1
|
Pinder MIM, Andersson B, Blossom H, Svensson M, Rengefors K, Töpel M. Bamboozle: A Bioinformatic Tool for Identification and Quantification of Intraspecific Barcodes. Mol Ecol Resour 2025; 25:e14067. [PMID: 39903046 PMCID: PMC11969633 DOI: 10.1111/1755-0998.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/03/2024] [Indexed: 02/06/2025]
Abstract
Evolutionary changes in populations of microbes, such as microalgae, cannot be traced using conventional metabarcoding loci as they lack intraspecific resolution. Consequently, selection and competition processes among strains of the same species cannot be resolved without elaborate isolation, culturing, and genotyping efforts. Bamboozle, a new bioinformatic tool introduced here, scans the entire genome of a species and identifies allele-rich barcodes that enable direct identification of different genetic strains from a population using amplicon sequencing of a single DNA sample. We demonstrate its usefulness by identifying hypervariable barcoding loci (< 500 bp) from genomic data in two microalgal species, the diploid diatom Skeletonema marinoi and the haploid chlorophyte Chlamydomonas reinhardtii. Across the two genomes, four and twenty-two loci, respectively, were identified that could in silico resolve all analysed genotypes. All of the identified loci are within protein-coding genes with various metabolic functions. Single nucleotide polymorphisms (SNPs) provided the most reliable genetic markers, and among 54 strains of S. marinoi, three 500 bp loci contained, on average, 46 SNPs, 103 strain-specific alleles, and displayed 100% heterozygosity. This high level of heterozygosity was identified as a novel opportunity to improve strain quantification and detect false positive artefacts during denoising of amplicon sequences. Finally, we illustrate how metabarcoding of a single genetic locus can be used to track abundances of S. marinoi strains in an artificial selection experiment. As future genomic datasets become available and DNA sequencing technologies develop, Bamboozle has flexible user settings enabling optimal barcodes to be designed for other species and applications.
Collapse
Affiliation(s)
| | - Björn Andersson
- Department of Marine SciencesUniversity of GothenburgGöteborgSweden
- NIRAS Sweden ABGöteborgSweden
| | - Hannah Blossom
- Department of BiologyLund UniversityLundSweden
- Bigelow Laboratory for Ocean SciencesBoothbayMaineUSA
| | | | | | - Mats Töpel
- Department of Marine SciencesUniversity of GothenburgGöteborgSweden
- IVL Swedish Environmental Research InstituteGöteborgSweden
| |
Collapse
|
2
|
Bernardes PC, do Rosário DKA, Martins PHA, Schwan RF. Metataxonomic identification of microorganisms and sensory attributes of Coffea canephora under conventional processing and Self-Induced Anaerobiosis Fermentation. World J Microbiol Biotechnol 2025; 41:122. [PMID: 40172733 DOI: 10.1007/s11274-025-04340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
This study evaluates for the first time the modifications in the microbial communities and sensory attributes caused by Self-Induced Anaerobiosis Fermentation (SIAF) compared to the Conventional processing of Coffea canephora var. Conilon. Microorganisms were identified through high-throughput sequencing of the 16S rRNA V3/V4 region for bacteria and the ITS region for fungi. Sensory attributes of roasted coffee were evaluated by Q-Graders. The relationship between microbial population, processing methods, and sensory attributes was investigated using principal component analysis. Before fermentation, 74 bacterial and 21 fungal species were identified in the natural coffee, whereas 44 bacterial and 15 fungal species were found in the pulped coffee. Torulaspora, Wickerhamomyces, and Meyerozyma exhibited more ITS region sequences, while Acetobacter, Enterobacter, and Lysinibacillus were predominant in the 16S region. In the natural coffee, Wickerhamomyces showed the highest relative abundance (45%) at 0 h. After 72 h, Meyerozyma (45%) and Torulaspora (75%) prevailed in Conventional processing and SIAF, respectively. In the pulped coffee, Torulaspora was the most abundant in the SIAF method, before (92%) and after (81%) fermentation, while Wickerhamomyces (39%) dominated after 72 h in the Conventional method. Enterobacteriaceae levels decreased, while Lactobacillaceae levels increased in SIAF natural coffee during the fermentation process. SIAF favored the presence of yeast and LAB while inhibiting mycotoxigenic fungi and Enterobacteriaceae. Torulaspora, Lactiplantibacillus, and Lactococcus showed the highest Pearson correlation coefficient with flavor (0.92), aftertaste (0.99), and bitterness/sweetness (0.89), respectively. Changes in coffee microbiota during SIAF improved sensory attributes, resulting in better-quality beverages.
Collapse
Affiliation(s)
- Patrícia Campos Bernardes
- Department of Food Engineering, Federal University of Espírito Santo, Alegre, ES, 29500-000, Brazil.
| | | | | | | |
Collapse
|
3
|
Chernyshev M, Stålmarck A, Corcoran M, Hedestam GBK, Murrell B. Detection of PCR chimeras in adaptive immune receptor repertoire sequencing using hidden Markov models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.638809. [PMID: 40060431 PMCID: PMC11888211 DOI: 10.1101/2025.02.21.638809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) has emerged as a central approach for studying T cell and B cell receptor populations, and is now an important component of studies of autoimmunity, immune responses to pathogens, vaccines, allergens, and cancers, and for antibody discovery. When amplifying the rearranged V(D)J genes encoding antigen receptors, each cycle of the Polymerase Chain Reaction (PCR) can produce spurious "chimeric" hybrids of two or more different template sequences. While the generation of chimeras is well understood in bacterial and viral sequencing, and there are dedicated tools to detect such sequences in bacterial and viral datasets, this is not the case for AIRR-seq. Further, the process that results in immune receptor sequences has domain-specific challenges, such as somatic hypermutation (SHM), and domain-specific opportunities, such as relatively well-known germline gene "reference" sequences. Here we describe CHMMAIRRa, a hidden Markov model for detecting chimeric sequences in AIRR-seq data, that specifically models SHM and incorporates germline reference sequences. We use simulations to characterize the performance of CHMMAIRRa and compare it to existing methods from other domains, we test the effect of PCR conditions on chimerism using IgM libraries generated in this study, and we apply CHMMAIRRa to four published AIRR-seq datasets to show the extent and impact of artifactual chimerism.
Collapse
Affiliation(s)
- Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aron Stålmarck
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Margalho LP, Martins CS, Almeida NA, Carusi J, Mahfouz MAAR, Sant'Ana AS, Nascimento MS, de Oliveira Rocha L. Fungi associated with orange juice production and assessment of adhesion ability and resistance to sanitizers. Int J Food Microbiol 2025; 430:111035. [PMID: 39731990 DOI: 10.1016/j.ijfoodmicro.2024.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Orange juice is widely consumed worldwide due to its sensory and nutritional characteristics. This beverage is susceptible to contamination by acidic-tolerant microorganisms due to its low pH, especially filamentous fungi and yeasts. To minimize fungal spoilage, companies usually submit juice to thermal treatments; sanitizers are also applied on surfaces to maintain the microbiological quality. This study aimed to identify potential contamination sources in a juice processing line and to verify the susceptibility of isolated yeasts and filamentous fungi to food-grade sanitizers. Also, their ability to form single and binary adherent cells was assessed. The results revealed the presence of fungi in all samplings performed, with the most prominent microorganisms identified as Paecilomyces variotii, P. paravariotii, Pichia kudriavzevii and Wickerhamomyces anomalus. After obtaining results for sanitizer resistance and adhesion ability of the isolates, these were submitted to multivariate analysis using hierarchical cluster analysis (HCA), and two groups were found: one composed mostly of filamentous fungi (16/18) with low adhesion potential and one group formed by yeasts with high adhesion ability and resistance to sanitizers. Microscopy images corroborate those data, demonstrating the importance of yeast cell agglomerates along germinated spores of filamentous fungi and the importance of adhered biomass to protect cells against the sanitizers tested. This study is the first to combine fungi isolated from a beverage processing line and aims to contribute to the current knowledge of fungal adhesion and sanitizer resistance.
Collapse
Affiliation(s)
- Larissa Pereira Margalho
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil
| | - Camila Siedlarczyk Martins
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil
| | - Naara Aparecida Almeida
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil
| | - Juliana Carusi
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil
| | - Mailah Ali Abdul Rahman Mahfouz
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil
| | - Maristela Silva Nascimento
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
5
|
Lalanne JB, Mich JK, Huynh C, Hunker AC, McDiarmid TA, Levi BP, Ting JT, Shendure J. Extensive length and homology dependent chimerism in pool-packaged AAV libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632594. [PMID: 39868341 PMCID: PMC11761685 DOI: 10.1101/2025.01.14.632594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Adeno-associated viruses (AAVs) have emerged as the foremost gene therapy delivery vehicles due to their versatility, durability, and safety profile. Here we demonstrate extensive chimerism, manifesting as pervasive barcode swapping, among complex AAV libraries that are packaged as a pool. The observed chimerism is length- and homology-dependent but capsid-independent, in some cases affecting the majority of packaged AAV genomes. These results have implications for the design and deployment of functional AAV libraries in both research and clinical settings.
Collapse
Affiliation(s)
- Jean-Benoît Lalanne
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - John K Mich
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | | | - Troy A McDiarmid
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| |
Collapse
|
6
|
de Deus A, Gonçalves G, da Silva J, de Jesus LC, Azevedo-Santos APS, Dall Agnol H, Pereira SR. Microbiome reveals inflammatory-related bacteria and putative functional pathways involved in human papillomavirus-associated penile squamous cell carcinoma. Andrology 2024; 12:809-820. [PMID: 37840240 DOI: 10.1111/andr.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Penile squamous cell carcinoma (PSCC) is a rare disease that is more prevalent in developing countries, such as Brazil, and is linked to poor genital hygiene, which promotes the proliferation of microorganisms. Dysbiosis has an effect on the local immune response, increases the risk of viral infection, and can generate inflammatory processes. Current knowledge of the microbiota found in penile tissues is limited, and the bacterial diversity of the PSCC remains unknown. In this investigation, the microbiota associated with penile cancer and its potential role in tumor development and progression were identified. METHODS The 16S rRNA gene was analyzed by next-generation sequencing in 19 tumors and their respective non-tumor adjacent tissues to perform taxonomic classification, analysis of core microbiome, abundance, and diversity of amplicon sequence variants (ASVs) (QIIME2 v.2020.2), and in silico functional prediction (PICRUST2, p < 0.05). RESULTS In both tissues, the phyla Proteobacteria and Firmicutes, and genera Alcaligenes and Fusobaterium, were the most prevalent. Tumors presented a greater relative abundance of Fusobacteriota, Campilobacteria, and Fusobacterium (p = 0.04, p = 0.04, and p = 0.039, respectively). In addition, the beta diversity analysis revealed a tendency for the formation of two distinct groups when only advanced tumors (pT2 and pT3) were considered. Further, the functional analysis identified the top 35 pathways, and 79.5% of PSCC samples contained pro-inflammatory microorganisms. CONCLUSION We describe the first microbiome of penile carcinoma, which revealed an abundant and diverse microbiota as well as inflammatory-related taxa (the phyla Proteobacteria and Firmicutes, the genera Fusobacterium and Prevotella, and the species Finegoldia magma and Pseudomonas geniculata) and molecular pathways (chitin derivates degradation, the protocatechuic acid pathway, inositol metabolism, and the sucrose pathway), which have also been linked to inflammation and carcinogenesis. Moreover, we found specific and abundant ASVs in both tumor and non-tumor tissues. Our data encourage further study to better understand the role of these microorganisms in penile carcinogenesis, offering an opportunity for advances in diagnosis, prognosis, and early therapy.
