1
|
Maral-Gül D, Eltem R. Evaluation of Bacillus isolates as a biological control agents against soilborne phytopathogenic fungi. Int Microbiol 2025; 28:75-89. [PMID: 38376639 DOI: 10.1007/s10123-024-00490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Pesticides, used in agriculture to control plant diseases, pose risks to the environment and human health. To address this, there's a growing focus on biocontrol, using microorganisms instead of chemicals. In this study, we aimed to identify Bacillus isolates as potential biological control agents. We tested 1574 Bacillus isolates for antifungal effects against pathogens like Botrytis cinerea, Fusarium solani, and Rhizoctonia solani. Out of these, 77 isolates formed inhibition zones against all three pathogens. We then investigated their lytic enzyme activities (protease, chitinase, and chitosanase) and the production of antifungal metabolites (siderophore and hydrogen cyanide). Coagulase activity was also examined to estimate potential pathogenicity in humans and animals. After evaluating all mechanisms, 19 non-pathogenic Bacillus isolates with significant antifungal effects were chosen. Molecular identification revealed they belonged to B. subtilis (n = 19) strains. The 19 native Bacillus strains, demonstrating strong antifungal effects in vitro, have the potential to form the basis for biocontrol product development. This could address challenges in agricultural production, marking a crucial stride toward sustainable agriculture.
Collapse
Affiliation(s)
- Derya Maral-Gül
- Graduate School of Natural and Applied Sciences, Department of Bioengineering, Ege University, 35100, Bornova-Izmir, Türkiye.
| | - Rengin Eltem
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Türkiye
| |
Collapse
|
2
|
Asfandyar, Rao Y, Ishaq AR, Zhang Y, Zhang R, Cai D, He P, Chen S. Cell membrane engineering of Bacillus licheniformis for the enhancement of heterologous protein production. Int J Biol Macromol 2025; 305:141178. [PMID: 39965702 DOI: 10.1016/j.ijbiomac.2025.141178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Heterologous expression is crucial to produce various recombinants proteins, yet consistently achieving high yields poses a significant challenge. The main objective of our research was to engineer the cell membrane components of Bacillus licheniformis for improving heterologous proteins production. This engineering strategy was achieved by overexpressing genes bkdR, plsY, plsC, and deleting pssA and clsA, which significantly increased the production of nattokinase, α-amylase and keratinase. Furthermore, a combined engineered strain was constructed by integrating all these approaches into a single strain (DW2-RYCAS) which led to an increase in the negative charge and permeability of the cell membrane by 41.11 % and 57.62 %, respectively, and reduced cell membrane integrity by 81.45 % compared to the control strain DW2. Ultimately, the production of nattokinase, α-amylase, and keratinase in DW2-RYCAS were 406.02 ± 8.17 FU/mL, 526.80 ± 14.77 U/mL, and 18.27 ± 0.70 KU/mL, respectively, which increased by 493.59 %, 273.40 %, and 213.91 % compared to the control strain DW2. These results represent the highest production of nattokinase, α-amylase, and keratinase in shake flasks reported to date. Our research illustrated the promising application of cell membrane engineering in B. licheniformis, creating an excellent platform for the biosynthesis of heterologous proteins.
Collapse
Affiliation(s)
- Asfandyar
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yi Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ali Raza Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yongjia Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ruibin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Penghui He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300, China.
| |
Collapse
|
3
|
Singh D, Jadon KS, Verma A, Kakani RK. Harnessing nature's defenders: unveiling the potential of microbial consortia for plant defense induction against Alternaria blight in cumin. Folia Microbiol (Praha) 2025; 70:403-426. [PMID: 39212847 DOI: 10.1007/s12223-024-01191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Present study was aimed to develop an efficient microbial consortium for combating Alternaria blight disease in cumin. The research involved isolating biocontrol agents against Alternaria burnsii, characterizing their biocontrol and growth promotion traits, and assessing compatibility. A pot experiment was conducted during rabi season of 2022-2023 to evaluate the bioefficacy of four biocontrol agents (1F, 16B, 31B, and 223B) individually and in consortium, focusing on disease severity, plant growth promotion, and defense responses in cumin challenged with A. burnsii. Microbial isolates 1F, 16B, 31B, and 223B significantly inhibited A. burnsii growth in dual plate assays (~ 86%), displaying promising biocontrol and plant growth promotion activities. They were identified as Trichoderma afroharzianum 1F, Aneurinibacillus aneurinilyticus 16B, Pseudomonas lalkuanensis 31B, and Bacillus licheniformis 223B, respectively. The excellent compatibility was observed among all selected biocontrol agents. Cumin plants treated with consortia of 1F + 16B + 31B + 223B showed least percent disease index (32.47%) and highest percent disease control (64.87%). Consortia of biocontrol agents significantly enhanced production of secondary metabolites (total phenol, flavonoids, antioxidant, and tannin) and activation of antioxidant-defense enzymes (POX, PPOX, CAT, SOD, PAL, and TAL) compared to individual biocontrol treatment and infected control. Moreover, consortium treatments effectively reduced electrolyte leakage over the individual biocontrol agent and infected control treatment. The four-microbe consortium significantly enhanced chlorophyll (154%), carotenoid content (88%), plant height (78.77%), dry weight (72.81%), and seed yield (104%) compared to infected control. Based on these findings, this environmentally friendly four-microbe consortium may be recommended for managing Alternaria blight in cumin.
