1
|
Roitman M, Eshel D. Similar chilling response of dormant buds in potato tuber and woody perennials. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6076-6092. [PMID: 38758594 DOI: 10.1093/jxb/erae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Bud dormancy is a survival strategy that plants have developed in their native habitats. It helps them endure harsh seasonal changes by temporarily halting growth and activity until conditions become more favorable. Research has primarily focused on bud dormancy in tree species and the ability to halt growth in vegetative tissues, particularly in meristems. Various plant species, such as potato, have developed specialized storage organs, enabling them to become dormant during their yearly growth cycle. Deciduous trees and potato tubers exhibit a similar type of bud endodormancy, where the bud meristem will not initiate growth, even under favorable environmental conditions. Chilling accumulation activates C-repeat/dehydration responsive element binding (DREB) factors (CBFs) transcription factors that modify the expression of dormancy-associated genes. Chilling conditions shorten the duration of endodormancy by influencing plant hormones and sugar metabolism, which affect the timing and rate of bud growth. Sugar metabolism and signaling pathways can interact with abscisic acid, affecting the symplastic connection of dormant buds. This review explores how chilling affects endodormancy duration and explores the similarity of the chilling response of dormant buds in potato tubers and woody perennials.
Collapse
Affiliation(s)
- Marina Roitman
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dani Eshel
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
2
|
Hsiang TF, Chen YY, Nakano R, Oikawa A, Matsuura T, Ikeda Y, Yamane H. Dormancy regulator Prunus mume DAM6 promotes ethylene-mediated leaf senescence and abscission. PLANT MOLECULAR BIOLOGY 2024; 114:99. [PMID: 39285107 DOI: 10.1007/s11103-024-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
Leaf senescence and abscission in autumn are critical phenological events in deciduous woody perennials. After leaf fall, dormant buds remain on deciduous woody perennials, which then enter a winter dormancy phase. Thus, leaf fall is widely believed to be linked to the onset of dormancy. In Rosaceae fruit trees, DORMANCY-ASSOCIATED MADS-box (DAM) transcription factors control bud dormancy. However, apart from their regulatory effects on bud dormancy, the biological functions of DAMs have not been thoroughly characterized. In this study, we revealed a novel DAM function influencing leaf senescence and abscission in autumn. In Prunus mume, PmDAM6 expression was gradually up-regulated in leaves during autumn toward leaf fall. Our comparative transcriptome analysis using two RNA-seq datasets for the leaves of transgenic plants overexpressing PmDAM6 and peach (Prunus persica) DAM6 (PpeDAM6) indicated Prunus DAM6 may up-regulate the expression of genes involved in ethylene biosynthesis and signaling as well as leaf abscission. Significant increases in 1-aminocyclopropane-1-carboxylate accumulation and ethylene emission in DEX-treated 35S:PmDAM6-GR leaves reflect the inductive effect of PmDAM6 on ethylene biosynthesis. Additionally, ethephon treatments promoted autumn leaf senescence and abscission in apple and P. mume, mirroring the changes due to PmDAM6 overexpression. Collectively, these findings suggest that PmDAM6 may induce ethylene emission from leaves, thereby promoting leaf senescence and abscission. This study clarified the effects of Prunus DAM6 on autumn leaf fall, which is associated with bud dormancy onset. Accordingly, in Rosaceae, DAMs may play multiple important roles affecting whole plant growth during the tree dormancy induction phase.
Collapse
Affiliation(s)
- Tzu-Fan Hsiang
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yue-Yu Chen
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryohei Nakano
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kyoto, 619-0812, Japan
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
3
|
Sabir IA, Manzoor MA, Shah IH, Ahmad Z, Liu X, Alam P, Wang Y, Sun W, Wang J, Liu R, Jiu S, Zhang C. Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108222. [PMID: 38016371 DOI: 10.1016/j.plaphy.2023.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zishan Ahmad
- Bambo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Fouché M, Bonnet H, Bonnet DMV, Wenden B. Transport capacity is uncoupled with endodormancy breaking in sweet cherry buds: physiological and molecular insights. FRONTIERS IN PLANT SCIENCE 2023; 14:1240642. [PMID: 38752012 PMCID: PMC11094712 DOI: 10.3389/fpls.2023.1240642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/25/2023] [Indexed: 05/18/2024]
Abstract
Introduction To avoid the negative impacts of winter unfavorable conditions for plant development, temperate trees enter a rest period called dormancy. Winter dormancy is a complex process that involves multiple signaling pathways and previous studies have suggested that transport capacity between cells and between the buds and the twig may regulate the progression throughout dormancy stages. However, the dynamics and molecular actors involved in this regulation are still poorly described in fruit trees. Methods Here, in order to validate the hypothesis that transport capacity regulates dormancy progression in fruit trees, we combined physiological, imaging and transcriptomic approaches to characterize molecular pathways and transport capacity during dormancy in sweet cherry (Prunus avium L.) flower buds. Results Our results show that transport capacity is reduced during dormancy and could be regulated by environmental signals. Moreover, we demonstrate that dormancy release is not synchronized with the transport capacity resumption but occurs when the bud is capable of growth under the influence of warmer temperatures. We highlight key genes involved in transport capacity during dormancy. Discussion Based on long-term observations conducted during six winter seasons, we propose hypotheses on the environmental and molecular regulation of transport capacity, in relation to dormancy and growth resumption in sweet cherry.
Collapse
Affiliation(s)
- Mathieu Fouché
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie 1332, Villenave d’Ornon, France
| | | | | | - Bénédicte Wenden
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie 1332, Villenave d’Ornon, France
| |
Collapse
|
5
|
Hussain Q, Zheng M, Hänninen H, Bhalerao RP, Riaz MW, Sajjad M, Zhang R, Wu J. Effect of the photoperiod on bud dormancy in Liriodendron chinense. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153835. [PMID: 36257086 DOI: 10.1016/j.jplph.2022.153835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Bud dormancy and its release are complex physiological phenomena in plants. The molecular mechanisms of bud dormancy in Liriodendron chinense are mainly unknown. Here, we studied bud dormancy and the related physiological and molecular phenomena in Liriodendron under long-day (LD) and short-day (SD). Bud burst was released faster under LD than under SD. Abscisic acid (ABA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) activities were increased significantly under LD in Liriodendron buds. In contrast, the contents of gibberellic acid (GA3), ascorbic acid (AsA), glutathione (GSH), malondialdehyde (MDA), and ascorbate peroxidase (APX) activity decreased under LD but increased under SD. Differentially expressed genes (DEGs) were up-regulated under LD and down-regulated under SD and these changes correspondingly promoted (LD) or repressed (SD) cell division and the number and/or size of cells in the bud. Transcriptomic analysis of Liriodendron buds under different photoperiods identified 187 DEGs enriched in several pathways such as flavonoid biosynthesis and phenylpropanoid biosynthesis, plant hormone and signal transduction, etc. that are associated with antioxidant enzymes, non-enzymatic antioxidants, and subsequently promote the growth of the buds. Our findings provide novel insights into regulating bud dormancy via flavonoid and phenylpropanoid biosynthesis, plant hormone and signal transduction pathways, and ABA content. These physiological and biochemical traits would help detect bud dormancy in plants.
Collapse
Affiliation(s)
- Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China; Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou, 311300, China
| | - Manjia Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China; Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou, 311300, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China; Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou, 311300, China
| | | | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China
| | - Muhammad Sajjad
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China; Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou, 311300, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China; Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Identification of Key Genes Related to Dormancy Control in Prunus Species by Meta-Analysis of RNAseq Data. PLANTS 2022; 11:plants11192469. [PMID: 36235335 PMCID: PMC9573011 DOI: 10.3390/plants11192469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Bud dormancy is a genotype-dependent mechanism observed in Prunus species in which bud growth is inhibited, and the accumulation of a specific amount of chilling (endodormancy) and heat (ecodormancy) is necessary to resume growth and reach flowering. We analyzed publicly available transcriptome data from fifteen cultivars of four Prunus species (almond, apricot, peach, and sweet cherry) sampled at endo- and ecodormancy points to identify conserved genes and pathways associated with dormancy control in the genus. A total of 13,018 genes were differentially expressed during dormancy transitions, of which 139 and 223 were of interest because their expression profiles correlated with endo- and ecodormancy, respectively, in at least one cultivar of each species. The endodormancy-related genes comprised transcripts mainly overexpressed during chilling accumulation and were associated with abiotic stresses, cell wall modifications, and hormone regulation. The ecodormancy-related genes, upregulated after chilling fulfillment, were primarily involved in the genetic control of carbohydrate regulation, hormone biosynthesis, and pollen development. Additionally, the integrated co-expression network of differentially expressed genes in the four species showed clusters of co-expressed genes correlated to dormancy stages and genes of breeding interest overlapping with quantitative trait loci for bloom time and chilling and heat requirements.
Collapse
|
7
|
Feng L, Wang C, Yang X, Jiao Q, Yin Y. Transcriptomics and metabolomics analyses identified key genes associated with sugar and acid metabolism in sweet and sour pomegranate cultivars during the developmental period. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 181:12-22. [PMID: 35421745 DOI: 10.1016/j.plaphy.2022.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Pomegranate (Punica granatum), an important fruit tree in the world, is rich in bioactive substances and has broad prospects for development. In this study, gene expression levels and the concentrations of metabolites involved in the metabolism of soluble sugars and organic acids were investigated in sweet and sour pomegranate cultivars at the S1 (July 25) stage, S2 (August 26) stage, and S3 (September 24) stage. The results showed that glucose, fructose, citric acid, and malic acid were predominantly present in pomegranate. The expression of invertase 2 (INV2), INV1, FRK2, FRK7, PFK2, PFK7, and HK1 was closely correlated with the fructose and glucose contents during different developmental stages, whereas the expression of sucrose synthase 3 (SUS3) and INV1 was negatively correlated with the sucrose content. The expression of MDH (c28468_g3) and WRKY42 (c20711_g1) genes were closely related to the content of sucrose, malic acid, citric acid, and succinic acid during different developmental stages. Gene expression and metabolite concentrations varied between the two cultivars. The results provide valuable information for gene discovery, marker-assisted selection, and investigation of metabolism mechanisms in pomegranate fruits.