Collapse
Affiliation(s)
- Amanda de Deus
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Brazil
| | - Gabriele Gonçalves
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Brazil
| | - Jenilson da Silva
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Brazil
| | - Luís Cláudio de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Hivana Dall Agnol
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Brazil
- Department of Pathology, Federal University of Maranhão, São Luís, Brazil
| | - Silma Regina Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
7
|
Namias A, Sahlin K, Makoundou P, Bonnici I, Sicard M, Belkhir K, Weill M. Nanopore sequencing of PCR products enables multicopy gene family reconstruction. Comput Struct Biotechnol J 2023; 21:3656-3664. [PMID: 37533804 PMCID: PMC10393513 DOI: 10.1016/j.csbj.2023.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023] Open
Abstract
The importance of gene amplifications in evolution is more and more recognized. Yet, tools to study multi-copy gene families are still scarce, and many such families are overlooked using common sequencing methods. Haplotype reconstruction is even harder for polymorphic multi-copy gene families. Here, we show that all variants (or haplotypes) of a multi-copy gene family present in a single genome, can be obtained using Oxford Nanopore Technologies sequencing of PCR products, followed by steps of mapping, SNP calling and haplotyping. As a proof of concept, we acquired the sequences of highly similar variants of the cidA and cidB genes present in the genome of the Wolbachia wPip, a bacterium infecting Culex pipiens mosquitoes. Our method relies on a wide database of cid genes, previously acquired by cloning and Sanger sequencing. We addressed problems commonly faced when using mapping approaches for multi-copy gene families with highly similar variants. In addition, we confirmed that PCR amplification causes frequent chimeras which have to be carefully considered when working on families of recombinant genes. We tested the robustness of the method using a combination of bioinformatics (read simulations) and molecular biology approaches (sequence acquisitions through cloning and Sanger sequencing, specific PCRs and digital droplet PCR). When different haplotypes present within a single genome cannot be reconstructed from short reads sequencing, this pipeline confers a high throughput acquisition, gives reliable results as well as insights of the relative copy numbers of the different variants.
Collapse
Affiliation(s)
- Alice Namias
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Kristoffer Sahlin
- Department of Mathematics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Patrick Makoundou
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Iago Bonnici
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Khalid Belkhir
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mylène Weill
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
8
|
Sales AL, Iriondo-DeHond A, DePaula J, Ribeiro M, Ferreira IMPLVO, Miguel MAL, Del Castillo MD, Farah A. Intracellular Antioxidant and Anti-Inflammatory Effects and Bioactive Profiles of Coffee Cascara and Black Tea Kombucha Beverages. Foods 2023; 12:foods12091905. [PMID: 37174444 PMCID: PMC10177953 DOI: 10.3390/foods12091905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Kombucha is a functional beverage obtained through fermentation of sweetened Camellia sinensis infusion by a symbiotic culture of bacteria and yeasts that exerts many beneficial biological effects, mostly related to its antioxidant and anti-inflammatory effects. Alternative raw materials have been used to create new kombucha or kombucha-like products. Coffee is the most important food commodity worldwide and generates large amounts of by-products during harvest and post-harvest processing. The main coffee by-product is the dried fruit skin and pulp, popularly known as cascara. To date, no studies have evaluated the potential bioactivity of coffee cascara kombucha. In this study, we aimed to measure and compare the effects of infusions and kombuchas made with arabica coffee cascaras (n = 2) and black tea leaves (n = 1), fermented for 0, 3, 6, and 9 days on the intracellular production of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) in model cells. Oxidative stress was induced in HK-2 cells with indoxyl sulfate (IS) and high glucose (G). Inflammation was induced with lipopolysaccharide (LPS) in RAW 264.7 macrophage. The contents of phenolic compounds, caffeine, and other physicochemical parameters were evaluated. To the best of our knowledge, this is the first study providing information on the bioactive profile and on the potential biological effects of coffee cascara kombucha. Fermentation caused the release of bound phenolic compounds from the infusions, especially total chlorogenic acids, with an average increase from 5.4 to 10.7 mg/100 mL (98%) and 2.6-3.4 mg/100 mL (30%) in coffee cascara and black tea kombucha, respectively, up to day 9. All evaluated beverages reduced (p < 0.0001) similarly the intracellular ROS (41% reduction, on average) and uric acid (10-55%) concentrations in HK-2 model cells, reversing the induced oxidative stress. All beverages also reduced (p < 0.0001, 81-90%) NO formation in LPS-induced macrophages, exhibiting an anti-inflammatory effect. These potential health benefits may be mostly attributed to polyphenols and caffeine, whose contents were comparable in all beverages. Coffee cascara showed similar potential to C. sinensis to produce healthy beverages and support sustainable coffee production.
Collapse
Affiliation(s)
- Amanda L Sales
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Amaia Iriondo-DeHond
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Juliana DePaula
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
| | - Mafalda Ribeiro
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal
| | - Marco Antonio L Miguel
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro21941-902, Brazil
| | - María Dolores Del Castillo
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adriana Farah
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
9
|
Norrild RK, Johansson KE, O’Shea C, Morth JP, Lindorff-Larsen K, Winther JR. Increasing protein stability by inferring substitution effects from high-throughput experiments. CELL REPORTS METHODS 2022; 2:100333. [PMID: 36452862 PMCID: PMC9701609 DOI: 10.1016/j.crmeth.2022.100333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
We apply a computational model, global multi-mutant analysis (GMMA), to inform on effects of most amino acid substitutions from a randomly mutated gene library. Using a high mutation frequency, the method can determine mutations that increase the stability of even very stable proteins for which conventional selection systems have reached their limit. As a demonstration of this, we screened a mutant library of a highly stable and computationally redesigned model protein using an in vivo genetic sensor for folding and assigned a stability effect to 374 of 912 possible single amino acid substitutions. Combining the top 9 substitutions increased the unfolding energy 47 to 69 kJ/mol in a single engineering step. Crystal structures of stabilized variants showed small perturbations in helices 1 and 2, which rendered them closer in structure to the redesign template. This case study illustrates the capability of the method, which is applicable to any screen for protein function.
Collapse
Affiliation(s)
- Rasmus Krogh Norrild
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kristoffer Enøe Johansson
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Charlotte O’Shea
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jakob Rahr Winther
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
10
|
Martin Cerezo ML, Raval R, de Haro Reyes B, Kucka M, Chan FY, Bryk J. Identification and quantification of chimeric sequencing reads in a highly multiplexed RAD-seq protocol. Mol Ecol Resour 2022; 22:2860-2870. [PMID: 35668693 PMCID: PMC9796921 DOI: 10.1111/1755-0998.13661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023]
Abstract
Highly multiplexed approaches have become common in genomic studies. They have improved the cost-effectiveness of genotyping hundreds of individuals using combinatorially barcoded adapters. These strategies, however, can potentially misassigned reads to incorrect samples. Here, we used a modified quaddRAD protocol to analyse the occurrence of index hopping and PCR chimeras in a series of experiments with up to 100 multiplexed samples per sequencing lane (639 samples in total). We created two types of sequencing libraries: four libraries of type A, where PCRs were run on individual samples before multiplexing, and three libraries of type B, where PCRs were run on pooled samples. We used fixed pairs of inner barcodes to identify chimeric reads. Type B libraries show a higher percentage of misassigned reads (1.15%) than type A libraries (0.65%). We also quantify the commonly undetectable chimeric sequences that occur whenever multiplexed groups of samples with different outer barcodes are sequenced together on a single flow cell. Our results suggest that these types of chimeric sequences represent up to 1.56% and 1.29% of reads in type A and B libraries, respectively. We also show that increasing the number of mismatches allowed for barcode rescue to above 2 dramatically increases the number of recovered chimeric reads. We provide recommendations for developing highly multiplexed RAD-seq protocols and analysing the resulting data to minimize the generation of chimeric sequences, allowing their quantification and a finer control on the number of PCR cycles necessary to generate enough input DNA for library preparation.
Collapse
Affiliation(s)
- Maria Luisa Martin Cerezo
- Department of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK,IFM BiologyLinköping UniversityLinköpingSweden
| | - Rohan Raval
- Department of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Bernardo de Haro Reyes
- Department of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK,IFM BiologyLinköping UniversityLinköpingSweden
| | - Marek Kucka
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
| | | | - Jarosław Bryk
- Department of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| |
Collapse
|
11
|
Bohmann K, Elbrecht V, Carøe C, Bista I, Leese F, Bunce M, Yu DW, Seymour M, Dumbrell AJ, Creer S. Strategies for sample labelling and library preparation in DNA metabarcoding studies. Mol Ecol Resour 2022; 22:1231-1246. [PMID: 34551203 PMCID: PMC9293284 DOI: 10.1111/1755-0998.13512] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Metabarcoding of DNA extracted from environmental or bulk specimen samples is increasingly used to profile biota in basic and applied biodiversity research because of its targeted nature that allows sequencing of genetic markers from many samples in parallel. To achieve this, PCR amplification is carried out with primers designed to target a taxonomically informative marker within a taxonomic group, and sample-specific nucleotide identifiers are added to the amplicons prior to sequencing. The latter enables assignment of the sequences back to the samples they originated from. Nucleotide identifiers can be added during the metabarcoding PCR and during "library preparation", that is, when amplicons are prepared for sequencing. Different strategies to achieve this labelling exist. All have advantages, challenges and limitations, some of which can lead to misleading results, and in the worst case compromise the fidelity of the metabarcoding data. Given the range of questions addressed using metabarcoding, ensuring that data generation is robust and fit for the chosen purpose is critically important for practitioners seeking to employ metabarcoding for biodiversity assessments. Here, we present an overview of the three main workflows for sample-specific labelling and library preparation in metabarcoding studies on Illumina sequencing platforms; one-step PCR, two-step PCR, and tagged PCR. Further, we distill the key considerations for researchers seeking to select an appropriate metabarcoding strategy for their specific study. Ultimately, by gaining insights into the consequences of different metabarcoding workflows, we hope to further consolidate the power of metabarcoding as a tool to assess biodiversity across a range of applications.
