1
|
Franchi-Mendes T, Silva M, Carreira MC, Cartaxo AL, Vale P, Karakaidos P, Klinakis A, Fernandes-Platzgummer A, da Silva CL. Xenogeneic-free platform for the isolation and scalable expansion of human bladder smooth muscle cells. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 46:e00878. [PMID: 40094098 PMCID: PMC11909460 DOI: 10.1016/j.btre.2025.e00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 03/19/2025]
Abstract
Introduction Smooth muscle cells (SMC) play a crucial role in bladder tissue engineering strategies. Scalable, Good Manufacturing Practice (GMP)-compliant platforms are essential for producing clinically relevant cell numbers. Materials & Methods A gamma-irradiated human platelet lysate (HPL) supplement was used to develop a xeno(geneic)-free process for the isolation and scalable expansion of human bladder-derived SMC. Results Cells were isolated using an explant-based technique and expanded ex vivo, expressing typical SMC markers (α-SMA, desmin, caldesmon and SM22-α). Cell culture was successfully scaled-up using spinner flasks combined with plastic microcarriers, starting with a 2.8 × 103 cells/cm2 inoculum (i.e. 1 × 106 cells). Cell-microcarrier adhesion rates exceeded 80% within 24 hours with fold expansion ranging from 3.5 to 16.8 after 7 days, dependent on donor variability. Harvested cells retained their SMC phenotype. Conclusions This xeno-free, GMP compliant process enables scalable manufacturing of human bladder-derived SMC while preserving cell identity, potentially advancing clinical applications in bladder engineering.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Marília Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Catarina Carreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Luísa Cartaxo
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Paulo Vale
- Urology Department, Hospital CUF Descobertas, Lisboa, Portugal
| | | | | | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Duarte Rojas JM, Restrepo Múnera LM, Estrada Mira S. Evaluation of Platelet Lysate-Based Medium and Protein Substrate for HUVEC Culture and Expansion. Biomedicines 2025; 13:1187. [PMID: 40427014 PMCID: PMC12109029 DOI: 10.3390/biomedicines13051187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 05/02/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Endothelial cell (EC) culture relies on specialized and commercial media with distinct growth supplement compositions. These media are expensive and must be imported, increasing the time to effective use. Human platelet lysate (PL) and platelet lysate serum (PLS) supplemented media are emerging alternatives to commercial media. Methods: Umbilical cords were collected, and human umbilical vein endothelial cells (HUVEC) were isolated and cultured using different media formulations, using Endothelial Cell Growth, Promocell® (ECGM-Promocell®) commercial medium, and media supplemented with PL and PLS. Results: A mixed medium combining DMEM-F12 + PLS and ECGM-Promocell® maintained EC viability, adhesion, and proliferation. Introducing a PL-derived protein substrate enhanced cell adhesion and proliferation by simulating an extracellular matrix. Flow cytometry revealed positive CD31, CD144, and CD146 markers in cells cultured with ECGM-Promocell® and the mixed medium, with or without the PL-protein substrate. Conclusions: These findings suggest that the mixed medium, especially with the PL protein substrate, offers a cost-effective and efficient approach for EC culture and proliferation, holding promise for research and therapeutic applications.
Collapse
Affiliation(s)
- Juan Manuel Duarte Rojas
- Tissue Engineering and Cellular Therapies Group–GITTC, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia; (L.M.R.M.); (S.E.M.)
- Basic Biomedical Sciences Academic Corporation, University of Antioquia, Medellín 050010, Colombia
| | - Luz Marina Restrepo Múnera
- Tissue Engineering and Cellular Therapies Group–GITTC, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia; (L.M.R.M.); (S.E.M.)
| | - Sergio Estrada Mira
- Tissue Engineering and Cellular Therapies Group–GITTC, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia; (L.M.R.M.); (S.E.M.)
- Cellular Therapy and Biobank Laboratory, Hospital Alma Mater de Antioquia, University of Antioquia, Medellín 050010, Colombia
| |
Collapse
|
3
|
Eisenberg H, Hütker S, Berger F, Lang I. Native proteins from Galdieria sulphuraria to replace fetal bovine serum in mammalian cell culture. Appl Microbiol Biotechnol 2025; 109:119. [PMID: 40347282 PMCID: PMC12065734 DOI: 10.1007/s00253-025-13507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
The use of fetal bovine serum (FBS) in cell culture applications causes high costs and unacceptable animal suffering when FBS is extracted from fetal calves. Despite efforts, the exact composition of FBS still remains partially unresolved. Native proteins in FBS, such as growth factors, and their binding to cell receptors seem to be crucial for cell proliferation and differentiation. Recently, algal extracts with high protein content were considered to reduce the FBS demand. Algae extracts yielded promising results as growth serum in mammalian cell culture. Nevertheless, the dependence on residual FBS and the undefined composition of algae extracts are challenges. In this study, we aimed to yield highly concentrated extracts of native proteins from mixotrophically grown Galdieria sulphuraria to replace FBS in mammalian cell culture. Crude extracts and native proteins were concentrated by ammonium sulfate precipitation, and all extracts underwent heat inactivation (HI) for selective protein inactivation. The remaining proteins' native conformation was verified by enzyme activity assays. All extracts were used to replace FBS during the cultivation of Chinese hamster ovary (CHO) cells, and proliferation was tested. We found that G. sulphuraria crude and protein extracts depended on HI to promote CHO cell growth to a similar extent as FBS. CHO cells grown with 5% or 10% heat-treated algal extracts had a relative proliferation of 260 to 230% compared to FBS controls with 210% and 300%, respectively. We anticipate our findings will help replace FBS in mammalian cell culture, increasing sustainability and consumer acceptance. KEY POINTS: Reproducible production of FBS substitutes from microalgae is a key to sustainable mammalian cell culture. Heat-treated native protein extracts of G. sulphuraria lead the way to new media additives. Identification of effective molecules is mandatory for the composition of a new culture medium.
Collapse
Affiliation(s)
- Hanna Eisenberg
- Institute EcoMaterials, Bremerhaven University of Applied Sciences, An Der Karlstadt 8, 27568, Bremerhaven, Germany
| | - Svenja Hütker
- Institute EcoMaterials, Bremerhaven University of Applied Sciences, An Der Karlstadt 8, 27568, Bremerhaven, Germany
| | - Felicitas Berger
- Institute EcoMaterials, Bremerhaven University of Applied Sciences, An Der Karlstadt 8, 27568, Bremerhaven, Germany
| | - Imke Lang
- Institute EcoMaterials, Bremerhaven University of Applied Sciences, An Der Karlstadt 8, 27568, Bremerhaven, Germany.
| |
Collapse
|
4
|
Hussein KH, Soliman M, Sabra MS, Abdelhamid HN, Abd-Elkareem M, Sadek AA. Regenerative potential of graphene oxide-chitosan nanocomposite combined with fetal bovine serum on healing of full-thickness skin wound in rats. BMC Vet Res 2025; 21:324. [PMID: 40336048 PMCID: PMC12057232 DOI: 10.1186/s12917-025-04721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/28/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Delayed wound closure and non-healing wounds represent a problematic condition with health burden and an economic challenge. Therefore, different strategies have been developed, including skin tissue engineering, which aims to stimulate and support the wound healing process. In this study, the potential of graphene oxide (GO) and chitosan (CTS) biomaterial composite, with and without fetal bovine serum (FBS), was investigated to induce a full-thickness skin wound repair in rats. METHODS The GO-CTS composite was characterized using X-ray diffraction, transmission electron microscopy, and Fourier transforms infrared. Cytocompatibility was evaluated via an MTT assay with human endothelial cells (ECs) and mouse embryonic fibroblasts (MEFs) in vitro. The in vivo wound regeneration potential was assessed by creating an 8 mm full-thickness circular skin defect on the dorsal surface of the rat. The defects were randomly divided into control, GO-CTS, FBS, and GO-CTS/FBS groups, and were monitored grossly and histologically at days 7 and 21 after wound induction. RESULTS The GO-CTS material demonstrated high cytocompatibility, with cell viability recorded at 99.2% ± 5.7% for ECs and 110.5% ± 3.9% for MEFs. The highest proliferation rates were observed in the FBS (118.2% ± 2.1%) and GO-CTS/FBS (121.4% ± 4.4%) groups. In vivo, wound closure rates on day 21 were 85.5% ± 0.56% for GO-CTS, 87.5% ± 1.75% for FBS, and 91.5% ± 1.03% for GO-CTS/FBS, all significantly higher than the control group. Additionally, neovascularization, epithelialization, collagen deposition, and granulation tissue formation were more prominent in the treated groups, with skin appendages observed in the GO-CTS/FBS group. CONCLUSION GO-CTS nanosheets with FBS represent a promising biomaterial for skin tissue engineering and can effectively initiate and support wound healing.
Collapse
Affiliation(s)
- Kamal H Hussein
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt.
- Tissue Culture and Stem Cells Unit, Molecular Biology Researches & Studies Institute, Assiut University, Assiut, 71526, Egypt.
| | - Mahmoud Soliman
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Mahmoud S Sabra
- Department of Pharmacology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Hani Nasser Abdelhamid
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Mahmoud Abd-Elkareem
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ahmed Abdelrahiem Sadek
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
5
|
Röscheise J, Klimpel M, Govindarajan P, Otte K, Laux H. Unveiling molecular secrets: Analysis of stable lentiviral packaging cell lines enables identification of novel viral gene functions. Gene Ther 2025; 32:266-276. [PMID: 40234566 DOI: 10.1038/s41434-025-00533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/19/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Lentiviral vectors (LVVs) are widely used in gene therapy due to their ability to infect both dividing and non-dividing cells. For LVV production, the creation of stable packaging cell lines with integrated genes necessary for viral replication offer a more consistent and scalable alternative to transient plasmid transfection approach. Although the development of such stable LVV packaging cell lines has been reported, the molecular changes induced by stable and inducible viral gene expression and the impact of genome integrated viral genes on cellular pathways remain poorly characterized. For better insight, we investigated the molecular characteristics of a stable LVV packaging cell line and its host cell line (HEK293T/17) by comparing differential expressed genes. This pathway analysis revealed significant changes in pathway usage between packaging and host cell lines, influenced by different viral transgenes. Gag-pol expression was found to suppress host translational machinery, while rev and VSV-G expression modulated mitochondrial pathways, including oxidative phosphorylation. HIV-1 tat expression, on the other hand, activated histone-related genes. These regulatory shifts suggest a strategic reprogramming of host cellular states to favor viral replication, curbing protein synthesis and energy production to levels that support viral assembly but impair the host's immune defense and the production of immune-related proteins. Our findings provide a deeper understanding of the molecular changes associated with stable viral gene expression, which can inform the optimization of LVV production in gene therapy applications.
Collapse
Affiliation(s)
- Jona Röscheise
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany.
| | - Maximilian Klimpel
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | | | - Kerstin Otte
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany
| | - Holger Laux
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| |
Collapse
|
6
|
Lee HS, Yoon HJ, Lee SO. Fetal bovine serum substitution efficacy of mealworm (Tenebrio molitor) protein hydrolysates and its physicochemical properties. Food Res Int 2025; 208:116204. [PMID: 40263843 DOI: 10.1016/j.foodres.2025.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Fetal bovine serum (FBS) is widely used in cell culture media but raises ethical, cost, and environmental concerns. This study hypothesized that mealworm protein hydrolysates (TAH), rich in essential amino acids and known for their protective effects against oxidative stress, could serve as an FBS substitute. Short- and long-term cultivation experiments replacing 70 % of FBS with TAH in various adherent (HaCaT, C2C12, L6, H460, Panc-1) and suspension (HL-60, Jurkat) cell lines revealed no significant differences in cell growth or morphology compared to controls. Transcriptomic analysis in HaCaT cells further confirmed a high level of equivalence between TAH and FBS. Additionally, TAH demonstrated excellent thermal stability and favorable physicochemical properties, including high zeta potential and small particle size within the typical pH range for cell culture media. These results suggest TAH's broad applicability as an FBS substitute, addressing ethical, environmental, safety, and cost concerns.
