1
|
Gupta S, Gupta S, Singh M, Patel AK. Role of Acorus calamus extract in reducing exosome secretion by targeting Rab27a and nSMase2: a therapeutic approach for breast cancer. Mol Biol Rep 2025; 52:124. [PMID: 39812915 DOI: 10.1007/s11033-024-10203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Exosomes are extracellular vesicles released by cells that mediate intercellular communication and actively participate in cancer progression, metastasis, and regulation of immune response within the tumour microenvironment. Inhibiting exosome release from cancer cells could be employed as a therapeutic against cancer. METHODS AND RESULTS In the present study, we have studied the effects of Acorus calamus in inhibiting exosome secretion via targetting Rab27a and neutral sphingomyelinase 2 (nSMase2) in HER2-positive (MDA-MB-453), hormone receptor-positive (MCF-7) and triple-negative breast cancer (MDA-MB-231) cells. We observed that treatment with A. calamus significantly downregulated the expression of Rab27a and nSMase2 in all tested cells. NTA analysis showed that inhibition of Rab27a and nSMase2 reduced exosome secretion from breast cancer cells. We conducted metabolic profiling of A. calamus extract to reveal the phytochemicals present and docked them on Rab27a and nSMase2 to decipher the compounds responsible for protein inhibition. Molecular dynamic simulations were conducted on lead compounds, and we observed that calcitriol lactone showed the most stable binding interactions with nSMase2. Treatment of breast cancer cells with calcitriol lactone significantly downregulated nSMase2 expression. CONCLUSIONS Our study demonstrates that A. calamus significantly inhibits exosome secretion in HER2-positive, hormone receptor-positive, and triple-negative breast cancer cells by targeting key regulatory proteins Rab27a and neutral sphingomyelinase 2 (nSMase2). These findings suggest that A. calamus holds therapeutic potential in inhibiting exosome-mediated cancer progression by targeting the exosome secretion pathway. Further investigations are warranted to explore the clinical applications of these findings in breast cancer treatment.
Collapse
Affiliation(s)
- Sunny Gupta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shipra Gupta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Manju Singh
- All India Institute of Ayurveda, New Delhi, 110076, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
2
|
Pradhan SP, Gadnayak A, Pradhan SK, Epari V. Integrating Network Pharmacology and In Silico Analysis to Explore the Bioactive Compounds Against Gastric Cancer Treatment. Cureus 2024; 16:e75779. [PMID: 39816318 PMCID: PMC11733631 DOI: 10.7759/cureus.75779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2024] [Indexed: 01/18/2025] Open
Abstract
Gastric cancer (GC) has become a major challenge in oncology research, primarily due to its detection at advanced stages. In this study, we identified and validated the pharmacological mechanisms involved in treating gastric cancer using an integrated approach combining network pharmacology, molecular docking, and a dynamic approach. Gastric cancer-related genes were obtained from DisGeNET, Genecard, and Malacard databases, while potential targets of bioactive compounds were predicted using SwissTargetPrediction. Network pharmacology and gene ontology (GO) enrichment analyses were employed to understand the molecular mechanisms of action. This should further be investigated to isolate bioactive compounds that can be used to treat different ailments. Albumin (ALB), B-cell lymphoma 2 (BCL-2), nuclear factor kappa B subunit 1 (NFKB1), hypoxia-inducible factor 1 alpha (HIF1A), and interleukin 6 (IL-6) had a higher expression in gastric cancer than in normal conditions. Top genes were validated by using the GEPIA (Gene Expression Profiling Interactive Analysis) database. Furthermore, the lead compounds dehydroxy-isocalamendiol and spathulenol exhibited the highest binding affinity with NFKB1 and HIF1A (-6.3 and -6 kJ/mol) in the molecular docking study. Enrichment analysis indicated enrichment of these hub targets in the programmed cell death-ligand 1 (PD-L1) checkpoint, phosphatidylinositol 3-kinases/protein kinase B (PI3K-Akt), Ras, and hypoxia-inducible factor-1 (HIF-1) signalling pathways with significant cut-offs of FDR < 0.01 and p < 0.05. Therefore, network pharmacology and molecular docking analyses revealed that dehydroxy-isocalamendiol and spathulenol exert therapeutic efficacy on gastric cancer by multiple targets, NFKB1 and HIF1A, and pathways (MAPK, PD-L1 checkpoint, PI3K-Akt, Ras, and HIF-1 pathways).