Collapse
Affiliation(s)
- Kristine Bohmann
- Faculty of Health and Medical SciencesSection for Evolutionary GenomicsGlobe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Vasco Elbrecht
- Department of Environmental Systems ScienceETH ZurichZürichSwitzerland
| | - Christian Carøe
- Faculty of Health and Medical SciencesSection for Evolutionary GenomicsGlobe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Iliana Bista
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Tree of LifeWellcome Sanger InstituteHinxtonUK
| | - Florian Leese
- Aquatic Ecosystem ResearchFaculty of BiologyUniversity of Duisburg‐EssenEssenGermany
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) LaboratorySchool of Molecular and Life SciencesCurtin UniversityPerthWAAustralia
| | - Douglas W. Yu
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
- School of Biological SciencesNorwich Research ParkUniversity of East AngliaNorwichUK
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunming YunnanChina
| | - Mathew Seymour
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Simon Creer
- Molecular Ecology and Evolution GroupSchool of Natural SciencesBangor UniversityGwyneddUK
| |
Collapse
|
12
|
Rapid in situ identification of biological specimens via DNA amplicon sequencing using miniaturized laboratory equipment. Nat Protoc 2022; 17:1415-1443. [DOI: 10.1038/s41596-022-00682-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
|
13
|
Salkova D, Shumkova R, Balkanska R, Palova N, Neov B, Radoslavov G, Hristov P. Molecular Detection of Nosema spp. in Honey in Bulgaria. Vet Sci 2021; 9:vetsci9010010. [PMID: 35051094 PMCID: PMC8777891 DOI: 10.3390/vetsci9010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 11/24/2022] Open
Abstract
Environmental DNA (eDNA) analysis is related to screening genetic material of various organisms in environmental samples. Honey represents a natural source of exogenous DNA, which allows for the detection of different honey bee pathogens and parasites. In the present study, we extracted DNA from 20 honey samples from different regions in Bulgaria and tested for the presence of DNA of the ectoparasitic mite Varroa destructor, as well as Nosema apis and Nosema ceranae. Only Nosema ceranae was detected, showing up in 30% of all samples, which confirms the widespread prevalence of this pathogen. All positive samples were found in plain regions of the country, while this pathogen was not detected in mountainous parts. None of the samples gave positive amplifications for the Nosema apis and Varroa mite. The obtained results from this study confirm previous observations that eDNA contained in honey is a potent source for effective biomonitoring of actual diseases in the honey bee.
Collapse
Affiliation(s)
- Delka Salkova
- Department of Experimental Parasitology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Rositsa Shumkova
- Research Centre of Stockbreeding and Agriculture, Agricultural Academy, 4700 Smolyan, Bulgaria;
| | - Ralitsa Balkanska
- Department “Special Branches”, Institute of Animal Science, Agricultural Academy, 2230 Kostinbrod, Bulgaria;
| | - Nadezhda Palova
- Scientific Center of Agriculture, Agricultural Academy, 8300 Sredets, Bulgaria;
| | - Boyko Neov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.N.); (G.R.)
| | - Georgi Radoslavov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.N.); (G.R.)
| | - Peter Hristov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.N.); (G.R.)
- Correspondence: ; Tel.: +359-2-979-2327
| |
Collapse
|
14
|
Oliveira CA, Fuess LT, Soares LA, Damianovic MHRZ. Increasing salinity concentrations determine the long-term participation of methanogenesis and sulfidogenesis in the biodigestion of sulfate-rich wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113254. [PMID: 34271347 DOI: 10.1016/j.jenvman.2021.113254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The competition between sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) depends on several factors, such as the COD/SO42- ratio, sensitivity to inhibitors and even the length of the operating period in reactors. Among the inhibitors, salinity, a characteristic common to diverse types of industrial effluents, can act as an important factor. This work aimed to evaluate the long-term participation of sulfidogenesis and methanogenesis in the sulfate-rich wastewater process (COD/SO42- = 1.6) in an anaerobic structured-bed reactor (AnSTBR) using sludge not adapted to salinity. The AnSTBR was operated for 580 d under mesophilic temperature (30 °C). Salinity levels were gradually increased from 1.7 to 50 g-NaCl L-1. Up to 35 g-NaCl L-1, MA and SRB equally participated in COD conversion, with a slight predominance of the latter (53 ± 11%). A decrease in COD removal efficiency associated with acetate accumulation was further observed when applying 50 g-NaCl L-1. The sulfidogenic pathway corresponded to 62 ± 17% in this case, indicating the inhibition of MA. Overall, sulfidogenic activity was less sensitive (25%-inhibition) to high salinity levels compared to methanogenesis (100%-inhibition considering the methane yield). The wide spectrum of SRB populations at different salinity levels, namely, the prevalence of Desulfovibrio sp. up to 35 g-NaCl L-1 and the additional participation of the genera Desulfobacca, Desulfatirhabdium, and Desulfotomaculum at 50 g-NaCl-1 explain such patterns. Conversely, the persistence of Methanosaeta genus was not sufficient to sustain methane production. Hence, exploiting SRB populations is imperative to anaerobically remediating saline wastewaters.
Collapse
Affiliation(s)
- Cristiane Arruda Oliveira
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil.
| | - Lucas Tadeu Fuess
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil; Chemical Engineering Department, Polytechnic School, University of São Paulo (DEQ/EP/USP), Av. Prof. Lineu Prestes 580, Bloco 18, Conjunto Das Químicas, SP, 05508-000, Brazil
| | - Lais Américo Soares
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| | - Márcia Helena Rissato Zamariolli Damianovic
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| |
Collapse
|
15
|
Ho M, Moon D, Pires-Alves M, Thornton PD, McFarlin BL, Wilson BA. Recovery of microbial community profile information hidden in chimeric sequence reads. Comput Struct Biotechnol J 2021; 19:5126-5139. [PMID: 34589188 PMCID: PMC8453192 DOI: 10.1016/j.csbj.2021.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
Sample-dependent inconsistencies in PCR-based and metagenomic sequencing analyses. Caveats associated with contig-based assembly programs for microbiome studies. More sample diversity/complexity yields more chimeric reads from PCR amplification. BlastBin includes consideration of chimeric reads for assigning and counting taxa. BlastBin enables recovery of information lost due to chimera formation. BlastBin 16S rRNA profiles more closely resemble metagenomic read-based profiles.
The next frontier in the field of microbiome studies is identification of all microbes present in the microbiome and accurate determination of their abundance such that microbiome profiles can serve as reliable assessments of health or disease status. PCR-based 16S rRNA gene sequencing and metagenome shotgun sequencing technologies are the prevailing approaches used in microbiome analyses. Each poses a number of technical challenges associated with PCR amplification, sample availability, and cost of processing and analysis. In general, results from these two approaches rarely agree completely with each other. Here, we compare these methods utilizing a set of vaginal swab and lavage specimens from a cohort of 42 pregnant women collected for a pilot study exploring the effect of the vaginal microbiome on preterm birth. We generated the microbial community profiles from the sequencing reads of the V3V4 and V4V5 regions of the 16S rRNA gene in the vaginal swab and lavage samples. For a subset of the vaginal samples from 12 subjects, we also performed metagenomic shotgun sequencing analysis and compared the results obtained from the PCR-based sequencing methods. Our findings suggest that sample composition and complexity, particularly at the species level, are major factors that must be considered when analyzing and interpreting microbiome data. Our approach to sequence analysis includes consideration of chimeric reads, by using our chimera-counting BlastBin program, and enables recovery of microbial content information generated during PCR-based sequencing methods, such that the microbial profiles more closely resemble those obtained from metagenomic read-based approaches.
Collapse
Affiliation(s)
- Mengfei Ho
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, United States
| | - Damee Moon
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, United States
| | - Melissa Pires-Alves
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, United States
| | - Patrick D Thornton
- Department of Human Development Nursing Science, College of Nursing, University of Illinois at Chicago, United States
| | - Barbara L McFarlin
- Department of Human Development Nursing Science, College of Nursing, University of Illinois at Chicago, United States
| | - Brenda A Wilson
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, United States
| |
Collapse
|
16
|
Tang X, Huang W, Kang J, Ding K. Early dynamic changes of quasispecies in the reverse transcriptase region of hepatitis B virus in telbivudine treatment. Antiviral Res 2021; 195:105178. [PMID: 34509461 DOI: 10.1016/j.antiviral.2021.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/03/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Telbivudine (LdT) - a synthetic thymidine β-L-nucleoside analogue (NA) - is an effective inhibitor for hepatitis B virus (HBV) replication. The quasispecies spectra in the reverse transcriptase (RT) region of the HBV genome and their dynamic changes associated with LdT treatment remains largely unknown. METHODS We prospectively recruited a total of 21 treatment-naive patients with chronic HBV infection and collected sequential serum samples at five time points (baseline, weeks 1, 3, 12, and 24 after LdT treatment). The HBV RT region was amplified and shotgun-sequenced by the Ion Torrent Personal Genome Machine (PGM)® system. We reconstructed full-length haplotypes of the RT region using an integrated bioinformatics framework, including de novo contig assembly and full-length haplotype reconstruction. In addition, we investigated the quasispecies' dynamic changes and evolution history and characterized potential NAs resistant mutations over the treatment course. RESULTS Viral quasispecies differed obviously between patients with complete (n = 8) and incomplete/no response (n = 13) at 12 weeks after LdT treatment. A reduced dN/dS ratio in quasispecies demonstrated a selective constraint resulting from antiviral therapy. The temporal clustering of sequential quasispecies showed different patterns along with a 24-week observation, although its statistic did not differ significantly. Several patients harboring pre-existing resistant mutations showed different clinical responses, while NAs resistant mutations were rare within a short-term treatment. CONCLUSION A complete profile of quasispecies reconstructed from in-depth shotgun sequencing may has important implications for enhancing clinical decision in adjusting antiviral therapy timely.
Collapse
Affiliation(s)
- Xia Tang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Wenxun Huang
- Department of Infectious Diseases, Chongqing Three Gorges Central Hospital, Chongqing, 404000, PR China
| | - Juan Kang
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400003, PR China
| | - Keyue Ding
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450003, PR China.
| |
Collapse
|
17
|
Günther B, Marre S, Defois C, Merzi T, Blanc P, Peyret P, Arnaud-Haond S. Capture by hybridization for full-length barcode-based eukaryotic and prokaryotic biodiversity inventories of deep sea ecosystems. Mol Ecol Resour 2021; 22:623-637. [PMID: 34486815 DOI: 10.1111/1755-0998.13500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
Biodiversity inventory of marine systems remains limited due to unbalanced access to the three ocean dimensions. The use of environmental DNA (eDNA) for metabarcoding allows fast and effective biodiversity inventory and is forecast as a future biodiversity research and biomonitoring tool. However, in poorly understood ecosystems, eDNA results remain difficult to interpret due to large gaps in reference databases and PCR bias limiting the detection of some major phyla. Here, we aimed to circumvent these limitations by avoiding PCR and recollecting larger DNA fragments to improve assignment of detected taxa through phylogenetic reconstruction. We applied capture by hybridization (CBH) to enrich DNA from deep-sea sediment samples and compared the results with those obtained through an up-to-date metabarcoding PCR-based approach (MTB). Originally developed for bacterial communities and targeting 16S rDNA, the CBH approach was applied to 18S rDNA to improve the detection of species forming benthic communities of eukaryotes, with a particular focus on metazoans. The results confirmed the possibility of extending CBH to metazoans with two major advantages: (i) CBH revealed a broader spectrum of prokaryotic, eukaryotic, and particularly metazoan diversity, and (ii) CBH allowed much more robust phylogenetic reconstructions of full-length barcodes with up to 1900 base pairs. This is particularly important for taxa whose assignment is hampered by gaps in reference databases. This study provides a database and probes to apply 18S CBH to diverse marine systems, confirming this promising new tool to improve biodiversity assessments in data-poor ecosystems such as those in the deep sea.