Collapse
Affiliation(s)
- Lijuan Feng
- Shandong Institute of Pomology, 66 Longtan Rd., Tai'an, 271000, China.
| | - Chuanzeng Wang
- Shandong Academy of Agricultural Sciences, 202Gongye North Rd., Jinan, 250100, China
| | - Xuemei Yang
- Shandong Institute of Pomology, 66 Longtan Rd., Tai'an, 271000, China
| | - Qiqing Jiao
- Shandong Academy of Agricultural Sciences, 202Gongye North Rd., Jinan, 250100, China
| | - Yanlei Yin
- Shandong Institute of Pomology, 66 Longtan Rd., Tai'an, 271000, China
| |
Collapse
|
8
|
Comparative Transcriptomic Analysis Provides Insight into the Key Regulatory Pathways and Differentially Expressed Genes in Blueberry Flower Bud Endo- and Ecodormancy Release. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endodormancy is the stage that perennial plants must go through to prepare for the next seasonal cycle, and it is also an adaptation that allows plants to survive harsh winters. Blueberries (Vaccinium spp.) are known to have high nutritional and commercial value. To better understand the molecular mechanisms of bud dormancy release, the transcriptomes of flower buds from the southern highbush blueberry variety “O’Neal” were analyzed at seven time points of the endo- and ecodormancy release processes. Pairwise comparisons were conducted between adjacent time points; five kinds of phytohormone were identified via these processes. A total of 12,350 differentially expressed genes (DEGs) were obtained from six comparisons. Gene Ontology analysis indicated that these DEGs were significantly involved in metabolic processes and catalytic activity. KEGG pathway analysis showed that these DEGs were predominantly mapped to metabolic pathways and the biosynthesis of secondary metabolites in endodormancy release, but these DEGs were significantly enriched in RNA transport, plant hormone signal transduction, and circadian rhythm pathways in the process of ecodormancy release. The contents of abscisic acid (ABA), salicylic acid (SA), and 1-aminocyclopropane-1-carboxylate (ACC) decreased in endo- and ecodormancy release, and the jasmonic acid (JA) level first decreased in endodormancy release and then increased in ecodormancy release. Weighted correlation network analysis (WGCNA) of transcriptomic data associated with hormone contents generated 25 modules, 9 of which were significantly related to the change in hormone content. The results of this study have important reference value for elucidating the molecular mechanism of flower bud dormancy release.
Collapse
|
9
|
Ma K, Luo X, Han L, Zhao Y, Mamat A, Li N, Mei C, Yan P, Zhang R, Hu J, Wang J. Transcriptome profiling based on Illumina- and SMRT-based RNA-seq reveals circadian regulation of key pathways in flower bud development in walnut. PLoS One 2021; 16:e0260017. [PMID: 34793486 PMCID: PMC8601540 DOI: 10.1371/journal.pone.0260017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
Flower bud development is a defining feature of walnut, which contributes to the kernel yield, yield stability, fruit quality and commodity value. However, little is known about the mechanism of the flower bud development in walnut. Here, the stages of walnut female flower bud development were divided into five period (P01-05) by using histological observation. They were further studied through PacBio Iso-Seq and RNA-seq analysis. Accordingly, we obtained 52,875 full-length transcripts, where 4,579 were new transcripts, 3,065 were novel genes, 1,437 were consensus lncRNAs and 20,813 were alternatively spliced isoforms. These transcripts greatly improved the current genome annotation and enhanced our understanding of the walnut transcriptome. Next, RNA sequencing of female flower buds at five periods revealed that circadian rhythm-plant was commonly enriched along with the flower bud developmental gradient. A total of 14 differentially expressed genes (DEGs) were identified, and six of them were confirmed by real-time quantitative analysis. Additionally, six and two differentially expressed clock genes were detected to be regulated by AS events and lncRNAs, respectively. All these detected plant circadian genes form a complex interconnected network to regulate the flower bud development. Thus, investigation of key genes associated with the circadian clock could clarify the process of flower bud development in walnut.
Collapse
Affiliation(s)
- Kai Ma
- College of Horticulture, China Agricultural University, Beijing, China
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiang Luo
- State Key Laboratory of Crop Stress Adaption and Improvement, Henan University, Kaifeng, China
| | - Liqun Han
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yu Zhao
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Aisajan Mamat
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ning Li
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chuang Mei
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Peng Yan
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Rui Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, China
| | - Jianfang Hu
- College of Horticulture, China Agricultural University, Beijing, China
- * E-mail: (JH); (JW)
| | - Jixun Wang
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- * E-mail: (JH); (JW)
| |
Collapse
|
10
|
Iqbal S, Pan Z, Hayat F, Bai Y, Coulibaly D, Ali S, Ni X, Shi T, Gao Z. Comprehensive transcriptome profiling to identify genes involved in pistil abortion of Japanese apricot. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1191-1204. [PMID: 34177144 PMCID: PMC8212332 DOI: 10.1007/s12298-021-01019-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/08/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Flower development exists as a key period in the angiosperms life cycle and the proper development is considered with its reproductive success. Pistil abortion is one of the widely distributed aspects of berry plants and its basic mechanism in Japanese apricot is quite unclear and needs thorough investigation. The present study was carried out to get a deep insight into the pistil abortion mechanism in Japanese apricot using a transcriptomic approach. A large number of DEGs were identified from different development stages of normal and abortive pistils. Pair-wise comparison analysis was performed as LY1 vs DQD1, LY2 vs DQD2, and LY3 vs DQD3 and produced 3590, 2085, and 2286 transcripts, respectively. The Gene Ontology (GO) showed that different metabolic processes, plant hormones, developmental processes, and photosystem-related genes were involved in pistil abortion. The pathway analysis revealed significant enrichment of plant hormone's signal transduction and circadian rhythm pathways. Furthermore, transcription factors such as MYB, MADS-box, and NAC family showed lower expression in abortive pistils. The current study presents a new strategy for advanced research and understanding of the pistil abortion process in Japanese apricot and provides a possible reference for other deciduous fruit trees.
Collapse
Affiliation(s)
- Shahid Iqbal
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Zhenpeng Pan
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Faisal Hayat
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yang Bai
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Daouda Coulibaly
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sajid Ali
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Xiaopeng Ni
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ting Shi
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhihong Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
11
|
Vimont N, Schwarzenberg A, Domijan M, Donkpegan ASL, Beauvieux R, le Dantec L, Arkoun M, Jamois F, Yvin JC, Wigge PA, Dirlewanger E, Cortijo S, Wenden B. Fine tuning of hormonal signaling is linked to dormancy status in sweet cherry flower buds. TREE PHYSIOLOGY 2021; 41:544-561. [PMID: 32975290 DOI: 10.1093/treephys/tpaa122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/10/2019] [Accepted: 09/13/2020] [Indexed: 05/21/2023]
Abstract
In temperate trees, optimal timing and quality of flowering directly depend on adequate winter dormancy progression, regulated by a combination of chilling and warm temperatures. Physiological, genetic and functional genomic studies have shown that hormones play a key role in bud dormancy establishment, maintenance and release. We combined physiological and transcriptional analyses, quantification of abscisic acid (ABA) and gibberellins (GAs), and modeling to further investigate how these signaling pathways are associated with dormancy progression in the flower buds of two sweet cherry cultivars. Our results demonstrated that GA-associated pathways have distinct functions and may be differentially related with dormancy. In addition, ABA levels rise at the onset of dormancy, associated with enhanced expression of ABA biosynthesis PavNCED genes, and decreased prior to dormancy release. Following the observations that ABA levels are correlated with dormancy depth, we identified PavUG71B6, a sweet cherry UDP-GLYCOSYLTRANSFERASE gene that up-regulates active catabolism of ABA to ABA glucosyl ester (ABA-GE) and may be associated with low ABA content in the early cultivar. Subsequently, we modeled ABA content and dormancy behavior in three cultivars based on the expression of a small set of genes regulating ABA levels. These results strongly suggest the central role of ABA pathway in the control of dormancy progression and open up new perspectives for the development of molecular-based phenological modeling.
Collapse
Affiliation(s)
- Noémie Vimont
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
- The Sainsbury Laboratory, University of Cambridge, Bateman St., Cambridge CB2 1LR, United Kingdom
| | - Adrian Schwarzenberg
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
| | - Mirela Domijan
- Dept. of Mathematical Sciences, University of Liverpool, Peach St., Liverpool L69 7ZL, United Kingdom
| | - Armel S L Donkpegan
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Rémi Beauvieux
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Loïck le Dantec
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Mustapha Arkoun
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
| | - Frank Jamois
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
| | - Jean-Claude Yvin
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau (IGZ), Department for Plant Adaptation, Theodor-Echtermeyer-Weg 1, 14979 Groβbeeren, Germany
| | - Elisabeth Dirlewanger
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Sandra Cortijo
- The Sainsbury Laboratory, University of Cambridge, Bateman St., Cambridge CB2 1LR, United Kingdom
| | - Bénédicte Wenden
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| |
Collapse
|
12
|
Nishiyama S, Matsushita MC, Yamane H, Honda C, Okada K, Tamada Y, Moriya S, Tao R. Functional and expressional analyses of apple FLC-like in relation to dormancy progress and flower bud development. TREE PHYSIOLOGY 2021; 41:562-570. [PMID: 31728534 DOI: 10.1093/treephys/tpz111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/22/2019] [Indexed: 05/26/2023]
Abstract
We previously identified the FLOWERING LOCUS C (FLC)-like gene, a MADS-box transcription factor gene that belongs to Arabidopsis thaliana L. FLC clade, in apple (Malus $\times$ domestica Borkh.), and its expression in dormant flower buds is positively correlated with cumulative cold exposure. To elucidate the role of the MdFLC-like in the dormancy process and flower development, we first characterized the phenotypes of MdFLC-like overexpressing lines with the Arabidopsis Columbia-0 background. The overexpression of MdFLC-like significantly delayed the bolting date and reduced the plant size, but it did not significantly affect the number of rosette leaves or flower organ formation. Thus, MdFLC-like may affect vegetative growth and development rather than flowering when expressed in Arabidopsis, which is not like Arabidopsis FLC that affects development of flowering. We compared seasonal expression patterns of MdFLC-like in low-chill 'Anna' and high-chill 'Fuji' and 'Tsugaru' apples collected from trees grown in a cold winter region in temperate zone and found an earlier upregulation in 'Anna' compared with 'Fuji' and 'Tsugaru'. Expression patterns were also compared in relation to developmental changes in the flower primordia during the chilling accumulation period. Overall, MdFLC-like was progressively upregulated during flower primordia differentiation and development in autumn to early winter and reached a maximum expression level at around the same time as the genotype-dependent chilling requirements were fulfilled in high-chill cultivars. Thus, we hypothesize MdFLC-like may be upregulated in response to cold exposure and flower primordia development during the progress of endodormancy. Our study also suggests MdFLC-like may have a growth-inhibiting function during the end of endodormancy and ecodormancy when the temperature is low and unfavorable for rapid bud outgrowth.