Collapse
Affiliation(s)
- Smruti P Pradhan
- Community Medicine, Siksha 'O' Anusandhan Deemed to be University Institute of Medical Sciences and SUM Hospital, Bhubaneswar, IND
| | - Ayushman Gadnayak
- Centre for Biotechnology, Siksha 'O' Anusandhan University, Bhubaneswar, IND
| | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, IND
| | - Venkatarao Epari
- Community Medicine, Siksha 'O' Anusandhan Deemed to be University Institute of Medical Sciences and SUM Hospital, Bhubaneswar, IND
| |
Collapse
|
3
|
Alwaili MA, Elhoby AH, El-Sayed NM, Mahmoud IZ, Alharthi A, El-Nablaway M, Khodeer DM. Cardioprotective Effects of α-Asarone Against Hexavalent Chromium-Induced Oxidative Damage in Mice. Drug Des Devel Ther 2024; 18:3383-3397. [PMID: 39100222 PMCID: PMC11297565 DOI: 10.2147/dddt.s464334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction This comprehensive study investigated the therapeutic potential of α-asarone in mitigating myocardial oxidative damage, primarily induced by hexavalent chromium (Cr(VI)) exposure in mice. Methods In this experiment, 24 mice were divided into four groups to assess the cardioprotective role of α-asarone. The study focused on two treatment groups, receiving 25 mg and 50 mg of α-asarone, respectively. These groups were compared against a control group subjected to Cr(VI) without α-asarone treatment, and a normal control negative group. The key biochemical parameters evaluated included serum levels of Creatine Kinase-MB (CK-MB) and Troponin I, markers indicative of myocardial damage. Additionally, the levels of Malondialdehyde (MDA) were measured to assess lipid peroxidation, alongside the evaluation of key inflammatory biomarkers in cardiac tissue homogenates, such as Tumor Necrosis Factor-α (TNF-α) and Interleukin-1β (IL-1β). Results Remarkably, α-asarone treatment resulted in a significant reduction in these markers compared to the control group. The treatment also elevated the activity of cardinal antioxidant enzymes like catalase (CAT) and superoxide dismutase (SOD), and reduced the glutathione (GSH). Furthermore, a notable upregulation of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) in cardiac tissue homogenates was observed, highlighting a potential pathway through which α-asarone exerts its protective effects. Histopathological analysis of cardiac tissues revealed that α-asarone ameliorated the structural lesions induced by Cr(VI). The study thus provides substantial evidence that α-asarone ameliorates Cr(VI)-induced cardiotoxicity through a multifaceted approach. It enhances cardiac enzyme function, modulates free radical generation, improves antioxidant status, and mitigates histopathological damage in cardiac tissues. Given these findings, α-asarone emerges as a promising agent against Cr(VI)-induced myocardial injury. Purpose This study paves the way for further research into the cardioprotective properties of α-asarone and its potential application in clinical settings by specifically exploring the protective efficacy of α-asarone against Cr(VI)-induced cardiotoxicity and delineating the underlying biochemical and molecular mechanisms involved.
Collapse
Affiliation(s)
- Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdallah H Elhoby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Islam Z Mahmoud
- Department of Cardiovascular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Riyadh, 13713, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Dina M Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Thakkar AB, Subramanian RB, Thakkar SS, Thakkar VR, Thakor P. Isolation, identification, and characterization of α- asarone, from hydromethanolic leaf extract of Acorus calamus L. and its apoptosis-inducing mechanism in A549 cells. J Biomol Struct Dyn 2024; 42:5515-5535. [PMID: 37357434 DOI: 10.1080/07391102.2023.2227712] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Due to the presence of several active secondary metabolites, the traditional Indian and Chinese medicinal herb Acorus calamus L. has been utilized for both medical and culinary purposes since ancient times. A recent report has underscored the promising cytotoxic effect of A. calamus leaves extract against non-small cell lung cancer A549 cells. Thus, we want to separate the bioactive substance from the hydromethanolic extract of A. calamus leaves in the current investigation. Thin-layer chromatography was used to separate the compounds and different spectroscopic methods (UV, FTIR, NMR, and LCMS/MS) were used for the structure prediction. α-asarone was found to be the main bioactive compound present and it was isolated from A. calamus leaves extract. It exerted a good cytotoxic effect with an IC50 value of 21.43 ± 1.27 μM against A549 cells and IC50 value of 324.12 ± 1.32 μM against WI-38 cells. The induction of apoptosis in A549 cells by α-asarone was reaffirmed by the diverse differential staining methods including DAPI, Acridine Orange/Ethidium Bromide, and Giemsa staining. Additionally, α-asarone induced mitochondrial membrane potential (ΔΨm) dissipation with a concomitant increase in the production of ROS. Furthermore, it also increased expressions of caspase-3, caspase-9, caspase-8, DR4, and DR5 genes in A549 cells. In conclusion, α-asarone-induced apoptotic cell death in non-small lung cancer cells (A549) as a result of loss of mitochondrial function, increased ROS production, subsequent activation of an internal and extrinsic caspase pathway, and altered expression of genes controlling apoptosis. As a whole, α-asarone is a plausible therapeutic agent for managing lung cancer. HIGHLIGHTSIsolation of bioactive compound from hydromethanolic leaves extract of Acorus calamus L. by thin layer chromatography.Structural elucidation of the bioactive compound was carried out using different methods like UV analysis, FTIR, NMR, and LC-MS/MS analysis.A plausible mode of action revealed that α-asarone can induce apoptosis in lung cancer cells (A549).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anjali B Thakkar