Collapse
Affiliation(s)
- Hyo-Seon Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Hyeon-Ji Yoon
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
7
|
Meli M, Swiderski K, Gu J, Rollo B, Bartlett B, Caldow MK, Lynch GS, Kwan P, Sumer H, Cromer B. Ngn2-Induced Differentiation of the NG108-15 Cell Line Enhances Motor Neuronal Differentiation and Neuromuscular Junction Formation. Biomolecules 2025; 15:637. [PMID: 40427530 PMCID: PMC12108711 DOI: 10.3390/biom15050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
The neuronal progenitor NG108-15 neuroblastoma x glioma cell line proliferates indefinitely in vitro and is capable of directed differentiation into cholinergic neurons. The cell line is a robust model for investigating neuronal differentiation and function in vitro. The lineage-specific transcription factor-mediated differentiation of pluripotent stem cell lines (PSCs) leads to more rapid, efficient, and functional neurons. In this study, we tested the hypothesis that transcription factors could also drive the fate of an immortalised cell line. We first established a stable NG108-15 cell line, by piggyBac (pBac) transposition, that conditionally expresses neurogenin-2 (Ngn2), a common transcription factor for specifying neuronal fate. Following doxycycline-induction of Ngn2, we observed more rapid and efficient differentiation, and improved neurite outgrowth and viability compared with the WT cell line. Moreover, when co-cultured with C2C12 mouse myotubes, the modified NG108-15 cells resulted in significantly larger acetylcholine receptor (AChR) aggregates, suggesting enhanced neuromuscular junction (NMJ) formation. These findings describe a novel methodology for differentiating NG108-15 cells more efficiently, to enhance the usefulness of the cell line as a motor neuron model.
Collapse
Affiliation(s)
- Madeline Meli
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (M.M.)
| | - Kristy Swiderski
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3122, Australia; (K.S.); (M.K.C.); (G.S.L.)
| | - Jinchao Gu
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, VIC 3122, Australia (B.R.); (P.K.)
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, VIC 3122, Australia (B.R.); (P.K.)
| | - Ben Bartlett
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (M.M.)
| | - Marissa K. Caldow
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3122, Australia; (K.S.); (M.K.C.); (G.S.L.)
| | - Gordon S. Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3122, Australia; (K.S.); (M.K.C.); (G.S.L.)
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, VIC 3122, Australia (B.R.); (P.K.)
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (M.M.)
| | - Brett Cromer
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (M.M.)
| |
Collapse
|
8
|
Lee EJ, Shaikh S, Ahmad SS, Lim JH, Baral A, Hur SJ, Sohn JH, Choi I. The Role of Insulin in the Proliferation and Differentiation of Bovine Muscle Satellite (Stem) Cells for Cultured Meat Production. Int J Mol Sci 2025; 26:4109. [PMID: 40362349 PMCID: PMC12071896 DOI: 10.3390/ijms26094109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Muscle satellite (stem) cells (MSCs) reside in skeletal muscle and are essential for myogenesis. Thus, MSCs are widely used in cultured meat research. This study aimed to identify substances that promote MSC proliferation and differentiation while maintaining their intrinsic properties, with the long-term goal of replacing fetal bovine serum (FBS) for bovine MSC cultivation. Therefore, this study evaluated the effects of six growth factors (TGF-β, HGF, PDGF, insulin, IGF-1, and EGF) and the cytokine IL-2 on bovine MSCs. Each factor was applied during the proliferation and differentiation of MSCs, and the proliferation rate, differentiation rate, and expression of relevant mRNA and proteins were analyzed. Insulin most effectively promoted MSC proliferation and differentiation. Specifically, insulin increased cell proliferation rates, proliferation markers Ki67 and PCNA expressions, and markers of differentiation, such as myotube formation and creatine kinase activity, alongside the expressions of MYOD, MYOG, and MYH. Furthermore, insulin suppressed low FBS-induced reductions in proliferation and differentiation markers. This study suggests insulin can promote MSC proliferation and differentiation and reduce FBS usage. Thus, this study provides a potential means of cultivating MSCs on a large scale for cultured meat production.
Collapse
Affiliation(s)
- Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (E.J.L.); (S.S.); (S.S.A.); (J.H.L.); (A.B.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (E.J.L.); (S.S.); (S.S.A.); (J.H.L.); (A.B.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (E.J.L.); (S.S.); (S.S.A.); (J.H.L.); (A.B.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (E.J.L.); (S.S.); (S.S.A.); (J.H.L.); (A.B.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ananda Baral
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (E.J.L.); (S.S.); (S.S.A.); (J.H.L.); (A.B.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Jung Hoon Sohn
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (E.J.L.); (S.S.); (S.S.A.); (J.H.L.); (A.B.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
9
|
He X, Wang Q, Cheng X, Wang W, Li Y, Nan Y, Wu J, Xiu B, Jiang T, Bergholz JS, Gu H, Chen F, Fan G, Sun L, Xie S, Zou J, Lin S, Wei Y, Lee J, Asara JM, Zhang K, Cantley LC, Zhao JJ. Lysine vitcylation is a vitamin C-derived protein modification that enhances STAT1-mediated immune response. Cell 2025; 188:1858-1877.e21. [PMID: 40023152 DOI: 10.1016/j.cell.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/04/2025] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Vitamin C (vitC) is essential for health and shows promise in treating diseases like cancer, yet its mechanisms remain elusive. Here, we report that vitC directly modifies lysine residues to form "vitcyl-lysine"-a process termed vitcylation. Vitcylation occurs in a dose-, pH-, and sequence-dependent manner in both cell-free systems and living cells. Mechanistically, vitC vitcylates signal transducer and activator of transcription-1 (STAT1)- lysine-298 (K298), impairing its interaction with T cell protein-tyrosine phosphatase (TCPTP) and preventing STAT1-Y701 dephosphorylation. This leads to enhanced STAT1-mediated interferon (IFN) signaling in tumor cells, increased major histocompatibility complex (MHC)/human leukocyte antigen (HLA) class I expression, and activation of anti-tumor immunity in vitro and in vivo. The discovery of vitcylation as a distinctive post-translational modification provides significant insights into vitC's cellular function and therapeutic potential, opening avenues for understanding its biological effects and applications in disease treatment.
Collapse
Affiliation(s)
- Xiadi He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Lifecycle Health Management Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiwei Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Xin Cheng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Weihua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yutong Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yabing Nan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Wu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bingqiu Xiu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tao Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Johann S Bergholz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Hao Gu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fuhui Chen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Guangjian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lianhui Sun
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
| | - Shaozhen Xie
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Junjie Zou
- XtalPi Technology Co., Ltd., Shanghai 200131, China
| | - Sheng Lin
- XtalPi Technology Co., Ltd., Shanghai 200131, China
| | - Yun Wei
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - James Lee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John M Asara
- Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lewis C Cantley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Malakpour-Permlid A, Rodriguez MM, Zór K, Boisen A, Oredsson S. Advancing humanized 3D tumor modeling using an open access xeno-free medium. FRONTIERS IN TOXICOLOGY 2025; 7:1529360. [PMID: 40206700 PMCID: PMC11979229 DOI: 10.3389/ftox.2025.1529360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Despite limitations like poor mimicry of the human cell microenvironment, contamination risks, and batch-to-batch variation, cell culture media with animal-derived components such as fetal bovine serum (FBS) have been used in vitro for decades. Moreover, a few reports have used animal-product-free media in advanced high throughput three-dimensional (3D) models that closely mimic in vivo conditions. To address these challenges, we combined a high throughput 3D model with an open access, FBS-free chemically-defined medium, Oredsson Universal Replacement (OUR) medium, to create a more realistic 3D in vitro drug screening system. To reach this goal, we report the gradual adaptation procedure of three cell lines: human HeLa cervical cancer cells, human MCF-7 breast cancer cells, and cancer-associated fibroblasts (CAFs) from FBS-supplemented medium to OUR medium, while closely monitoring cell attachment, proliferation, and morphology. Our data based on cell morphology studies with phase contrast and real-time live imaging demonstrates a successful adaptation of cells to proliferate in OUR medium showing sustained growth kinetics and maintaining population doubling time. The morphological analysis demonstrates that HeLa and MCF-7 cells displayed altered cell morphology, with a more spread-out cytoplasm and significantly lower circularity index, while CAFs remained unaffected when grown in OUR medium. 3D fiber scaffolds facilitated efficient cell distribution and ingrowth when grown in OUR medium, where cells expand and infiltrate into the depths of 3D scaffolds. Drug toxicity evaluation of the widely used anti-cancer drug paclitaxel (PTX) revealed that cells grown in 3D cultures with OUR medium showed significantly lower sensitivity to PTX, which was consistent with the FBS-supplemented medium. We believe this study opens the way and encourages the scientific community to use animal product-free cell culture medium formulations for research and toxicity testing.
Collapse
Affiliation(s)
- Atena Malakpour-Permlid
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Manuel Marcos Rodriguez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kinga Zór
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- BioInnovation Institute Foundation, Copenhagen, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
11
|
Pacini S. Mesangiogenic progenitor cells: a mesengenic and vasculogenic branch of hemopoiesis? A story of neglected plasticity. Front Cell Dev Biol 2025; 13:1513440. [PMID: 40196849 PMCID: PMC11973335 DOI: 10.3389/fcell.2025.1513440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
Mesangiogenic progenitor cells (MPCs) are mesengenic and vasculogenic cells isolated from human bone marrow mononuclear cell cultures. Although MPCs were first described over two decades ago and have demonstrated promising differentiation capabilities, these cells did not attract sufficient attention from experts in the field of tissue regeneration. Several reports from the first decade of the 2000s showed MPC-like cells co-isolated in primary mesenchymal stromal cell (MSC) cultures, applying human serum. However, in most cases, these rounded and firmly attached cells were described as "contaminating" cells of hemopoietic origin. Indeed, MPC morphology, phenotype, and functional features evoke but do not completely overlap with those of cultured peripheral macrophages, and their hemopoietic origin should not be excluded. The plasticity of cells from the monocyte lineage is surprising but not completely unprecedented. Underestimated data demonstrated that circulating monocyte/macrophages could acquire broader plasticity under specific and different culture conditions, and this plasticity could be a consequence of in vitro de-differentiation. The evidence discussed here suggests that MPCs could represent the cell identity toward which the de-differentiation process reprograms the circulating mature phagocytic compartment.
Collapse
Affiliation(s)
- Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Wang Y, Leung E, Tomek P. N-formylkynurenine but not kynurenine enters a nucleophile-scavenging branch of the immune-regulatory kynurenine pathway. Bioorg Chem 2025; 156:108219. [PMID: 39891998 DOI: 10.1016/j.bioorg.2025.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
Tryptophan catabolism along the kynurenine pathway (KP) mediates key physiological functions ranging from immune tolerance to lens UV protection, but the contributory roles and chemical fates of individual KP metabolites are incompletely understood. This particularly concerns the first KP metabolite, N-formylkynurenine (NFK), canonically viewed as a transient precursor to the downstream kynurenine (KYN). Here, we challenge that canon and show that hydrolytic enzymes act as a rheostat switching NFK's fate between the canonical KP and a novel non-enzymatic branch of tryptophan catabolism. In the physiological environment (37 °C, pH 7.4), NFK deaminated into electrophilic NFK-carboxyketoalkene (NFK-CKA), which rapidly (<2 min) formed adducts with nucleophiles such as cysteine and glutathione, the key intracellular antioxidants. Serum hydrolases suppressed NFK deamination as they hydrolysed NFK to KYN ∼3 times faster than NFK deaminates. Whilst KYN did not deaminate, its deaminated product (KYN-CKA) rapidly reacted with cysteine but not glutathione. The new NFK transformations of a yet to be discovered function highlight NFK's significance beyond hydrolysis to KYN and suggests the dominance of its chemical transformations over those of KYN. Enzyme compartmentalisation and abundance offer insights into the regulation of non-enzymatic KP metabolite transformations such as KYN involved in immune regulation, protein modification, lens aging or neuropathology.