Collapse
Affiliation(s)
- Soichiro Nishiyama
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | | | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Chikako Honda
- Graduate School of Agricultural and Life Science, The University of Tokyo, Midori-Cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Kazuma Okada
- Apple Research Station, Institute of Fruit Tree and Tea Science, NARO, Morioka 020-0123, Japan
| | - Yosuke Tamada
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- School of Life Science, Sokendai, Okazaki 444-8585, Japan
| | - Shigeki Moriya
- Apple Research Station, Institute of Fruit Tree and Tea Science, NARO, Morioka 020-0123, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
Singh RK, Bhalerao RP, Eriksson ME. Growing in time: exploring the molecular mechanisms of tree growth. TREE PHYSIOLOGY 2021; 41:657-678. [PMID: 32470114 PMCID: PMC8033248 DOI: 10.1093/treephys/tpaa065] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Trees cover vast areas of the Earth's landmasses. They mitigate erosion, capture carbon dioxide, produce oxygen and support biodiversity, and also are a source of food, raw materials and energy for human populations. Understanding the growth cycles of trees is fundamental for many areas of research. Trees, like most other organisms, have evolved a circadian clock to synchronize their growth and development with the daily and seasonal cycles of the environment. These regular changes in light, daylength and temperature are perceived via a range of dedicated receptors and cause resetting of the circadian clock to local time. This allows anticipation of daily and seasonal fluctuations and enables trees to co-ordinate their metabolism and physiology to ensure vital processes occur at the optimal times. In this review, we explore the current state of knowledge concerning the regulation of growth and seasonal dormancy in trees, using information drawn from model systems such as Populus spp.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 82, Sweden
| | - Maria E Eriksson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| |
Collapse
|
14
|
Prudencio ÁS, Hoeberichts FA, Dicenta F, Martínez-Gómez P, Sánchez-Pérez R. Identification of early and late flowering time candidate genes in endodormant and ecodormant almond flower buds. TREE PHYSIOLOGY 2021; 41:589-605. [PMID: 33200186 PMCID: PMC8033246 DOI: 10.1093/treephys/tpaa151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/22/2020] [Accepted: 10/23/2020] [Indexed: 05/13/2023]
Abstract
Flower bud dormancy in temperate fruit tree species, such as almond [Prunus dulcis (Mill.) D.A. Webb], is a survival mechanism that ensures that flowering will occur under suitable weather conditions for successful flower development, pollination and fruit set. Dormancy is divided into three sequential phases: paradormancy, endodormancy and ecodormancy. During the winter, buds need cultivar-specific chilling requirements (CRs) to overcome endodormancy and heat requirements to activate the machinery to flower in the ecodormancy phase. One of the main factors that enables the transition from endodormancy to ecodormancy is transcriptome reprogramming. In this work, we therefore monitored three almond cultivars with different CRs and flowering times by RNA sequencing during the endodormancy release of flower buds and validated the data by quantitative real-time PCR in two consecutive seasons. We were thus able to identify early and late flowering time candidate genes in endodormant and ecodormant almond flower buds associated with metabolic switches, transmembrane transport, cell wall remodeling, phytohormone signaling and pollen development. These candidate genes were indeed involved in the overcoming of the endodormancy in almond. This information may be used for the development of dormancy molecular markers, increasing the efficiency of temperate fruit tree breeding programs in a climate-change context.
Collapse
Affiliation(s)
- Ángela S Prudencio
- Department of Plant Breeding, Fruit Breeding Group, CEBAS-CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| | | | - Federico Dicenta
- Department of Plant Breeding, Fruit Breeding Group, CEBAS-CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Fruit Breeding Group, CEBAS-CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| | | |
Collapse
|
15
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
16
|
Goeckeritz C, Hollender CA. There is more to flowering than those DAM genes: the biology behind bloom in rosaceous fruit trees. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101995. [PMID: 33444911 DOI: 10.1016/j.pbi.2020.101995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 05/06/2023]
Abstract
The regulation of bloom time in deciduous fruit trees is an area of increasing interest due to the negative impact of climate change on fruit production. Although flower development has been well-studied in model species, there are many knowledge gaps about this process in perennial fruit trees, whose floral development spans the four seasons and includes many temperature-driven transitions. To develop solutions for minimizing crop loss, a comprehensive research strategy is needed to understand flower development and bloom time in deciduous fruit trees. This approach must incorporate genetic, physiological, and phenological strategies which include morphological and molecular analyses. Here, we describe key floral development events for rosaceae family fruit trees, highlight recent molecular and genetic discoveries, and discuss future directions for this field.
Collapse
Affiliation(s)
- Charity Goeckeritz
- Michigan State University Department of Horticulture, East Lansing, MI 48824, United States
| | - Courtney A Hollender
- Michigan State University Department of Horticulture, East Lansing, MI 48824, United States.
| |
Collapse
|
17
|
Analyzing Differentially Expressed Genes and Pathways Associated with Pistil Abortion in Japanese Apricot via RNA-Seq. Genes (Basel) 2020; 11:genes11091079. [PMID: 32942711 PMCID: PMC7565994 DOI: 10.3390/genes11091079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Reproduction is a critical stage in the flower development process, and its failure causes serious problems affecting fruit quality and yield. Pistil abortion is one of the main factors in unsuccessful reproduction and occurs in many fruit plants. In Japanese apricot, the problem of pistil abortion is very common and affects fruit quality and plant yield; however, its molecular mechanism is not clearly understood. Therefore, in the current study, we used RNA-Seq to identify the differentially expressed genes (DEGs) and pathways actively involved in pistil abortion. A total of 3882 differentially expressed genes were found after cutoff and pairwise comparison analysis. According to KEGG pathway analysis, plant hormone signaling transduction and metabolic pathways were found most significantly enriched in this study. A total of 60 transcription factor families such as MADS-box, NAC and TCP showed their role in this process. RT-qPCR assays confirmed that the expression levels were consistent with RNA-Seq results. This study provides an alternative to be considered for further studies and understanding of pistil abortion processes in Japanese apricot, and it provides a reference related to this issue for other deciduous fruit crops.
Collapse
|
18
|
Abstract
The perennial life strategy of temperate trees relies on establishing a dormant stage during winter to survive unfavorable conditions. To overcome this dormant stage, trees require cool (i.e., chilling) temperatures as an environmental cue. Numerous approaches have tried to decipher the physiology of dormancy, but these efforts have usually remained relatively narrowly focused on particular regulatory or metabolic processes, recently integrated and linked by transcriptomic studies. This work aimed to synthesize existing knowledge on dormancy into a general conceptual framework to enhance dormancy comprehension. The proposed conceptual framework covers four physiological processes involved in dormancy progression: (i) transport at both whole-plant and cellular level, (ii) phytohormone dynamics, (iii) genetic and epigenetic regulation, and (iv) dynamics of nonstructural carbohydrates. We merged the regulatory levels into a seasonal framework integrating the environmental signals (i.e., temperature and photoperiod) that trigger each dormancy phase.
Collapse
|
19
|
Comparative study of DAM, Dof, and WRKY gene families in fourteen species and their expression in Vitis vinifera. 3 Biotech 2020; 10:72. [PMID: 32030341 DOI: 10.1007/s13205-019-2039-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Bud dormancy is one of the most important defensive mechanisms through which plants resist cold stress during harsh winter weather. DAM, Dof, and WRKY have been reported to be involved in many biological processes, including bud dormancy. In the present study, grapevine (Vitis vinifera) and other thirteen plants (six woody plants and seven herbaceous plants) were analyzed for the quantity, sequence structure, and evolution patterns of their DAM, Dof, and WRKY gene family members. Moreover, the expression of VvDAM, VvDof, and VvWRKY genes was also investigated. Thus, 51 DAM, 1,205 WRKY, and 489 Dof genes were isolated from selected genomes, while 5 DAM, 114 WRKY, and 50 Dof duplicate gene pairs were identified in 10 genomes. Moreover, WGD and segmental duplication events were associated with the majority of the expansions of Dof and WRKY gene families. The VvDAM, VvDof, and VvWRKY genes significantly differentially expressed throughout bud dormancy outnumbered those significantly differentially expressed throughout fruit development or under abiotic stresses. Interestingly, multiple stress responsive genes were identified, such as VvDAM (VIT_00s0313g00070), two VvDof genes (VIT_18s0001g11310 and VIT_02s0025g02250), and two VvWRKY genes (VIT_07s0031g01710 and VIT_11s0052g00450). These data provide candidate genes for molecular biology research investigating bud dormancy and responses to abiotic stresses (namely salt, drought, copper, and waterlogging).
Collapse
|
20
|
Wang J, Gao Z, Li H, Jiu S, Qu Y, Wang L, Ma C, Xu W, Wang S, Zhang C. Dormancy-Associated MADS-Box ( DAM) Genes Influence Chilling Requirement of Sweet Cherries and Co-Regulate Flower Development with SOC1 Gene. Int J Mol Sci 2020; 21:ijms21030921. [PMID: 32019252 PMCID: PMC7037435 DOI: 10.3390/ijms21030921] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 01/15/2023] Open
Abstract
Floral bud dormancy release of fruit tree species is greatly influenced by climate change. The lack of chilling accumulation often results in the occurrence of abnormal flower and low yields of sweet cherries (Prunus avium L.) in warm regions. To investigate the regulation of dormancy in sweet cherries, six DAM genes with homology to peach DAM, designated PavDAM1-6, have been identified and characterized. Phylogenetic analysis indicate that these genes are similar to DAMs in peach, apple and pear. The expression patterns of the PavDAMs in the low-chill cultivar ‘Royal Lee’ were different from that in the high-chill cultivar ‘Hongdeng’. ‘Royal Lee’ exhibits lower transcriptional level of PavDAM1 compared to ‘Hongdeng’, especially at the stage of chilling accumulation, and transcriptional levels of PavDAM4/5 were high in both cultivars during the endodormancy. Ectopic expression of PavDAM1 and PavDAM5 in Arabidopsis resulted in plants with abnormal flower and seed development, especially the PavDAM5. Higher transcriptional levels of SOC1 were observed in transgenic PavDAM1/5 lines, and ectopic expression of PavSOC1 had the similar floral phenotype. Further, protein interaction analysis demonstrated that PavDAM1/5 could interact with PavSOC1 in vivo and in vitro, which will help clarify the molecular mechanism of the flower development in sweet cherry or other fruit trees.