- P. G. Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar, India
- P. G. Department of Applied and Interdisciplinary Sciences (IICISST), Sardar Patel University, Vallabh Vidyanagar, India
| | - R B Subramanian
- P. G. Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar, India
| | - Sampark S Thakkar
- AKASHGANGA, Shree Kamdhenu Electronics Pvt. Ltd, Vallabh Vidyanagar, India
| | - Vasudev R Thakkar
- P. G. Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar, India
| | - Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, India
| |
Collapse
|
5
|
Aleem M, Khan MI. Concept of dementia ( Nisy ā n) in Unani system of medicine and scientific validation of an important Unani pharmacopoeial preparation ' Majoon Vaj' for its management: a review. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:139-153. [PMID: 37384842 DOI: 10.1515/jcim-2021-0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
OBJECTIVES This review focused on the concept of dementia in the Unani system of medicine and comprehensive, updated information on Majoon Vaj about the phytochemistry, nootropic, CNS activities and provide insights into potential opportunities for future research. METHODS The classical literature on Majoon Vaj for its anti-dementic properties, and therapeutic uses were gathered from nearly thirteen classical Unani books including Unani Pharmacopoeia. The information of pharmacognosy, phytochemical and pharmacological activities of Majoon Vaj and its ingredient was collected by browsing the Internet (PubMed, ScienceDirect, Wiley online library, Google Scholar, ResearchGate). The relevant primary sources were probed, analysed, and included in this review. The keywords used to browse were Majoon Vaj, Dementia, Nootropic, Acorus calamus, Piper nigram, Zingiber officinalis, Nigella sativa, Carum carvi, Plumbago zeylanica, and β-asarone. Relevant Sources were gathered up to July 2021, and the chemical structures were drawn using ACD/ChemSketch software. The species name and synonyms were checked with WFO (2021): World Flora online (http://www.worldfloraonline.org) an updated version of 'The Plant List.' RESULTS Majoon Vaj contains an excess of bioactive compounds e.g., alkaloids, phenols, flavonoids, tannins, diterpenes, coumarins, carbohydrates, and fixed oils and its ingredients possess broad pharmacological properties, including cognitive-enhancing, neuroprotective, anti-inflammatory, antioxidant and antimicrobial properties. CONCLUSIONS The literature of Unani medicine is quite rich in discussing the pathophysiological basis of memory disorders. It argues that memory, retention, and retrieval are regulated by a complex process involving various faculties. Majoon Vaj seems to have great potential for therapeutic applications in the treatment of dementia and thus encourage more preclinical and clinical trials in this field.
Collapse
Affiliation(s)
- Mohd Aleem
- Department of Ilmul Advia (Pharmacology), National Institute of Unani Medicine, Bengaluru, India
| | - Md Imran Khan
- Department of Ilmul Advia (Pharmacology), National Institute of Unani Medicine, Bengaluru, India
| |
Collapse
|
6
|
Rai AR, Joy T, Poojari M, Pai MM, Massand A, Murlimanju BV. Role of Acorus calamus in preventing depression, anxiety, and oxidative stress in long-term socially isolated rats. Vet World 2023; 16:1755-1764. [PMID: 37766700 PMCID: PMC10521175 DOI: 10.14202/vetworld.2023.1755-1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/22/2023] [Indexed: 09/29/2023] Open
Abstract
Background and Aim Social isolation stress (SIS) and individual housing have been shown to cause abnormal cognitive insufficiencies, altered anxiety levels, and signs of psychiatric diseases. Acorus calamus (AC), commonly known as Sweet Flag, has been widely used in India to treat neurological, metabolic, and respiratory disorders, indicating its potential therapeutic value. This study aimed to determine the antidepressant and antioxidative effects of AC on rats subjected to long-term, social isolation-induced stress. Materials and Methods This study involved 2-month-old male rats (24) weighing approximately 180-200 g bred in-house. The rats were divided into four groups (n = 6): Group 1 received saline, Group 2 received SIS, Group 3 received only 50 mg/kg AC, and Group 4 received 50 mg/kg AC and SIS for 6 weeks. After this, behavioral, biochemical, and neuronal assays were conducted. Results Behavioral experiments showed significantly higher activity levels (p < 0.001) in AC-treated rats than in the SIS group. In addition, rats subjected to SIS with AC treatment exhibited enhanced total antioxidants, superoxide dismutase, and neuronal assays compared to rats subjected to SIS alone. Conclusion Acorus calamus treatment improved the antidepressant and antioxidant potential against SIS in rat brain tissue. Moreover, we proved that AC can effectively reverse the neurotoxicity induced by SIS in animal models. As we battle against the coronavirus disease 2019 pandemic and social isolation, AC could be considered a supplementary treatment to alleviate depressive-like symptoms in our present-day lifestyle.