Collapse
Affiliation(s)
- Yongxin Wang
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand.
| |
Collapse
|
13
|
Muzzio N, Garcia S, Flores L, Newman G, Gomez A, Santi A, Usen Nazreen MS, Martinez-Cartagena EM, Yirgaalem D, Sankarasubramanian S, Romero G. Biocompatible EDOT-Pyrrole Conjugated Conductive Polymer Coating for Augmenting Cell Attachment, Activity, and Differentiation. ACS APPLIED BIO MATERIALS 2025; 8:1330-1342. [PMID: 39849945 DOI: 10.1021/acsabm.4c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation. The synthesized copolymer was characterized by Raman spectroscopy and dynamic light scattering. Its electrochemical properties were studied using galvanostatic charge-discharge (GCD) and voltammetry. PPy-PEDOT:PSS-coated hydrogels were characterized by Raman spectroscopy and atomic force microscopy, and protein adsorption was assessed using a quartz crystal microbalance with dissipation monitoring. Attachment and differentiation of the ND7/23 neuron hybrid cell line and C2C12 myoblasts were evaluated by cell cytoskeleton staining and quantification of morphological parameters. Viability was assessed by live/dead staining using flow cytometry. Cortex neural activity was studied by calcium ion influx that could be detected through the dynamic fluorescence changes of Fluo-4. The PPy-PEDOT:PSS coating supported cell attachment and differentiation and was nontoxic to cells. Primary neurons attached and remained responsive to electrical stimulation. Altogether, the biocompatible copolymer PPy-PEDOT:PSS is a simple yet effective alternative for hydrogel coating and presents great potential as an interface for nervous and other electrically excitable tissues.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, United States
| | - Samantha Garcia
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Luis Flores
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gary Newman
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Amanda Gomez
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Athena Santi
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Mohamed Shahid Usen Nazreen
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | | | - Delina Yirgaalem
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Shrihari Sankarasubramanian
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
14
|
Sgobba MN, Musio B, Pastrana CI, Todisco S, Schlosserovà N, Mastropirro F, Favia M, Radesco A, Duarte IF, De Grassi A, Volpicella M, Gallo V, Pierri CL, Ciani E, Guerra L. Serum Starvation Enhances the Antitumor Activity of Natural Matrices: Insights into Bioactive Molecules from Dromedary Urine Extracts. Molecules 2025; 30:821. [PMID: 40005133 PMCID: PMC11858132 DOI: 10.3390/molecules30040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Natural matrices have historically been a cornerstone in drug discovery, offering a rich source of structurally diverse and biologically active compounds. However, research on natural products often faces significant challenges due to the complexity of natural matrices, such as urine, and the limitations of bioactivity assessment assays. To ensure reliable insights, it is crucial to optimize experimental conditions to reveal the bioactive potential of samples, thereby improving the validity of statistical analyses. Approaches in metabolomics further strengthen this process by identifying and focusing on the most promising compounds within natural matrices, enhancing the precision of bioactive metabolite prioritization. In this study, we assessed the bioactivity of 17 dromedary urine samples on human renal cells under serum-reduced conditions (1%FBS) in order to minimize possible FBS-derived interfering factors. Using viability assays and Annexin V/PI staining, we found that the tumor renal cell lines Caki-1 and RCC-Shaw were more sensitive to the cytotoxic effects of the small molecules present in dromedary urine compared to non-tumor HK-2 cells. Employing NMR metabolomics analysis combined with detected in vitro activity, our statistical model highlights the presence of bioactive compounds in dromedary urine, such as azelaic acid and phenylacetyl glycine, underscoring its potential as a sustainable source of bioactive molecules within the framework of green chemistry and circular economy initiatives.
Collapse
Affiliation(s)
- Maria Noemi Sgobba
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| | - Biagia Musio
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy; (B.M.); (S.T.); (V.G.)
| | - Carlos Iglesias Pastrana
- Faculty of Veterinary Sciences, Department of Genetics, University of Córdoba, 14071 Córdoba, Spain;
| | - Stefano Todisco
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy; (B.M.); (S.T.); (V.G.)
| | - Nikola Schlosserovà
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| | - Federica Mastropirro
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| | - Maria Favia
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari “Aldo Moro”, Piazza Giulio Cesare, 70124 Bari, Italy;
| | - Antonio Radesco
- Istituto Tumori “Giovanni Paolo II” I.R.C.C.S., Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Iola F. Duarte
- Department of Chemistry, CICECO—Aveiro Institute of Materials and LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| | - Vito Gallo
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy; (B.M.); (S.T.); (V.G.)
- Innovative Solutions S.r.l.—Spin-Off Company of the Polytechnic University of Bari, Zona H 150/B, 70015 Noci, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| |
Collapse
|
15
|
Gebhart M, Alilou M, Gust R, Salcher S. Circumventing Imatinib resistance in CML: Novel Telmisartan-based cell death modulators with improved activity and stability. Eur J Med Chem 2025; 283:117106. [PMID: 39637828 DOI: 10.1016/j.ejmech.2024.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Drug resistance presents a significant challenge in cancer therapy, which has led to intensive research in resistance mechanisms and new therapeutic strategies. In chronic myeloid leukemia (CML), the introduction of Imatinib, the first tyrosine kinase inhibitor (TKI), drastically changed the outcome for patients. However, complete remission still cannot be achieved in a large number of patients in the long term. Therefore, there is a great interest in the design of new drugs to target TKI-resistant cancer cells. A promising approach to enhance the efficacy of Imatinib is the simultaneous application of cell death modulators derived from the Angiotensin II type 1 receptor blocker Telmisartan. The methyl ester (3a) of 4'-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-[1,1'-biphenyl]-2-carboxylic acid (LEAD-acid (4)), which is the structural core of Telmisartan, has already been shown to abolish the resistance of Imatinib in TKI-insensitive CML cells at a concentration of 5 μM. As the ester was expected to be unstable in a biological environment, this study attempted to increase the stability through structural modifications. The methyl group was exchanged for longer (3b (ethyl), 3c (propyl), 3d (butyl) and branched (3e (isopropyl), 3f (tert-butyl)) alkyl chains as well as a phenyl (3g) and 4-phenoxyphenyl (3h) group. Furthermore, the esters were bioisosterically replaced with a respective substituted carboxamide (5a-h). The LEAD-amides (5a-h) showed high stability against esterases, while amidases cleaved only the carboxamides with short alkyl chains to a small extent. Esterases hydrolyzed the LEAD-alkylesters (3a-d) dependent on the chain length with τ½ = 55-82 min. Esters with branched alkyl chains were stable and introduction of the aromatic rings mentoined above increased the half-life to τ½ = 280 min and 360 min. In cell culture medium, only 3a-d degraded to 67-78 % after 72 h. However, the uptake studies showed that approximatly 80 % of the esters accumulated in the cell within the first 1-3 h of incubation. Therefore, it can be concluded that the intact LEAD-esters and LEAD-amides caused the biological effects. The compounds were non-cytotoxic and efficiently sensitized KD225 (K562-resistant) CML cells to Imatinib at a half-maximal sensitizing concentration (SC50) of 1.5-2.9 μM (ester derivatives) and 1.3-11.2 μM (amide derivatives).
Collapse
MESH Headings
- Telmisartan/pharmacology
- Telmisartan/chemistry
- Telmisartan/chemical synthesis
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Drug Resistance, Neoplasm/drug effects
- Imatinib Mesylate/pharmacology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Structure-Activity Relationship
- Molecular Structure
- Benzimidazoles/pharmacology
- Benzimidazoles/chemistry
- Benzimidazoles/chemical synthesis
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/chemical synthesis
- Cell Death/drug effects
- Benzoates/pharmacology
- Benzoates/chemistry
- Benzoates/chemical synthesis
- Drug Screening Assays, Antitumor
- Dose-Response Relationship, Drug
- Cell Proliferation/drug effects
- Cell Line, Tumor
Collapse
Affiliation(s)
- Maximilian Gebhart
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, CCB-Centrum for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Mostafa Alilou
- Department of Pharmacognosy, Institute of Pharmacy, University of Innsbruck, CCB-Centrum for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, CCB-Centrum for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Stefan Salcher
- Department of Internal Medicine V, Hematology and Oncology, Tyrolean Cancer Research Institute (TKFI), Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| |
Collapse
|
16
|
Golshan M, Dortaj H, Rajabi M, Omidi Z, Golshan M, Pourentezari M, Rajabi A. Animal origins free products in cell culture media: a new frontier. Cytotechnology 2025; 77:12. [PMID: 39654546 PMCID: PMC11625046 DOI: 10.1007/s10616-024-00666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/02/2024] [Indexed: 12/12/2024] Open
Abstract
Despite the importance of finding replacements for fetal bovine serum (FBS), very few studies have focused on this subject. Historically, the use of animals and their derivatives in growth, reproduction, and physiological studies has raised several concerns. The supplementation of culture media with FBS, also known as fetal calf serum, continues to be widespread, despite its limitations in quality, reproducibility, and implications for animal welfare. Moreover, the presence of counterfeit and illegal products can adversely affect cell cultures and treatments, prompting the search for alternative solutions. To reduce reliance on FBS, various substitutes have been introduced, such as plant-derived proteins, bovine eye fluid, sericin protein, human platelet lysate, and inactivated coelomic fluid, which can provide roles similar to that of FBS. Therefore, it is essential to develop serum-free and animal supplement-free environments suitable for therapeutic and clinical applications, tailored to the specific needs of different cell types. Among the alternatives, plant-based options have gained attention as sustainable and ethical solutions. These include plant-derived peptones from sources like soy and wheat, which are rich in amino acids and peptides essential for mammalian cell growth, as well as plant protein hydrolysates from beans and peas that serve as sources of amino acids and growth factors. Plant extracts, especially from soy and various seeds, contain necessary proteins and growth factors, while phytohormones such as cytokinins and plant polysaccharides can help regulate cell growth. While these alternatives offer benefits like reduced costs and lower risks of disease transmission, further research is necessary to refine and align them with the specific requirements of diverse cell types. Graphical abstract
Collapse
Affiliation(s)
- Mahsa Golshan
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| | - Hengameh Dortaj
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rajabi
- Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Omidi
- Department of Cardiovascular Disease, Alzahra Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Golshan
- Shiraz Transplant Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Majid Pourentezari
- Department of Anatomical Sciences, School of Medicine Shahid, Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Rajabi
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| |
Collapse
|
17
|
Subbiahanadar Chelladurai K, Selvan Christyraj JD, Rajagopalan K, Selvan Christyraj JRS. Advancing ex vivo functional whole-organ prostate gland model for regeneration and drug screening. Sci Rep 2025; 15:3758. [PMID: 39885212 PMCID: PMC11782681 DOI: 10.1038/s41598-025-87039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
Model organisms are vital for biomedical research and drug testing but face high costs, complexity, and ethical issues. While newer techniques like organoids and assembloids have shown improvements, they still remain inadequate in addressing all research needs. In this study, we present a new method for maintaining the prostate gland of the earthworm, Eudrilus eugeniae ex vivo and examine its potential for regeneration and drug screening. We successfully maintained the earthworm prostate gland in cell culture media for over 200 days, with observed beating behavior confirming its viability. Apoptotic staining and histological analysis show no significant changes, indicating that the prostate gland remains stable. However, significant overexpression of H3 and H2AX on the 10th and 50th days suggests stem cell proliferation and differentiation. Alkaline phosphatase expression analysis confirmed that the stem cell niche is localized to the anterior region. Remarkably, the posterior region of the prostate gland demonstrated significant regenerative capacity, with complete regeneration occurring within 45 days following amputation. Furthermore, treatment with valproic acid enhanced posterior regeneration, leading to full restoration within 12 days. This study confirms the feasibility of maintaining the prostate gland of earthworms in an ex vivo setting, providing a valuable model for studying regeneration and conducting drug screening.
