1
|
Engineering a novel immunogenic chimera protein utilizing bacterial infections associated with atherosclerosis to induce a deviation in adaptive immune responses via Immunoinformatics approaches. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105290. [PMID: 35568333 DOI: 10.1016/j.meegid.2022.105290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022]
Abstract
Recent studies have established the role of bacteria including Streptococcus pneumoniae, Helicobacter pylori, Chlamydia pneumonia, Mycobacterium tuberculosis, and Porphyromonas gingivalis in the development of atherosclerosis. These bacteria contribute to plaque formation via promoting Th1 immune responses and speeding up ox-LDL formation. Hence, we employed computational reverse vaccinology (RV) approaches to deviate immune response toward Th2 via engineering a novel immunogenic chimera protein. Prominent atherogenic antigens from related bacteria were identified. Then, machine learning-based servers were employed for predicting CTL and HTL epitopes. We selected epitopes from a wide variety of HLAs. Then, a chimeric protein sequence containing TAT peptide, adjuvant, IL-10 inducer, and linker-separated epitopes was designed. The conformational structure of the vaccine was built via multiple-template homology modelling using MODELLER. The initial structure was refined and validated by Ramachandran plot. The vaccine was also docked with TLR4. After that, molecular dynamics (MD) simulation of the docked vaccine-TLR4 was conducted. Finally, the immune simulation of the vaccine was conducted via the C-ImmSim server. A chimera protein with 629 amino acids was built and, classified as a non-allergenic probable antigen. An improved ERRAT score of 80.95 for the refined structure verified its stability. Additionally, validation via the Ramachandran plot showed 98.09% of the residues were located in the most favorable and permitted regions. MD simulations showed the vaccine-TLR4 complex reached a stable conformation. Also, RMS fluctuations analysis revealed no sign of protein denaturation or unfolding. Finally, immune response simulations indicated a promising response by innate and adaptive immunity. In summary, we built an immunogenic vaccine against atherosclerosis and demonstrated its favorable properties via advanced Immunoinformatics analyses. This study may pave the path for combat against atherosclerosis.
Collapse
|
2
|
Burger F, Baptista D, Roth A, Brandt KJ, Miteva K. The E3 Ubiquitin Ligase Peli1 Deficiency Promotes Atherosclerosis Progression. Cells 2022; 11:cells11132014. [PMID: 35805095 PMCID: PMC9265341 DOI: 10.3390/cells11132014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Atherosclerosis is a chronic inflammatory vascular disease and the main cause of death and morbidity. Emerging evidence suggests that ubiquitination plays an important role in the pathogenesis of atherosclerosis including control of vascular inflammation, vascular smooth muscle cell (VSMC) function and atherosclerotic plaque stability. Peli1 a type of E3 ubiquitin ligase has emerged as a critical regulator of innate and adaptive immunity, however, its role in atherosclerosis remains to be elucidated. Methods: Apoe−/− mice and Peli1-deficient Apoe−/− Peli1−/− mice were subject to high cholesterol diet. Post sacrifice, serum was collected, and atherosclerotic plaque size and parameters of atherosclerotic plaque stability were evaluated. Immunoprofiling and foam cell quantification were performed. Results: Peli1 deficiency does not affect atherosclerosis lesion burden and cholesterol levels, but promotes VSMCs foam cells formation, necrotic core expansion, collagen, and fibrous cap reduction. Apoe−/− Peli1−/− mice exhibit a storm of inflammatory cytokines, expansion of Th1, Th1, Th17, and Tfh cells, a decrease in regulatory T and B cells and induction of pro-atherogenic serum level of IgG2a and IgE. Conclusions: In the present study, we uncover a crucial role for Peli1 in atherosclerosis as an important regulator of inflammation and VSMCs phenotypic modulation and subsequently atherosclerotic plaque destabilization.