Collapse
Affiliation(s)
- Devendra Singh
- Division of Plant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India.
| | - Kuldeep Singh Jadon
- Division of Plant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| | - Aman Verma
- Division of Plant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| | - Rajesh Kumar Kakani
- Division of Plant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| |
Collapse
|
4
|
Cheng M, Li S, Wang J, Yang X, Duan D, Shao Z. Genome-Wide Mining of Chitinase Diversity in the Marine Diatom Thalassiosira weissflogii and Functional Characterization of a Novel GH19 Enzyme. Mar Drugs 2025; 23:144. [PMID: 40278265 PMCID: PMC12028343 DOI: 10.3390/md23040144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Chitin represents a globally abundant marine polymer with significant ecological and biotechnological value. β-chitin is an important carbon fixation product of diatoms and has a greater range of applications than α- and γ-chitin. However, there has been a paucity of research on the characterization of chitin-related enzymes from β-chitin producers. In this study, we performed a genome-wide identification of 38 putative chitinase genes in Thalassiosira weissflogii, a key producer of β-chitin. Through comprehensive analyses of phylogenetic relationships, conserved motifs, structural domains, and subcellular localization predictions, we revealed that T. weissflogii possesses evolutionarily distinct GH18 and GH19 chitinase families exhibiting unique motif and domain configurations. Subcellular localization predictions showed that most TwChis were presumed to be located in the chloroplast, with a few being present in the nucleus and extracellular. The enzymatic activity of TwChi2, a GH19 chitinase, showed that TwChi2 was a member of exochitinase (EC 3.2.1.201) with strong thermal stability (40 °C) and broad substrate adaptability of hydrolyzing bipolymer, 1% and 5% colloidal chitin, α-chitin and β-chitin. Altogether, we analyzed the chitinase gene family and characterized a highly active exochitinase from T. weissflogii, which can catalyze the degradation of both chitin polymers and chitin oligosaccharides. The relevant results lay a foundation for the internal regulation mechanism of chitin metabolism in diatoms and provide a candidate enzyme for the green industrial preparation of high-value chitin oligosaccharides.
Collapse
Affiliation(s)
- Mengzhen Cheng
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahui Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiaoqi Yang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Delin Duan
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhanru Shao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (M.C.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
5
|
Dobrzyński J, Kulkova I, Jakubowska Z, Naziębło A, Wróbel B. Pseudomonas sp. G31 and Azotobacter sp. PBC2 Changed Structure of Bacterial Community and Modestly Promoted Growth of Oilseed Rape. Int J Mol Sci 2024; 25:13168. [PMID: 39684878 DOI: 10.3390/ijms252313168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Oilseed rape is one of the most important oilseed crops, requiring high levels of nitrogen fertilization. Excessive nitrogen use, however, leads to numerous negative environmental impacts, spurring the search for sustainable, environmentally friendly alternatives to reduce reliance on mineral nitrogen fertilizers. One promising approach involves plant-growth-promoting bacteria (PGPB), which can support oilseed rape growth and lessen the need for traditional nitrogen fertilizers. This study evaluates a selected microbial consortium comprising bacterial isolates obtained from soil: Pseudomonas sp. G31 and Azotobacter sp. PBC2 (P1A). The applied PGPB significantly increased seed yield (a 27.12% increase) and, in the initial phase of the study, reduced the ammonium nitrogen content in the soil (a 20.18% decrease). Metataxonomic analyses were performed using Next-Generation Sequencing (NGS) technology by Illumina. Although P1A did not significantly affect alpha diversity, it altered the relative abundance of some dominant soil microorganisms. In the BBCH 75 phase, the P1A consortium increased the abundance of bacteria of Firmicutes phylum, including the genera Bacillus and Paenibacillus, which was considered a beneficial change. In summary, the Pseudomonas sp. G31 and Azotobacter sp. PBC2 consortium increased seed yield and was found to be part of the native rhizosphere community of oilseed rape, making it a promising candidate for commercialization.
Collapse
Affiliation(s)
- Jakub Dobrzyński
- Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| | - Iryna Kulkova
- Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| | - Zuzanna Jakubowska
- Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| | - Aleksandra Naziębło
- Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| | - Barbara Wróbel
- Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| |
Collapse
|
6
|
Gebele L, Wilke A, Salliou A, Schneider L, Heid D, Stadelmann T, Henninger C, Ahmed U, Broszat M, Müller P, Dusel G, Krzyżaniak M, Ochsenreither K, Eisele T. Recombinant expression and characterization of the endochitinase Chit36-TA from Trichoderma asperellum in Komagataella phaffii for chitin degradation of black soldier fly exuviae. Bioprocess Biosyst Eng 2024; 47:1751-1766. [PMID: 39115691 PMCID: PMC11399303 DOI: 10.1007/s00449-024-03067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/17/2024] [Indexed: 09/14/2024]
Abstract
The natural polymer chitin is an abundant source for valuable N-acetylchitooligosaccharides and N-acetylglucosamine applicable in several industries. The endochitinase Chit36-TA from Trichoderma asperellum was recombinantly expressed in Komagataella phaffii for the enzymatic degradation of chitin from unused insect exuviae into N-acetylchitooligosaccharides. Chit36-TA was purified by Ni-NTA affinity chromatography and subsequently biochemically characterized. After deglycosylation, the endochitinase had a molecular weight of 36 kDa. The optimum pH for Chit36-TA was 4.5. The temperature maximum of Chit36-TA was determined to be 50 °C, while it maintained > 93% activity up to 60 °C. The chitinase was thermostable up to 45 °C and exhibited ~ 50% activity after a 15 min incubation at 57 °C. Chit36-TA had a maximum specific enzyme activity of 50 nkat/mg with a Km value of 289 µM with 4-methylumbelliferyl-N,N',N″-triacetyl-β-chitotrioside as substrate. Most tested cations, organic solvents and reagents were well-tolerated by the endochitinase, except for SDS (1 mM), Cu2+ (10 mM) and Mn2+ (10 mM), which had stronger inhibitory effects with residual activities of 3, 41 and 28%, respectively. With a degree of hydrolysis of 32% applying colloidal shrimp chitin (1% (w/v)) and 12% on insect larvae (1% (w/v)) after 24 h, the endochitinase was found to be suitable for the conversion of colloidal chitin as well as chitin from black soldier fly larvae into water-soluble N-acetylchitooligosaccharides. To prove scalability, a bioreactor process was developed in which a 55-fold higher enzyme activity of 49 µkat/l and a tenfold higher protein expression of 1258 mg/l were achieved.