Collapse
Affiliation(s)
- Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India.
| | - Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| |
Collapse
|
18
|
Wendland K, Koblin L, Stobbe D, Dahms A, Singer D, Bekeschus S, Wesche J, Schoon J, Aurich K. Lyophilized human platelet lysate: manufacturing, quality control, and application. Front Cell Dev Biol 2025; 13:1513444. [PMID: 39931242 PMCID: PMC11807961 DOI: 10.3389/fcell.2025.1513444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Background A significant number of platelet concentrates (PCs) is discarded daily in blood banks due to limited shelf life. Human platelet lysate (HPL), derived from expired PCs, has gained attention as an ethical and sustainable cell culture media supplement in biomedical research and cell therapy production. However, HPL is subject to decisive disadvantages such as batch differences and lack of storage stability. To overcome these limitations and to enhance the applicability of HPL, we developed an HPL manufacturing protocol including a lyophilization process. The aim of this study was to investigate the influence of HPL lyophilization on parameters of quality control, including growth factor concentrations and the culture of human mesenchymal stromal cells (hMSCs). Methods We performed a paired comparison of six batches of HPL and lyophilized HPL (L-HPL) regarding the quality parameters pH, total protein, osmolality, sodium, potassium and chloride concentration. Concentrations of 11 growth factors and cytokines were compared between HPL and L-HPL. Additionally, we determined cell yield, proliferation capacity, viability and trilineage differentiation potential of hMSCs following expansion in HPL- and L-HPL-supplemented cell culture media. Results Quantification of the quality parameters revealed non-altered pH, osmolality and potassium concentrations and slightly lower total protein, sodium and chloride concentrations of L-HPL compared to HPL. Growth factor and cytokine concentrations did not differ between HPL and L-HPL. Cell yield, division cycles and viability of hMSCs cultured in either HPL- or L-HPL-containing media were comparable. Cells differentiated in medium containing L-HPL showed a slightly higher capacity for osteogenic differentiation, while adipogenic differentiation and chondrogenic differentiation potentials remained unchanged. Conclusion We successfully developed a method to produce well-applicable L-HPL. The comparison of L-HPL with HPL did not reveal any relevant differences regarding quality control parameters of routine testing, growth factor concentrations and hMSC functionality, demonstrating the suitability of L-HPL as a cell culture supplement. These results emphasize the potential of L-HPL as a sustainable and ethical alternative to animal-derived serum products in biomedical research and drug development.
Collapse
Affiliation(s)
- Kerstin Wendland
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lea Koblin
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Dirk Stobbe
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anna Dahms
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Debora Singer
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| | - Jan Wesche
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Konstanze Aurich
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
19
|
Ghebosu RE, Hui L, Wolfram J. Increasing the biomolecular relevance of cell culture practice. J Biomed Sci 2025; 32:3. [PMID: 39748368 PMCID: PMC11697962 DOI: 10.1186/s12929-024-01095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/09/2024] [Indexed: 01/04/2025] Open
Abstract
The biomolecular relevance of medium supplements is a key challenge affecting cell culture practice. The biomolecular composition of commonly used supplements differs from that of a physiological environment, affecting the validity of conclusions drawn from in vitro studies. This article discusses the advantages and disadvantages of common supplements, including context-dependent considerations for supplement selection to improve biomolecular relevance, especially in nanomedicine and extracellular vesicle research.
Collapse
Affiliation(s)
- Raluca E Ghebosu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Lawrence Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia.
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
20
|
Kennedy E, Hewson R, Dowall S. Recombinant Vaccine Production: Production of a Recombinant CCHF MVA Vaccine. Methods Mol Biol 2025; 2893:257-272. [PMID: 39671043 DOI: 10.1007/978-1-0716-4338-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
One of the key interventions against infection is immunization, including an increasing focus on development of vaccines against pathogenic bunyaviruses. Whilst different vaccine development approaches exist, recombinant viral vaccines have a strong safety record, are rapid to produce, are cost-effective, and have been demonstrated to be rolled out in response to outbreaks, including in low- and middle-income countries. One viral vector, modified Vaccinia Ankara (MVA), has been used to develop vaccine candidates against Crimean-Congo Haemorrhagic Fever (CCHF) virus through incorporation of the nucleoprotein (NP) and glycoprotein (GP) regions, with the former candidate having now progressed to being the first vaccine against CCHF virus to enter Phase 1 clinical trials. Herein, we report the method used to generate this MVA-based vaccine construct.
Collapse
Affiliation(s)
- Emma Kennedy
- United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, UK
| | - Roger Hewson
- United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, UK
| | - Stuart Dowall
- United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, UK.
| |
Collapse
|
21
|
Kuncorojakti S, Delaiah D, Aswin A, Puspitasari Y, Damayanti Y, Susilowati H, Diyantoro, Hamid IS, Al Arif MA, Suwarno, Rodprasert W. Development of peptone-based serum-free media to support Vero CCL-81 cell proliferation and optimize SARS-CoV2 viral production. Heliyon 2024; 10:e41077. [PMID: 39735625 PMCID: PMC11681854 DOI: 10.1016/j.heliyon.2024.e41077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Developing an optimal media for Vero cell lines is crucial as it directly influences cell survival, proliferation, and virus production. The use of serum in cell culture raises safety concerns in biological production. The United States Food and Drug Administration (FDA) and the European Medicines Agency have implemented stricter regulations on the use of animal-derived components in commercial protein manufacturing to ensure patient safety. OBJECTIVE This study aims to develop new chemically defined media using peptone hydrolysate as a serum-free alternative. METHODS A rational experimental design was employed to screen and optimize potential serum substitutes. Six types of peptones were tested at varying concentrations to determine the top three candidates. These candidates were subsequently combined into five mixtures to identify the two most effective serum-free media for Vero CCL-81 cells. The evaluation criteria included morphology observation and proliferation assay. The two most promising serum-free formulations were further evaluated for their ability to support virus production and using TCID50 and absolute quantification by RT-qPCR. RESULTS The results of this study indicate that Mixture 4, consisting of 0.5 g/L Phytone™ Peptone, 0.5 g/L Difco™ Soytone, and 2 g/L Bacto™ Malt, significantly enhanced Vero CCL-81 cell proliferation and produced high viral titers. The developed medium demonstrated comparable performance to commercially available serum-free media. CONCLUSION Peptone-based serum-free media provide a robust alternative for supporting Vero CCL-81 cell growth and are suitable for virus production.
Collapse
Affiliation(s)
- Suryo Kuncorojakti
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Diena Delaiah
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Ahmad Aswin
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Yulianna Puspitasari
- Division of Veterinary Microbiology, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Yeni Damayanti
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Helen Susilowati
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Diyantoro
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
- Department of Health Science, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Iwan Sahrial Hamid
- Division of Basic Veterinary Sciences, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Mohammad Anam Al Arif
- Department of Animal Husbandry, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Suwarno
- Division of Veterinary Microbiology, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
22
|
Lim YT, Barathan M, Tan YL, Lee YT, Law JX. Calcium Chloride vs. Mechanical Preparation of Fibrinogen-Depleted Human Platelet Lysate: Implications for Umbilical Cord Mesenchymal Stem Cell Culture. Life (Basel) 2024; 15:12. [PMID: 39859952 PMCID: PMC11766796 DOI: 10.3390/life15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/27/2025] Open
Abstract
Fetal bovine serum (FBS) has long been the standard supplement in cell culture media, providing essential growth factors and proteins that support cell growth and differentiation. However, ethical concerns and rising costs associated with FBS have driven researchers to explore alternatives, particularly human platelet lysate (HPL). Among these alternatives, fibrinogen-depleted HPL (FD-HPL) has gained attention due to its reduced thrombogenicity, which minimizes the risk of clot formation in cell cultures and enhances the safety of therapeutic applications. This study investigates two preparation methods for FD-HPL from human platelet concentrates: the calcium chloride method and a mechanical approach. The concentrations of critical growth factors, including vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF), and keratinocyte growth factor (KGF), were evaluated for both methods. Additionally, the impact of FD-HPL on the proliferation and morphology of umbilical cord-derived mesenchymal stem cells (UC-MSCs) was assessed. The findings revealed that the calcium chloride method produced significantly higher concentrations of all measured growth factors compared to the mechanical method. Moreover, UC-MSCs cultured in calcium chloride-prepared FD-HPL exhibited enhanced cellular characteristics, including increased cell size, elongation, and improved overall morphology compared to those cultured in mechanically processed FD-HPL. These results indicate that the preparation method significantly influences the biological properties of HPL and the effectiveness of UC-MSC culture. The calcium chloride method emerges as a superior technique for producing FD-HPL, offering a promising alternative to FBS in regenerative medicine applications. This study underscores the importance of preparation methods in optimizing HPL for cell culture and therapeutic uses.
Collapse
Affiliation(s)
| | | | | | | | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.T.L.); (M.B.); (Y.L.T.); (Y.T.L.)
| |
Collapse
|
23
|
Yu IS, Choi SY, Choi J, Kim MK, Um MY, Ahn JH, Kim MJ. Grifola frondosa extract as a fetal bovine serum supplement for the culture of bovine muscle satellite cells under low serum conditions. Food Res Int 2024; 197:115173. [PMID: 39593383 DOI: 10.1016/j.foodres.2024.115173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
Expensive fetal bovine serum (FBS) is a major obstacle to the production of cultivated meat. However, because FBS substitutes do not sufficiently induce cell proliferation, a good alternative is to reduce the amount of FBS and use ingestible additives to promote cell proliferation. In this study, Grifola frondosa extract (GFE) was used to investigate its potential as an additive to promote myogenesis of bovine muscle satellite cells from Hanwoo cattle under low serum conditions (10 % FBS). GFE treated with 10 % FBS only during the proliferation period not only increased cell proliferation and related biomarkers in a concentration-dependent manner (0.78-12.5 μg/mL), but also increased cell differentiation. Additionally, differentiation was promoted when cells were with GFE treated only during the differentiation period. Especially GFE at 12.5 µg/mL induced significantly higher proliferation and differentiation rates than 20 % FBS medium. In particular, compared to treatment alone in the proliferation or differentiation periods, GFE treatment in both periods contributed to an increase in the differentiation rate and significantly enhanced total protein production. The integration of GFE into cultivated meat production presents a promising approach to reducing FBS dependence, lowering costs, and enhancing scalability, aligning with sustainability and consumer acceptance goals.
Collapse
Affiliation(s)
- In-Sun Yu
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Department of Food Science and Human Nutrition and K-Food Research Center, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Sang Yoon Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Mina K Kim
- Department of Food Science and Human Nutrition and K-Food Research Center, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Min Young Um
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Jae Hwan Ahn
- Division of Convergence Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea.
| |
Collapse
|
24
|
Charlesworth JC, Jenner A, le Coutre J. Plant-based hydrolysates as building blocks for cellular agriculture. Food Chem 2024; 460:140621. [PMID: 39089020 DOI: 10.1016/j.foodchem.2024.140621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Cellular agriculture, an emerging technology, aims to produce animal-based products such as meat through scalable tissue culture methods. Traditional techniques rely on chemically undefined media using fetal bovine serum (FBS) or chemically defined media utilizing specific growth factors. To be a viable alternative to conventional meat production, cellular agriculture requires cost-effective materials with established supply chains for growth media. Here, we investigate hydrolysates from Kikuyu grass, Alfalfa grass, and cattle rearing pellets. We identified conditions that promote C2C12 myoblast cell growth in media containing 0.1% and 0% serum. These effects are more pronounced in combination with existing growth promoters such as insulin, transferrin, and selenium. Overall, the rearing pellet hydrolysates were most effective in promoting growth particularly when in combination with the growth promoters. Our findings suggest that leveraging these materials, along with known growth factors, can facilitate the development of improved, scalable, and commercially viable media for cellular agriculture.