Collapse
|
21
|
Quesada-Traver C, Guerrero BI, Badenes ML, Rodrigo J, Ríos G, Lloret A. Structure and Expression of Bud Dormancy-Associated MADS-Box Genes ( DAM) in European Plum. FRONTIERS IN PLANT SCIENCE 2020; 11:1288. [PMID: 32973847 PMCID: PMC7466548 DOI: 10.3389/fpls.2020.01288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/07/2020] [Indexed: 05/22/2023]
Abstract
Bud dormancy in temperate perennials ensures the survival of growing meristems under the harsh environmental conditions of autumn and winter, and facilitates an optimal growth and development resumption in the spring. Although the molecular pathways controlling the dormancy process are still unclear, DORMANCY-ASSOCIATED MADS-BOX genes (DAM) have emerged as key regulators of the dormancy cycle in different species. In the present study, we have characterized the orthologs of DAM genes in European plum (Prunus domestica L.). Their expression patterns together with sequence similarities are consistent with a role of PdoDAMs in dormancy maintenance mechanisms in European plum. Furthermore, other genes related to dormancy, flowering, and stress response have been identified in order to obtain a molecular framework of these three different processes taking place within the dormant flower bud in this species. This research provides a set of candidate genes to be genetically modified in future research, in order to better understand dormancy regulation in perennial species.
Collapse
Affiliation(s)
- Carles Quesada-Traver
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Brenda Ivette Guerrero
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
| | - María Luisa Badenes
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Javier Rodrigo
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Gabino Ríos
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Alba Lloret
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
- *Correspondence: Alba Lloret,
| |
Collapse
|
22
|
Yu J, Conrad AO, Decroocq V, Zhebentyayeva T, Williams DE, Bennett D, Roch G, Audergon JM, Dardick C, Liu Z, Abbott AG, Staton ME. Distinctive Gene Expression Patterns Define Endodormancy to Ecodormancy Transition in Apricot and Peach. FRONTIERS IN PLANT SCIENCE 2020; 11:180. [PMID: 32180783 PMCID: PMC7059448 DOI: 10.3389/fpls.2020.00180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
Dormancy is a physiological state that plants enter for winter hardiness. Environmental-induced dormancy onset and release in temperate perennials coordinate growth cessation and resumption, but how the entire process, especially chilling-dependent dormancy release and flowering, is regulated remains largely unclear. We utilized the transcriptome profiles of floral buds from fall to spring in apricot (Prunus armeniaca) genotypes with contrasting bloom dates and peach (Prunus persica) genotypes with contrasting chilling requirements (CR) to explore the genetic regulation of bud dormancy. We identified distinct gene expression programming patterns in endodormancy and ecodormancy that reproducibly occur between different genotypes and species. During the transition from endo- to eco-dormancy, 1,367 and 2,102 genes changed in expression in apricot and peach, respectively. Over 600 differentially expressed genes were shared in peach and apricot, including three DORMANCY ASSOCIATED MADS-box (DAM) genes (DAM4, DAM5, and DAM6). Of the shared genes, 99 are located within peach CR quantitative trait loci, suggesting these genes as candidates for dormancy regulation. Co-expression and functional analyses revealed that distinctive metabolic processes distinguish dormancy stages, with genes expressed during endodormancy involved in chromatin remodeling and reproduction, while the genes induced at ecodormancy were mainly related to pollen development and cell wall biosynthesis. Gene expression analyses between two Prunus species highlighted the conserved transcriptional control of physiological activities in endodormancy and ecodormancy and revealed genes that may be involved in the transition between the two stages.
Collapse
Affiliation(s)
- Jiali Yu
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
| | - Anna O. Conrad
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Véronique Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Universite de Bordeaux, Villenave d'Ornon, France
| | - Tetyana Zhebentyayeva
- Department of Ecosystem Science and Management, Schatz Center for Tree Molecular Genetics, the Pennsylvania State University, University Park, PA, United States
| | - Daniel E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Dennis Bennett
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Guillaume Roch
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Jean-Marc Audergon
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Christopher Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Zongrang Liu
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Albert G. Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
| | - Margaret E. Staton
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
- *Correspondence: Margaret E. Staton,
| |
Collapse
|
23
|
Vimont N, Fouché M, Campoy JA, Tong M, Arkoun M, Yvin JC, Wigge PA, Dirlewanger E, Cortijo S, Wenden B. From bud formation to flowering: transcriptomic state defines the cherry developmental phases of sweet cherry bud dormancy. BMC Genomics 2019; 20:974. [PMID: 31830909 PMCID: PMC6909552 DOI: 10.1186/s12864-019-6348-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background Bud dormancy is a crucial stage in perennial trees and allows survival over winter to ensure optimal flowering and fruit production. Recent work highlighted physiological and molecular events occurring during bud dormancy in trees. However, they usually examined bud development or bud dormancy in isolation. In this work, we aimed to further explore the global transcriptional changes happening throughout bud development and dormancy onset, progression and release. Results Using next-generation sequencing and modelling, we conducted an in-depth transcriptomic analysis for all stages of flower buds in several sweet cherry (Prunus avium L.) cultivars that are characterized for their contrasted dates of dormancy release. We find that buds in organogenesis, paradormancy, endodormancy and ecodormancy stages are defined by the expression of genes involved in specific pathways, and these are conserved between different sweet cherry cultivars. In particular, we found that DORMANCY ASSOCIATED MADS-box (DAM), floral identity and organogenesis genes are up-regulated during the pre-dormancy stages while endodormancy is characterized by a complex array of signalling pathways, including cold response genes, ABA and oxidation-reduction processes. After dormancy release, genes associated with global cell activity, division and differentiation are activated during ecodormancy and growth resumption. We then went a step beyond the global transcriptomic analysis and we developed a model based on the transcriptional profiles of just seven genes to accurately predict the main bud dormancy stages. Conclusions Overall, this study has allowed us to better understand the transcriptional changes occurring throughout the different phases of flower bud development, from bud formation in the summer to flowering in the following spring. Our work sets the stage for the development of fast and cost effective diagnostic tools to molecularly define the dormancy stages. Such integrative approaches will therefore be extremely useful for a better comprehension of complex phenological processes in many species.
Collapse
Affiliation(s)
- Noémie Vimont
- INRA, UMR1332 BFP, Univ. Bordeaux, 33882, Villenave d'Ornon, Cedex, France.,Agro Innovation International, Centre Mondial d'Innovation, Groupe Roullier, 35400, St Malo, France.,The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Mathieu Fouché
- INRA, UMR1332 BFP, Univ. Bordeaux, 33882, Villenave d'Ornon, Cedex, France
| | - José Antonio Campoy
- Universidad Politécnica de Cartagena, Cartagena, Spain.,Universidad de Murcia, Murcia, Spain.,Present address: Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Meixuezi Tong
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Mustapha Arkoun
- Agro Innovation International, Centre Mondial d'Innovation, Groupe Roullier, 35400, St Malo, France
| | - Jean-Claude Yvin
- Agro Innovation International, Centre Mondial d'Innovation, Groupe Roullier, 35400, St Malo, France
| | - Philip A Wigge
- Leibniz-Institute für Gemüse- und Zierpflanzenbau (IGZ), Plant Adaptation, Grossbeeren, Germany
| | | | - Sandra Cortijo
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK.
| | - Bénédicte Wenden
- INRA, UMR1332 BFP, Univ. Bordeaux, 33882, Villenave d'Ornon, Cedex, France.
| |
Collapse
|
24
|
The Role of EjSVPs in Flower Initiation in Eriobotrya japonica. Int J Mol Sci 2019; 20:ijms20235933. [PMID: 31779080 PMCID: PMC6928820 DOI: 10.3390/ijms20235933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Flowering plants have evolved different flowering habits to sustain long-term reproduction. Most woody trees experience dormancy and then bloom in the warm spring, but loquat blooms in the cold autumn and winter. To explore its mechanism of flowering regulation, we cloned two SHORT VEGETATIVE PHASE (SVP) homologous genes from 'Jiefanzhong' loquat (Eriobotrya japonica Lindl.), namely, EjSVP1 and EjSVP2. Sequence analysis revealed that the EjSVPs were typical MADS-box transcription factors and exhibited a close genetic relationship with other plant SVP/DORMANCY-ASSOCIATED MADS-BOX (DAM) proteins. The temporal and spatial expression patterns showed that EjSVP1 and EjSVP2 were mainly expressed in the shoot apical meristem (SAM) after the initiation of flowering; after reaching their highest level, they gradually decreased with the development of the flower until they could not be detected. EjSVP1 expression levels were relatively high in young tissues, and EjSVP2 expression levels were relatively high in young to mature transformed tissues. Interestingly, EjSVP2 showed relatively high expression levels in various flower tissues. We analyzed the EjSVP promoter regions and found that they did not contain the C-repeat/dehydration-responsive element. Finally, we overexpressed the EjSVPs in wild-type Arabidopsis thaliana Col-0 and found no significant changes in the number of rosette leaves of Arabidopsis thaliana; however, overexpression of EjSVP2 affected the formation of Arabidopsis thaliana flower organs. In conclusion, EjSVPs were found to play an active role in the development of loquat flowering. These findings may provide a reference for exploring the regulation mechanisms of loquat flowering and the dormancy mechanisms of other plants.