Collapse
Affiliation(s)
- Ashwin Rohan Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Teresa Joy
- Department of Anatomy, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge, St. John’s, Antigua, West Indies
| | - Meghana Poojari
- Department of Anatomy, Basaveshwara Medical College and Hospital, Chitradurga, India
| | - Mangala M. Pai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Amit Massand
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - B. V. Murlimanju
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Bhat NA, Jeri L, Karmakar D, Mipun P, Bharali P, Sheikh N, Nongkynrih CJ, Kumar Y. Ethnoveterinary practises of medicinal plants used for the treatment of different cattle diseases: A case study in East Khasi Hill district of Meghalaya, North East India. Heliyon 2023; 9:e18214. [PMID: 37501975 PMCID: PMC10368863 DOI: 10.1016/j.heliyon.2023.e18214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction For generations, the inhabitants of Meghalaya have relied on medicinal plants to maintain the health of their livestock and treat various illnesses that may afflict their animals. Due to the lack of survey for use and documentation, these plants have never been undertaken. Therefore, it is imperative to explore the diversity, utilization, and phytochemical profile of these plants and quantitatively analyse the data to identify important medicinal plants. By doing so, we can better understand the potential of these plants for developing novel drugs. Methods Frequent field trips were made for the collection of ethnoveterinary data of medicinal plants from local animal-keepers, traditional healers (THs) and inhabitants of different age groups. This information was gathered through semi-structured interviews, individual discussions, direct field-use observation, and questionnaires. A total of 52 informants (35 females and 17 males) were interviewed from seven rural villages and the information obtained from them were quantitatively analysed using the informant consensus factor (ICF), and fidelity level (FL). Additionally, for each documented plant, available published literature was extensively surveyed to identify the presence of bioactive chemical compounds responsible for their therapeutic effects. Results During the present study, a total 96 plants, distributed into 87 genera and 43 families were identified and recorded for their use in ethnoveterinary practices against more than 25 diseases. Out of the recorded plant species, the Fabaceae family was found to be the most dominant with seven species, followed by Poaceae and Lamiaceae with six species each, and Moraceae with five species. The leaves (50.00%) and seeds (12.50%) were the most frequently used plant parts, while the paste (30 species) was the common mode of application. Aegle marmelos Correa exhibited a fidelity level (FL) of 100% for indigestion, while Tagetes erecta L. had a fidelity level of 94.11% for wound treatment, making them the most promising candidates for further study. The highest FIC value of 1.00 was recorded for the treatment of neurological disorder (1.00), followed by foot and mouth disease (FIC 0.91), which depicted that some species were frequently utilized to treat multiple livestock ailments. Conclusion The study presents trustworthy information about medicinal plants and their associated indigenous ethnoveterinary knowledge. It has been scientifically proven that these plants contain bioactive compounds responsible for their therapeutic properties. However, this knowledge is in danger of being lost due to factors like socioeconomic changes, environmental and technological alterations, and lack of interest from younger generations. Therefore, it is essential to document this empirical folklore knowledge systematically and take measures to protect and conserve it.