Collapse
Affiliation(s)
- James C Charlesworth
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Andrew Jenner
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Johannes le Coutre
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia; Australian Human Rights Institute, University of New South Wales, Sydney, New South Wales, Sydney, Australia.
| |
Collapse
|
25
|
Pfeifer LM, Sensbach J, Pipp F, Werkmann D, Hewitt P. Increasing sustainability and reproducibility of in vitro toxicology applications: serum-free cultivation of HepG2 cells. FRONTIERS IN TOXICOLOGY 2024; 6:1439031. [PMID: 39650261 PMCID: PMC11621109 DOI: 10.3389/ftox.2024.1439031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
Fetal Bovine Serum (FBS) is an important ingredient in cell culture media and the current standard for most cells in vitro. However, the use of FBS is controversial for several reasons, including ethical concerns, political, and societal pressure, as well as scientific problems due to the undefined and variable nature of FBS. Nevertheless, scientists hesitate to change the paradigm without solid data de-risking the switch of their assays to alternatives. In this study, HepG2 cells, a human hepatoblastoma cell line commonly used to study drug hepatotoxicity, were adapted to serum-free conditions by using different commercially available media and FBS replacements. After transition to these new culture conditions, the success of adaptation was determined based on cell morphology and growth characteristics. Long-term culturing capacity for each medium was defined as the number of passages HepG2 cells could be cultured without any alterations in morphology or growth behavior. Two media (Advanced DMEM/F12 from ThermoFisher and TCM® Serum Replacement from MP Biomedicals) showed a long-term cultivation capacity comparable to media containing FBS and were selected for further analysis. Both media can be characterized as serum-free, however still contain animal-derived components: bovine serum albumin (both media) and bovine transferrin (only TCM® serum replacement). To assess the functionality of the cells cultivated in either of the two media, HepG2 cells were treated with reference compounds, specifically selected for their known hepatotoxicity characteristics in man. Different toxicological assays focusing on viability, mitochondrial toxicity, oxidative stress, and intracellular drug response were performed. Throughout the different assays, response to reference compounds was comparable, with a slightly higher sensitivity of serum-free cultivated HepG2 cells when assessing viability/cell death and a lower sensitivity towards oxidative stress. Taken together, the two selected media were shown to support growth, morphology, and function of serum-free cultivated HepG2 cells in the early preclinical safety space. Therefore, these results can serve as a starting point to further optimize culture conditions with the goal to remove any remaining animal-derived components.
Collapse
Affiliation(s)
| | - Janike Sensbach
- Early Investigative Toxicology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Frederic Pipp
- Corporate Animal Affairs, Merck KGaA, Darmstadt, Germany
| | - Daniela Werkmann
- Cell Design Lab, Molecular Biology, Merck KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Early Investigative Toxicology, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
26
|
Lee DY, Lee SY, Yun SH, Choi Y, Han D, Park J, Kim JS, Mariano E, Lee J, Choi JS, Kim GD, Choi I, Joo ST, Hur SJ. Study on the feasibility of using livestock blood as a fetal bovine serum substitute for cultured meat. J Food Sci 2024; 89:7143-7156. [PMID: 39385357 DOI: 10.1111/1750-3841.17347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 10/12/2024]
Abstract
Fetal bovine serum (FBS) accounts for the largest portion of the cost of cultured meat production or cell culture experiments and is highly controversial in terms of animal welfare because it is taken from the fetus of a pregnant cow during slaughtering. Nevertheless, FBS is the most important supplement in the cell culture manufacturing process. This study aimed to develop an FBS substitute from slaughterhouse waste blood to reduce the cost of FBS in cultured meat production through various experiments. Our study successfully demonstrated that adult livestock blood obtained from slaughterhouses can effectively replace FBS. Our substitute, when cultured with bovine myosatellite cells, demonstrated cell growth that was either equivalent to or superior to that of commercial FBS. In the process of muscle generation through differentiation, the substitutes from bovine and chicken formed 70%-75% more bovine muscle compared to the control group using FBS. Furthermore, using the FBS substitute can reduce cell culture costs by approximately 61% compared to using commercial FBS. Therefore, the groundbreaking FBS substitute will not only contribute to the development of technology to mass-produce cultured meat using livestock byproducts but will also lower the production cost of media for experimental cell culture or vaccine production.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Seung Yun Lee
- Division of Animal Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jung Seok Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology, Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
27
|
Bodiou V, Kumar AA, Massarelli E, van Haaften T, Post MJ, Moutsatsou P. Attachment promoting compounds significantly enhance cell proliferation and purity of bovine satellite cells grown on microcarriers in the absence of serum. Front Bioeng Biotechnol 2024; 12:1443914. [PMID: 39553395 PMCID: PMC11563957 DOI: 10.3389/fbioe.2024.1443914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction To bring cultivated beef to the market, a scalable system that can support growth of bovine satellite cells (bSCs) in a serum-free and preferably also animal-free medium is of utmost importance. The use of microcarriers (MCs) is, at the moment, one of the most promising technologies for scaling up. MCs offer a large surface to volume ratio, they can be used in scalable stirred tank bioreactors, where the culture conditions can be tightly controlled to meet the cells' requirements (temperature, pH, dissolved oxygen). The inherent capacity of the cells to migrate from one MC to another, also known as bead-to-bead transfer, facilitates a scale-up strategy involving MCs. Previous studies have shown growth of bSCs on three commercially available MCs in serum containing media. Unfortunately there is currently no information available regarding their growth on MCs in serum-free conditions. Methods In this study, we aimed to find suitable serum-free media, MCs and attachment promoting compounds (APCs) supporting the growth of bSCs. Initially, six commercial MCs and three serum-free media were evaluated. The effects of three APCs were compared (vitronectin, laminin and fibronectin). Subsequently, the effects of different concentrations and modes of addition of the best performing APC were investigated. Results and Discussion Our results showed that Cytodex 1, Synthemax II and CellBIND supported bSCs' growth in all serum-free media. Overall, better growth was observed with Cytodex 1 in serum-free proliferation media. We showed that the use of laminin or vitronectin with Cytodex 1 can significantly improve cell growth and purity. Laminin also allowed attachment and growth of bSCs on Plastic MCs which had been previously unsuccessful without APCs. Finally, we optimized the use of vitronectin from a sustainability and process perspective, and showed that it can be used solely as a coating for Cytodex 1 (16-100 ng/cm2) MCs, instead of as a medium supplement, enhancing cell attachment and proliferation.
Collapse
Affiliation(s)
- Vincent Bodiou
- Mosa Meat BV, Maastricht, Netherlands
- CARIM (The Cardiovascular Research Institute Maastricht), Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | | | | | | - Mark J. Post
- Mosa Meat BV, Maastricht, Netherlands
- CARIM (The Cardiovascular Research Institute Maastricht), Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | |
Collapse
|
28
|
Airola C, Pallozzi M, Cesari E, Cerrito L, Stella L, Sette C, Giuliante F, Gasbarrini A, Ponziani FR. Hepatocellular-Carcinoma-Derived Organoids: Innovation in Cancer Research. Cells 2024; 13:1726. [PMID: 39451244 PMCID: PMC11505656 DOI: 10.3390/cells13201726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinomas (HCCs) are highly heterogeneous malignancies. They are characterized by a peculiar tumor microenvironment and dense vascularization. The importance of signaling between immune cells, endothelial cells, and tumor cells leads to the difficult recapitulation of a reliable in vitro HCC model using the conventional two-dimensional cell cultures. The advent of three-dimensional organoid tumor technology has revolutionized our understanding of the pathogenesis and progression of several malignancies by faithfully replicating the original cancer genomic, epigenomic, and microenvironmental landscape. Organoids more closely mimic the in vivo environment and cell interactions, replicating factors such as the spatial organization of cell surface receptors and gene expression, and will probably become an important tool in the choice of therapies and the evaluation of tumor response to treatments. This review aimed to describe the ongoing and potential applications of organoids as an in vitro model for the study of HCC development, its interaction with the host's immunity, the analysis of drug sensitivity tests, and the current limits in this field.
Collapse
Affiliation(s)
- Carlo Airola
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Eleonora Cesari
- GSTeP Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (E.C.); (C.S.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Claudio Sette
- GSTeP Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (E.C.); (C.S.)
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Felice Giuliante
- Department of Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
29
|
Herb M, Schatz V, Hadrian K, Hos D, Holoborodko B, Jantsch J, Brigo N. Macrophage variants in laboratory research: most are well done, but some are RAW. Front Cell Infect Microbiol 2024; 14:1457323. [PMID: 39445217 PMCID: PMC11496307 DOI: 10.3389/fcimb.2024.1457323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages play a pivotal role in the innate immune response. While their most characteristic function is phagocytosis, it is important not to solely characterize macrophages by this activity. Their crucial roles in body development, homeostasis, repair, and immune responses against pathogens necessitate a broader understanding. Macrophages exhibit remarkable plasticity, allowing them to modify their functional characteristics in response to the tissue microenvironment (tissue type, presence of pathogens or inflammation, and specific signals from neighboring cells) swiftly. While there is no single defined "macrophage" entity, there is a diverse array of macrophage types because macrophage ontogeny involves the differentiation of progenitor cells into tissue-resident macrophages, as well as the recruitment and differentiation of circulating monocytes in response to tissue-specific cues. In addition, macrophages continuously sense and respond to environmental cues and tissue conditions, adjusting their functional and metabolic states accordingly. Consequently, it is of paramount importance to comprehend the heterogeneous origins and functions of macrophages employed in in vitro studies, as each available in vitro macrophage model is associated with specific sets of strengths and limitations. This review centers its attention on a comprehensive comparison between immortalized mouse macrophage cell lines and primary mouse macrophages. It provides a detailed analysis of the strengths and weaknesses inherent in these in vitro models. Finally, it explores the subtle distinctions between diverse macrophage cell lines, offering insights into numerous factors beyond the model type that can profoundly influence macrophage function.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valentin Schatz
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bohdan Holoborodko
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natascha Brigo
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Wang J, Han S, Zhang J, Luo Y, Wang Y, Chen L. Establishment and characterization of a gill cell line from Takifugu obscurus and transcriptome analysis of its gene expression profiles upon low temperature. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109843. [PMID: 39181522 DOI: 10.1016/j.fsi.2024.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Takifugu obscurus is a farmed fish of great economic importance in China. The rapid development of T. obscurus aquaculture industry has been accompanied by disease and low-temperature stress, resulting in huge economic losses. Cell lines are used extensively in teleost physiology and pathology as the most cost-effective platform for in vitro research. A novel gill cell line of T. obscurus (named TOG) was first successfully established, and passed through 52 generations. The optimal conditions for TOG growth were 20 % FBS concentration and 24 °C, TOG could be grown in both hypotonic (150 mOsmol-kg-1) and hypertonic (600 mOsmol-kg-1) environments. TOG was determined to be derived from T. obscurus by sequencing the mitochondrial COI gene. Karyotype analysis revealed that the chromosome number of TOG was 44 (2n = 44). Transfection experiment showed that TOG was able to express foreign genes. Furthermore, several immune-related genes were significantly up-regulated in TOG after LPS and poly (I:C) stimulation, including tlr3, isg15, il1β and il10. Additionally, transcriptome analysis of TOG under low-temperature stress (24 °C, 18 °C, 12 °C, 10 °C and 8 °C) found that differentially expressed genes (DEGs) were significantly clustered in several immunological and energy metabolic pathways, and cold stress could disrupt the immune barrier and reduce immunity by downregulating the immune-related pathways. Additionally, weighted gene co-expression network analysis (WGCNA) revealed that bule module and turquoise module, which were closely correlated with low temperature and the degree of fish damage, were both predominantly found in PPAR, NOD-like receptor and Toll-like receptor signaling pathway. Hub genes were identified in these two modules, including mre11, clpb, dhx15, ddx18 and utp15. TOG cell line will become an effective experimental platform for genetic and immunological research, and our results would help us gain a deeper insight into the molecular mechanism of cold tolerance in teleost.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shuang Han
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jingping Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yuhao Luo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Youquan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
31
|
Juráková V, Széky B, Zapletalová M, Fehér A, Zana M, Pandey S, Kučera R, Šerý O, Hudeček J, Dinnyés A, Lochman J. Assessment and Evaluation of Contemporary Approaches for Astrocyte Differentiation from hiPSCs: A Modeling Paradigm for Alzheimer's Disease. Biol Proced Online 2024; 26:30. [PMID: 39342077 PMCID: PMC11437813 DOI: 10.1186/s12575-024-00257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Astrocytes have recently gained attention as key players in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Numerous differentiation protocols have been developed to study human astrocytes in vitro. However, the properties of the resulting glia are inconsistent, making it difficult to select an appropriate method for a given research question. Therefore, we compared three approaches for the generation of iPSC-derived astrocytes. We performed a detailed analysis using a widely used long serum-free (LSFP) and short serum-free (SSFP) protocol, as well as a TUSP protocol using serum for a limited time of differentiation. RESULTS We used RNA sequencing and immunochemistry to characterize the cultures. Astrocytes generated by the LSFP and SSFP methods differed significantly in their characteristics from those generated by the TUSP method using serum. The TUSP astrocytes had a less neuronal pattern, showed a higher degree of extracellular matrix formation, and were more mature. The short-term presence of FBS in the medium facilitated the induction of astroglia characteristics but did not result in reactive astrocytes. Data from cell-type deconvolution analysis applied to bulk transcriptomes from the cultures assessed their similarity to primary and fetal human astrocytes. CONCLUSIONS Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol for solving specific research tasks or drug discovery studies with iPSC-derived astrocytes.