Collapse
|
25
|
Zhou B, Wang J, Lou H, Wang H, Xu Q. Comparative transcriptome analysis of dioecious, unisexual floral development in Ribes diacanthum pall. Gene 2019; 699:43-53. [DOI: 10.1016/j.gene.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 01/09/2023]
|
26
|
Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, Gasic K, Iezzoni A, Jung S, Peace C, Prieto H, Tao R, Verde I, Abbott AG, Arús P. Prunus genetics and applications after de novo genome sequencing: achievements and prospects. HORTICULTURE RESEARCH 2019; 6:58. [PMID: 30962943 PMCID: PMC6450939 DOI: 10.1038/s41438-019-0140-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 05/04/2023]
Abstract
Prior to the availability of whole-genome sequences, our understanding of the structural and functional aspects of Prunus tree genomes was limited mostly to molecular genetic mapping of important traits and development of EST resources. With public release of the peach genome and others that followed, significant advances in our knowledge of Prunus genomes and the genetic underpinnings of important traits ensued. In this review, we highlight key achievements in Prunus genetics and breeding driven by the availability of these whole-genome sequences. Within the structural and evolutionary contexts, we summarize: (1) the current status of Prunus whole-genome sequences; (2) preliminary and ongoing work on the sequence structure and diversity of the genomes; (3) the analyses of Prunus genome evolution driven by natural and man-made selection; and (4) provide insight into haploblocking genomes as a means to define genome-scale patterns of evolution that can be leveraged for trait selection in pedigree-based Prunus tree breeding programs worldwide. Functionally, we summarize recent and ongoing work that leverages whole-genome sequences to identify and characterize genes controlling 22 agronomically important Prunus traits. These include phenology, fruit quality, allergens, disease resistance, tree architecture, and self-incompatibility. Translationally, we explore the application of sequence-based marker-assisted breeding technologies and other sequence-guided biotechnological approaches for Prunus crop improvement. Finally, we present the current status of publically available Prunus genomics and genetics data housed mainly in the Genome Database for Rosaceae (GDR) and its updated functionalities for future bioinformatics-based Prunus genetics and genomics inquiry.
Collapse
Affiliation(s)
- Maria José Aranzana
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Véronique Decroocq
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Elisabeth Dirlewanger
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Iban Eduardo
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Zhong Shan Gao
- Allergy Research Center, Zhejiang University, 310058 Hangzhou, China
| | | | - Amy Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824-1325 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, Santa Rosa, 11610 La Pintana, Santiago Chile
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA) – Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Rome, Italy
| | - Albert G. Abbott
- University of Kentucky, 106 T. P. Cooper Hall, Lexington, KY 40546-0073 USA
| | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
27
|
Gabay G, Faigenboim A, Dahan Y, Izhaki Y, Itkin M, Malitsky S, Elkind Y, Flaishman MA. Transcriptome analysis and metabolic profiling reveal the key role of α-linolenic acid in dormancy regulation of European pear. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1017-1031. [PMID: 30590791 PMCID: PMC6363095 DOI: 10.1093/jxb/ery405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/17/2018] [Indexed: 05/22/2023]
Abstract
Deciduous trees require sufficient chilling during winter dormancy to grow. To decipher the dormancy-regulating mechanism, we carried out RNA sequencing (RNA-Seq) analysis and metabolic profiling of European pear (Pyrus communis L.) vegetative buds during the dormancy phases. Samples were collected from two cultivars that differed greatly in their chilling requirements: 'Spadona' (SPD), a low chilling requirement cultivar; and Harrow Sweet (HS), a high chilling requirement cultivar. Comparative transcriptome analysis revealed >8500 differentially expressed transcripts; most were related to metabolic pathways. Out of 174 metabolites, 44 displayed differential levels in both cultivars, 38 were significantly changed only in SPD, and 15 only in HS. Phospholipids were mostly accumulated at the beginning of dormancy, sugars between before dormancy and mid-dormancy, and fatty acids, including α-linolenic acid, at dormancy break. Differentially expressed genes underlying previously identified major quantitative trait loci (QTLs) in linkage group 8 included genes related to the α-linolenic acid pathway, 12-oxophytodienoate reductase 2-like, and the DORMANCY-ASSOCIATED MADS-BOX (DAM) genes, PcDAM1 and PcDAM2, putative orthologs of PpDAM1 and PpDAM2, confirming their role for the first time in European pear. Additional new putative dormancy-related uncharacterized genes and genes related to metabolic pathways are suggested. These results suggest the crucial role of α-linolenic acid and DAM genes in pear bud dormancy phase transitions.
Collapse
Affiliation(s)
- Gilad Gabay
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim, Rishon Lezion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Faigenboim
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim, Rishon Lezion, Israel
| | - Yardena Dahan
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim, Rishon Lezion, Israel
| | - Yacov Izhaki
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim, Rishon Lezion, Israel
| | - Maxim Itkin
- Life Science Core Facilities, Weitzman Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Science Core Facilities, Weitzman Institute of Science, Rehovot, Israel
| | - Yonatan Elkind
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Moshe A Flaishman
- Institute of Plant Sciences, Volcani Research Center, Derech Hamacabim, Rishon Lezion, Israel
| |
Collapse
|
28
|
Liu J, Sherif SM. Hormonal Orchestration of Bud Dormancy Cycle in Deciduous Woody Perennials. FRONTIERS IN PLANT SCIENCE 2019; 10:1136. [PMID: 31620159 PMCID: PMC6759871 DOI: 10.3389/fpls.2019.01136] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/19/2019] [Indexed: 05/03/2023]
Abstract
Woody perennials enter seasonal dormancy to avoid unfavorable environmental conditions. Plant hormones are the critical mediators regulating this complex process, which is subject to the influence of many internal and external factors. Over the last two decades, our knowledge of hormone-mediated dormancy has increased considerably, primarily due to advancements in molecular biology, omics, and bioinformatics. These advancements have enabled the elucidation of several aspects of hormonal regulation associated with bud dormancy in various deciduous tree species. Plant hormones interact with each other extensively in a context-dependent manner. The dormancy-associated MADS (DAM) transcription factors appear to enable hormones and other internal signals associated with the transition between different phases of bud dormancy. These proteins likely hold a great potential in deciphering the underlying mechanisms of dormancy initiation, maintenance, and release. In this review, a recent understanding of the roles of plant hormones, their cross talks, and their potential interactions with DAM proteins during dormancy is discussed.
Collapse
|
29
|
Lv X, Zhang M, Li X, Ye R, Wang X. Transcriptome Profiles Reveal the Crucial Roles of Auxin and Cytokinin in the "Shoot Branching" of Cremastra appendiculata. Int J Mol Sci 2018; 19:E3354. [PMID: 30373177 PMCID: PMC6275059 DOI: 10.3390/ijms19113354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022] Open
Abstract
Cremastra appendiculata has become endangered due to reproductive difficulties. Specifically, vegetative reproduction is almost its only way to reproduce, and, under natural conditions, it cannot grow branches, resulting in an extremely low reproductive coefficient (reproductive percentage). Here, we performed RNA-Seq and a differentially expressed gene (DEG) analysis of the three stages of lateral bud development in C. appendiculata after decapitation-dormancy (D2), transition (TD2), and emergence (TG2)-and the annual axillary bud natural break (G1) to gain insight into the molecular regulatory network of shoot branching in this plant. Additionally, we applied the auxin transport inhibitors N-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodibenzoic acid (TIBA) to a treated pseudobulb string of C. appendiculata to verify the conclusions obtained by the transcriptome. RNA-Seq provided a wealth of valuable information. Successive pairwise comparative transcriptome analyses revealed 5988 genes as DEGs. GO (Gene Ontology) and KEGG (Kyoto encyclopedia of genes and genomes) analyses of DEGs showed significant enrichments in phytohormone biosynthesis and metabolism, regulation of hormone levels, and a hormone-mediated signaling pathway. qRT-PCR validation showed a highly significant correlation (p < 0.01) with the RNA-Seq generated data. High-performance liquid chromatography (HPLC) and qRT-PCR results showed that, after decapitation, the NPA- and TIBA-induced lateral buds germinated due to rapidly decreasing auxin levels, caused by upregulation of the dioxygenase for auxin oxidation gene (DAO). Decreased auxin levels promoted the expression of isopentenyl transferase (IPT) and cytochrome P450 monooxygenase, family 735, subfamily A (CYP735A) genes and inhibited two carotenoid cleavage dioxygenases (CCD7 and CCD8). Zeatin levels significantly increased after the treatments. The increased cytokinin levels promoted the expression of WUSCHEL (WUS) and inhibited expression of BRANCHED1 (BRC1) in the cytokinin signal transduction pathway and initiated lateral bud outgrowth. Our data suggest that our theories concerning the regulation of shoot branching and apical dominance is really similar to those observed in annual plants. Auxin inhibits bud outgrowth and tends to inhibit cytokinin levels. The pseudobulb in the plant behaves in a similar manner to that of a shoot above the ground.
Collapse
Affiliation(s)
- Xiang Lv
- School of Life Sciences/State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China.
| | - Mingsheng Zhang
- School of Life Sciences/State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China.
| | - Xiaolan Li
- School of Life Sciences/State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China.
| | - Ruihua Ye
- School of Life Sciences/State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China.
| | - Xiaohong Wang
- School of Life Sciences/State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China.
| |
Collapse
|
30
|
Lin W, Huang W, Ning S, Wang X, Ye Q, Wei D. De novo characterization of the Baphicacanthus cusia(Nees) Bremek transcriptome and analysis of candidate genes involved in indican biosynthesis and metabolism. PLoS One 2018; 13:e0199788. [PMID: 29975733 PMCID: PMC6033399 DOI: 10.1371/journal.pone.0199788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Baphicacanthus cusia (Nees) Bremek is an herb widely used for the clinical treatment of colds, fever, and influenza in Traditional Chinese Medicine. The roots, stems and leaves can be used as natural medicine, in which indigo and indirubin are two main active ingredients. In this study, quantification of indigo, indirubin, indican and adenosine among various tissues of B. cusia was conducted using HPLC-DAD. Leaves have significantly higher contents than stems and roots (380.66, 315.15, 20,978.26, 4323.15 μg/g in leaves, 306.36, 71.71, 3,056.78, 139.45 μg/g in stems, and 9.31, 7.82, 170.45, 197.48 μg/g in roots, respectively). De novo transcriptome sequencing of B. cusia was performed for the first time. The sequencing yielded 137,216,248, 122,837,394 and 140,240,688 clean reads from leaves, stems and roots respectively, which were assembled into 51,381 unique sequences. A total of 33,317 unigenes could be annotated using the databases of Nr, Swiss-Prot, KEGG and KOG. These analyses provided a detailed view of the enzymes involved in indican backbone biosynthesis, such as cytochrome P450, UDP-glycosyltransferase, glucosidase and tryptophan synthase. Analysis results showed that tryptophan synthase was the candidate gene involved in the tissue-specific biosynthesis of indican. We also detected sixteen types of simple sequence repeats in RNA-Seq data for use in future molecular mark assisted breeding studies. The results will be helpful in further analysis of B. cusia functional genomics, especially in increasing biosynthesis of indican through biotechnological approaches and metabolic regulation.