Collapse
Affiliation(s)
- Luisa Gebele
- Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652, Offenburg, Germany
| | - Andreas Wilke
- Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652, Offenburg, Germany
| | - Axel Salliou
- École Supérieure de Biotechnologie de Strasbourg, 67412, Illkirch Cedex, France
| | - Laura Schneider
- Department Life Sciences and Engineering, Technische Hochschule Bingen, 55411, Bingen am Rhein, Germany
| | - Daniel Heid
- Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652, Offenburg, Germany
| | - Tobias Stadelmann
- Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652, Offenburg, Germany
| | - Corinna Henninger
- Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652, Offenburg, Germany
- Department of Chemical and Process Engineering, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Uzair Ahmed
- Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652, Offenburg, Germany
- Department of Chemical and Process Engineering, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Melanie Broszat
- Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652, Offenburg, Germany
| | - Pascale Müller
- Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652, Offenburg, Germany
| | - Georg Dusel
- Department Life Sciences and Engineering, Technische Hochschule Bingen, 55411, Bingen am Rhein, Germany
| | - Michał Krzyżaniak
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724, Olsztyn, Poland
| | - Katrin Ochsenreither
- Department of Chemical and Process Engineering, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Thomas Eisele
- Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652, Offenburg, Germany.
| |
Collapse
|
7
|
de Menezes CLA, Boscolo M, da Silva R, Gomes E, da Silva RR. Fungal endo and exochitinase production, characterization, and application for Candida biofilm removal. Braz J Microbiol 2024; 55:2267-2277. [PMID: 38951478 PMCID: PMC11405547 DOI: 10.1007/s42770-024-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
Chitinases are promising enzymes for a multitude of applications, including chitooligosaccharide (COS) synthesis for food and pharmaceutical uses and marine waste management. Owing to fungal diversity, fungal chitinases may offer alternatives for chitin degradation and industrial applications. The rapid reproduction cycle, inexpensive growth media, and ease of handling of fungi may also contribute to reducing enzyme production costs. Thus, this study aimed to identify fungal species with chitinolytic potential and optimize chitinase production by submerged culture and enzyme characterization using shrimp chitin. Three fungal species, Coriolopsis byrsina, Trichoderma reesei, and Trichoderma harzianum, were selected for chitinase production. The highest endochitinase production was achieved in C. byrsina after 168 h cultivation (0.3 U mL- 1). The optimal temperature for enzyme activity was similar for the three fungal species (up to 45 and 55 ºC for endochitinases and exochitinases, respectively). The effect of pH on activity indicated maximum hydrolysis in acidic pH (4-7). In addition, the crude T. reesei extract showed promising properties for removing Candida albicans biofilms. This study showed the possibility of using shrimp chitin to induce chitinase production and enzymes that can be applied in different industrial sectors.
Collapse
Affiliation(s)
- Cíntia Lionela Ambrósio de Menezes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil
| | - Maurício Boscolo
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil
| | - Roberto da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil
| | - Eleni Gomes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil
| | - Ronivaldo Rodrigues da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
8
|
Reang L, Bhatt S, Tomar RS, Joshi K, Padhiyar S, Bhalani H, Kheni J, Vyas UM, Parakhia MV. Extremozymes and compatible solute production potential of halophilic and halotolerant bacteria isolated from crop rhizospheric soils of Southwest Saurashtra Gujarat. Sci Rep 2024; 14:15704. [PMID: 38977706 PMCID: PMC11231302 DOI: 10.1038/s41598-024-63581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Halophiles are one of the classes of extremophilic microorganisms that can flourish in environments with very high salt concentrations. In this study, fifteen bacterial strains isolated from various crop rhizospheric soils of agricultural fields along the Southwest coastline of Saurashtra, Gujarat, and identified by 16S rRNA gene sequencing as Halomonas pacifica, H. stenophila, H. salifodinae, H. binhaiensis, Oceanobacillus oncorhynchi, and Bacillus paralicheniformis were investigated for their potentiality to produce extremozymes and compatible solute. The isolates showed the production of halophilic protease, cellulase, and chitinase enzymes ranging from 6.90 to 35.38, 0.004-0.042, and 0.097-0.550 U ml-1, respectively. The production of ectoine-compatible solute ranged from 0.01 to 3.17 mg l-1. Furthermore, the investigation of the ectoine-compatible solute production at the molecular level by PCR showed the presence of the ectoine synthase gene responsible for its biosynthesis in the isolates. Besides, it also showed the presence of glycine betaine biosynthetic gene betaine aldehyde dehydrogenase in the isolates. The compatible solute production by these isolates may be linked to their ability to produce extremozymes under saline conditions, which could protect them from salt-induced denaturation, potentially enhancing their stability and activity. This correlation warrants further investigation.