Collapse
|
3
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 475] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
4
|
Muhammad K, Ayoub MA, Iratni R. Vascular Inflammation in Cardiovascular Disease: Is Immune System Protective or Bystander? Curr Pharm Des 2021; 27:2141-2150. [PMID: 33461451 DOI: 10.2174/1381612827666210118121952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Chronic atherosclerosis induced vascular inflammation and perturbation of lipid metabolism is believed to be a major cause of CVD. Interplay of innate and adaptive Immune system has been interwined with various risk factors associated with the initiation and progression of atherosclerosis in CVD. A large body of evidence indicates a correlation between immunity and atherosclerosis. Retention of plasma lipoproteins in arterial subendothelial wall triggers the T helper type 1 (Th1) cells and monocyte-derived macrophages to form atherosclerotic plaques. In the present review, we will discuss the pathogenesis of CVD in relation to atherosclerosis with a particular focus on pro-atherogenic role of immune cells. Recent findings have also suggested anti-atherogenic roles of different B cell subsets. Therapeutic approaches to target atherosclerosis risk factors have reduced the mortality, but a need exists for the novel therapies to treat arterial vascular inflammation. These insights into the immune pathogenesis of atherosclerosis can lead to new targeted therapeutics to abate cardiovascular mortality and morbidity.
Collapse
Affiliation(s)
- Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed A Ayoub
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Pattarabanjird T, Li C, McNamara C. B Cells in Atherosclerosis: Mechanisms and Potential Clinical Applications. ACTA ACUST UNITED AC 2021; 6:546-563. [PMID: 34222726 PMCID: PMC8246059 DOI: 10.1016/j.jacbts.2021.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
B cells regulate atherosclerotic plaque formation through production of antibodies and cytokines, and effects are subset specific (B1 and B2). Putative human atheroprotective B1 cells function similarly to murine B1 in their spontaneous IgM antibody production. However, marker strategies in identifying human and murine B1 are different. IgM antibody to oxidation specific epitopes produced by B1 cells associate with human coronary artery disease. Neoantigen immunization may be a promising strategy for atherosclerosis vaccine development, but further study to determine relevant antigens still need to be done. B-cell–targeted therapies, used in treating autoimmune diseases as well as lymphoid cancers, might have potential applications in treating cardiovascular diseases. Short- and long-term cardiovascular effects of these agents need to be assessed.
Because atherosclerotic cardiovascular disease is a leading cause of death worldwide, understanding inflammatory processes underpinning its pathology is critical. B cells have been implicated as a key immune cell type in regulating atherosclerosis. B-cell effects, mediated by antibodies and cytokines, are subset specific. In this review, we focus on elaborating mechanisms underlying subtype-specific roles of B cells in atherosclerosis and discuss available human data implicating B cells in atherosclerosis. We further discuss potential B cell–linked therapeutic approaches, including immunization and B cell–targeted biologics. Given recent evidence strongly supporting a role for B cells in human atherosclerosis and the expansion of immunomodulatory agents that affect B-cell biology in clinical use and clinical trials for other disorders, it is important that the cardiovascular field be cognizant of potential beneficial or untoward effects of modulating B-cell activity on atherosclerosis.
Collapse
Key Words
- APRIL, A proliferation−inducing ligand
- ApoE, apolipoprotein E
- B-cell
- BAFF, B-cell–activating factor
- BAFFR, B-cell–activating factor receptor
- BCMA, B-cell maturation antigen
- BCR, B-cell receptor
- Breg, regulatory B cell
- CAD, coronary artery disease
- CTLA4, cytotoxic T-lymphocyte–associated protein 4
- CVD, cardiovascular disease
- CXCR4, C-X-C motif chemokine receptor 4
- GC, germinal center
- GITR, glucocorticoid-induced tumor necrosis factor receptor–related protein
- GITRL, glucocorticoid-induced tumor necrosis factor receptor–related protein ligand
- GM-CSF, granulocyte-macrophage colony–stimulating factor
- ICI, immune checkpoint inhibitor
- IFN, interferon
- IL, interleukin
- IVUS, intravascular ultrasound
- LDL, low-density lipoprotein
- LDLR, low-density lipoprotein receptor
- MDA-LDL, malondialdehyde-modified low-density lipoprotein
- MI, myocardial infarction
- OSE, oxidation-specific epitope
- OxLDL, oxidized low-density lipoprotein
- PC, phosphorylcholine
- PD-1, programmed cell death protein 1
- PD-L2, programmed death ligand 2
- PDL1, programmed death ligand 1
- RA, rheumatoid arthritis
- SLE, systemic lupus erythematosus
- TACI, transmembrane activator and CAML interactor
- TNF, tumor necrosis factor
- Treg, regulatory T cell
- atherosclerosis
- immunoglobulins
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Cynthia Li