Collapse
Affiliation(s)
- Babett Günther
- MARBEC, Universite of Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Sophie Marre
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Clémence Defois
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Thomas Merzi
- Total SE, Centre Scientifique et Technique Jean Feger, Pau, France
| | - Philippe Blanc
- Total SE, Centre Scientifique et Technique Jean Feger, Pau, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | | |
Collapse
|
18
|
Stephens Z, Milosevic D, Kipp B, Grebe S, Iyer RK, Kocher JPA. PB-Motif-A Method for Identifying Gene/Pseudogene Rearrangements With Long Reads: An Application to CYP21A2 Genotyping. Front Genet 2021; 12:716586. [PMID: 34394200 PMCID: PMC8355628 DOI: 10.3389/fgene.2021.716586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022] Open
Abstract
Long read sequencing technologies have the potential to accurately detect and phase variation in genomic regions that are difficult to fully characterize with conventional short read methods. These difficult to sequence regions include several clinically relevant genes with highly homologous pseudogenes, many of which are prone to gene conversions or other types of complex structural rearrangements. We present PB-Motif, a new method for identifying rearrangements between two highly homologous genomic regions using PacBio long reads. PB-Motif leverages clustering and filtering techniques to efficiently report rearrangements in the presence of sequencing errors and other systematic artifacts. Supporting reads for each high-confidence rearrangement can then be used for copy number estimation and phased variant calling. First, we demonstrate PB-Motif's accuracy with simulated sequence rearrangements of PMS2 and its pseudogene PMS2CL using simulated reads sweeping over a range of sequencing error rates. We then apply PB-Motif to 26 clinical samples, characterizing CYP21A2 and its pseudogene CYP21A1P as part of a diagnostic assay for congenital adrenal hyperplasia. We successfully identify damaging variation and patient carrier status concordant with clinical diagnosis obtained from multiplex ligation-dependent amplification (MLPA) and Sanger sequencing. The source code is available at: github.com/zstephens/pb-motif.
Collapse
Affiliation(s)
- Zachary Stephens
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | | | | | | | - Ravishankar K Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | | |
Collapse
|
19
|
Tack DS, Tonner PD, Pressman A, Olson ND, Levy SF, Romantseva EF, Alperovich N, Vasilyeva O, Ross D. The genotype-phenotype landscape of an allosteric protein. Mol Syst Biol 2021; 17:e10179. [PMID: 33784029 PMCID: PMC8009258 DOI: 10.15252/msb.202010179] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Allostery is a fundamental biophysical mechanism that underlies cellular sensing, signaling, and metabolism. Yet a quantitative understanding of allosteric genotype-phenotype relationships remains elusive. Here, we report the large-scale measurement of the genotype-phenotype landscape for an allosteric protein: the lac repressor from Escherichia coli, LacI. Using a method that combines long-read and short-read DNA sequencing, we quantitatively measure the dose-response curves for nearly 105 variants of the LacI genetic sensor. The resulting data provide a quantitative map of the effect of amino acid substitutions on LacI allostery and reveal systematic sequence-structure-function relationships. We find that in many cases, allosteric phenotypes can be quantitatively predicted with additive or neural-network models, but unpredictable changes also occur. For example, we were surprised to discover a new band-stop phenotype that challenges conventional models of allostery and that emerges from combinations of nearly silent amino acid substitutions.
Collapse
Affiliation(s)
- Drew S Tack
- National Institute of Standards and TechnologyGaithersburgMDUSA
| | - Peter D Tonner
- National Institute of Standards and TechnologyGaithersburgMDUSA
| | - Abe Pressman
- National Institute of Standards and TechnologyGaithersburgMDUSA
| | - Nathan D Olson
- National Institute of Standards and TechnologyGaithersburgMDUSA
| | - Sasha F Levy
- SLAC National Accelerator LaboratoryMenlo ParkCAUSA
- Joint Initiative for Metrology in BiologyStanfordCAUSA
| | | | - Nina Alperovich
- National Institute of Standards and TechnologyGaithersburgMDUSA
| | - Olga Vasilyeva
- National Institute of Standards and TechnologyGaithersburgMDUSA
| | - David Ross
- National Institute of Standards and TechnologyGaithersburgMDUSA
| |
Collapse
|
20
|
Gillingham MAF, Montero BK, Wihelm K, Grudzus K, Sommer S, Santos PSC. A novel workflow to improve genotyping of multigene families in wildlife species: An experimental set-up with a known model system. Mol Ecol Resour 2020; 21:982-998. [PMID: 33113273 DOI: 10.1111/1755-0998.13290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022]
Abstract
Genotyping complex multigene families in novel systems is particularly challenging. Target primers frequently amplify simultaneously multiple loci leading to high PCR and sequencing artefacts such as chimeras and allele amplification bias. Most genotyping pipelines have been validated in nonmodel systems whereby the real genotype is unknown and the generation of artefacts may be highly repeatable. Further hindering accurate genotyping, the relationship between artefacts and genotype complexity (i.e. number of alleles per genotype) within a PCR remains poorly described. Here, we investigated the latter by experimentally combining multiple known major histocompatibility complex (MHC) haplotypes of a model organism (chicken, Gallus gallus, 43 artificial genotypes with 2-13 alleles per amplicon). In addition to well-defined 'optimal' primers, we simulated a nonmodel species situation by designing 'cross-species' primers based on sequence data from closely related Galliform species. We applied a novel open-source genotyping pipeline (ACACIA; https://gitlab.com/psc_santos/ACACIA), and compared its performance with another, previously published pipeline (AmpliSAS). Allele calling accuracy was higher when using ACACIA (98.5% versus 97% and 77.8% versus 75% for the 'optimal' and 'cross-species' data sets, respectively). Systematic allele dropout of three alleles owing to primer mismatch in the 'cross-species' data set explained high allele calling repeatability (100% when using ACACIA) despite low accuracy, demonstrating that repeatability can be misleading when evaluating genotyping workflows. Genotype complexity was positively associated with nonchimeric artefacts, chimeric artefacts (nonlinearly by levelling when amplifying more than 4-6 alleles) and allele amplification bias. Our study exemplifies and demonstrates pitfalls researchers should avoid to reliably genotype complex multigene families.
Collapse
Affiliation(s)
- Mark A F Gillingham
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm Universität, Ulm, Germany
| | - B Karina Montero
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm Universität, Ulm, Germany.,Zoological Institute, Animal Ecology and Conservation, Biocenter Grindel, Universität Hamburg, Hamburg,, Germany
| | - Kerstin Wihelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm Universität, Ulm, Germany
| | - Kara Grudzus
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm Universität, Ulm, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm Universität, Ulm, Germany
| | - Pablo S C Santos
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm Universität, Ulm, Germany
| |
Collapse
|
21
|
Kinkar L, Young ND, Sohn WM, Stroehlein AJ, Korhonen PK, Gasser RB. First record of a tandem-repeat region within the mitochondrial genome of Clonorchis sinensis using a long-read sequencing approach. PLoS Negl Trop Dis 2020; 14:e0008552. [PMID: 32845881 PMCID: PMC7449408 DOI: 10.1371/journal.pntd.0008552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background Mitochondrial genomes provide useful genetic markers for systematic and population genetic studies of parasitic helminths. Although many such genome sequences have been published and deposited in public databases, there is evidence that some of them are incomplete relating to an inability of conventional techniques to reliably sequence non-coding (repetitive) regions. In the present study, we characterise the complete mitochondrial genome—including the long, non-coding region—of the carcinogenic Chinese liver fluke, Clonorchis sinensis, using long-read sequencing. Methods The mitochondrial genome was sequenced from total high molecular-weight genomic DNA isolated from a pool of 100 adult worms of C. sinensis using the MinION sequencing platform (Oxford Nanopore Technologies), and assembled and annotated using an informatic approach. Results From > 93,500 long-reads, we assembled a 18,304 bp-mitochondrial genome for C. sinensis. Within this genome we identified a novel non-coding region of 4,549 bp containing six tandem-repetitive units of 719–809 bp each. Given that genomic DNA from pooled worms was used for sequencing, some variability in length/sequence in this tandem-repetitive region was detectable, reflecting population variation. Conclusions For C. sinensis, we report the complete mitochondrial genome, which includes a long (> 4.5 kb) tandem-repetitive region. The discovery of this non-coding region using a nanopore-sequencing/informatic approach now paves the way to investigating the nature and extent of length/sequence variation in this region within and among individual worms, both within and among C. sinensis populations, and to exploring whether this region has a functional role in the regulation of replication and transcription, akin to the mitochondrial control region in mammals. Although applied to C. sinensis, the technological approach established here should be broadly applicable to characterise complex tandem-repetitive or homo-polymeric regions in the mitochondrial genomes of a wide range of taxa. In the present study, we characterised the complete mitochondrial genome of Clonorchis sinensis—a carcinogenic liver fluke. To do this, we sequenced from total genomic DNA from multiple adult worms using a new method (Oxford Nanopore technology) to obtain data for long stretches of DNA, and then assembled these data to construct a mitochondrial genome of 18,304 bp, containing a > 4.5 kb-long tandem-repetitive region—not previously detected in this species. The results demonstrate that this method is effective at sequencing long and complex non-coding elements—not achievable using conventional techniques. The discovery of this long tandem-repetitive region in C. sinensis provides an opportunity to now explore its origin(s) and length/sequence diversity in populations of this species, and also to characterise its function(s). The technological approach employed here should have broad applicability to characterise previously-elusive non-coding mitochondrial genomic regions in a wide range of taxa.
Collapse
Affiliation(s)
- Liina Kinkar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Andreas J. Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| |
Collapse
|
22
|
Carøe C, Bohmann K. Tagsteady: A metabarcoding library preparation protocol to avoid false assignment of sequences to samples. Mol Ecol Resour 2020; 20:1620-1631. [PMID: 32663358 DOI: 10.1111/1755-0998.13227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/30/2022]
Abstract
Metabarcoding of environmental DNA (eDNA) and DNA extracted from bulk specimen samples is a powerful tool in studies of biodiversity, diet and ecological interactions as its inherent labelling of amplicons allows sequencing of taxonomically informative genetic markers from many samples in parallel. However, the occurrence of so-called 'tag-jumps' can cause incorrect assignment of sequences to samples and artificially inflate diversity. Two steps during library preparation of pools of 5' nucleotide-tagged amplicons have been suggested to cause tag-jumps: (a) T4 DNA polymerase blunt-ending in the end-repair step and (b) postligation PCR amplification of amplicon libraries. The discovery of tag-jumps has led to recommendations to only carry out metabarcoding PCR amplifications with primers carrying twin-tags to ensure that tag-jumps cannot result in false assignments of sequences to samples. As this increases both cost and workload, a metabarcoding library preparation protocol which circumvents the two steps that causes tag-jumps is needed. Here, we demonstrate Tagsteady, a PCR-free metabarcoding Illumina library preparation protocol for pools of nucleotide-tagged amplicons that enables efficient and cost-effective generation of metabarcoding data with virtually no tag-jumps. We use pools of twin-tagged amplicons to investigate the effect of T4 DNA polymerase blunt-ending and postligation PCR on the occurrence of tag-jumps and demonstrate that both blunt-ending and postligation PCR, alone or together, can result in detrimental amounts of tag-jumps (here, up to ca. 49% of total sequences), while leaving both steps out (the Tagsteady protocol) results in amounts of sequences carrying new combinations of used tags (tag-jumps) comparable to background contamination.