Collapse
Affiliation(s)
- Likhindra Reang
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Shraddha Bhatt
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India.
| | - Rukam Singh Tomar
- Crop Improvement Section, ICAR - Directorate of Groundnut Research, Junagadh, Gujarat, India
| | - Kavita Joshi
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Shital Padhiyar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Hiren Bhalani
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - JasminKumar Kheni
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - U M Vyas
- Main Oilseed Research Station, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - M V Parakhia
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| |
Collapse
|
9
|
Govindaraj V, Kim SK, Raval R, Raval K. Marine Bacillus haynesii chitinase: Purification, characterization and antifungal potential for sustainable chitin bioconversion. Carbohydr Res 2024; 541:109170. [PMID: 38830279 DOI: 10.1016/j.carres.2024.109170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
The development of chitinase tailored for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its potential to alleviate environmental pollution associated with chemical conversion processes. In this present investigation, we purified extracellular chitinase derived from marine Bacillus haynesii to homogeneity and subsequently characterized it. The molecular weight of BhChi was approximately 35 kDa. BhChi displayed its peak catalytic activity at pH 6.0, with an optimal temperature of 37 °C. It exhibited stability across a pH range of 6.0-9.0. In addition, BhChi showed activation in the presence of Mn2+ with the improved activity of 105 U mL-1. Ca2+ and Fe2+ metal ions did not have any significant impact on enzyme activity. Under the optimized enzymatic conditions, there was a notable enhancement in catalytic activity on colloidal chitin with Km of 0.01 mg mL-1 and Vmax of 5.75 mmol min-1. Kcat and catalytic efficiency were measured at 1.91 s-1 and 191 mL mg-1 s-1, respectively. The product profiling of BhChi using thin layer chromatography and Mass spectrometric techniques hinted an exochitinase mode of action with chitobiose and N-Acetyl glucosamine as the products. This study represents the first report on an exochitinase from Bacillus haynesii. Furthermore, the chitinase showcased promising antifungal properties against key pathogens, Fusarium oxysporum and Penicillium chrysogenum, reinforcing its potential as a potent biocontrol agent.
Collapse
Affiliation(s)
- Vishnupriya Govindaraj
- Department of Chemical Engineering, National Institute of Technology, Surathkal, Mangalore, 575025, Karnataka, India
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology, Hanyang, University Erica Campus, Ansan, 11558, Republic of Korea.
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Keyur Raval
- Department of Chemical Engineering, National Institute of Technology, Surathkal, Mangalore, 575025, Karnataka, India.
| |
Collapse
|
10
|
Wissner JL, Parada-Fabián JC, Márquez-Velázquez NA, Escobedo-Hinojosa W, Gaudêncio SP, Prieto-Davó A. Diversity and Bioprospection of Gram-positive Bacteria Derived from a Mayan Sinkhole. MICROBIAL ECOLOGY 2024; 87:77. [PMID: 38806738 PMCID: PMC11133088 DOI: 10.1007/s00248-024-02392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Water-filled sinkholes known locally as cenotes, found on the Yucatán Peninsula, have remarkable biodiversity. The primary objective of this study was to explore the biotechnological potential of Gram-positive cultivable bacteria obtained from sediment samples collected at the coastal cenote Pol-Ac in Yucatán, Mexico. Specifically, the investigation aimed to assess production of hydrolytic enzymes and antimicrobial compounds. 16 S rRNA gene sequencing led to the identification of 49 Gram-positive bacterial isolates belonging to the phyla Bacillota (n = 29) and Actinomycetota (n = 20) divided into the common genera Bacillus and Streptomyces, as well as the genera Virgibacillus, Halobacillus, Metabacillus, Solibacillus, Neobacillus, Rossellomorea, Nocardiopsis and Corynebacterium. With growth at 55ºC, 21 of the 49 strains were classified as moderately thermotolerant. All strains were classified as halotolerant and 24 were dependent on marine water for growth. Screening for six extracellular hydrolytic enzymes revealed gelatinase, amylase, lipase, cellulase, protease and chitinase activities in 93.9%, 67.3%, 63.3%, 59.2%, 59.2% and 38.8%, of isolated strains, respectively. The genes for polyketide synthases type I, were detected in 24 of the strains. Of 18 strains that achieved > 25% inhibition of growth in the bacterial pathogen Staphylococcus aureus ATCC 6538, 4 also inhibited growth in Escherichia coli ATCC 35,218. Isolates Streptomyces sp. NCA_378 and Bacillus sp. NCA_374 demonstrated 50-75% growth inhibition against at least one of the two pathogens tested, along with significant enzymatic activity across all six extracellular enzymes. This is the first comprehensive report on the biotechnological potential of Gram-positive bacteria isolated from sediments in the cenotes of the Yucatán Peninsula.
Collapse
Affiliation(s)
- Julian L Wissner
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México
| | - José Carlos Parada-Fabián
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México
| | - Norma Angélica Márquez-Velázquez
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México
| | - Wendy Escobedo-Hinojosa
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México
| | - Susana P Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, 2819-516, Portugal
- Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, UCIBIO, NOVA University of Lisbon, Lisbon, 2819-516, Portugal
| | - Alejandra Prieto-Davó
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México.