Collapse
Affiliation(s)
- Nazir Ahmad Bhat
- Centre for Advanced Studies in Botany, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
- Department of Botany, University of Science and Technology (USTM), Ri-Bhoi, 793101, Meghalaya, India
| | - Licha Jeri
- Centre for Advanced Studies in Botany, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Dolly Karmakar
- Centre for Advanced Studies in Botany, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Puranjoy Mipun
- Centre for Advanced Studies in Botany, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
- Department of Botany, Bhattadev University, Bajali, 781325, Assam, India
| | - Pankaj Bharali
- Centre for Infectious Diseases, Biological Sciences and Technology Division (BSTD), CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Nilofer Sheikh
- Centre for Advanced Studies in Botany, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
- Department of Botany, Biswanath College, Biswanath Chariali, 784176, Assam, India
| | - Chester John Nongkynrih
- Centre for Advanced Studies in Botany, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Yogendra Kumar
- Centre for Advanced Studies in Botany, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| |
Collapse
|
8
|
Iwiński H, Różański H, Pachura N, Wojciechowska A, Gębarowski T, Szumny A. In Vitro Evaluation of Antiprotozoal Properties, Cytotoxicity Effect and Anticancer Activity of New Essential-Oil Based Phytoncide Mixtures. Molecules 2023; 28:molecules28031395. [PMID: 36771061 PMCID: PMC9921295 DOI: 10.3390/molecules28031395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Protozoa, in both humans and animals, are one of the leading causes of disease. International programmes introduced in many countries have helped reduce the incidence of disease. However, it has recently become increasingly difficult to achieve the goals set for the coming years. One of the main reasons for this, as with other pathogenic organisms, such as bacteria and fungi, is the increasing resistance to current methods of treating and preventing infection. Therefore, new therapies with high efficacy are needed. In the present study, the novel mixtures of essential oils (EOs), clove, garlic, Ceylon cinnamon, and rosemary with organic acids (acetic, propionic, lactic) and metal ions (Cu, Mn, Zn) were tested against five selected model protozoa (Euglena gracilis, Gregarina blattarum, Amoeba proteus, Paramecium caudatum, Pentatrichomonas hominis). The cytotoxicity and potential anticancer activity of the obtained combinations were tested on the human fibroblasts (NHDF) and human cancer cell lines (A549, MCF7, LoVo, HT29). All of the mixtures showed very good antiprotozoal properties. The most efficient were the combination of clove and rosemary essential oils, mixtures of acids, and Mn ions. The LD50 values were in the range of 0.001-0.006% and the LD100 values were 0.002-0.008%. All of the tested mixtures did not show cytotoxicity against normal cells, but did show growth inhibition against cancer cell lines. The most cytotoxic against cancer cells were combinations with cinnamon essential oil. Nevertheless, the proposed combinations containing essential oils, organic acids, and metal ions have high antiprotozoal activity, with low toxicity to healthy human cells.
Collapse
Affiliation(s)
- Hubert Iwiński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- AdiFeed Sp. z o.o., Opaczewska, 02-201 Warsaw, Poland
- Correspondence: (H.I.); (H.R.); Tel.: +48-507-135-305 (H.I.)
| | - Henryk Różański
- AdiFeed Sp. z o.o., Opaczewska, 02-201 Warsaw, Poland
- Laboratory of Industrial and Experimental Biology, Institute for Health and Economics, Carpathian State College in Krosno, 38-400 Krosno, Poland
- Correspondence: (H.I.); (H.R.); Tel.: +48-507-135-305 (H.I.)
| | - Natalia Pachura
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | | | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| |
Collapse
|
9
|
The role of centrifugal partition chromatography in the removal of β-asarone from Acorus calamus essential oil. Sci Rep 2022; 12:22217. [PMID: 36564541 PMCID: PMC9789137 DOI: 10.1038/s41598-022-26726-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Β-asarone is a phenylpropane derivative present in the rhizomes of Acorus calamus, that was proved to exhibit toxic effects in humans. Because of its presence the whole plant that is commonly used in traditional medicine for its sedative, anti-inflammatory, neuroprotective and other properties has limited application nowadays. In the study, qualitative and quantitative analysis of a collection of nine essential oil (EO) samples of European and Asian origin was performed. The final content of β-asarone in the tested samples ranged between 0.265 and 1.885 mg/mL. Having in mind a possible application of the EO as a biopesticide, this research aimed at the development of CPC-based purification protocol that could help remove β-asarone from EO. It was proved that the biphasic solvent system composed of n-hexane/EtOAc/MeOH/water, 9:1:9:1 (v/v/v/v) was capable of the removal of the toxic constituent in the CPC chromatograph operated in the ascending elution mode with 2200 rpm and a flow rate of 5 mL/min. The chromatographic analysis that lasted only 144 min effectively separated β-asarone (purity of 95.5%) and α-asarone (purity of 93.7%) directly from the crude Acorus calamus rhizome EO.
Collapse
|
10
|
Bai D, Li X, Wang S, Zhang T, Wei Y, Wang Q, Dong W, Song J, Gao P, Li Y, Wang S, Dai L. Advances in extraction methods, chemical constituents, pharmacological activities, molecular targets and toxicology of volatile oil from Acorus calamus var. angustatus Besser. Front Pharmacol 2022; 13:1004529. [PMID: 36545308 PMCID: PMC9761896 DOI: 10.3389/fphar.2022.1004529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
Acorus calamus var. angustatus Besser (ATT) is a traditional herb with a long medicinal history. The volatile oil of ATT (VOA) does possess many pharmacological activities. It can restore the vitality of the brain, nervous system and myocardial cells. It is used to treat various central system, cardiovascular and cerebrovascular diseases. It also showed antibacterial and antioxidant activity. Many studies have explored the benefits of VOA scientifically. This paper reviews the extraction methods, chemical components, pharmacological activities and toxicology of VOA. The molecular mechanism of VOA was elucidated. This paper will serve as a comprehensive resource for further carrying the VOA on improving its medicinal value and clinical use.