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Coleen McNamara
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Liu K, Huang A, Nie J, Tan J, Xing S, Qu Y, Jiang K. IL-35 Regulates the Function of Immune Cells in Tumor Microenvironment. Front Immunol 2021; 12:683332. [PMID: 34093586 PMCID: PMC8176033 DOI: 10.3389/fimmu.2021.683332] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Interleukin-35 (IL-35) is a heterodimeric cytokine composed of Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35 that has recently been shown to play diverse and important roles in the tumor microenvironment (TME). Owing to its immunosuppressive activity and ability to promote tumor growth and progression, IL-35 is widely recognized as a key mediator of TME status. Immune cells are key mediators of diverse tumor-related phenotypes, and immunosuppressive cytokines such as IL-35 can promote tumor growth and metastasis in TME. These influences should be considered together. Since tumor immunotherapy based on immune checkpoint blockade remains ineffective in many patients due to tumoral resistance, a new target or efficacy enhancing factor is urgently needed. Suppressing IL-35 production and activity has been demonstrated as an effective factor that inhibits tumor cells viability, and further investigation of this cytokine is warranted. However, the mechanistic basis for IL-35-mediated regulation of immune cells in the TME remains to be fully clarified. In the present review, we explore the roles of IL-35 in regulating immune cells within the TME. In addition, we highlight IL-35 as a specific immunological target and discuss its possible relevance in the context of immunotherapy. Lastly, we sought to summarize potential future research directions that may guide the advancement of current understanding regarding the role of this important cytokine as a regulator of oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Functional Role of B Cells in Atherosclerosis. Cells 2021; 10:cells10020270. [PMID: 33572939 PMCID: PMC7911276 DOI: 10.3390/cells10020270] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is a lipid-driven inflammatory disease of blood vessels, and both innate and adaptive immune responses are involved in its development. The impact of B cells on atherosclerosis has been demonstrated in numerous studies and B cells have been found in close proximity to atherosclerotic plaques in humans and mice. B cells exert both atheroprotective and pro-atherogenic functions, which have been associated with their B cell subset attribution. While B1 cells and marginal zone B cells are considered to protect against atherosclerosis, follicular B cells and innate response activator B cells have been shown to promote atherosclerosis. In this review, we shed light on the role of B cells from a different, functional perspective and focus on the three major B cell functions: antibody production, antigen presentation/T cell interaction, and the release of cytokines. All of these functions have the potential to affect atherosclerosis by multiple ways and are dependent on the cellular milieu and the activation status of the B cell. Moreover, we discuss B cell receptor signaling and the mechanism of B cell activation under atherosclerosis-prone conditions. By summarizing current knowledge of B cells in and beyond atherosclerosis, we are pointing out open questions and enabling new perspectives.
Collapse
|
9
|
Burgos V, Paz C, Saavedra K, Saavedra N, Foglio MA, González-Chavarría I, Salazar LA. Drimys winteri and isodrimeninol decreased foam cell formation in THP-1 derived macrophages. Food Chem Toxicol 2020; 146:111842. [PMID: 33152471 DOI: 10.1016/j.fct.2020.111842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022]
Abstract
Early stages of atherosclerosis are characterizated for the uptake of oxidate low-density lipoprotein (oxLDL) by inflammatory macrophages in the arteries, promoting the foam cell formation. Drimys winteri is a native tree of Chile that produce drimane sesquiterpenoids, here it was evaluated the inhibitory foam cell formation by the total extract of barks of Drimys winteri and isodrimeninol, a sesquiterpenoid isolated from the tree. The results showed that Dw and isodrimeninol inhibited the foam cell formation on macrophage M1, by Oil Red O staining. Moreover, Dw reduced the gene expression of pro-inflammatory cytokine TNF-α, in contrast to isodrimeninol that showed not effect on the gene expression of this cytokine, also Dw enhanced the expression of the anti-inflammatory cytokine IL-10, in more significant manner than isodrimeninol at 20 μg/mL. While, Dw and isodrimeninol significantly reduced the expression of IL1-β at concentrations of 20 μg/mL, but not affecting the MMP-9 levels, assessed by RT-qPCR. In conclusion, Drimys winteri and isodrimeninol induce anti-atherosclerotic effects, inhibiting foam cell formation, as well as promoting anti-inflammatory responses. This study confirm the relevance of this tree as a medicinal source for the Mapuche people, and suggesting that Drimys winteri could be used in early stages of atherosclerosis.