| |
Collapse
|
11
|
Doan CT, Tran TN, Tran TPH, Nguyen TT, Nguyen HK, Tran TKT, Vu BT, Trinh THT, Nguyen AD, Wang SL. Chitosanase Production from the Liquid Fermentation of Squid Pens Waste by Paenibacillus elgii. Polymers (Basel) 2023; 15:3724. [PMID: 37765578 PMCID: PMC10537793 DOI: 10.3390/polym15183724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Chitosanases play a significant part in the hydrolysis of chitosan to form chitooligosaccharides (COS) that possess diverse biological activities. This study aimed to enhance the productivity of Paenibacillus elgii TKU051 chitosanase by fermentation from chitinous fishery wastes. The ideal parameters for achieving maximum chitosanase activity were determined: a squid pens powder amount of 5.278% (w/v), an initial pH value of 8.93, an incubation temperature of 38 °C, and an incubation duration of 5.73 days. The resulting chitosanase activity of the culture medium was 2.023 U/mL. A chitosanase with a molecular weight of 25 kDa was isolated from the culture medium of P. elgii TKU051 and was biochemically characterized. Liquid chromatography with tandem mass spectrometry analysis revealed that P. elgii TKU051 chitosanase exhibited a maximum amino acid identity of 43% with a chitosanase of Bacillus circulans belonging to the glycoside hydrolase (GH) family 46. P. elgii TKU051 chitosanase demonstrated optimal activity at pH 5.5 while displaying remarkable stability within the pH range of 5.0 to 9.0. The enzyme displayed maximum efficiency at 60 °C and demonstrated considerable stability at temperatures ≤40 °C. The presence of Mn2+ positively affected the activity of the enzyme, while the presence of Cu2+ had a negative effect. Thin-layer chromatography analysis demonstrated that P. elgii TKU051 chitosanase exhibited an endo-type cleavage pattern and hydrolyzed chitosan with 98% degree of deacetylation to yield (GlcN)2 and (GlcN)3. The enzymatic properties of P. elgii TKU051 chitosanase render it a promising candidate for application in the production of COS.
Collapse
Affiliation(s)
- Chien Thang Doan
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Ngoc Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Phuong Hanh Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Thanh Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Huu Kien Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Kim Thi Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Bich Thuy Vu
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Huyen Trang Trinh
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
12
|
Shleeva MO, Kondratieva DA, Kaprelyants AS. Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications. Pharmaceutics 2023; 15:1893. [PMID: 37514078 PMCID: PMC10383908 DOI: 10.3390/pharmaceutics15071893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Bacillus licheniformis produces several classes of antimicrobial substances, including bacteriocins, which are peptides or proteins with different structural composition and molecular mass: ribosomally synthesized by bacteria (1.4-20 kDa), non-ribosomally synthesized peptides and cyclic lipopeptides (0.8-42 kDa) and exopolysaccharides (>1000 kDa). Different bacteriocins act against Gram-positive or Gram-negative bacteria, fungal pathogens and amoeba cells. The main mechanisms of bacteriocin lytic activity include interaction of peptides with membranes of target cells resulting in structural alterations, pore-forming, and inhibition of cell wall biosynthesis. DNase and RNase activity for some bacteriocines are also postulated. Non-ribosomal peptides are synthesized by special non-ribosomal multimodular peptide synthetases and contain unnatural amino acids or fatty acids. Their harmful effect is due to their ability to form pores in biological membranes, destabilize lipid packaging, and disrupt the peptidoglycan layer. Lipopeptides, as biosurfactants, are able to destroy bacterial biofilms. Secreted polysaccharides are high molecular weight compounds, composed of repeated units of sugar moieties attached to a carrier lipid. Their antagonistic action was revealed in relation to bacteria, viruses, and fungi. Exopolysaccharides also inhibit the formation of biofilms by pathogenic bacteria and prevent their colonization on various surfaces. However, mechanism of the harmful effect for many secreted antibacterial substances remains unknown. The antimicrobial activity for most substances has been studied in vitro only, but some substances have been characterized in vivo and they have found practical applications in medicine and veterinary. The cyclic lipopeptides that have surfactant properties are used in some industries. In this review, special attention is paid to the antimycobacterials produced by B. licheniformis as a possible approach to combat multidrug-resistant and latent tuberculosis. In particular, licheniformins and bacitracins have shown strong antimycobacterial activity. However, the medical application of some antibacterials with promising in vitro antimycobacterial activity has been limited by their toxicity to animals and humans. As such, similar to the enhancement in the antimycobacterial activity of natural bacteriocins achieved using genetic engineering, the reduction in toxicity using the same approach appears feasible. The unique capability of B. licheniformis to synthesize and produce a range of different antibacterial compounds means that this organism can act as a natural universal vehicle for antibiotic substances in the form of probiotic cultures and strains to combat various types of pathogens, including mycobacteria.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Daria A Kondratieva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Arseny S Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
13
|
Zhao Q, Fan L, Deng C, Ma C, Zhang C, Zhao L. Bioconversion of chitin into chitin oligosaccharides using a novel chitinase with high chitin-binding capacity. Int J Biol Macromol 2023:125241. [PMID: 37301336 DOI: 10.1016/j.ijbiomac.2023.125241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Chitin is the second largest renewable biomass resource in nature, it can be enzymatically degraded into high-value chitin oligosaccharides (CHOSs) by chitinases. In this study, a chitinase (ChiC8-1) was purified and biochemically characterized, its structure was analyzed by molecular modeling. ChiC8-1 had a molecular mass of approximately 96 kDa, exhibited its optimal activity at pH 6.0 and 50 °C. The Km and Vmax values of ChiC8-1 towards colloidal chitin were 10.17 mg mL-1 and 13.32 U/mg, respectively. Notably, ChiC8-1 showed high chitin-binding capacity, which may be related to the two chitin binding domains in the N-terminal. Based on the unique properties of ChiC8-1, a modified affinity chromatography method, which combines protein purification with chitin hydrolysis process, was developed to purify ChiC8-1 while hydrolyzing chitin. In this way, 9.36 ± 0.18 g CHOSs powder was directly obtained by hydrolyzing 10 g colloidal chitin with crude enzyme solution. The CHOSs were composed of 14.77-2.83 % GlcNAc and 85.23-97.17 % (GlcNAc)2 at different enzyme-substrate ratio. This process simplifies the tedious purification and separation steps, and may enable its potential application in the field of green production of chitin oligosaccharides.