Collapse
Affiliation(s)
- Veronika Juráková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martina Zapletalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | | - Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Radek Kučera
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Omar Šerý
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, The Czech Academy of Science, Veveří 97, 60200, Brno, Czech Republic
| | - Jiří Hudeček
- Psychiatric Clinic, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - András Dinnyés
- BioTalentum Ltd, Godollo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, The Czech Academy of Science, Veveří 97, 60200, Brno, Czech Republic.
| |
Collapse
|
32
|
Koh EJ, Heo SY, Park A, Lee YJ, Choi WY, Heo SJ. Serum-Free Medium Supplemented with Haematococcus pluvialis Extracts for the Growth of Human MRC-5 Fibroblasts. Foods 2024; 13:3012. [PMID: 39335941 PMCID: PMC11431700 DOI: 10.3390/foods13183012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Experiments are increasingly performed in vitro; therefore, cell culture technology is essential for scientific progress. Fetal bovine serum (FBS) is a key cell culture supplement providing growth factors, amino acids, and hormones. However, FBS is not readily available on the market, has contamination risks, and has ethical concerns. This study aimed to investigate Haematococcus pluvialis extracts (HE) as a potential substitute for FBS. Therefore, we assessed the effects of HE on cell maintenance, growth, and cycle progression in human lung fibroblasts (MRC-5). Cell progression and monosaccharide, fatty acid, and free amino acid compositions were analyzed using cell cycle analysis, bio-liquid chromatography, gas chromatography, and high-performance liquid chromatography, respectively. The results of nutritional profiles showed that the extracts contained essential amino acids required for synthesizing non-essential amino acids and other metabolic intermediates. Furthermore, most of the components present in HE were consistent with those found in FBS. HE enhanced cell viability and regulated cell cycle phases. Additionally, the interaction between growth factor cocktails and HE significantly improved cell viability, promoted cell cycle progression, and activated key cell cycle regulators, such as cyclin A and cyclin-dependent kinases 1 (CDK1). Our findings suggest that HE have considerable potential to substitute FBS in MRC-5 cell cultures and have functional and ethical advantages.
Collapse
Affiliation(s)
- Eun-Jeong Koh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Areumi Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Yeon-Ji Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Woon-Yong Choi
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
33
|
Bramwell LR, Gould SJ, Davies M, McMullan C, Trusler EC, Harries LW. An Evaluation of the Replacement of Animal-derived Biomaterials in Human Primary Cell Culture. Altern Lab Anim 2024; 52:247-260. [PMID: 39121342 DOI: 10.1177/02611929241269004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The likelihood that potential new drugs will successfully navigate the current translational pipeline is poor, with fewer than 10% of drug candidates making this transition successfully, even after their entry into clinical trials. Prior to this stage, candidate drugs are typically evaluated by using models of increasing complexity, beginning with basic in vitro cell culture studies and progressing through to animal studies, where many of these candidates are lost due to lack of efficacy or toxicology concerns. There are many reasons for this poor translation, but interspecies differences in functional and physiological parameters undoubtedly contribute to the problem. Improving the human-relevance of early preclinical in vitro models may help translatability, especially when targeting more nuanced species-specific cell processes. The aim of the current study was to define a set of guidelines for the effective transition of human primary cells of multiple lineages to more physiologically relevant, translatable, animal-free in vitro culture conditions. Animal-derived biomaterials (ADBs) were systematically replaced with non-animal-derived alternatives in the in vitro cell culture systems, and the impact of the substitutions subsequently assessed by comparing the kinetics and phenotypes of the cultured cells. ADBs were successfully eliminated from primary human dermal fibroblast, uterine fibroblast, pulmonary fibroblast, retinal endothelial cell and peripheral blood mononuclear cell culture systems, and the individual requirements of each cell subtype were defined to ensure the successful transition toward growth under animal-free culture conditions. We demonstrate that it is possible to transition ('humanise') a diverse set of human primary cell types by following a set of simple overarching principles that inform the selection, and guide the evaluation of new, improved, human-relevant in vitro culture conditions.
Collapse
Affiliation(s)
- Laura R Bramwell
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Samantha J Gould
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Merlin Davies
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Conor McMullan
- Islet Biology Group (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Emily C Trusler
- Technical Services, Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Lorna W Harries
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
34
|
Ghobadian H, Roshanzamir K, Mohammadhasan KA, Ostadi H, Zati Keikha R, Dolatkhah Baghan M, Talebkhan Y, Torkashvand F. Optimization of Culture Conditions to Improve Follicle-Stimulating Hormone Production by CHO-DG44 Cells in Serum-Free Medium. IRANIAN BIOMEDICAL JOURNAL 2024; 28:282-96. [PMID: 39901854 PMCID: PMC11829159 DOI: 10.61186/ibj.4160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/27/2024] [Indexed: 02/05/2025]
Abstract
Background In the present study, we attempted to adapt an adherent and serum-dependent Chinese hamster ovary DG44 cell line to a serum-free suspension culture and optimize the culture condition to achieve a higher yield of recombinant human follicle stimulating hormone (r-hFSH) with acceptable quality. This approach helps to mitigate the risks associated with blood-borne pathogens, reduces lot-to-lot variability, and lowers costs, making it suitable for industrial processing and scale-up. Methods The cell adaptation was performed using different chemically defined SFM. This process was followed by optimization through statistical experimental design, focusing on selected physicochemical parameters, including chemical supplementation of the medium and temperature shift. Both small- and large-scale cultures were conducted to test the reproducibility of the optimized condition. The expressed protein was evaluated for comparability with the standard molecule according to the Pharmacopeia guidelines. Results response surface methodology (RSM) analysis indicated that supplementation of the culture medium with galactose and sodium butyrate (NaBu), along with a temperature downshift, were the main parameters leading to increased cell viability (10%), r-hFSH level (96%), and more importantly, the glycosylation content (49%) of r-hFSH compared to the control condition. As r-hFSH isoforms generated during in vivo post-translational modifications typically exhibit different serum/plasma half-lives and bioactivity due to their incorporated sialic acid content/glycosylation, further optimizations of r-hFSH production are necessary to enhance its biological activity. In this study, following a primary screening of the studied parameters, optimization of culture conditions based on selected parameters resulted in enhanced quality and quantity of the produced r-hFSH. However, further examination is necessary before transitioning to industrial production.
Collapse
Affiliation(s)
- Hanna Ghobadian
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Khashayar Roshanzamir
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| | - Kouhi Abdolabadi Mohammadhasan
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| | - Hadi Ostadi
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| | - Reza Zati Keikha
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| | - Mohammad Dolatkhah Baghan
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| | - Yeganeh Talebkhan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
35
|
Rehman NU, Shin SA, Lee CS, Song M, Kim HJ, Chung HJ. Short Caco-2 model for evaluation of drug permeability: A sodium valerate-assisted approach. Int J Pharm 2024; 661:124415. [PMID: 38960340 DOI: 10.1016/j.ijpharm.2024.124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The human colorectal adenocarcinoma cell line Caco-2, widely used for studying intestinal drug permeability, is typically grown on permeable filter supports and matures in 21 days with frequent media changes. The process is labor-intensive, prone to contamination, and has low throughput, contributing to the overall high utilization cost. Efforts to establish a low-cost, high-throughput, and short-duration model have encountered obstacles, such as weaker tight junctions causing monolayer leaks, incomplete differentiation resulting in low transporter expression, intricate and challenging protocols, and cytotoxicity, limiting the usability. Hence, this study aimed to develop a low-cost, efficient, and short-duration model by addressing the aforementioned concerns by customizing the media and finding a safe differentiation inducer. We generated a new rapid model using sodium valerate, which demonstrated sufficient transporter activity, improved monolayer integrity, and higher levels of differentiation markers than the 21-day model. Furthermore, this model exhibited consistent and reliable results when used to evaluate drug permeability over multiple days of repeated use. This study demonstrates the potential of a sodium valerate-assisted abbreviated model for drug permeability assessment with economic and practical advantages.
Collapse
Affiliation(s)
- Naveed Ur Rehman
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Anti-Aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seong-Ah Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Miyoung Song
- Department of Anatomy and Convergence Medical Sciences, College of Medicine, Institute of Medical Sciences, Tyrosine Peptide Multiuse Research Group, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hyun Joon Kim
- Anti-Aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Anatomy and Convergence Medical Sciences, College of Medicine, Institute of Medical Sciences, Tyrosine Peptide Multiuse Research Group, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hye Jin Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
36
|
Huang F, Zhang F, Huang L, Zhu X, Huang C, Li N, Da Q, Huang Y, Yang H, Wang H, Zhao L, Lin Q, Chen Z, Xu J, Liu J, Ren M, Wang Y, Han Z, Ouyang K. Inositol 1,4,5-Trisphosphate Receptors Regulate Vascular Smooth Muscle Cell Proliferation and Neointima Formation in Mice. J Am Heart Assoc 2024; 13:e034203. [PMID: 39023067 PMCID: PMC11964046 DOI: 10.1161/jaha.124.034203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) proliferation is involved in many types of arterial diseases, including neointima hyperplasia, in which Ca2+ has been recognized as a key player. However, the physiological role of Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3Rs) from endoplasmic reticulum in regulating VSMC proliferation has not been well determined. METHODS AND RESULTS Both in vitro cell culture models and in vivo mouse models were generated to investigate the role of IP3Rs in regulating VSMC proliferation. Expression of all 3 IP3R subtypes was increased in cultured VSMCs upon platelet-derived growth factor-BB and FBS stimulation as well as in the left carotid artery undergoing intimal thickening after vascular occlusion. Genetic ablation of all 3 IP3R subtypes abolished endoplasmic reticulum Ca2+ release in cultured VSMCs, significantly reduced cell proliferation induced by platelet-derived growth factor-BB and FBS stimulation, and also decreased cell migration of VSMCs. Furthermore, smooth muscle-specific deletion of all IP3R subtypes in adult mice dramatically attenuated neointima formation induced by left carotid artery ligation, accompanied by significant decreases in cell proliferation and matrix metalloproteinase-9 expression in injured vessels. Mechanistically, IP3R-mediated Ca2+ release may activate cAMP response element-binding protein, a key player in controlling VSMC proliferation, via Ca2+/calmodulin-dependent protein kinase II and Akt. Loss of IP3Rs suppressed cAMP response element-binding protein phosphorylation at Ser133 in both cultured VSMCs and injured vessels, whereas application of Ca2+ permeable ionophore, ionomycin, can reverse cAMP response element-binding protein phosphorylation in IP3R triple knockout VSMCs. CONCLUSIONS Our results demonstrated an essential role of IP3R-mediated Ca2+ release from endoplasmic reticulum in regulating cAMP response element-binding protein activation, VSMC proliferation, and neointima formation in mouse arteries.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Becaplermin/pharmacology
- Becaplermin/metabolism
- Calcium/metabolism
- Calcium Signaling
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/genetics
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cyclic AMP Response Element-Binding Protein/genetics
- Disease Models, Animal
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/pathology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/pathology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
Collapse
Affiliation(s)
- Fang Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Fei Zhang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Qingen Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Yu Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Huihua Yang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Hong Wang
- Central LaboratoryPeking University Shenzhen HospitalShenzhenChina
| | - Lingyun Zhao
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Qingsong Lin
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Zee Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Junjie Xu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Jie Liu
- Department of Pathophysiology, School of MedicineShenzhen UniversityShenzhenChina
| | - Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Yan Wang
- Department of CardiologyQingdao Municipal HospitalQingdaoChina
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| |
Collapse
|
37
|
Alqabandi W, Dhaunsi GS. L-Glutamine mitigates bile acid-induced inhibition of growth factor activity in rat hepatocyte cultures. Growth Factors 2024; 42:120-127. [PMID: 39320940 DOI: 10.1080/08977194.2024.2407566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Bile acid-induced hepatotoxicity is inevitable in Cholestasis pathogenesis and L-Glutamine (L-Gln) has been reported to prevent total parenteral nutrition (TPN)-induced cholestasis in premature neonates. While mechanisms remain unknown, we hypothesize that bile acids impair growth factor (GF) function in hepatocytes which L-glutamine prevents through NAPDH oxidase (NOX) modulation. Glycochenodeoxycholic acid (GCDC, 0-100 µM) when added to primary hepatocyte cultures significantly (p < 0.01) decreased the FBS-induced BrdU incorporation, however inhibition of Fibroblast Growth factor (FGF)- or Hepatocyte growth factor (HGF)-induced DNA synthesis was more pronounced (p < 0.001). L-Gln markedly attenuated GCDC-mediated inhibition of DNA synthesis in both FBS and GF-treated cells. GCDC significantly increased the NADPH oxidase activity and NOX-1 protein expression that were markedly reduced by L-Gln and protein kinase c (PKC) inhibitor, LY-333531. Apocynin (APCN) and diphenyliodonium (DPI) significantly blocked the GCDC-mediated inhibition of GF-induced DNA synthesis. This study demonstrates that bile acid-induced hepatotoxicity involves dysfunction of certain growth factors via protein kinase c (PKC)- mediated NOX modulation which can be corrected, at least partly, by L-glutamine.