Collapse
Affiliation(s)
- Christian Carøe
- Section for Evolutionary Genomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Bohmann
- Section for Evolutionary Genomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Evaluation of PCR conditions for characterizing bacterial communities with full-length 16S rRNA genes using a portable nanopore sequencer. Sci Rep 2020; 10:12580. [PMID: 32724214 PMCID: PMC7387495 DOI: 10.1038/s41598-020-69450-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/29/2020] [Indexed: 11/08/2022] Open
Abstract
MinION (Oxford Nanopore Technologies), a portable nanopore sequencer, was introduced in 2014 as a new DNA sequencing technology. MinION is now widely used because of its low initial start-up costs relative to existing DNA sequencers, good portability, easy-handling, real-time analysis and long-read output. However, differences in the experimental conditions used for 16S rRNA-based PCR can bias bacterial community assessments in samples. Therefore, basic knowledge about reliable experimental conditions is needed to ensure the appropriate use of this technology. Our study concerns the reliability of techniques for obtaining accurate and quantitative full-length 16S rRNA amplicon sequencing data for bacterial community structure assessment using MinION. We compared five PCR conditions using three independent mock microbial community standard DNAs and established appropriate, standardized, better PCR conditions among the trials. We then sequenced two mock communities and six environmental samples using Illumina MiSeq for comparison. Modifying the PCR conditions improved the sequencing quality; the optimized conditions were 35 cycles of 95 °C for 1 min, 60 °C for 1 min and 68 °C for 3 min. Our results provide important information for researchers to determine bacterial community using MinION accurately.
Collapse
|
24
|
Nguyen LN, Commault AS, Kahlke T, Ralph PJ, Semblante GU, Johir MAH, Nghiem LD. Genome sequencing as a new window into the microbial community of membrane bioreactors - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135279. [PMID: 31791792 DOI: 10.1016/j.scitotenv.2019.135279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Recent developed sequencing techniques have resulted in a new and unprecedented way to study biological wastewater treatment, in which most organisms are uncultivable. This review provides (i) an insight on state-of-the-art sequencing techniques and their limitations; (ii) a critical assessment of the microbial community in biological reactor and biofouling layer in a membrane bioreactor (MBR). The data from high-throughput sequencing has been used to infer microbial growth conditions and metabolisms of microorganisms present in MBRs at the time of sampling. These data shed new insight to two fundamental questions about a microbial community in the MBR process namely the microbial composition (who are they?) and the functions of each specific microbial assemblage (what are their function?). The results to date also highlight the complexity of the microbial community growing on MBRs. Environmental conditions are dynamic and diverse, and can influence the diversity and structural dynamics of any given microbial community for wastewater treatment. The benefits of understanding the structure of microbial communities on three major aspects of the MBR process (i.e. nutrient removal, biofouling control, and micropollutant removal) were symmetrically delineated. This review also indicates that the deployment of microbial community analysis for a practical engineering context, in terms of process design and system optimization, can be further realized.
Collapse
Affiliation(s)
- Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Audrey S Commault
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Galilee U Semblante
- Technical Services, Western Sydney University, Kingswood, NSW 2747, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
25
|
Javidi-Parsijani P, Lyu P, Makani V, Sarhan WM, Yoo KW, El-Korashi L, Atala A, Lu B. CRISPR/Cas9 increases mitotic gene conversion in human cells. Gene Ther 2020; 27:281-296. [PMID: 32020049 DOI: 10.1038/s41434-020-0126-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/09/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022]
Abstract
Gene conversion is a process of transferring genetic material from one homologous sequence to another. Most reported gene conversions are meiotic although mitotic gene conversion is also described. When using CRISPR/Cas9 to target the human hemoglobin subunit beta (HBB) gene, hemoglobin subunit delta (HBD) gene footprints were observed in HBB gene. However, it is unclear whether these were the results of gene conversion or PCR-mediated sequence shuffling between highly homologous sequences. Here we provide evidence that the HBD footprints in HBB were indeed results of gene conversion. We demonstrated that the CRISPR/Cas9 facilitated unidirectional sequence transfer from the homologous gene without double-strand breaks (DSB) to the one with DSBs, and showed that the rates of HBD footprint in HBB were positively correlated to the HBB insertion and deletion rates. We further showed that when targeting HBD gene, HBB footprints could also be observed in HBD gene. The mitotic gene conversion was observed not only in immortalized HEK293T cells, but also in human primary cells. Our work reveals mitotic gene conversion as an often overlooked effect of CRISPR/Cas9-mediated genome editing.
Collapse
Affiliation(s)
- Parisa Javidi-Parsijani
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Pin Lyu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Vishruti Makani
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Walaa Mohamed Sarhan
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kyung Whan Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Lobna El-Korashi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
26
|
High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Sci Rep 2019; 9:17715. [PMID: 31776399 PMCID: PMC6881354 DOI: 10.1038/s41598-019-54126-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
CRISPR/Cas9 editing efficacies in tetraploid potato were highly improved through the use of endogenous potato U6 promoters. Highly increased editing efficiencies in the Granular Bound Starch Synthase gene at the protoplast level were obtained by replacement of the Arabidopsis U6 promotor, driving expression of the CRISPR component, with endogenous potato U6 promotors. This translated at the ex-plant level into 35% full allelic gene editing. Indel Detection Amplicon Analysis was established as an efficient tool for fast assessment of gene editing in complex genomes, such as potato. Together, this warrants significant reduction of laborious cell culturing, ex-plant regeneration and screening procedures of plants with high complexity genomes.
Collapse
|
27
|
Yeoman CJ, Brutscher LM, Esen ÖC, Ibaoglu F, Fowler C, Eren AM, Wanner K, Weaver DK. Genome-resolved insights into a novel Spiroplasma symbiont of the Wheat Stem Sawfly ( Cephus cinctus). PeerJ 2019; 7:e7548. [PMID: 31523509 PMCID: PMC6716498 DOI: 10.7717/peerj.7548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Arthropods often have obligate relationships with symbiotic microbes, and recent investigations have demonstrated that such host-microbe relationships could be exploited to suppress natural populations of vector carrying mosquitos. Strategies that target the interplay between agricultural pests and their symbionts could decrease the burden caused by agricultural pests; however, the lack of comprehensive genomic insights into naturally occurring microbial symbionts presents a significant bottleneck. Here we employed amplicon surveys, genome-resolved metagenomics, and scanning electron microscopy to investigate symbionts of the wheat stem sawfly (Cephus cinctus), a major pest that causes an estimated $350 million dollars or more in wheat yield losses in the northwestern United States annually. Through 16S rRNA gene sequencing of two major haplotypes and life stages of wheat stem sawfly, we show a novel Spiroplasma species is ever-present and predominant, with phylogenomic analyses placing it as a member of the ixodetis clade of mollicutes. Using state-of-the-art metagenomic assembly and binning strategies we were able to reconstruct a 714 Kb, 72.7%-complete Spiroplasma genome, which represents just the second draft genome from the ixodetis clade of mollicutes. Functional annotation of the Spiroplasma genome indicated carbohydrate-metabolism involved PTS-mediated import of glucose and fructose followed by glycolysis to lactate, acetate, and propionoate. The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase. These results identify a previously undescribed symbiosis between wheat stem sawfly and a novel Spiroplasma sp., availing insight into their molecular relationship, and may yield new opportunities for microbially-mediated pest control strategies.
Collapse
Affiliation(s)
- Carl J Yeoman
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America
| | - Laura M Brutscher
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America.,Department of Microbiology & Immunology, Montana State University, Bozeman, MT, United States of America
| | - Özcan C Esen
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Furkan Ibaoglu
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America.,Department of Microbiology & Immunology, Montana State University, Bozeman, MT, United States of America
| | - Curtis Fowler
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, United States of America.,Marine Biological Laboratory, The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachuetts, United States of America
| | - Kevin Wanner
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, United States of America
| | - David K Weaver
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, United States of America
| |
Collapse
|
28
|
Gołębiewski M, Tretyn A. Generating amplicon reads for microbial community assessment with next‐generation sequencing. J Appl Microbiol 2019; 128:330-354. [DOI: 10.1111/jam.14380] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- M. Gołębiewski
- Plant Physiology and Biotechnology Nicolaus Copernicus University Toruń Poland
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University Toruń Poland
| | - A. Tretyn
- Plant Physiology and Biotechnology Nicolaus Copernicus University Toruń Poland
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University Toruń Poland
| |
Collapse
|
29
|
Qiu C, Kaplan CD. Functional assays for transcription mechanisms in high-throughput. Methods 2019; 159-160:115-123. [PMID: 30797033 PMCID: PMC6589137 DOI: 10.1016/j.ymeth.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023] Open
Abstract
Dramatic increases in the scale of programmed synthesis of nucleic acid libraries coupled with deep sequencing have powered advances in understanding nucleic acid and protein biology. Biological systems centering on nucleic acids or encoded proteins greatly benefit from such high-throughput studies, given that large DNA variant pools can be synthesized and DNA, or RNA products of transcription, can be easily analyzed by deep sequencing. Here we review the scope of various high-throughput functional assays for studies of nucleic acids and proteins in general, followed by discussion of how these types of study have yielded insights into the RNA Polymerase II (Pol II) active site as an example. We discuss methodological considerations in the design and execution of these experiments that should be valuable to studies in any system.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
30
|
Lanner J, Curto M, Pachinger B, Neumüller U, Meimberg H. Illumina midi-barcodes: quality proof and applications. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:490-499. [PMID: 30633607 DOI: 10.1080/24701394.2018.1551386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA barcoding constitutes a supplemental genetically based characterization tool for the identification of species. Traditionally, the barcodes are generated with a length of 650 bp using standardized Sanger sequencing, but with the introduction of high-throughput sequencing (HTS) methods new opportunities for sequencing are available. To use HTS for barcode collection and identification, the amplification of shorter fragments is preferred. Reference DNA midi-barcodes of wild bees were produced using the Illumina MiSeq as well as the Sanger method. Although DNA midi-barcodes derived from Illumina were comparatively shorter (418 bp), their sequences were coherent to the morphological assignment of species. The Illumina barcodes proved to be effective and dealt better with some general limitations of DNA barcoding.