Collapse
Affiliation(s)
- Wenjin Lin
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Wei Huang
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuju Ning
- School of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohua Wang
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Ye
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daozhi Wei
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail:
| |
Collapse
|
31
|
Guzicka M, Pawlowski TA, Staszak A, Rozkowski R, Chmura DJ. Molecular and structural changes in vegetative buds of Norway spruce during dormancy in natural weather conditions. TREE PHYSIOLOGY 2018; 38:721-734. [PMID: 29300984 DOI: 10.1093/treephys/tpx156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/20/2017] [Indexed: 05/08/2023]
Abstract
The dormancy and the growth of trees in temperate climates are synchronized with seasons. Preparation for dormancy and its proper progression are key for survival and development in the next season. Using a unique approach that combined microscopy and proteomic methods, we investigated changes in Norway spruce (Picea abies (L.) H. Karst.) embryonic shoots during four distinct stages of dormancy in natural weather conditions. We identified 13 proteins that varied among dormancy stages, and were linked to regulation of protein level; functioning of chloroplasts and other plastids; DNA and RNA regulation; and oxidative stress. We also found a group of five proteins, related to cold hardiness, that did not differ in expression among stages of dormancy, but had the highest abundancy level. Ultrastructure of organelles is tightly linked to their metabolic activity, and hence may indicate dormancy status. The observed ultrastructure during endodormancy was stable, whereas during ecodormancy, the structural changes were dynamic and related mainly to nucleus, plastids and mitochondria. At the ultrastructural level, the lack of starch and the presence of callose in plasmodesmata in all regions of embryonic shoot were indicators of full endodormancy. At the initiation of ecodormancy, we noted an increase in metabolic activity of organelles, tissue-specific starch hyperaccumulation and degradation. However, in proteomic analysis, we did not find variation in expression of proteins related to starch degradation or to symplastic isolation of cells. The combination of ultrastructural and proteomic methods gave a more complete picture of vegetative bud dormancy than either of them applied separately. We found some changes at the structural level, but not their analogues in the proteome. Our study suggests a very important role of plastids' organization and metabolism, and their protection in the course of dormancy and during the shift from endo- to ecodormancy and the acquisition of growth competence.
Collapse
Affiliation(s)
- Marzenna Guzicka
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Tomasz A Pawlowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Aleksandra Staszak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Roman Rozkowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Daniel J Chmura
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
32
|
Wang W, Su X, Tian Z, Liu Y, Zhou Y, He M. Transcriptome profiling provides insights into dormancy release during cold storage of Lilium pumilum. BMC Genomics 2018; 19:196. [PMID: 29703130 PMCID: PMC6389108 DOI: 10.1186/s12864-018-4536-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
Background Bulbs of the ornamental flower Lilium pumilum enter a period of dormancy after flowering in spring, and require exposure to cold for a period of time in order to release dormancy. Previous studies focused mainly on anatomical, physiological and biochemical changes during dormancy release. There are no dormancy studies of the northern cold-hardy wild species of Lilium at the molecular level. This study observed bulb cell and starch granule ultrastructures during cold storage; and analysed the transcriptome using sequencing. The combination of morphological and transcriptomic methods provides valuable insights into dormancy release during cold storage of Lilium pumilum. Results Ultrastructural changes reflected dormancy release during cold storage of the bulbs. We compared gene expression levels among samples at 0 (S1 stage), 30 (S2 stage), 60 (S3 stage) and 90 (S4 stage) d of cold storage, with 0 d as the control. The data showed that some regulatory pathways such as carbohydrate metabolism and plant hormone signal transduction were activated to break dormancy. Some differentially expressed genes (DEGs) related to antioxidant activity, epigenetic modification and transcription factors were induced to respond to low temperature conditions. These genes constituted a complex regulatory mechanism of dormancy release. Conclusions Cytological data related to dormancy regulation was obtained through histomorphological observation; transcriptome sequencing provided comprehensive sequences and digital gene expression tag profiling (DGE) data, and bulb cell ultrastructural changes were closely related to DEGs. The novel Lilium pumilum genetic information from this study provides a reference for the regulation of dormancy by genetic engineering using molecular biology tools. Electronic supplementary material The online version of this article (10.1186/s12864-018-4536-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wang Wang
- Northeast Forestry University, Harbin, China
| | - Xiaoxia Su
- Northeast Forestry University, Harbin, China
| | | | - Yu Liu
- Northeast Forestry University, Harbin, China
| | - Yunwei Zhou
- Northeast Forestry University, Harbin, China.
| | - Miao He
- Northeast Forestry University, Harbin, China.
| |
Collapse
|
33
|
Identification and characterization of microRNAs in tree peony during chilling induced dormancy release by high-throughput sequencing. Sci Rep 2018. [PMID: 29540706 PMCID: PMC5852092 DOI: 10.1038/s41598-018-22415-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tree peony, one of the most valuable horticultural and medicinal plants in the world, has to go through winter to break dormancy. Growing studies from molecular aspects on dormancy release process have been reported, but inadequate study has been done on miRNA-guided regulation in tree peony. In this study, high-throughput sequencing was employed to identify and characterize miRNAs in three libraries (6 d, 18 d and 24 d chilling treatments). There were 7,122, 10,076 and 9,097 unique miRNA sequences belonging to 52, 87 and 68 miRNA families, respectively. A total of 32 conserved miRNAs and 17 putative novel miRNAs were identified during dormancy release. There were 771 unigenes as potential targets of 62 miRNA families. Total 112 known miRNAs were differentially expressed, of which 55 miRNAs were shared among three libraries and 28 miRNAs were only found in 18 d chilling duration library. The expression patterns of 15 conserved miRNAs were validated and classified into four types by RT-qPCR. Combining with our microarray data under same treatments, five miRNAs (miR156k, miR159a, miR167a, miR169a and miR172a) were inversely correlated to those of their target genes. Our results would provide new molecular basis about dormancy release in tree peony.
Collapse
|
34
|
Hou DY, Shi LC, Yang MM, Li J, Zhou S, Zhang HX, Xu HW. De novo transcriptomic analysis of leaf and fruit tissue of Cornus officinalis using Illumina platform. PLoS One 2018; 13:e0192610. [PMID: 29451882 PMCID: PMC5815590 DOI: 10.1371/journal.pone.0192610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/27/2018] [Indexed: 01/06/2023] Open
Abstract
Cornus officinalis is one of the most widely used medicinal plants in China and other East Asian countries to cure diseases such as liver, kidney, cardiovascular diseases and frequent urination for thousands of years. It is a Level 3 protected species, and is one of the 42 national key protected wild species of animals and plants in China. However, the genetics and molecular biology of C. officinalis are poorly understood, which has hindered research on the molecular mechanism of its metabolism and utilization. Hence, enriching its genomic data and information is very important. In recent years, the fast-growing technology of next generation sequencing has provided an effective path to gain genomic information from nonmodel species. This study is the first to explore the leaf and fruit tissue transcriptome of C. officinalis using the Illumina HiSeq 4000 platform. A total of 57,954,134 and 60,971,652 clean reads from leaf and fruit were acquired, respectively (GenBank number SRP115440). The pooled reads from all two libraries were assembled into 56,392 unigenes with an average length 856 bp. Among these, 41,146 unigenes matched with sequences in the NCBI nonredundant protein database. The Gene Ontology database assigned 24,336 unigenes with biological process (83.26%), cellular components (53.58%), and molecular function (83.93%). In addition, 10,808 unigenes were assigned a KOG functional classification by the KOG database. Searching against the KEGG pathway database indicated that 18,435 unigenes were mapped to 371 KEGG pathways. Moreover, the edgeR database identified 4,585 significant differentially expressed genes (DEGs), of which 1,392 were up-regulated and 3,193 were down-regulated in fruit tissue compared with leaf tissue. Finally, we explored 581 transcription factors with 50 transcription factor gene families. Most DEGs and transcription factors were related to terpene biosynthesis and secondary metabolic regulation. This study not only represented the first de novo transcriptomic analysis of C. officinalis but also provided fundamental information on its genes and biosynthetic pathway. These findings will help us explore the molecular metabolism mechanism of terpene biosynthesis in C. officinalis.
Collapse
Affiliation(s)
- Dian-Yun Hou
- Agricultural College, Henan University of Science and Technology, Luoyang, Henan Province, China
- The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, Henan Province, China
- * E-mail:
| | - Lin-Chun Shi
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meng-Meng Yang
- Agricultural College, Henan University of Science and Technology, Luoyang, Henan Province, China
- The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, Henan Province, China
| | - Jiong Li
- Chinese Medicinal Materials Production Technology Service Center, Department of Agriculture of Henan Province, Zhengzhou, Henan Province, China
| | - Shuang Zhou
- Agricultural College, Henan University of Science and Technology, Luoyang, Henan Province, China
- The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, Henan Province, China
| | - Hong-Xiao Zhang
- Agricultural College, Henan University of Science and Technology, Luoyang, Henan Province, China
- The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, Henan Province, China
| | - Hua-Wei Xu
- Agricultural College, Henan University of Science and Technology, Luoyang, Henan Province, China
- The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, Henan Province, China
| |
Collapse
|
35
|
Falavigna VDS, Guitton B, Costes E, Andrés F. I Want to (Bud) Break Free: The Potential Role of DAM and SVP-Like Genes in Regulating Dormancy Cycle in Temperate Fruit Trees. FRONTIERS IN PLANT SCIENCE 2018; 9:1990. [PMID: 30687377 PMCID: PMC6335348 DOI: 10.3389/fpls.2018.01990] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/20/2018] [Indexed: 05/18/2023]
Abstract
Bud dormancy is an adaptive process that allows trees to survive the hard environmental conditions that they experience during the winter of temperate climates. Dormancy is characterized by the reduction in meristematic activity and the absence of visible growth. A prolonged exposure to cold temperatures is required to allow the bud resuming growth in response to warm temperatures. In fruit tree species, the dormancy cycle is believed to be regulated by a group of genes encoding MADS-box transcription factors. These genes are called DORMANCY-ASSOCIATED MADS-BOX (DAM) and are phylogenetically related to the Arabidopsis thaliana floral regulators SHORT VEGETATIVE PHASE (SVP) and AGAMOUS-LIKE 24. The interest in DAM and other orthologs of SVP (SVP-like) genes has notably increased due to the publication of several reports suggesting their role in the control of bud dormancy in numerous fruit species, including apple, pear, peach, Japanese apricot, and kiwifruit among others. In this review, we briefly describe the physiological bases of the dormancy cycle and how it is genetically regulated, with a particular emphasis on DAM and SVP-like genes. We also provide a detailed report of the most recent advances about the transcriptional regulation of these genes by seasonal cues, epigenetics and plant hormones. From this information, we propose a tentative classification of DAM and SVP-like genes based on their seasonal pattern of expression. Furthermore, we discuss the potential biological role of DAM and SVP-like genes in bud dormancy in antagonizing the function of FLOWERING LOCUS T-like genes. Finally, we draw a global picture of the possible role of DAM and SVP-like genes in the bud dormancy cycle and propose a model that integrates these genes in a molecular network of dormancy cycle regulation in temperate fruit trees.