Collapse
Affiliation(s)
- Qiong Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chen Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chunyu Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chunyue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
14
|
Thakur D, Chauhan A, Jhilta P, Kaushal R, Dipta B. Microbial chitinases and their relevance in various industries. Folia Microbiol (Praha) 2023; 68:29-53. [PMID: 35972681 DOI: 10.1007/s12223-022-00999-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/31/2022] [Indexed: 01/09/2023]
Abstract
Chitin, the second most abundant biopolymer on earth after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) units. It is widely distributed in nature, especially as a structural polysaccharide in the cell walls of fungi, the exoskeletons of crustaceans, insects, and nematodes. However, the principal commercial source of chitin is the shells of marine or freshwater invertebrates. Microbial chitinases are largely responsible for chitin breakdown in nature, and they play an important role in the ecosystem's carbon and nitrogen balance. Several microbial chitinases have been characterized and are gaining prominence for their applications in various sectors. The current review focuses on chitinases of microbial origin, their diversity, and their characteristics. The applications of chitinases in several industries such as agriculture, food, the environment, and pharmaceutical sectors are also highlighted.
Collapse
Affiliation(s)
- Deepali Thakur
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Anjali Chauhan
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Prakriti Jhilta
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Rajesh Kaushal
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| |
Collapse
|
15
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
16
|
Kumar P, Singh S, Pranaw K, Kumar S, Singh B, Poria V. Bioinoculants as mitigators of multiple stresses: A ray of hope for agriculture in the darkness of climate change. Heliyon 2022; 8:e11269. [PMID: 36339753 PMCID: PMC9634370 DOI: 10.1016/j.heliyon.2022.e11269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/04/2022] [Accepted: 10/21/2022] [Indexed: 11/28/2022] Open
Abstract
Plant encounters various biotic and abiotic stresses, that affect agricultural productivity and reduce farmer's income especially under changing global climate. These environmental stresses can advance plant senescence by inducing osmotic stress, nutrient stress, hormonal imbalance, production of oxygen radicals, and ion toxicity, etc. Additionally, these stresses are not limited to plant health but also deteriorate soil health by affecting the microbial diversity of soil. To tackle this global delinquent of agriculture, several methods are suggested to ameliorate the negative effect of different types of stresses, the application of beneficial microorganisms or bioinoculants is one of them. Beneficial microorganisms that are used as bioinoculants not only facilitate plant growth by fulfilling the nutrient requirements but also assist the plant to withstand these stresses. These microorganisms produce certain chemicals such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, phytohormones, antioxidants, extracellular polysaccharide (EPS), siderophores, antibiotics, and volatile organic compounds (VOCs), etc. which help the plants to mitigate various stresses. Besides, these microbes also activate plant defence responses. Thus, these bioinoculants can effectively replace chemical inputs to supplement nutrient requirements and mitigation of multiple stresses in plants.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland
| | - Sandeep Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Balkar Singh
- Department of Botany, Arya PG College, Panipat, Haryana, 132103, India
| | - Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| |
Collapse
|
17
|
Characterization of chitinase from Exiguobacterium antarcticum and its bioconversion of crayfish shell into chitin oligosaccharides. Food Res Int 2022; 158:111517. [DOI: 10.1016/j.foodres.2022.111517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
|
18
|
Qiu S, Zhou S, Tan Y, Feng J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Biodegradation and Prospect of Polysaccharide from Crustaceans. Mar Drugs 2022; 20:310. [PMID: 35621961 PMCID: PMC9146327 DOI: 10.3390/md20050310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with various biological activities can be obtained by the enzymatic degradation of chitin. Many studies have shown that chitosan and its derivatives, chitosan oligosaccharides (COSs), have beneficial properties, including lipid-lowering, anti-inflammatory and antitumor activities, and have important application value in the medical treatment field, the food industry and agriculture. In this review, we describe the classification, biochemical characteristics and catalytic mechanisms of the major degrading enzymes: chitinases, chitin deacetylases (CDAs) and chitosanases. We also introduced the technology for enzymatic design and modification and proposed the current problems and development trends of enzymatic degradation of chitin polysaccharides. The discussion on the characteristics and catalytic mechanism of chitosan-degrading enzymes will help to develop new types of hydrolases by various biotechnology methods and promote their application in chitosan.