Collapse
Affiliation(s)
- Daoming Bai
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Li
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumin Wei
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingquan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weichao Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Song
- Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd, Dezhou, China
| | - Peng Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| |
Collapse
|
11
|
Induction of apoptosis in lung carcinoma cells (A549) by hydromethanolic extract of Acorus calamus L. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Wang X, Wu Z, Zeng J, Zhao Y, Zhang C, Yu M, Wang W, Chen X, Chen L, Wang J, Xu L, Zhou J, Tan Q, Wei W, Li Y. Untargeted metabolomics of pulmonary tuberculosis patient serum reveals potential prognostic markers of both latent infection and outcome. Front Public Health 2022; 10:962510. [PMID: 36457328 PMCID: PMC9705731 DOI: 10.3389/fpubh.2022.962510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Currently, there are no particularly effective biomarkers to distinguish between latent tuberculosis infection (LTBI) and active pulmonary tuberculosis (PTB) and evaluate the outcome of TB treatment. In this study, we have characterized the changes in the serum metabolic profiles caused by Mycobacterium tuberculosis (Mtb) infection and standard anti-TB treatment with isoniazid-rifampin-pyrazinamide-ethambutol (HRZE) using GC-MS and LC-MS/MS. Seven metabolites, including 3-oxopalmitic acid, akeboside ste, sulfolithocholic acid, 2-decylfuran (4,8,8-trimethyldecahydro-1,4-methanoazulen-9-yl)methanol, d-(+)-camphor, and 2-methylaminoadenosine, were identified to have significantly higher levels in LTBI and untreated PTB patients (T0) than those in uninfected healthy controls (Un). Among them, akeboside Ste and sulfolithocholic acid were significantly decreased in PTB patients with 2-month HRZE (T2) and cured PTB patients with 2-month HRZE followed by 4-month isoniazid-rifampin (HR) (T6). Receiver operator characteristic curve analysis revealed that the combined diagnostic model showed excellent performance for distinguishing LT from T0 and Un. By analyzing the biochemical and disease-related pathways, we observed that the differential metabolites in the serum of LTBI or TB patients, compared to healthy controls, were mainly involved in glutathione metabolism, ascorbate and aldarate metabolism, and porphyrin and chlorophyll metabolism. The metabolites with significant differences between the T0 group and the T6 group were mainly enriched in niacin and nicotinamide metabolism. Our study provided more detailed experimental data for developing laboratory standards for evaluating LTBI and cured PTB.
Collapse
Affiliation(s)
- Xuezhi Wang
- Foshan Fourth People's Hospital, Foshan, China
| | - Zhuhua Wu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yuchuan Zhao
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Meiling Yu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Wei Wang
- Foshan Fourth People's Hospital, Foshan, China
| | - Xunxun Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Liang Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Jiawen Wang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Liuyue Xu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Jie Zhou
- Foshan Fourth People's Hospital, Foshan, China
| | - Qiuchan Tan
- Dongguan Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangzhou Health Science College, Guangzhou, China,Qiuchan Tan
| | - Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China,Wenjing Wei
| | - Yanxia Li
- Foshan Fourth People's Hospital, Foshan, China,*Correspondence: Yanxia Li
| |
Collapse
|
13
|
Molecular Mechanisms and Therapeutic Potential of α- and β-Asarone in the Treatment of Neurological Disorders. Antioxidants (Basel) 2022; 11:antiox11020281. [PMID: 35204164 PMCID: PMC8868500 DOI: 10.3390/antiox11020281] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
Neurological disorders are important causes of morbidity and mortality around the world. The increasing prevalence of neurological disorders, associated with an aging population, has intensified the societal burden associated with these diseases, for which no effective treatment strategies currently exist. Therefore, the identification and development of novel therapeutic approaches, able to halt or reverse neuronal loss by targeting the underlying causal factors that lead to neurodegeneration and neuronal cell death, are urgently necessary. Plants and other natural products have been explored as sources of safe, naturally occurring secondary metabolites with potential neuroprotective properties. The secondary metabolites α- and β-asarone can be found in high levels in the rhizomes of the medicinal plant Acorus calamus (L.). α- and β-asarone exhibit multiple pharmacological properties including antioxidant, anti-inflammatory, antiapoptotic, anticancer, and neuroprotective effects. This paper aims to provide an overview of the current research on the therapeutic potential of α- and β-asarone in the treatment of neurological disorders, particularly neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), as well as cerebral ischemic disease, and epilepsy. Current research indicates that α- and β-asarone exert neuroprotective effects by mitigating oxidative stress, abnormal protein accumulation, neuroinflammation, neurotrophic factor deficit, and promoting neuronal cell survival, as well as activating various neuroprotective signalling pathways. Although the beneficial effects exerted by α- and β-asarone have been demonstrated through in vitro and in vivo animal studies, additional research is required to translate laboratory results into safe and effective therapies for patients with AD, PD, and other neurological and neurodegenerative diseases.