Collapse
Affiliation(s)
- Julia Lanner
- a Institute for Integrative Nature Conservation Research , University of Natural Resources and Life Sciences , Vienna , Austria
| | - Manuel Curto
- a Institute for Integrative Nature Conservation Research , University of Natural Resources and Life Sciences , Vienna , Austria
| | - Bärbel Pachinger
- a Institute for Integrative Nature Conservation Research , University of Natural Resources and Life Sciences , Vienna , Austria
| | - Ulrich Neumüller
- b Institute of Evolutionary Ecology and Conservation Genomics , University of Ulm , Ulm , Germany
| | - Harald Meimberg
- a Institute for Integrative Nature Conservation Research , University of Natural Resources and Life Sciences , Vienna , Austria
| |
Collapse
|
31
|
de Knijff P. From next generation sequencing to now generation sequencing in forensics. Forensic Sci Int Genet 2019; 38:175-180. [DOI: 10.1016/j.fsigen.2018.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
|
32
|
Mailler E, Paillart JC, Marquet R, Smyth RP, Vivet-Boudou V. The evolution of RNA structural probing methods: From gels to next-generation sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1518. [PMID: 30485688 DOI: 10.1002/wrna.1518] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023]
Abstract
RNA molecules are important players in all domains of life and the study of the relationship between their multiple flexible states and the associated biological roles has increased in recent years. For several decades, chemical and enzymatic structural probing experiments have been used to determine RNA structure. During this time, there has been a steady improvement in probing reagents and experimental methods, and today the structural biologist community has a large range of tools at its disposal to probe the secondary structure of RNAs in vitro and in cells. Early experiments used radioactive labeling and polyacrylamide gel electrophoresis as read-out methods. This was superseded by capillary electrophoresis, and more recently by next-generation sequencing. Today, powerful structural probing methods can characterize RNA structure on a genome-wide scale. In this review, we will provide an overview of RNA structural probing methodologies from a historical and technical perspective. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Methods > RNA Analyses in vitro and In Silico RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Elodie Mailler
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Roland Marquet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Redmond P Smyth
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valerie Vivet-Boudou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
33
|
Alberdi A, Aizpurua O, Bohmann K, Gopalakrishnan S, Lynggaard C, Nielsen M, Gilbert MTP. Promises and pitfalls of using high‐throughput sequencing for diet analysis. Mol Ecol Resour 2018; 19:327-348. [DOI: 10.1111/1755-0998.12960] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Antton Alberdi
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Ostaizka Aizpurua
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Kristine Bohmann
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- School of Biological Sciences University of East Anglia Norwich Norfolk UK
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Christina Lynggaard
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Martin Nielsen
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Marcus Thomas Pius Gilbert
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- NTNU University Museum Trondheim Norway
| |
Collapse
|
34
|
Yang L, Ouyang H, Fang Z, Zhu W, Wu E, Luo G, Shang L, Zhan J. Evidence for intragenic recombination and selective sweep in an effector gene of Phytophthora infestans. Evol Appl 2018; 11:1342-1353. [PMID: 30151044 PMCID: PMC6099815 DOI: 10.1111/eva.12629] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
Effectors, a group of small proteins secreted by pathogens, play a critical role in the antagonistic interaction between plant hosts and pathogens through their dual functions in regulating host immune systems and pathogen infection capability. In this study, evolution in effector genes was investigated through population genetic analysis of Avr3a sequences generated from 96 Phytophthora infestans isolates collected from six locations representing a range of thermal variation and cropping systems in China. We found high genetic variation in the Avr3a gene resulting from diverse mechanisms extending beyond point mutations, frameshift, and defeated start and stop codons to intragenic recombination. A total of 51 nucleotide haplotypes encoding 38 amino acid isoforms were detected in the 96 full sequences with nucleotide diversity in the pathogen populations ranging from 0.007 to 0.023 (mean = 0.017). Although haplotype and nucleotide diversity were high, the effector gene was dominated by only three haplotypes. Evidence for a selective sweep was provided by (i) the population genetic differentiation (GST) of haplotypes being lower than the population differentiation (FST) of SSR marker loci; and (ii) negative values of Tajima's D and Fu's FS. Annual mean temperature in the collection sites was negatively correlated with the frequency of the virulent form (Avr3aEM), indicating Avr3a may be regulated by temperature. These results suggest that elevated air temperature due to global warming may hamper the development of pathogenicity traits in P. infestans and further study under confined thermal regimes may be required to confirm the hypothesis.
Collapse
Affiliation(s)
- Lina Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hai‐Bing Ouyang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhi‐Guo Fang
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- Xiangyang Academy of Agricultural SciencesXiangyangChina
| | - Wen Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - E‐Jiao Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Gui‐Huo Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Ping Shang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiasui Zhan
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
35
|
Orr RJS, Zhao S, Klaveness D, Yabuki A, Ikeda K, Makoto WM, Shalchian-Tabrizi K. Enigmatic Diphyllatea eukaryotes: culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution. BMC Evol Biol 2018; 18:115. [PMID: 30021531 PMCID: PMC6052632 DOI: 10.1186/s12862-018-1224-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The class Diphyllatea belongs to a group of enigmatic unicellular eukaryotes that play a key role in reconstructing the morphological innovation and diversification of early eukaryotic evolution. Despite its evolutionary significance, very little is known about the phylogeny and species diversity of Diphyllatea. Only three species have described morphology, being taxonomically divided by flagella number, two or four, and cell size. Currently, one 18S rRNA Diphyllatea sequence is available, with environmental sequencing surveys reporting only a single partial sequence from a Diphyllatea-like organism. Accordingly, geographical distribution of Diphyllatea based on molecular data is limited, despite morphological data suggesting the class has a global distribution. We here present a first attempt to understand species distribution, diversity and higher order structure of Diphyllatea. RESULTS We cultured 11 new strains, characterised these morphologically and amplified their rRNA for a combined 18S-28S rRNA phylogeny. We sampled environmental DNA from multiple sites and designed new Diphyllatea-specific PCR primers for long-read PacBio RSII technology. Near full-length 18S rRNA sequences from environmental DNA, in addition to supplementary Diphyllatea sequence data mined from public databases, resolved the phylogeny into three deeply branching and distinct clades (Diphy I - III). Of these, the Diphy III clade is entirely novel, and in congruence with Diphy II, composed of species morphologically consistent with the earlier described Collodictyon triciliatum. The phylogenetic split between the Diphy I and Diphy II + III clades corresponds with a morphological division of Diphyllatea into bi- and quadriflagellate cell forms. CONCLUSIONS This altered flagella composition must have occurred early in the diversification of Diphyllatea and may represent one of the earliest known morphological transitions among eukaryotes. Further, the substantial increase in molecular data presented here confirms Diphyllatea has a global distribution, seemingly restricted to freshwater habitats. Altogether, the results reveal the advantage of combining a group-specific PCR approach and long-read high-throughput amplicon sequencing in surveying enigmatic eukaryote lineages. Lastly, our study shows the capacity of PacBio RS when targeting a protist class for increasing phylogenetic resolution.
Collapse
Affiliation(s)
- Russell J. S. Orr
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway
| | - Sen Zhao
- Department of Molecular Oncology, Institute of Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Medical Faculty, Center for Cancer Biomedicine, University of Oslo University Hospital, Oslo, Norway
| | - Dag Klaveness
- Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061 Japan
| | - Keiji Ikeda
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Watanabe M. Makoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Kamran Shalchian-Tabrizi
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway
| |
Collapse
|
36
|
Bennett KL, Kaddumukasa M, Shija F, Djouaka R, Misinzo G, Lutwama J, Linton YM, Walton C. Comparative phylogeography of Aedes mosquitoes and the role of past climatic change for evolution within Africa. Ecol Evol 2018; 8:3019-3036. [PMID: 29531714 PMCID: PMC5838080 DOI: 10.1002/ece3.3668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
The study of demographic processes involved in species diversification and evolution ultimately provides explanations for the complex distribution of biodiversity on earth, indicates regions important for the maintenance and generation of biodiversity, and identifies biological units important for conservation or medical consequence. African and forest biota have both received relatively little attention with regard to understanding their diversification, although one possible mechanism is that this has been driven by historical climate change. To investigate this, we implemented a standard population genetics approach along with Approximate Bayesian Computation, using sequence data from two exon-primed intron-crossing (EPIC) nuclear loci and mitochondrial cytochrome oxidase subunit I, to investigate the evolutionary history of five medically important and inherently forest dependent mosquito species of the genus Aedes. By testing different demographic hypotheses, we show that Aedes bromeliae and Aedes lilii fit the same model of lineage diversification, admixture, expansion, and recent population structure previously inferred for Aedes aegypti. In addition, analyses of population structure show that Aedes africanus has undergone lineage diversification and expansion while Aedes hansfordi has been impacted by population expansion within Uganda. This congruence in evolutionary history is likely to relate to historical climate-driven habitat change within Africa during the late Pleistocene and Holocene epoch. We find differences in the population structure of mosquitoes from Tanzania and Uganda compared to Benin and Uganda which could relate to differences in the historical connectivity of forests across the continent. Our findings emphasize the importance of recent climate change in the evolution of African forest biota.
Collapse
Affiliation(s)
- Kelly Louise Bennett
- Faculty of Life SciencesComputational Evolutionary Biology GroupUniversity of ManchesterManchesterUK
| | - Martha Kaddumukasa
- Department of Arbovirology, Emerging and Re‐emerging InfectionsUganda Virus Research InstituteEntebbeUganda
- WITS Institute for Malaria ResearchSchool of Pathology Faculty of Health SciencesUniversity of WitwatersrandParktownJohannesburg
| | - Fortunate Shija
- Faculty of Life SciencesComputational Evolutionary Biology GroupUniversity of ManchesterManchesterUK
- Department of Veterinary Microbiology and ParasitologySokoine University of AgricultureMorogoroTanzania
| | - Rousseau Djouaka
- Agro‐Eco‐Health Platform for West and Central AfricaInternational Institute for Tropical AgricultureCotonouRepublic of Benin
| | - Gerald Misinzo
- Agro‐Eco‐Health Platform for West and Central AfricaInternational Institute for Tropical AgricultureCotonouRepublic of Benin
| | - Julius Lutwama
- Department of Arbovirology, Emerging and Re‐emerging InfectionsUganda Virus Research InstituteEntebbeUganda
| | - Yvonne Marie Linton
- Department of EntomologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
- Walter Reed Biosystematics UnitSmithsonian Institution Museum Support CenterSuitlandMDUSA
- Walter Reed Army Institute of ResearchSilver SpringMDUSA
- Uniformed Services University of Health SciencesBethesdaMDUSA
| | - Catherine Walton
- Faculty of Life SciencesComputational Evolutionary Biology GroupUniversity of ManchesterManchesterUK
| |
Collapse
|
37
|
Koo H, Hakim JA, Morrow CD, Andersen DT, Bej AK. Microbial Community Composition and Predicted Functional Attributes of Antarctic Lithobionts Using Targeted Next-Generation Sequencing and Bioinformatics Tools. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Song L, Huang W, Kang J, Huang Y, Ren H, Ding K. Comparison of error correction algorithms for Ion Torrent PGM data: application to hepatitis B virus. Sci Rep 2017; 7:8106. [PMID: 28808243 PMCID: PMC5556038 DOI: 10.1038/s41598-017-08139-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/05/2017] [Indexed: 01/26/2023] Open
Abstract
Ion Torrent Personal Genome Machine (PGM) technology is a mid-length read, low-cost and high-speed next-generation sequencing platform with a relatively high insertion and deletion (indel) error rate. A full systematic assessment of the effectiveness of various error correction algorithms in PGM viral datasets (e.g., hepatitis B virus (HBV)) has not been performed. We examined 19 quality-trimmed PGM datasets for the HBV reverse transcriptase (RT) region and found a total error rate of 0.48% ± 0.12%. Deletion errors were clearly present at the ends of homopolymer runs. Tests using both real and simulated data showed that the algorithms differed in their abilities to detect and correct errors and that the error rate and sequencing depth significantly affected the performance. Of the algorithms tested, Pollux showed a better overall performance but tended to over-correct 'genuine' substitution variants, whereas Fiona proved to be better at distinguishing these variants from sequencing errors. We found that the combined use of Pollux and Fiona gave the best results when error-correcting Ion Torrent PGM viral data.