Collapse
Affiliation(s)
- Viviana Burgos
- Centro de Biología Molecular y Farmacogenética, Núcleo de Desarrollo Científico y Tecnológico (BIOREN), Universidad de La Frontera, Temuco, 4811230, Chile
| | - Cristian Paz
- Departamento de Ciencias Básicas, Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile
| | - Kathleen Saavedra
- Centro de Biología Molecular y Farmacogenética, Núcleo de Desarrollo Científico y Tecnológico (BIOREN), Universidad de La Frontera, Temuco, 4811230, Chile; Departamento de Ciencias Básicas, Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile
| | - Nicolás Saavedra
- Centro de Biología Molecular y Farmacogenética, Núcleo de Desarrollo Científico y Tecnológico (BIOREN), Universidad de La Frontera, Temuco, 4811230, Chile; Departamento de Ciencias Básicas, Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile
| | - Mary Ann Foglio
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Rua Cândido Portinari, 200, Campinas, SP, 13083-871, Brazil
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Luis A Salazar
- Centro de Biología Molecular y Farmacogenética, Núcleo de Desarrollo Científico y Tecnológico (BIOREN), Universidad de La Frontera, Temuco, 4811230, Chile; Departamento de Ciencias Básicas, Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
10
|
Mangge H, Prüller F, Schnedl W, Renner W, Almer G. Beyond Macrophages and T Cells: B Cells and Immunoglobulins Determine the Fate of the Atherosclerotic Plaque. Int J Mol Sci 2020; 21:ijms21114082. [PMID: 32521607 PMCID: PMC7312004 DOI: 10.3390/ijms21114082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis (AS) leading to myocardial infarction and stroke remains worldwide the main cause for mortality. Vulnerable atherosclerotic plaques are responsible for these life-threatening clinical endpoints. Atherosclerosis is a chronic, complex, inflammatory disease with interactions between metabolic dysfunction, dyslipidemia, disturbed microbiome, infectious triggers, vascular, and immune cells. Undoubtedly, the immune response is a most important piece of the pathological puzzle in AS. Although macrophages and T cells have been the focus of research in recent years, B cells producing antibodies and regulating T and natural killer (NKT) cell activation are more important than formerly thought. New results show that the B cells exert a prominent role with atherogenic and protective facets mediated by distinct B cell subsets and different immunoglobulin effects. These new insights come, amongst others, from observations of the effects of innovative B cell targeted therapies in autoimmune diseases like systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). These diseases associate with AS, and the beneficial side effects of B cell subset depleting (modifying) therapies on atherosclerotic concomitant disease, have been observed. Moreover, the CANTOS study (NCT01327846) showed impressive results of immune-mediated inflammation as a new promising target of action for the fight against atherosclerotic endpoints. This review will reflect the putative role of B cells in AS in an attempt to connect observations from animal models with the small spectrum of the thus far available human data. We will also discuss the clinical therapeutic potency of B cell modulations on the process of AS.
Collapse
Affiliation(s)
- Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (F.P.); (W.R.); (G.A.)
- Correspondence: ; Tel.: +43-664-3373531
| | - Florian Prüller
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (F.P.); (W.R.); (G.A.)
| | - Wolfgang Schnedl
- Department of Internal Medicine, Practice for General Internal Medicine, 8600 Bruck/Mur, Austria;
| | - Wilfried Renner
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (F.P.); (W.R.); (G.A.)
| | - Gunter Almer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (F.P.); (W.R.); (G.A.)
| |
Collapse
|