Collapse
|
38
|
Česnik AB, Švajger U. The issue of heterogeneity of MSC-based advanced therapy medicinal products-a review. Front Cell Dev Biol 2024; 12:1400347. [PMID: 39129786 PMCID: PMC11310176 DOI: 10.3389/fcell.2024.1400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for numerous clinical applications due to their unique properties including self-renewal, immunomodulation, paracrine actions and multilineage differentiation. However, the translation of MSC-based Advanced Therapy Medicinal Products (ATMPs) into the clinic has frequently met with inconsistent outcomes. One of the suspected reasons for this issue is the inherent and extensive variability that exists among such ATMPs, which makes the interpretation of their clinical efficacy difficult to assess, as well as to compare the results of various studies. This variability stems from numerous reasons including differences in tissue sources, donor attributes, variances in manufacturing protocols, as well as modes of administration. MSCs can be isolated from various tissues including bone marrow, umbilical cord, adipose tissue and others, each with its unique phenotypic and functional characteristics. While MSCs from different sources do share common features, they also exhibit distinct gene expression profiles and functional properites. Donor-specific factors such as age, sex, body mass index, and underlying health conditions can influence MSC phenotype, morphology, differentiation potential and function. Moreover, variations in preparation of MSC products introduces additional heterogeneity as a result of cell culture media composition, presence or absence of added growth factors, use of different serum supplements and culturing techniques. Once MSC products are formulated, storage protocols play a pivotal role in its efficacy. Factors that affect cell viability include cell concentration, delivery solution and importantly, post-thawing protocols where applicable. Ensuing, differences in administration protocols can critically affect the distribution and functionallity of administered cells. As MSC-based therapies continue to advance through numerous clinical trials, implication of strategies to reduce product heterogeneity is imperative. Central to addressing these challenges is the need for precise prediction of clinical responses, which require well-defined MSC populations and harmonized assessment of their specific functions. By addressing these issues by meaningful approaches, such as, e.g., MSC pooling, the field can overcome barriers to advance towards more consistent and effective MSC-based therapies.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
| | - Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
39
|
Tian JS, Tay A. Progress on Electro-Enhancement of Cell Manufacturing. SMALL METHODS 2024; 8:e2301281. [PMID: 38059759 DOI: 10.1002/smtd.202301281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Indexed: 12/08/2023]
Abstract
With the long persistence of complex, chronic diseases in society, there is increasing motivation to develop cells as living medicine to treat diseases ranging from cancer to wounds. While cell therapies can significantly impact healthcare, the shortage of starter cells meant that considerable raw materials must be channeled solely for cell expansion, leading to expensive products with long manufacturing time which can prevent accessibility by patients who either cannot afford the treatment or have highly aggressive diseases and cannot wait that long. Over the last three decades, there has been increasing knowledge on the effects of electrical modulation on proliferation, but to the best of the knowledge, none of these studies went beyond how electro-control of cell proliferation may be extended to enhance industrial scale cell manufacturing. Here, this review is started by discussing the importance of maximizing cell yield during manufacturing before comparing strategies spanning biomolecular/chemical/physical to modulate cell proliferation. Next, the authors describe how factors governing invasive and non-invasive electrical stimulation (ES) including capacitive coupling electric field may be modified to boost cell manufacturing. This review concludes by describing what needs to be urgently performed to bridge the gap between academic investigation of ES to industrial applications.
Collapse
Affiliation(s)
- Johann Shane Tian
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| |
Collapse
|
40
|
Mandrou E, Thomason PA, Paschke PI, Paul NR, Tweedy L, Insall RH. A Reliable System for Quantitative G-Protein Activation Imaging in Cancer Cells. Cells 2024; 13:1114. [PMID: 38994966 PMCID: PMC11240385 DOI: 10.3390/cells13131114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Fluorescence resonance energy transfer (FRET) biosensors have proven to be an indispensable tool in cell biology and, more specifically, in the study of G-protein signalling. The best method of measuring the activation status or FRET state of a biosensor is often fluorescence lifetime imaging microscopy (FLIM), as it does away with many disadvantages inherent to fluorescence intensity-based methods and is easily quantitated. Despite the significant potential, there is a lack of reliable FLIM-FRET biosensors, and the data processing and analysis workflows reported previously face reproducibility challenges. Here, we established a system in live primary mouse pancreatic ductal adenocarcinoma cells, where we can detect the activation of an mNeonGreen-Gαi3-mCherry-Gγ2 biosensor through the lysophosphatidic acid receptor (LPAR) with 2-photon time-correlated single-photon counting (TCSPC) FLIM. This combination gave a superior signal to the commonly used mTurquoise2-mVenus G-protein biosensor. This system has potential as a platform for drug screening, or to answer basic cell biology questions in the field of G-protein signalling.
Collapse
Affiliation(s)
- Elena Mandrou
- CRUK Scotland Institute, Garscube Campus, Glasgow G61 1BD, UK
| | | | | | - Nikki R. Paul
- CRUK Scotland Institute, Garscube Campus, Glasgow G61 1BD, UK
| | - Luke Tweedy
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Robert H. Insall
- CRUK Scotland Institute, Garscube Campus, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- Division of Cell & Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
41
|
Allingham C, Taniguchi M, Kinchla AJ, Moore MD. The Influence of Simulated Organic Matter on the Inactivation of Viruses: A Review. Viruses 2024; 16:1026. [PMID: 39066189 PMCID: PMC11281590 DOI: 10.3390/v16071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Viruses impose a significant public health burden globally, and one of the key elements in controlling their transmission is the ability to inactivate them using disinfectants. However, numerous challenges to inactivating foodborne viruses exist due to inherent viral characteristics (such as recalcitrance to commonly used inactivation agents) and external factors (such as improper cleaning before application of inactivation agent, improper contact time, etc.). Given the potential for improper application of disinfectants (such as shorter than recommended contact time, improper disinfectant concentration, etc.), understanding the performance of a disinfectant in the presence of an organic load is important. To accomplish this, the introduction of simulated organic loads is often used when studying the efficacy of a disinfectant against different viruses. However, the different types of simulated organic loads used in foodborne virus inactivation studies or their relative effects on inactivation have not been reviewed. The purpose of this review is to survey different simulated organic load formulations used in studying foodborne virus inactivation, as well as present and compare the influence of these different formulations on viral inactivation. The findings included in this review suggest that many simulated organic load formulations can reduce disinfectants' efficacy against viruses. Based on the findings in this review, blood, particularly serum or feces, are among the most commonly used and efficacious forms of simulated organic load in many tests.
Collapse
Affiliation(s)
- Christina Allingham
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (M.T.); (A.J.K.)
| | - Miyu Taniguchi
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (M.T.); (A.J.K.)
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato City, Tokyo 108-8477, Japan
| | - Amanda J. Kinchla
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (M.T.); (A.J.K.)
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (M.T.); (A.J.K.)
| |
Collapse
|
42
|
Flaibam B, da Silva MF, de Mélo AHF, Carvalho PH, Galland F, Pacheco MTB, Goldbeck R. Non-animal protein hydrolysates from agro-industrial wastes: A prospect of alternative inputs for cultured meat. Food Chem 2024; 443:138515. [PMID: 38277934 DOI: 10.1016/j.foodchem.2024.138515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
In light of the growing demand for alternative protein sources, laboratory-grown meat has been proposed as a potential solution to the challenges posed by conventional meat production. Cultured meat does not require animal slaughter and uses sustainable production methods, contributing to animal welfare, human health, and environmental sustainability. However, some challenges still need to be addressed in cultured meat production, such as the use of fetal bovine serum for medium supplementation. This ingredient has limited availability, increases production costs, and raises ethical concerns. This review explores the potential of non-animal protein hydrolysates derived from agro-industrial wastes as substitutes for critical components of fetal bovine serum in cultured meat production. Despite the lack of standardization of hydrolysate composition, the potential benefits of this alternative protein source may outweigh its disadvantages. Future research holds promise for increasing the accessibility of cultured meat.
Collapse
Affiliation(s)
- Bárbara Flaibam
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Marcos F da Silva
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Allan H Félix de Mélo
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Priscila Hoffmann Carvalho
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Fabiana Galland
- Institute of Food Technology (ITAL), Avenida Brasil, 2880, PO Box 139, Campinas, SP 13070-178, Brazil
| | | | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil.
| |
Collapse
|
43
|
Guan B, Hong H, Kim M, Lu J, Moore MD. Evaluating the Potential of Ozone Microbubbles for Inactivation of Tulane Virus, a Human Norovirus Surrogate. ACS OMEGA 2024; 9:23184-23192. [PMID: 38854534 PMCID: PMC11154720 DOI: 10.1021/acsomega.3c08396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
This study investigated the efficacy of low-dose ozone microbubble solution and conventional aqueous ozone as inactivation agents against Tulane virus samples in water over a short period of time. Noroviruses are the primary cause of foodborne illnesses in the US, and the development of effective inactivation agents is crucial. Ozone has a high oxidizing ability and naturally decomposes to oxygen, but it has limitations due to its low dissolution rate, solubility, and stability. Ozone microbubbles have been promising in enhancing inactivation, but little research has been done on their efficacy against noroviruses. The study examined the influence of the dissolved ozone concentration, inactivation duration, and presence of organic matter during inactivation. The results showed that ozone microbubbles had a longer half-life (14 ± 0.81 min) than aqueous ozone (3 ± 0.35 min). After 2, 10, and 20 min postgeneration, the ozone concentration of microbubbles naturally decreased from 4 ppm to 3.2 ± 0.2, 2.26 ± 0.19, and 1.49 ± 0.23 ppm and resulted in 1.43 ± 0.44, 0.88 ± 0.5, and 0.68 ± 0.53 log10 viral reductions, respectively, while the ozone concentration of aqueous ozone decreased from 4 ppm to 2.52 ± 0.07, 0.43 ± 0.05, and 0.09 ± 0.01 ppm and produced 0.8 ± 0.28, 0.29 ± 0.41, and 0.16 ± 0.21 log10 reductions against Tulane virus, respectively (p = 0.0526), suggesting that structuring of ozone in the bubbles over the applied treatment conditions did not have a significant effect, though future study with continuous generation of ozone microbubbles is needed.