Collapse
|
14
|
Ri MH, Ma J, Jin X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114370. [PMID: 34214644 DOI: 10.1016/j.jep.2021.114370] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most promising therapeutic targets for cancer immunotherapy, but several challenges remain in current anti-PD-1/PD-L1 therapy. Natural products, mainly derived from traditional medicine, could improve and expand anti-PD-1/PD-L1 therapy because of their advantages such as large diversity and multi-target effects. AIM OF THE STUDY This review summarize natural products, raw extracts, and traditional medicines with pharmacological effects associated with the PD-1/PD-L1 axis, particularly PD-L1. MATERIALS AND METHODS Electronic literature databases, including Web of Science, PubMed, and ScienceDirect, and online drugs and chemicals databases, including DrugBank, ZINC, PubChem, STITCH, and CTD, were searched without date limitation by February 2021. 'Natural product or herb or herbal plant or traditional medicine' and 'PD-L1' and 'Cancer immunotherapy' were used as the search keywords. Among 112 articles identified in database searching, 54 articles are full text articles, reporting in silico, in vitro, in vivo and clinical trials. 68 articles included are review articles and grey literature such as thesis and congress abstracts. RESULTS Several natural products and traditional medicines have exhibited diverse and multi-functional effects including direct blockade of PD-1/PD-L1 interactions, modulation of PD-L1 expression, and cooperation with PD-1/PD-L1 inhibitors. CONCLUSION Natural products and traditional medicines can facilitate the development of more effective and acceptable diverse strategies for anti-PD-1/PD-L1 therapy, but further exploration of natural products and pharmaceutical techniques is required.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
15
|
Phase II Metabolism of Asarone Isomers In Vitro and in Humans Using HPLC-MS/MS and HPLC-qToF/MS. Foods 2021; 10:foods10092032. [PMID: 34574142 PMCID: PMC8467817 DOI: 10.3390/foods10092032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Metabolism data of asarone isomers, in particular phase II, in vitro and in humans is limited so far. For the first time, phase II metabolites of asarone isomers were characterized and human kinetic as well as excretion data after oral intake of asarone-containing tea infusion was determined. (2) Methods: A high pressure liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-qTOF-MS) approach was used to identify phase II metabolites using liver microsomes of different species and in human urine samples. For quantitation of the respective glucuronides, a beta-glucuronidase treatment was performed prior to analysis via high pressure liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). (3) Results: Ingested beta-asarone and erythro and threo-asarone diols were excreted as diols and respective diol glucuronide conjugates within 24 h. An excretion rate about 42% was estimated. O-Demethylation of beta-asarone was also indicated as a human metabolic pathway because a corresponding glucuronic acid conjugate was suggested. (4) Conclusions: Already reported O-demethylation and epoxide-derived diols formation in phase I metabolism of beta-asarone in vitro was verified in humans and glucuronidation was characterized as main conjugation reaction. The excretion rate of 42% as erythro and threo-asarone diols and respective asarone diol glucuronides suggests that epoxide formation is a key step in beta-asarone metabolism, but further, as yet unknown metabolites should also be taken into consideration.
