |
Collapse
|
14
|
Rawal S, Coulombe RA. Metabolism of aflatoxin B1 in Turkey liver microsomes: The relative roles of cytochromes P450 1A5 and 3A37. Toxicol Appl Pharmacol 2011; 254:349-54. [DOI: 10.1016/j.taap.2011.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 11/27/2022]
|
15
|
Rawal S, Yip SSM, Coulombe RA. Cloning, Expression and Functional Characterization of Cytochrome P450 3A37 from Turkey Liver with High Aflatoxin B1 Epoxidation Activity. Chem Res Toxicol 2010; 23:1322-9. [DOI: 10.1021/tx1000267] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sumit Rawal
- Department of Veterinary Sciences, Graduate Program in Toxicology, Utah State University, Logan, Utah 84322-4620
| | - Shirley S. M. Yip
- Department of Veterinary Sciences, Graduate Program in Toxicology, Utah State University, Logan, Utah 84322-4620
| | - Roger A. Coulombe
- Department of Veterinary Sciences, Graduate Program in Toxicology, Utah State University, Logan, Utah 84322-4620
| |
Collapse
|
16
|
Rawal S, Kim JE, Coulombe R. Aflatoxin B1 in poultry: toxicology, metabolism and prevention. Res Vet Sci 2010; 89:325-31. [PMID: 20462619 DOI: 10.1016/j.rvsc.2010.04.011] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/05/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
Aflatoxins (AF) are ubiquitous in corn-based animal feed and causes hepatotoxic and hepatocarcinogenic effects. The most important AF in terms of toxic potency and occurrence is aflatoxin B1 (AFB1). Poultry, especially turkeys, are extremely sensitive to the toxic and carcinogenic action of AFB1, resulting in millions of dollars in annual losses to producers due to reduced growth rate, increased susceptibility to disease, reduced egg production and other adverse effects. The extreme sensitivity of turkeys and other poultry to AFB1 is associated with efficient hepatic cytochrome P450-mediated bioactivation and deficient detoxification by glutathione S-transferases (GST). Discerning the biochemical and molecular mechanisms of this extreme sensitivity of poultry to AFB1, will contribute in the development of novel strategies to increase aflatoxin resistance. Since AFB1 is an unavoidable contaminant of corn-based poultry feed, chemoprevention strategies aimed at reducing AFB1 toxicity in poultry and in other animals have been the subject of numerous studies. This brief review summarizes many of the key recent findings regarding the action of aflatoxins in poultry.
Collapse
Affiliation(s)
- Sumit Rawal
- Graduate Program in Toxicology, Department of Veterinary Sciences, Utah State University, Logan, UT 84322-4620, USA
| | | | | |
Collapse
|