Collapse
|
36
|
Liu K, Li H, Li W, Zhong J, Chen Y, Shen C, Yuan C. Comparative transcriptomic analyses of normal and malformed flowers in sugar apple (Annona squamosa L.) to identify the differential expressed genes between normal and malformed flowers. BMC PLANT BIOLOGY 2017; 17:170. [PMID: 29061115 PMCID: PMC5653983 DOI: 10.1186/s12870-017-1135-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/18/2017] [Indexed: 06/03/2023]
Abstract
BACKGROUND Sugar apple (Annona squamosa L.), a popular fruit with high medicinal and nutritional properties, is widely cultivated in tropical South Asia and America. The malformed flower is a major cause for a reduction in production of sugar apple. However, little information is available on the differences between normal and malformed flowers of sugar apple. RESULTS To gain a comprehensive perspective on the differences between normal and malformed flowers of sugar apple, cDNA libraries from normal and malformation flowers were prepared independently for Illumina sequencing. The data generated a total of 70,189,896 reads that were integrated and assembled into 55,097 unigenes with a mean length of 783 bp. A large number of differentially expressed genes (DEGs) were identified. Among these DEGs, 701 flower development-associated transcript factor encoding genes were included. Furthermore, a large number of flowering- and hormone-related DEGs were also identified, and most of these genes were down-regulated expressed in the malformation flowers. The expression levels of 15 selected genes were validated using quantitative-PCR. The contents of several endogenous hormones were measured. The malformed flowers displayed lower endogenous hormone levels compared to the normal flowers. CONCLUSIONS The expression data as well as hormone levels in our study will serve as a comprehensive resource for investigating the regulation mechanism involved in floral organ development in sugar apple.
Collapse
Affiliation(s)
- Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong 524048 People’s Republic of China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong 524048 People’s Republic of China
| | - Weijin Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong 524048 People’s Republic of China
| | - Jundi Zhong
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong 524048 People’s Republic of China
| | - Yan Chen
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong 524048 People’s Republic of China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong 524048 People’s Republic of China
| |
Collapse
|
37
|
Zhao C, Xie J, Li L, Cao C. Comparative Transcriptomic Analysis in Paddy Rice under Storage and Identification of Differentially Regulated Genes in Response to High Temperature and Humidity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8145-8153. [PMID: 28846395 DOI: 10.1021/acs.jafc.7b03901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The transcriptomes of paddy rice in response to high temperature and humidity were studied using a high-throughput RNA sequencing approach. Effects of high temperature and humidity on the sucrose and starch contents and α/β-amylase activity were also investigated. Results showed that 6876 differentially expressed genes (DEGs) were identified in paddy rice under high temperature and humidity storage. Importantly, 12 DEGs that were downregulated fell into the "starch and sucrose pathway". The quantitative real-time polymerase chain reaction assays indicated that expression of these 12 DEGs was significantly decreased, which was in parallel with the reduced level of enzyme activities and the contents of sucrose and starch in paddy rice stored at high temperature and humidity conditions compared to the control group. Taken together, high temperature and humidity influence the quality of paddy rice at least partially by downregulating the expression of genes encoding sucrose transferases and hydrolases, which might result in the decrease of starch and sucrose contents.
Collapse
Affiliation(s)
- Chanjuan Zhao
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics , Nanjing, Jiangsu 210023, People's Republic of China
| | - Junqi Xie
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics , Nanjing, Jiangsu 210023, People's Republic of China
| | - Li Li
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics , Nanjing, Jiangsu 210023, People's Republic of China
| | - Chongjiang Cao
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics , Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
38
|
Liu F, Wang Y, Ding Z, Zhao L, Xiao J, Wang L, Ding S. Transcriptomic analysis of flower development in tea (Camellia sinensis (L.)). Gene 2017; 631:39-51. [PMID: 28844668 DOI: 10.1016/j.gene.2017.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/08/2017] [Accepted: 08/23/2017] [Indexed: 01/07/2023]
Abstract
Flowering is a critical and complicated process in plant development, involving interactions of numerous endogenous and environmental factors, but little is known about the complex network regulating flower development in tea plants. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptomic analysis assembles gene-related information involved in reproductive growth of C. sinensis. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction were enriched among the DEGs. Furthermore, 207 flowering-associated unigenes were identified from our database. Some transcription factors, such as WRKY, ERF, bHLH, MYB and MADS-box were shown to be up-regulated in floral transition, which might play the role of progression of flowering. Furthermore, 14 genes were selected for confirmation of expression levels using quantitative real-time PCR (qRT-PCR). The comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in C. sinensis. Our data also provided a useful database for further research of tea and other species of plants.
Collapse
Affiliation(s)
- Feng Liu
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China.
| | - Lei Zhao
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Xiao
- School of Biological Science and Winery Engineering, Taishan University, Taian 271021, China
| | - Linjun Wang
- Fruit Tree and Tea Workstation of Weihai City, 264200, China
| | - Shibo Ding
- Rizhao Tea Research Institute of Shandong, Rizhao, Shandong 276800, China
| |
Collapse
|
39
|
Del Cueto J, Ionescu IA, Pičmanová M, Gericke O, Motawia MS, Olsen CE, Campoy JA, Dicenta F, Møller BL, Sánchez-Pérez R. Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering. FRONTIERS IN PLANT SCIENCE 2017; 8:800. [PMID: 28579996 PMCID: PMC5437698 DOI: 10.3389/fpls.2017.00800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/28/2017] [Indexed: 05/07/2023]
Abstract
Almond and sweet cherry are two economically important species of the Prunus genus. They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-component defense system, prunasin and amygdalin release toxic hydrogen cyanide upon cell disruption. In this study, we investigated the potential role within prunasin and amygdalin and some of its derivatives in endodormancy release of these two Prunus species. The content of prunasin and of endogenous prunasin turnover products in the course of flower development was examined in five almond cultivars - differing from very early to extra-late in flowering time - and in one sweet early cherry cultivar. In all cultivars, prunasin began to accumulate in the flower buds shortly after dormancy release and the levels dropped again just before flowering time. In almond and sweet cherry, the turnover of prunasin coincided with increased levels of prunasin amide whereas prunasin anitrile pentoside and β-D-glucose-1-benzoate were abundant in almond and cherry flower buds at certain developmental stages. These findings indicate a role for the turnover of cyanogenic glucosides in controlling flower development in Prunus species.
Collapse
Affiliation(s)
- Jorge Del Cueto
- Department of Plant Breeding, CEBAS-CSICMurcia, Spain
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Irina A. Ionescu
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Martina Pičmanová
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Oliver Gericke
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Mohammed S. Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Carl E. Olsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - José A. Campoy
- UMR 1332 BFP, INRA, University of BordeauxVillenave d’Ornon, France
| | | | - Birger L. Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Raquel Sánchez-Pérez
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| |
Collapse
|
40
|
Khalil-Ur-Rehman M, Sun L, Li CX, Faheem M, Wang W, Tao JM. Comparative RNA-seq based transcriptomic analysis of bud dormancy in grape. BMC PLANT BIOLOGY 2017; 17:18. [PMID: 28103799 PMCID: PMC5244717 DOI: 10.1186/s12870-016-0960-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/22/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Bud dormancy is an important biological phenomenon of perennial plants that enables them to survive under harsh environmental circumstances. Grape (Vitis vinifera) is one of the most grown fruit crop worldwide; however, underlying mechanisms involved in grape bud dormancy are not yet clear. This work was aimed to explore the underlying molecular mechanism regulating bud dormancy in grape. RESULTS We have performed transcriptome and differential transcript expression analyses of "Shine Muscat" grape buds using the Illumina RNA-seq system. Comparisons of transcript expression levels among three stages of dormancy, paradormancy (PD) vs endodormancy (ED), summer buds (SB) vs ED and SB vs PD, resulted in the detection of 8949, 9780 and 3938 differentially expressed transcripts, respectively. Out of approximately 78 million high-quality generated reads, 6096 transcripts were differentially expressed (log2 ratio ≥ 1, FDR ≤ 0.001). Grape reference genome was used for alignment of sequence reads and to measure the expression level of transcripts. Furthermore, findings obtained were then compared using two different databases; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), to annotate the transcript descriptions and to assign a pathway to each transcript. KEGG analysis revealed that secondary metabolites biosynthesis and plant hormone signaling was found most enriched out of the 127 total pathways. In the comparisons of the PD vs ED and SB vs ED stages of grape buds, the gibberellin (GA) and abscisic acid (ABA) pathways were found to be the most enriched. The ABA and GA pathways were further analyzed to observe the expression pattern of differentially expressed transcripts. Transcripts related to the PP2C family (ABA pathway) were found to be up-regulated in the PD vs ED comparison and down-regulated in the SB vs ED and SB vs PD comparisons. GID1 family transcripts (GA pathway) were up-regulated while DELLA family transcripts were down-regulated during the three dormancy stages. Differentially expressed transcripts (DEGs) related to redox activity were abundant in the GO biological process category. RT-qPCR assay results for 12 selected transcripts validated the data obtained by RNA-seq. CONCLUSION At this stage, taking into account the results obtained so far, it is possible to put forward a hypothesis for the molecular mechanism underlying grape bud dormancy, which may pave the way for ultimate improvements in the grape industry.