Collapse
Affiliation(s)
- Liting Song
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Wenxun Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Juan Kang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Yuan Huang
- Center for Hepatobillary and Pancreatic Diseases, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing, 100044, P.R. China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Keyue Ding
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
39
|
Mysara M, Njima M, Leys N, Raes J, Monsieurs P. From reads to operational taxonomic units: an ensemble processing pipeline for MiSeq amplicon sequencing data. Gigascience 2017; 6:1-10. [PMID: 28369460 PMCID: PMC5466709 DOI: 10.1093/gigascience/giw017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/27/2016] [Indexed: 01/09/2023] Open
Abstract
The development of high-throughput sequencing technologies has provided microbial ecologists with an efficient approach to assess bacterial diversity at an unseen depth, particularly with the recent advances in the Illumina MiSeq sequencing platform. However, analyzing such high-throughput data is posing important computational challenges, requiring specialized bioinformatics solutions at different stages during the processing pipeline, such as assembly of paired-end reads, chimera removal, correction of sequencing errors, and clustering of those sequences into Operational Taxonomic Units (OTUs). Individual algorithms grappling with each of those challenges have been combined into various bioinformatics pipelines, such as mothur, QIIME, LotuS, and USEARCH. Using a set of well-described bacterial mock communities, state-of-the-art pipelines for Illumina MiSeq amplicon sequencing data are benchmarked at the level of the amount of sequences retained, computational cost, error rate, and quality of the OTUs. In addition, a new pipeline called OCToPUS is introduced, which is making an optimal combination of different algorithms. Huge variability is observed between the different pipelines in respect to the monitored performance parameters, where in general the amount of retained reads is found to be inversely proportional to the quality of the reads. By contrast, OCToPUS achieves the lowest error rate, minimum number of spurious OTUs, and the closest correspondence to the existing community, while retaining the uppermost amount of reads when compared to other pipelines. The newly introduced pipeline translates Illumina MiSeq amplicon sequencing data into high-quality and reliable OTUs, with improved performance and accuracy compared to the currently existing pipelines.
Collapse
Affiliation(s)
- Mohamed Mysara
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, 2400 Mol, Belgium.,Department of Bio-Engineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium.,VIB Center for the Biology of Disease, VIB, Herestraat 49 - box 1028, 3000 Leuven, Belgium.,Department of Microbiology and Immunology, REGA institute, Herestraat 49 - box 1028, 3000 Leuven, Belgium
| | - Mercy Njima
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, 2400 Mol, Belgium
| | - Natalie Leys
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, 2400 Mol, Belgium
| | - Jeroen Raes
- Department of Bio-Engineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium.,VIB Center for the Biology of Disease, VIB, Herestraat 49 - box 1028, 3000 Leuven, Belgium.,Department of Microbiology and Immunology, REGA institute, Herestraat 49 - box 1028, 3000 Leuven, Belgium
| | - Pieter Monsieurs
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
40
|
Optimisation of methods for bacterial skin microbiome investigation: primer selection and comparison of the 454 versus MiSeq platform. BMC Microbiol 2017; 17:23. [PMID: 28109256 PMCID: PMC5251215 DOI: 10.1186/s12866-017-0927-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022] Open
Abstract
Background The composition of the skin microbiome is predicted to play a role in the development of conditions such as atopic eczema and psoriasis. 16S rRNA gene sequencing allows the investigation of bacterial microbiota. A significant challenge in this field is development of cost effective high throughput methodologies for the robust interrogation of the skin microbiota, where biomass is low. Here we describe validation of methodologies for 16S rRNA (ribosomal ribonucleic acid) gene sequencing from the skin microbiome, using the Illumina MiSeq platform, the selection of primer to amplify regions for sequencing and we compare results with the current standard protocols.. Methods DNA was obtained from two low density mock communities of 11 diverse bacterial strains (with and without human DNA supplementation) and from swabs taken from the skin of healthy volunteers. This was amplified using primer pairs covering hypervariable regions of the 16S rRNA gene: primers 63F and 519R (V1-V3); and 347F and 803R (V3-V4). The resultant libraries were indexed for the MiSeq and Roche454 and sequenced. Both data sets were denoised, cleaned of chimeras and analysed using QIIME. Results There was no significant difference in the diversity indices at the phylum and the genus level observed between the platforms. The capture of diversity using the low density mock community samples demonstrated that the primer pair spanning the V3-V4 hypervariable region had better capture when compared to the primer pair for the V1-V3 region and was robust to spiking with human DNA. The pilot data generated using the V3-V4 region from the skin of healthy volunteers was consistent with these results, even at the genus level (Staphylococcus, Propionibacterium, Corynebacterium, Paracoccus, Micrococcus, Enhydrobacter and Deinococcus identified at similar abundances on both platforms). Conclusions The results suggest that the bacterial community diversity captured using the V3-V4 16S rRNA hypervariable region from sequencing using the MiSeq platform is comparable to the Roche454 GS Junior platform. These findings provide evidence that the optimised method can be used in human clinical samples of low bacterial biomass such as the investigation of the skin microbiota. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0927-4) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Potapov V, Ong JL. Examining Sources of Error in PCR by Single-Molecule Sequencing. PLoS One 2017; 12:e0169774. [PMID: 28060945 PMCID: PMC5218489 DOI: 10.1371/journal.pone.0169774] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/21/2016] [Indexed: 01/28/2023] Open
Abstract
Next-generation sequencing technology has enabled the detection of rare genetic or somatic mutations and contributed to our understanding of disease progression and evolution. However, many next-generation sequencing technologies first rely on DNA amplification, via the Polymerase Chain Reaction (PCR), as part of sample preparation workflows. Mistakes made during PCR appear in sequencing data and contribute to false mutations that can ultimately confound genetic analysis. In this report, a single-molecule sequencing assay was used to comprehensively catalog the different types of errors introduced during PCR, including polymerase misincorporation, structure-induced template-switching, PCR-mediated recombination and DNA damage. In addition to well-characterized polymerase base substitution errors, other sources of error were found to be equally prevalent. PCR-mediated recombination by Taq polymerase was observed at the single-molecule level, and surprisingly found to occur as frequently as polymerase base substitution errors, suggesting it may be an underappreciated source of error for multiplex amplification reactions. Inverted repeat structural elements in lacZ caused polymerase template-switching between the top and bottom strands during replication and the frequency of these events were measured for different polymerases. For very accurate polymerases, DNA damage introduced during temperature cycling, and not polymerase base substitution errors, appeared to be the major contributor toward mutations occurring in amplification products. In total, we analyzed PCR products at the single-molecule level and present here a more complete picture of the types of mistakes that occur during DNA amplification.
Collapse
Affiliation(s)
- Vladimir Potapov
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jennifer L. Ong
- New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Bjørnsgaard Aas A, Davey ML, Kauserud H. ITS all right mama: investigating the formation of chimeric sequences in the ITS2 region by DNA metabarcoding analyses of fungal mock communities of different complexities. Mol Ecol Resour 2016; 17:730-741. [DOI: 10.1111/1755-0998.12622] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/23/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Anders Bjørnsgaard Aas
- Section for Genetics and Evolutionary Biology (Evogene); Department of Biosciences; University of Oslo; P.O. Box 1066 Blindern NO-0316 Oslo Norway
| | - Marie Louise Davey
- Section for Genetics and Evolutionary Biology (Evogene); Department of Biosciences; University of Oslo; P.O. Box 1066 Blindern NO-0316 Oslo Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (Evogene); Department of Biosciences; University of Oslo; P.O. Box 1066 Blindern NO-0316 Oslo Norway
| |
Collapse
|
43
|
Amato KR. An introduction to microbiome analysis for human biology applications. Am J Hum Biol 2016; 29. [PMID: 27762069 DOI: 10.1002/ajhb.22931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/04/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
Research examining the gut microbiota is currently exploding, and results are providing new perspectives on human biology. Factors such as host diet and physiology influence the composition and function of the gut microbiota, which in turn affects human nutrition, health, and behavior via interactions with metabolism, the immune system, and the brain. These findings represent an exciting new twist on familiar topics, and as a result, gut microbiome research is likely to provide insight into unresolved biological mechanisms driving human health. However, much remains to be learned about the broader ecological and evolutionary contexts within which gut microbes and humans are affecting each other. Here, I outline the procedures for generating data describing the gut microbiota with the goal of facilitating the wider integration of microbiome analyses into studies of human biology. I describe the steps involved in sample collection, DNA extraction, PCR amplification, high-throughput sequencing, and bioinformatics. While this review serves only as an introduction to these topics, it provides sufficient resources for researchers interested in launching new microbiome initiatives. As knowledge of these methods spreads, microbiome analysis should become a standard tool in the arsenal of human biology research.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, 60208
| |
Collapse
|
44
|
Burke CM, Darling AE. A method for high precision sequencing of near full-length 16S rRNA genes on an Illumina MiSeq. PeerJ 2016; 4:e2492. [PMID: 27688981 PMCID: PMC5036073 DOI: 10.7717/peerj.2492] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
Background The bacterial 16S rRNA gene has historically been used in defining bacterial taxonomy and phylogeny. However, there are currently no high-throughput methods to sequence full-length 16S rRNA genes present in a sample with precision. Results We describe a method for sequencing near full-length 16S rRNA gene amplicons using the high throughput Illumina MiSeq platform and test it using DNA from human skin swab samples. Proof of principle of the approach is demonstrated, with the generation of 1,604 sequences greater than 1,300 nt from a single Nano MiSeq run, with accuracy estimated to be 100-fold higher than standard Illumina reads. The reads were chimera filtered using information from a single molecule dual tagging scheme that boosts the signal available for chimera detection. Conclusions This method could be scaled up to generate many thousands of sequences per MiSeq run and could be applied to other sequencing platforms. This has great potential for populating databases with high quality, near full-length 16S rRNA gene sequences from under-represented taxa and environments and facilitates analyses of microbial communities at higher resolution.