Collapse
Affiliation(s)
- Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
19
|
Dai C, Hou Y, Xu H, Umego EC, Huang L, He R, Ma H. Identification of a thermophilic protease-producing strain and its application in solid-state fermentation of soybean meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2359-2370. [PMID: 34628645 DOI: 10.1002/jsfa.11574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/13/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Thermophiles can thrive at 50-80 °C and produce some enzymes with special promise for biocatalysis. A thermophilic protease-producing strain YYC4 was isolated from Yunyan cigarette and employed in solid-state fermentation (SSF) of unsterilized soybean meal (SBM). RESULTS The isolate was identified as Bacillus licheniformis based on appearance of colonies, microscopic observation and 16S rDNA sequencing. After SSF, soluble and crude protein contents in SBM increased from 49.24 to 185.73 g kg-1 and from 404.18 to 479.46 g kg-1 , respectively, under the fermentation conditions of 107 cfu g-1 inoculation of strain YYC4, 1:1.8 (g mL-1 ) SBM to distilled water, 1.2 g kg-1 magnesium sulphate addition, 55 °C and 48 h. During fermentation, pH of the medium increased from 6.30 to 9.09 and protease activity especially neutral protease increased significantly from 13.5 to 181.31 U g-1 . Meanwhile, trypsin inhibitor (TI) activity was decreased from 8.19 to 3.19 mg g-1 . The safety of fermented SBM (FSBM) was verified by acute toxicity animal experiment. Analysis of microbial community in FSBM showed that Bacillus licheniformis YYC4 as a dominant strain inhibited most of the other microorganisms pre-existing in the materials during fermentation. CONCLUSION Increments of soluble and crude protein by 277.19% and 18.63% and decrement of harmful TI by 61.05% in SBM were achieved using thermophilic SSF by Bacillus licheniformis YYC4, providing a basis for the application of thermophiles in fermentation industry in an environmentally friendly and energy-saving way. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Yizhi Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ekene C Umego
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science and Technology, University of Nigeria, Nsukka, Nigeria
| | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Poria V, Rana A, Kumari A, Grewal J, Pranaw K, Singh S. Current Perspectives on Chitinolytic Enzymes and Their Agro-Industrial Applications. BIOLOGY 2021; 10:1319. [PMID: 34943233 PMCID: PMC8698876 DOI: 10.3390/biology10121319] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022]
Abstract
Chitinases are a large and diversified category of enzymes that break down chitin, the world's second most prevalent polymer after cellulose. GH18 is the most studied family of chitinases, even though chitinolytic enzymes come from a variety of glycosyl hydrolase (GH) families. Most of the distinct GH families, as well as the unique structural and catalytic features of various chitinolytic enzymes, have been thoroughly explored to demonstrate their use in the development of tailor-made chitinases by protein engineering. Although chitin-degrading enzymes may be found in plants and other organisms, such as arthropods, mollusks, protozoans, and nematodes, microbial chitinases are a promising and sustainable option for industrial production. Despite this, the inducible nature, low titer, high production expenses, and susceptibility to severe environments are barriers to upscaling microbial chitinase production. The goal of this study is to address all of the elements that influence microbial fermentation for chitinase production, as well as the purifying procedures for attaining high-quality yield and purity.
Collapse
Affiliation(s)
- Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendargarh 123031, India; (V.P.); (A.K.)
| | - Anuj Rana
- Department of Microbiology (COBS & H), CCS Haryana Agricultural University, Hisar 125004, India;
| | - Arti Kumari
- Department of Microbiology, Central University of Haryana, Mahendargarh 123031, India; (V.P.); (A.K.)
| | - Jasneet Grewal
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland; (J.G.); (K.P.)
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland; (J.G.); (K.P.)
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendargarh 123031, India; (V.P.); (A.K.)
| |
Collapse
|
21
|
Numan M, Bukhari SA, Rehman MU, Mustafa G, Sadia B. Phylogenetic analyses, protein modeling and active site prediction of two pathogenesis related (PR2 and PR3) genes from bread wheat. PLoS One 2021; 16:e0257392. [PMID: 34506613 PMCID: PMC8432781 DOI: 10.1371/journal.pone.0257392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022] Open
Abstract
Wheat is a major staple food and has been extensively grown around the globe. Sessile nature of plants has exposed them to a lot of biotic and abiotic stresses including fungal pathogen attack. Puccinia graminis f.sp. tritici causes stem rust in the wheat crop and leads to 70% decrease in its production. Pathogenesis-related (PR) proteins provide plants with defense against different fungal pathogens as these proteins have antifungal activities. This study was designed to screen Pakistani wheat varieties for PR2 and PR3 proteins and their in silico characterization. PR2 and PR3 genes were screened and isolated by PCR amplification from wheat variety Chenab-70 and Frontana, respectively. The nucleotide sequences of PR2 and PR3 genes were deposited in GenBank with accession numbers MT303867 and MZ766118, respectively. Physicochemical properties, secondary and tertiary structure predictions, and molecular docking of protein sequences of PR2 and PR3 were performed using different bioinformatics tools and software. PR2 and PR3 genes were identified to encode β-1,3-glucanase and chitinase proteins, respectively. Molecular docking of both PR2 and PR3 proteins with beta-glucan and chitin (i.e. their respective ligands) showed crucial amino acid residues involved in molecular interactions. Conclusively, molecular docking analysis of β-1,3-glucanase and chitinase proteins revealed crucial amino acid residues which are involved in ligand binding and important interactions which might have important role in plant defense against fungal pathogens. Moreover, the active residues in the active sties of these proteins can be identified through mutational studies and resulting information might help understanding how these proteins are involved in plant defense mechanisms.
Collapse
Affiliation(s)
- Muhammad Numan
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Shazia Anwer Bukhari
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
- * E-mail:
| | - Mahmood-ur- Rehman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
22
|
Thakur N, Nath AK, Chauhan A, Gupta R. Purification, characterization, and antifungal activity of Bacillus cereus strain NK91 chitinase from rhizospheric soil samples of Himachal Pradesh, India. Biotechnol Appl Biochem 2021; 69:1830-1842. [PMID: 34486170 DOI: 10.1002/bab.2250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Newly isolated Bacillus cereus strain NK91 was characterized for extracellular chitinase production. Partially purified chitinase showed a molecular weight of 43.7 kDa in SDS-PAGE analysis. The optimum pH and temperature for the partially purified enzyme were 7.0 and 40°C, respectively. The addition of Mn2+ resulted in a 21% increase in enzyme activity as compared to the control. The Vmax and Km of the enzyme were determined as 76.9 μmol/min and 0.07 mg/mL, respectively. This enzyme exhibited stronger antifungal activity towards Fusarium oxysporum (66.7%), Rhizoctonia solani (64.6%), and Colletotrichum gloeosporioides (63%), and transmission electron microscopy and scanning transmission electron microscopy analysis showed considerable changes in cell wall structure with the treatment of purified chitinase as compared to control. Therefore, this enzyme reveals its biocontrol potential against potent phytopathogens in agriculture that can be helpful in swapping harmful as well as expensive fungicides.