Collapse
Affiliation(s)
- Muhammad Khalil-Ur-Rehman
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Long Sun
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Chun-Xia Li
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Muhammad Faheem
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Wu Wang
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Jian-Min Tao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
41
|
Badenes ML, Fernández I Martí A, Ríos G, Rubio-Cabetas MJ. Application of Genomic Technologies to the Breeding of Trees. Front Genet 2016; 7:198. [PMID: 27895664 PMCID: PMC5109026 DOI: 10.3389/fgene.2016.00198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022] Open
Abstract
The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species.
Collapse
Affiliation(s)
- Maria L Badenes
- Instituto Valenciano de Investigaciones Agrarias Valencia, Spain
| | - Angel Fernández I Martí
- Hortofruticulture Department, Agrifood Research and Technology Centre of AragonZaragoza, Spain; Genome Center, University of California, Davis, Davis, CAUSA
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias Valencia, Spain
| | - María J Rubio-Cabetas
- Hortofruticulture Department, Agrifood Research and Technology Centre of Aragon Zaragoza, Spain
| |
Collapse
|
42
|
Considine MJ, Considine JA. On the language and physiology of dormancy and quiescence in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3189-203. [PMID: 27053719 DOI: 10.1093/jxb/erw138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The language of dormancy is rich and poetic, as researchers spanning disciplines and decades have attempted to understand the spell that entranced 'Sleeping Beauty', and how she was gently awoken. The misleading use of 'dormancy', applied to annual axillary buds, for example, has confounded progress. Language is increasingly important as genetic and genomic approaches become more accessible to species of agricultural and ecological importance. Here we examine how terminology has been applied to different eco-physiological states in plants, and with pertinent reference to quiescent states described in other domains of life, in order to place plant quiescence and dormancy in a more complete context than previously described. The physiological consensus defines latency or quiescence as opportunistic avoidance states, where growth resumes in favourable conditions. In contrast, the dormant state in higher plants is entrained in the life history of the organism. Competence to resume growth requires quantitative and specific conditioning. This definition applies only to the embryo of seeds and specialized meristems in higher plants; however, mechanistic control of dormancy extends to mobile signals from peripheral tissues and organs, such as the endosperm of seed or subtending leaf of buds. The distinction between dormancy, quiescence, and stress-hardiness remains poorly delineated, most particularly in buds of winter perennials, which comprise multiple meristems of differing organogenic states. Studies in seeds have shown that dormancy is not a monogenic trait, and limited study has thus far failed to canalize dormancy as seen in seeds and buds. We argue that a common language, based on physiology, is central to enable further dissection of the quiescent and dormant states in plants. We direct the topic largely to woody species showing a single cycle of growth and reproduction per year, as these bear the majority of global timber, fruit, and nut production, as well being of great ecological value. However, for context and hypotheses, we draw on knowledge from annuals and other specialized plant conditions, from a perspective of the major physical, metabolic, and molecular cues that regulate cellular activity.
Collapse
Affiliation(s)
- Michael J Considine
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia Department of Agriculture and Food Western Australia, South Perth, WA 6151 Australia Centre for Plant Sciences, University of Leeds, Leeds, Yorkshire LS2 9JT, UK
| | - John A Considine
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| |
Collapse
|
43
|
Shiratake K, Suzuki M. Omics studies of citrus, grape and rosaceae fruit trees. BREEDING SCIENCE 2016; 66:122-38. [PMID: 27069397 PMCID: PMC4780796 DOI: 10.1270/jsbbs.66.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/01/2015] [Indexed: 05/06/2023]
Abstract
Recent advance of bioinformatics and analytical apparatuses such as next generation DNA sequencer (NGS) and mass spectrometer (MS) has brought a big wave of comprehensive study to biology. Comprehensive study targeting all genes, transcripts (RNAs), proteins, metabolites, hormones, ions or phenotypes is called genomics, transcriptomics, proteomics, metabolomics, hormonomics, ionomics or phenomics, respectively. These omics are powerful approaches to identify key genes for important traits, to clarify events of physiological mechanisms and to reveal unknown metabolic pathways in crops. Recently, the use of omics approach has increased dramatically in fruit tree research. Although the most reported omics studies on fruit trees are transcriptomics, proteomics and metabolomics, and a few is reported on hormonomics and ionomics. In this article, we reviewed recent omics studies of major fruit trees, i.e. citrus, grapevine and rosaceae fruit trees. The effectiveness and prospects of omics in fruit tree research will as well be highlighted.
Collapse
Affiliation(s)
- Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
- Corresponding author (e-mail: )
| | - Mami Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
| |
Collapse
|
44
|
Nie S, Li C, Wang Y, Xu L, Muleke EM, Tang M, Sun X, Liu L. Transcriptomic Analysis Identifies Differentially Expressed Genes (DEGs) Associated with Bolting and Flowering in Radish (Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2016; 7:682. [PMID: 27252709 PMCID: PMC4877535 DOI: 10.3389/fpls.2016.00682] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/03/2016] [Indexed: 05/11/2023]
Abstract
The transition of vegetative growth to bolting and flowering is an important process in the life cycle of plants, which is determined by numerous genes forming an intricate network of bolting and flowering. However, no comprehensive identification and profiling of bolting and flowering-related genes have been carried out in radish. In this study, RNA-Seq technology was applied to analyze the differential gene expressions during the transition from vegetative stage to reproductive stage in radish. A total of 5922 differentially expressed genes (DEGs) including 779 up-regulated and 5143 down-regulated genes were isolated. Functional enrichment analysis suggested that some DEGs were involved in hormone signaling pathways and the transcriptional regulation of bolting and flowering. KEGG-based analysis identified 37 DEGs being involved in phytohormone signaling pathways. Moreover, 95 DEGs related to bolting and flowering were identified and integrated into various flowering pathways. Several critical genes including FT, CO, SOC1, FLC, and LFY were characterized and profiled by RT-qPCR analysis. Correlation analysis indicated that 24 miRNA-DEG pairs were involved in radish bolting and flowering. Finally, a miRNA-DEG-based schematic model of bolting and flowering regulatory network was proposed in radish. These outcomes provided significant insights into genetic control of radish bolting and flowering, and would facilitate unraveling molecular regulatory mechanism underlying bolting and flowering in root vegetable crops.
Collapse
|
45
|
Liu K, Feng S, Pan Y, Zhong J, Chen Y, Yuan C, Li H. Transcriptome Analysis and Identification of Genes Associated with Floral Transition and Flower Development in Sugar Apple ( Annona squamosa L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1695. [PMID: 27881993 PMCID: PMC5101194 DOI: 10.3389/fpls.2016.01695] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/27/2016] [Indexed: 05/17/2023]
Abstract
Sugar apple (Annona squamosa L.) is a semi-deciduous subtropical tree that progressively sheds its leaves in the spring. However, little information is available on the mechanism involved in flower developmental pattern. To gain a global perspective on the floral transition and flower development of sugar apple, cDNA libraries were prepared independently from inflorescent meristem and three flowering stages. Illumina sequencing generated 107,197,488 high quality reads that were assembled into 71,948 unigenes, with an average sequence length of 825.40 bp. Among the unigenes, various transcription factor families involved in floral transition and flower development were elucidated. Furthermore, a Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that unigenes exhibiting differential expressions were involved in various phytohormone signal transduction events and circadian rhythms. In addition, 147 unigenes exhibiting sequence similarities to known flowering-related genes from other plants were differentially expressed during flower development. The expression patterns of 20 selected genes were validated using quantitative-PCR. The expression data presented in our study is the most comprehensive dataset available for sugar apple so far and will serve as a resource for investigating the genetics of the flowering process in sugar apple and other Annona species.
Collapse
|
46
|
Wang D, Gao Z, Du P, Xiao W, Tan Q, Chen X, Li L, Gao D. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica). FRONTIERS IN PLANT SCIENCE 2015; 6:1248. [PMID: 26793222 PMCID: PMC4707674 DOI: 10.3389/fpls.2015.01248] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/21/2015] [Indexed: 05/07/2023]
Abstract
Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach.
Collapse
Affiliation(s)
- Dongling Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Zhenzhen Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Peiyong Du
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Wei Xiao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Qiuping Tan
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Xiude Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Ling Li
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
- *Correspondence: Ling Li
| | - Dongsheng Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
- Dongsheng Gao
| |
Collapse
|
47
|
Zhuang W, Gao Z, Wen L, Huo X, Cai B, Zhang Z. Metabolic changes upon flower bud break in Japanese apricot are enhanced by exogenous GA4. HORTICULTURE RESEARCH 2015; 2:15046. [PMID: 26504583 PMCID: PMC4588617 DOI: 10.1038/hortres.2015.46] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 05/05/2023]
Abstract
Gibberellin (GA4) has a significant effect on promoting dormancy release in flower buds of Japanese apricot (Prunus mume Sieb. et Zucc). The transcriptomic and proteomic changes that occur after GA4 treatment have been reported previously; however, the metabolic changes brought about by GA4 remain unknown. The present study was undertaken to assess changes in metabolites in response to GA4 treatment, as determined using gas chromatography-mass spectrometry and principal component analysis. Fifty-five metabolites that exhibited more than two-fold differences in abundance (P < 0.05) between samples collected over time after a given treatment or between samples exposed to different treatments were studied further. These metabolites were categorized into six main groups: amino acids and their isoforms (10), amino acid derivatives (7), sugars and polyols (14), organic acids (12), fatty acids (4), and others (8). All of these groups are involved in various metabolic pathways, in particular galactose metabolism, glyoxylate and dicarboxylate metabolism, and starch and sucrose metabolism. These results suggested that energy metabolism is important at the metabolic level in dormancy release following GA4 treatment. We also found that more than 10-fold differences in abundance were observed for many metabolites, including sucrose, proline, linoleic acid, and linolenic acid, which might play important roles during the dormancy process. The current research extends our understanding of the mechanisms involved in budburst and dormancy release in response to GA4 and provides a theoretical basis for applying GA4 to release dormancy.
Collapse
Affiliation(s)
- Weibing Zhuang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- ()
| | - Luhua Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ximei Huo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Binhua Cai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|