Collapse
|
16
|
Kakatum N, Itharat A, Pipatrattanaseree W, Kanokkangsadal P, Davies NM. Validation of an HPLC method for quantification of anti-inflammatory markers in an ethanolic extract of Sahastara and its anti-inflammatory activity in vitro. Res Pharm Sci 2021; 16:227-239. [PMID: 34221056 PMCID: PMC8216163 DOI: 10.4103/1735-5362.314821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/18/2022] Open
Abstract
Background and purpose: Sahastara (SHT) is a traditional Thai medicine for the treatment of musculoskeletal and joint pain. It consists of 21 plant components. A previous study demonstrated the anti-inflammatory activity of SHT on inhibition of nitric oxide production and prostaglandin E2 (PGE2) production, however, inhibitory effects on tumor necrosis factor-alpha (TNF-α) has not been reported. In this study, we evaluated the anti-inflammatory activity of SHT on inhibitory effects on TNF-α and PGE2 production and presented an analytical method for validation of SHT. Experimental approach: Anti-inflammatory activity was evaluated by inhibitory activity on TNF-α and PGE2 production in RAW264.7 cells. The validated procedure was conducted according to ICH guidelines. The validated parameters were specificity/selectivity, linearity, range, the limit of detection (LOD), and limit of quantitation (LOQ). Findings/Results: Ethanolic extract of SHT exerted inhibitory activity on PGE2 production in RAW264.7 cells with IC50 16.97 ± 1.16 μg/mL. Myristica frangrans seed extract showed the highest inhibitory activity on PGE2 production. Piper retrofractum extract showed the highest inhibitory activity on TNF-α production. For the HPLC method, all validated parameters complied with standard requirements. Each analyzed peak showed good selectivity with a baseline resolution greater than 1.51. The linearity of all compounds was > 0.999. The % recovery of all compounds was within 98.0-102.0%. The precision of all compounds was less than 2.0% CV. Conclusion and implications: Ethanolic extracts of SHT possess anti-inflammatory activity by inhibition of TNF-α and PGE2 production in vitro. This study provides support for the traditional use of SHT. The validated results showed good specificity/selectivity, linearity, precision, and accuracy with appropriate LOD and LOQ. This study is the first report on the validation of the HPLC method of SHT for use as quality control of the SHT extract.
Collapse
Affiliation(s)
- Narin Kakatum
- Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Arunporn Itharat
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University, Pathumthani, 12120, Thailand
| | | | - Puritat Kanokkangsadal
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
17
|
Das BK, Knott RM, Gadad PC. Metformin and asarone inhibit HepG2 cell proliferation in a high glucose environment by regulating AMPK and Akt signaling pathway. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00193-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Metabolic dysregulation is one of the hallmarks of tumor cell proliferation. Evidence indicates the potential role of the 5′adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B/Akt signaling pathway in regulating cell proliferation, survival, and apoptosis. The present study explores the effect of metformin HCl and the combination of α- and β-asarone on the proliferation of HepG2 cells in the presence of high glucose levels simulating the diabetic-hepatocellular carcinoma (HCC) condition.
Results
The metformin and asarone reduced HepG2 cell viability in a dose-dependent manner and induced morphological changes as indicated by methyl thiazolyl tetrazolium (MTT) assay. The metformin and asarone arrested the cells at the G0/G1 phase, upregulated the expression of AMPK, and downregulated Akt expression in high glucose conditions as identified by the flow cytometry technique. Further, the upregulated AMPK led to a decrease in the expression of phosphoenolpyruvate carboxykinase-2 (PCK-2) and sterol regulatory element-binding protein-1 (SREBP-1).
Conclusion
The anti-proliferative effect of metformin and asarone in the diabetic-HCC condition is mediated via AMPK and Akt pathway.
Collapse
|
18
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
19
|
Hao ZY, Liu YF, Cao YG, Liang D, Luo H, Zhang CL, Wang Y, Chen RY, Yu DQ. Sesquiterpenoids of diverse types from the rhizomes of Acorus calamus. RSC Adv 2021. [DOI: 10.1039/d1ra00350j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Six new and fourteen known sesquiterpenoids of diverse types were isolated from the rhizomes of Acorus calamus.
Collapse
Affiliation(s)
- Zhi-You Hao
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
| | - Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Yan-Gang Cao
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Dong Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Huan Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Chun-Lei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Ruo-Yun Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - De-Quan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| |
Collapse
|
20
|
Pradeep S, Jain AS, Dharmashekara C, Prasad SK, Kollur SP, Syed A, Shivamallu C. Alzheimer's Disease and Herbal Combination Therapy: A Comprehensive Review. J Alzheimers Dis Rep 2020; 4:417-429. [PMID: 33283163 PMCID: PMC7683102 DOI: 10.3233/adr-200228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2020] [Indexed: 12/02/2022] Open
Abstract
Alzheimer's disease (AD) was first described in 1907 and got its name after Alois Alzheimer, a German psychiatrist and neuropathologist. This disease starts slow, increasing gradually to worsen in the due course of time. AD is mainly characterized by the associated dementia, which is a decline of cognitive effects such as memory, praxis, and orientation. The dementia is further highlighted by the presence of psychological and behavioral symptoms. Additionally, AD is also associated with the multiple interconnected pathways linked neuropathological changes such as the formation of neurofibrillary tangles and amyloid-β plaques inside the brain. AD therapeutics have been of prime concern over the decades, resulting in the elucidation of promising therapeutic targets. The requirement of AD stage dependent optimized conditions has necessitated a combinatorial approach toward treatment. The priority in AD research has remained to develop disease-modifying and development-reducing drugs for treatment regimens followed during the early and later stages, respectively.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Anisha S. Jain
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|