Collapse
Affiliation(s)
- Catherine M Burke
- The i3 Institute, University of Technology Sydney , Sydney, NSW , Australia
| | - Aaron E Darling
- The i3 Institute, University of Technology Sydney , Sydney, NSW , Australia
| |
Collapse
|
45
|
Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses. Int Neurourol J 2016; 20:S38-48. [PMID: 27230459 PMCID: PMC4895911 DOI: 10.5213/inj.1632602.301] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/29/2016] [Indexed: 11/17/2022] Open
Abstract
Purpose: We aim to fabricate a thermoplastic poly(methylmethacrylate) (PMMA) Lab-on-a-Chip device to perform continuous- flow polymerase chain reactions (PCRs) for rapid molecular detection of foodborne pathogen bacteria. Methods: A miniaturized plastic device was fabricated by utilizing PMMA substrates mediated by poly(dimethylsiloxane) interfacial coating, enabling bonding under mild conditions, and thus avoiding the deformation or collapse of microchannels. Surface characterizations were carried out and bond strength was measured. The feasibility of the Lab-on-a-Chip device for performing on-chip PCR utilizing a lab-made, portable dual heater was evaluated. The results were compared with those obtained using a commercially available thermal cycler. Results: A PMMA Lab-on-a-Chip device was designed and fabricated for conducting PCR using foodborne pathogens as sample targets. A robust bond was established between the PMMA substrates, which is essential for performing miniaturized PCR on plastic. The feasibility of on-chip PCR was evaluated using Escherichia coli O157:H7 and Cronobacter condimenti, two worldwide foodborne pathogens, and the target amplicons were successfully amplified within 25 minutes. Conclusions: In this study, we present a novel design of a low-cost and high-throughput thermoplastic PMMA Lab-on-a-Chip device for conducting microscale PCR, and we enable rapid molecular diagnoses of two important foodborne pathogens in minute resolution using this device. In this regard, the introduced highly portable system design has the potential to enable PCR investigations of many diseases quickly and accurately.
Collapse
|
46
|
Zhang J, Gao X, Martin J, Rosa B, Chen Z, Mitreva M, Henrich T, Kuritzkes D, Ratner L. Evolution of coreceptor utilization to escape CCR5 antagonist therapy. Virology 2016; 494:198-214. [PMID: 27128349 PMCID: PMC4913893 DOI: 10.1016/j.virol.2016.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 01/05/2023]
Abstract
The HIV-1 envelope interacts with coreceptors CCR5 and CXCR4 in a dynamic, multi-step process, its molecular details not clearly delineated. Use of CCR5 antagonists results in tropism shift and therapeutic failure. Here we describe a novel approach using full-length patient-derived gp160 quasispecies libraries cloned into HIV-1 molecular clones, their separation based on phenotypic tropism in vitro, and deep sequencing of the resultant variants for structure-function analyses. Analysis of functionally validated envelope sequences from patients who failed CCR5 antagonist therapy revealed determinants strongly associated with coreceptor specificity, especially at the gp120-gp41 and gp41-gp41 interaction surfaces that invite future research on the roles of subunit interaction and envelope trimer stability in coreceptor usage. This study identifies important structure-function relationships in HIV-1 envelope, and demonstrates proof of concept for a new integrated analysis method that facilitates laboratory discovery of resistant mutants to aid in development of other therapeutic agents.
Collapse
Affiliation(s)
- Jie Zhang
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiang Gao
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John Martin
- The McDonnelle Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce Rosa
- The McDonnelle Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Zheng Chen
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Makedonka Mitreva
- The McDonnelle Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy Henrich
- Division of Infectious Diseases, Brigham and Women׳s Hospital, Harvard Medical School, MA, USA
| | - Daniel Kuritzkes
- Division of Infectious Diseases, Brigham and Women׳s Hospital, Harvard Medical School, MA, USA
| | - Lee Ratner
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
47
|
Cromer D, Schlub TE, Smyth RP, Grimm AJ, Chopra A, Mallal S, Davenport MP, Mak J. HIV-1 Mutation and Recombination Rates Are Different in Macrophages and T-cells. Viruses 2016; 8:118. [PMID: 27110814 PMCID: PMC4848610 DOI: 10.3390/v8040118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 04/05/2016] [Accepted: 04/19/2016] [Indexed: 11/16/2022] Open
Abstract
High rates of mutation and recombination help human immunodeficiency virus (HIV) to evade the immune system and develop resistance to antiretroviral therapy. Macrophages and T-cells are the natural target cells of HIV-1 infection. A consensus has not been reached as to whether HIV replication results in differential recombination between primary T-cells and macrophages. Here, we used HIV with silent mutation markers along with next generation sequencing to compare the mutation and the recombination rates of HIV directly in T lymphocytes and macrophages. We observed a more than four-fold higher recombination rate of HIV in macrophages compared to T-cells (p < 0.001) and demonstrated that this difference is not due to different reliance on C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 5 (CCR5) co-receptors between T-cells and macrophages. We also found that the pattern of recombination across the HIV genome (hot and cold spots) remains constant between T-cells and macrophages despite a three-fold increase in the overall recombination rate. This indicates that the difference in rates is a general feature of HIV DNA synthesis during macrophage infection. In contrast to HIV recombination, we found that T-cells have a 30% higher mutation rate than macrophages (p < 0.001) and that the mutational profile is similar between these cell types. Unexpectedly, we found no association between mutation and recombination in macrophages, in contrast to T-cells. Our data highlights some of the fundamental difference of HIV recombination and mutation amongst these two major target cells of infection. Understanding these differences will provide invaluable insights toward HIV evolution and how the virus evades immune surveillance and anti-retroviral therapeutics.
Collapse
Affiliation(s)
- Deborah Cromer
- Infection Analytics Program, Kirby Institute, UNSW Australia, Sydney NSW 2052, Australia.
- Centre for Vascular Research, UNSW Australia, Sydney NSW 2052, Australia.
| | - Timothy E Schlub
- Sydney School of Public Health, Sydney Medical School, University of Sydney, Sydney NSW 2006, Australia.
| | - Redmond P Smyth
- Centre for Virology, Burnet Institute, Melbourne VIC 3004, Australia.
- Architecture et Réactivité de l'ARN, IBMC, CNRS, Université de Strasbourg, 67084 Strasbourg, France.
| | - Andrew J Grimm
- Infection Analytics Program, Kirby Institute, UNSW Australia, Sydney NSW 2052, Australia.
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Perth WA 6150, Australia.
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Perth WA 6150, Australia.
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute, UNSW Australia, Sydney NSW 2052, Australia.
- Centre for Vascular Research, UNSW Australia, Sydney NSW 2052, Australia.
| | - Johnson Mak
- Biosecurity Flagship, CSIRO (AAHL), Geelong VIC 3220, Australia.
- School of Medicine, Deakin University and CSIRO (AAHL), Geelong VIC 3216, Australia.
| |
Collapse
|
48
|
Abstract
Pharmacovigilance of herbal medicines relies on the product label information regarding the ingredients and the adherence to good manufacturing practices along the commercialisation chain. Several studies have shown that substitution of plant species occurs in herbal medicines, and this in turn poses a challenge to herbal pharmacovigilance as adverse reactions might be due to adulterated or added ingredients. Authentication of constituents in herbal medicines using analytical chemistry methods can help detect contaminants and toxins, but are often limited or incapable of detecting the source of the contamination. Recent developments in molecular plant identification using DNA sequence data enable accurate identification of plant species from herbal medicines using defined DNA markers. Identification of multiple constituent species from compound herbal medicines using amplicon metabarcoding enables verification of labelled ingredients and detection of substituted, adulterated and added species. DNA barcoding is proving to be a powerful method to assess species composition in herbal medicines and has the potential to be used as a standard method in herbal pharmacovigilance research of adverse reactions to specific products.
Collapse
|
49
|
Tao Y, Rotem A, Zhang H, Cockrell SK, Koehler SA, Chang CB, Ung LW, Cantalupo PG, Ren Y, Lin JS, Feldman AB, Wobus CE, Pipas JM, Weitz DA. Artifact-Free Quantification and Sequencing of Rare Recombinant Viruses by Using Drop-Based Microfluidics. Chembiochem 2015; 16:2167-71. [PMID: 26247541 DOI: 10.1002/cbic.201500384] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 01/23/2023]
Abstract
Recombination is an important driver in the evolution of viruses and thus is key to understanding viral epidemics and improving strategies to prevent future outbreaks. Characterization of rare recombinant subpopulations remains technically challenging because of artifacts such as artificial recombinants, known as chimeras, and amplification bias. To overcome this, we have developed a high-throughput microfluidic technique with a second verification step in order to amplify and sequence single recombinant viruses with high fidelity in picoliter drops. We obtained the first artifact-free estimate of in vitro recombination rate between murine norovirus strains MNV-1 and WU20 co-infecting a cell (P(rec) = 3.3 × 10(-4) ± 2 × 10(-5) ) for a 1205 nt region. Our approach represents a time- and cost-effective improvement over current methods, and can be adapted for genomic studies requiring artifact- and bias-free selective amplification, such as microbial pathogens, or rare cancer cells.
Collapse
Affiliation(s)
- Ye Tao
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA.,School of Mechatronics Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, 150001, China
| | - Assaf Rotem
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA
| | - Huidan Zhang
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA.,Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 92 Beier Road, Heping District, Shenyang, 110001, China
| | - Shelley K Cockrell
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Stephan A Koehler
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA
| | - Connie B Chang
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA.,Chemical and Biological Engineering Department, Montana State University, Bozeman, MT, 59717, USA
| | - Lloyd W Ung
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA
| | - Paul G Cantalupo
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, 150001, China
| | - Jeffrey S Lin
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA
| | - Andrew B Feldman
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA.,Department of Emergency Medicine, Johns Hopkins Medicine, 5801 Smith Avenue, Suite 3220, Baltimore, MD, 21209, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, 1150 West Medical Center Drive, 5622 Medical Science II, Ann Arbor, MI, 48109, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA. .,Department of Physics, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA.
| |
Collapse
|
50
|
Wang J, Moore NE, Deng YM, Eccles DA, Hall RJ. MinION nanopore sequencing of an influenza genome. Front Microbiol 2015; 6:766. [PMID: 26347715 PMCID: PMC4540950 DOI: 10.3389/fmicb.2015.00766] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/14/2015] [Indexed: 11/17/2022] Open
Abstract
Influenza epidemics and pandemics have significant impacts on economies, morbidity and mortality worldwide. The ability to rapidly and accurately sequence influenza viruses is instrumental in the prevention and mitigation of influenza. All eight influenza genes from an influenza A virus were amplified by PCR simultaneously and then subjected to sequencing on a MinION nanopore sequencer. A complete influenza virus genome was obtained that shared greater than 99% identity with sequence data obtained from Illumina MiSeq and traditional Sanger-sequencing. The laboratory infrastructure and computing resources used to perform this experiment on the MinION nanopore sequencer would be available in most molecular laboratories around the world. Using this system, the concept of portability, and thus sequencing influenza viruses in the clinic or field is now tenable.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Upper Hutt, New Zealand
| | - Nicole E. Moore
- Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Upper Hutt, New Zealand
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David A. Eccles
- Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Upper Hutt, New Zealand
| | - Richard J. Hall
- Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Upper Hutt, New Zealand
| |
Collapse
|