Collapse
Affiliation(s)
- Nirja Thakur
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Amarjit K Nath
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Anjali Chauhan
- Department of Soil Science and Water Management, College of Forestry, Dr Y r University of Horticulture and Forestry, Nauni, Solan, 173 230, India
| | - Rakesh Gupta
- Directorate of Research, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, 173 230, India
| |
Collapse
|
23
|
Hassan AA, Ismail SA. Production of antifungal N-acetyl-β-glucosaminidase chitinolytic enzyme using shrimp byproducts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Xie XH, Fu X, Yan XY, Peng WF, Kang LX. A Broad-Specificity Chitinase from Penicillium oxalicum k10 Exhibits Antifungal Activity and Biodegradation Properties of Chitin. Mar Drugs 2021; 19:md19070356. [PMID: 34201595 PMCID: PMC8307900 DOI: 10.3390/md19070356] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Penicillium oxalicum k10 isolated from soil revealed the hydrolyzing ability of shrimp chitin and antifungal activity against Sclerotinia sclerotiorum. The k10 chitinase was produced from a powder chitin-containing medium and purified by ammonium sulfate precipitation and column chromatography. The purified chitinase showed maximal activity toward colloidal chitin at pH 5 and 40 °C. The enzymatic activity was enhanced by potassium and zinc, and it was inhibited by silver, iron, and copper. The chitinase could convert colloidal chitin to N-acetylglucosamine (GlcNAc), (GlcNAc)2, and (GlcNAc)3, showing that this enzyme had endocleavage and exocleavage activities. In addition, the chitinase prevented the mycelial growth of the phytopathogenic fungi S. sclerotiorum and Mucor circinelloides. These results indicate that k10 is a potential candidate for producing chitinase that could be useful for generating chitooligosaccharides from chitinous waste and functions as a fungicide.
Collapse
Affiliation(s)
| | | | | | | | - Li-Xin Kang
- Correspondence: ; Tel.: +86-27-88661237-8024
| |
Collapse
|
25
|
Lee ME, Shin SK, Oh JJ, Hwang DH, Ko YJ, Hyeon JE, Han SO. Enzymatic production of sugar from fungi and fungi-infected lignocellulosic biomass by a new cellulosomal enzyme harboring N-acetyl-β-d-glucosaminidase activity. BIORESOURCE TECHNOLOGY 2021; 319:124242. [PMID: 33254465 DOI: 10.1016/j.biortech.2020.124242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/12/2023]
Abstract
Cellulosomes are scaffold proteins displaying enzymes on the cell wall to efficiently obtain nutrient sources. CcGlcNAcase is a novel cellulosomal component. Based on sequence analysis, CcGlcNAcase was predicted to be a chitinolytic enzyme based on high homology with the discoidin domain-containing protein and chitobiase/ β-hexosaminidase C terminal domain. CcGlcNAcase expression was notably increased when chitin was present. CcGlcNAcase produced N-acetyl-d-glucosamine from various lengths of N-acetyl-d-glucosamine. CcGlcNAcase bound to chitin (89%) and fungi (54.10%), whereas CcGlcNAcase exhibited a low binding ability to cellulose and xylan. CcGlcNAcase hydrolyzed fungi, yielding maximum 3.90 g/L N-acetyl-d-glucosamine. CcGlcNAcase enhanced cellulase toward fungi-infected lignocellulosic biomass, yielding 18 mg/L glucose (1.32-fold) and 1.72-fold increased total reducing sugar levels, whereas cellulase alone produced 13 mg/L glucose. Taken together, CcGlcNAcase can be utilized to enhance the degradation of fungi-infected lignocellulosic biomass and exhibits potential applications in the wood and sugar industry.
Collapse
Affiliation(s)
- Myeong-Eun Lee
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang Kyu Shin
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Joo Oh
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 01133, Republic of Korea
| | - Dong-Hyeok Hwang
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea; Department of Food and Nutrition, College of Health & Wellness, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
26
|
Identification and Characterization of a Newly Isolated Chitinase-Producing Strain Bacillus licheniformis SSCL-10 for Chitin Degradation. ARCHAEA (VANCOUVER, B.C.) 2020; 2020:8844811. [PMID: 33223963 PMCID: PMC7669355 DOI: 10.1155/2020/8844811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022]
Abstract
Chitinases or chitinolytic enzymes have different applications in the field of medicine, agriculture, and industry. The present study is aimed at developing an effective hyperchitinase-producing mutant strain of novel Bacillus licheniformis. A simple and rapid methodology was used for screening potential chitinolytic microbiota by chemical mutagenesis with ethylmethane sulfonate and irradiation with UV. There were 16 mutant strains exhibiting chitinase activity. Out of the chitinase-producing strains, the strain with maximum chitinase activity was selected, the protein was partially purified by SDS-PAGE, and the strain was identified as Bacillus licheniformis (SSCL-10) with the highest specific activity of 3.4 U/mL. The induced mutation model has been successfully implemented in the mutant EMS-13 (20.2 U/mL) that produces 5-6-fold higher yield of chitinase, whereas the mutant UV-11 (13.3 U/mL) has 3-4-fold greater chitinase activity compared to the wild strain. The partially purified chitinase has a molecular weight of 66 kDa. The wild strain (SSCL-10) was identified as Bacillus licheniformis using 16S rRNA sequence analysis. This study explores the potential applications of hyperchitinase-producing bacteria in recycling and processing chitin wastes from crustaceans and shrimp, thereby adding value to the crustacean industry.
Collapse
|