Collapse
Affiliation(s)
- Bozhong Guan
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Haknyeong Hong
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Minji Kim
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jiakai Lu
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
44
|
Mohamad A, Khemthong M, Trongwongsa P, Lertwanakarn T, Setthawong P, Surachetpong W. A New Cell Line from the Brain of Red Hybrid Tilapia ( Oreochromis spp.) for Tilapia Lake Virus Propagation. Animals (Basel) 2024; 14:1522. [PMID: 38891569 PMCID: PMC11171066 DOI: 10.3390/ani14111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Tilapia lake virus (TiLV) presents a substantial threat to global tilapia production. Despite the development of numerous cell lines for TiLV isolation and propagation, none have been specifically derived from red hybrid tilapia (Oreochromis spp.). In this study, we successfully established a new cell line, RHTiB, from the red hybrid tilapia brain. RHTiB cells were cultured for 1.5 years through over 50 passages and demonstrated optimal growth at 25 °C in Leibovitz-15 medium supplemented with 10% fetal bovine serum at pH 7.4. Morphologically, RHTiB cells displayed a fibroblast-like appearance, and cytochrome oxidase I gene sequencing confirmed their origin from Oreochromis spp. Mycoplasma contamination testing yielded negative results. The revival rate of the cells post-cryopreservation was observed to be between 75 and 80% after 30 days. Chromosomal analysis at the 25th passage revealed a diploid count of 22 pairs (2n = 44). While no visible cytopathic effects were observed, both immunofluorescence microscopy and RT-qPCR analysis demonstrated successful TiLV propagation in the RHTiB cell line, with a maximum TiLV concentration of 107.82 ± 0.22 viral copies/400 ng cDNA after 9 days of incubation. The establishment of this species-specific cell line represents a valuable advancement in the diagnostic and isolation tools for viral diseases potentially impacting red hybrid tilapia.
Collapse
Affiliation(s)
- Aslah Mohamad
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
| | - Pirada Trongwongsa
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
| | - Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Piyathip Setthawong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
45
|
Safoine M, Paquette C, Gingras GM, Fradette J. Improving Cutaneous Wound Healing in Diabetic Mice Using Naturally Derived Tissue-Engineered Biological Dressings Produced under Serum-Free Conditions. Stem Cells Int 2024; 2024:3601101. [PMID: 38737365 PMCID: PMC11087150 DOI: 10.1155/2024/3601101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/13/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Long-term diabetes often leads to chronic wounds refractory to treatment. Cell-based therapies are actively investigated to enhance cutaneous healing. Various cell types are available to produce biological dressings, such as adipose-derived stem/stromal cells (ASCs), an attractive cell source considering their abundancy, accessibility, and therapeutic secretome. In this study, we produced human ASC-based dressings under a serum-free culture system using the self-assembly approach of tissue engineering. The dressings were applied every 4 days to full-thickness 8-mm splinted skin wounds created on the back of polygenic diabetic NONcNZO10/LtJ mice and streptozotocin-induced diabetic K14-H2B-GFP mice. Global wound closure kinetics evaluated macroscopically showed accelerated wound closure in both murine models, especially for NONcNZO10/LtJ; the treated group reaching 98.7% ± 2.3% global closure compared to 76.4% ± 11.8% for the untreated group on day 20 (p=0.0002). Histological analyses revealed that treated wounds exhibited healed skin of better quality with a well-differentiated epidermis and a more organized, homogeneous, and 1.6-fold thicker granulation tissue. Neovascularization, assessed by CD31 labeling, was 2.5-fold higher for the NONcNZO10/LtJ treated wounds. We thus describe the beneficial impact on wound healing of biologically active ASC-based dressings produced under an entirely serum-free production system facilitating clinical translation.
Collapse
|
46
|
Amissah OB, Basnet R, Chen W, Habimana JDD, Baiden BE, Owusu OA, Saeed BJ, Li Z. Enhancing antitumor response by efficiently generating large-scale TCR-T cells targeting a single epitope across multiple cancer antigens. Cell Immunol 2024; 399-400:104827. [PMID: 38733699 DOI: 10.1016/j.cellimm.2024.104827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The need to contrive interventions to curb the rise in cancer incidence and mortality is critical for improving patients' prognoses. Adoptive cell therapy is challenged with quality large-scale production, heightening its production cost. Several cancer types have been associated with the expression of highly-immunogenic CTAG1 and CTAG2 antigens, which share common epitopes. Targeting two antigens on the same cancer could improve the antitumor response of TCR-T cells. In this study, we exploited an efficient way to generate large-fold quality TCR-T cells and also demonstrated that the common epitopes of CTAG1 and CTAG2 antigens provide an avenue for improved cancer-killing via dual-antigen-epitope targeting. Our study revealed that xeno/sera-free medium could expand TCR-T cells to over 500-fold, posing as a better replacement for FBS-supplemented media. Human AB serum was also shown to be a good alternative in the absence of xeno/sera-free media. Furthermore, TCR-T cells stimulated with beads-coated T-activator showed a better effector function than soluble T-activator stimulated TCR-T cells. Additionally, TCR-T cells that target multiple antigens in the same cancer yield better anticancer activity than those targeting a single antigen. This showed that targeting multiple antigens with a common epitope may enhance the antitumor response efficacy of T cell therapies.
Collapse
Affiliation(s)
- Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Rajesh Basnet
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Wenfang Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Belinda Edwina Baiden
- College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Osei Asibey Owusu
- Department of Clinical and Medical Sciences, University of Exeter, Exeter, UK
| | - Babangida Jabir Saeed
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China; GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| |
Collapse
|
47
|
Demirden SF, Kimiz-Gebologlu I, Oncel SS. Animal Cell Lines as Expression Platforms in Viral Vaccine Production: A Post Covid-19 Perspective. ACS OMEGA 2024; 9:16904-16926. [PMID: 38645343 PMCID: PMC11025085 DOI: 10.1021/acsomega.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Vaccines are considered the most effective tools for preventing diseases. In this sense, with the Covid-19 pandemic, the effects of which continue all over the world, humanity has once again remembered the importance of the vaccine. Also, with the various epidemic outbreaks that occurred previously, the development processes of effective vaccines against these viral pathogens have accelerated. By these efforts, many different new vaccine platforms have been approved for commercial use and have been introduced to the commercial landscape. In addition, innovations have been made in the production processes carried out with conventionally produced vaccine types to create a rapid response to prevent potential epidemics or pandemics. In this situation, various cell lines are being positioned at the center of the production processes of these new generation viral vaccines as expression platforms. Therefore, since the main goal is to produce a fast, safe, and effective vaccine to prevent the disease, in addition to existing expression systems, different cell lines that have not been used in vaccine production until now have been included in commercial production for the first time. In this review, first current viral vaccine types in clinical use today are described. Then, the reason for using cell lines, which are the expression platforms used in the production of these viral vaccines, and the general production processes of cell culture-based viral vaccines are mentioned. Also, selection parameters for animal cell lines as expression platforms in vaccine production are explained by considering bioprocess efficiency and current regulations. Finally, all different cell lines used in cell culture-based viral vaccine production and their properties are summarized, with an emphasis on the current and future status of cell cultures in industrial viral vaccine production.
Collapse
Affiliation(s)
| | | | - Suphi S. Oncel
- Ege University, Bioengineering Department, Izmir, 35100, Turkiye
| |
Collapse
|
48
|
Wang T, Desmet J, Porte C. Protective role of fetal bovine serum on PLHC-1 spheroids exposed to a mixture of plastic additives: A lipidomic perspective. Toxicol In Vitro 2024; 96:105771. [PMID: 38182034 DOI: 10.1016/j.tiv.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The use of fetal bovine serum (FBS) in cell culture is being questioned for scientific and ethical reasons, prompting the exploration of alternative approaches. Nevertheless, the influence of FBS on cell functioning, especially in fish cells, has not been comprehensively examined. This study aims to evaluate the impact of FBS on the lipidome of PLHC-1 spheroids and investigate cellular and molecular responses to plastic additives in the presence/absence of FBS. Lipidomic analyses were conducted on PLHC-1 cell spheroids using liquid chromatography coupled with a high-resolution quadrupole time-of-flight mass spectrometer (HRMS-QToF). The removal of FBS from the culture medium for 24 h significantly changed the lipid profile of spheroids, resulting in a depletion of cholesterol esters (CEs), phosphatidylcholines (PCs) and lyso-phosphatidylcholines (LPCs), while ceramides and certain glycerophospholipids slightly increased. Additionally, the exclusion of FBS from the medium led to increased cytotoxicity caused by a mixture of plastic additives and increased lipidomic alterations, including an elevation of ceramides. This study emphasizes the protective role of serum components in fish liver spheroids against a mixture of plastic additives and underscores the importance of considering exposure conditions when studying metabolomic and lipidomic responses to toxicants.
Collapse
Affiliation(s)
- Tiantian Wang
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain; PhD student at the University of Barcelona, Barcelona. Spain.
| | - Judith Desmet
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
49
|
Lee DY, Han D, Lee SY, Yun SH, Lee J, Mariano E, Choi Y, Kim JS, Park J, Hur SJ. Preliminary study on comparison of egg extraction methods for development of fetal bovine serum substitutes in cultured meat. Food Chem X 2024; 21:101202. [PMID: 38434697 PMCID: PMC10904906 DOI: 10.1016/j.fochx.2024.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/07/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024] Open
Abstract
Fetal bovine serum (FBS) substitution remains one of the challenges to the realization of cultured meat production in the marketplace. In this study, three methods were developed to extract a substitute for FBS using egg white extract (EWE): using 25 mM CaCl2/2.5 % ammonium sulfate/citric acid (A); ethyl alcohol (B); and 5 % ammonium sulfate/citric acid (C). B EWE can effectively replace up to 50 % of FBS in growth media (10 % of the total). Ovalbumin in the extracts can promote cell proliferation, and components along the 12 kDa protein band have the potential to inhibit cell proliferation. Chick primary muscle cells applied with B EWE, an edible material that improved the cost and time efficiency of cultured meat production, effectively proliferated/differentiated. Therefore, EWE extracted using ethyl alcohol may be used as an FBS substitute to reduce animal sacrifices and should be considered a viable alternative to FBS for cultured meat.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Division of Animal Science, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
50
|
Casado-Losada I, Acosta M, Schädl B, Priglinger E, Wolbank S, Nürnberger S. Unlocking Potential: Low Bovine Serum Albumin Enhances the Chondrogenicity of Human Adipose-Derived Stromal Cells in Pellet Cultures. Biomolecules 2024; 14:413. [PMID: 38672430 PMCID: PMC11048491 DOI: 10.3390/biom14040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Bovine serum albumin (BSA) plays a crucial role in cell culture media, influencing cellular processes such as proliferation and differentiation. Although it is commonly included in chondrogenic differentiation media, its specific function remains unclear. This study explores the effect of different BSA concentrations on the chondrogenic differentiation of human adipose-derived stromal/stem cells (hASCs). hASC pellets from six donors were cultured under chondrogenic conditions with three BSA concentrations. Surprisingly, a lower BSA concentration led to enhanced chondrogenesis. The degree of this effect was donor-dependent, classifying them into two groups: (1) high responders, forming at least 35% larger, differentiated pellets with low BSA in comparison to high BSA; (2) low responders, which benefitted only slightly from low BSA doses with a decrease in pellet size and marginal differentiation, indicative of low intrinsic differentiation potential. In all cases, increased chondrogenesis was accompanied by hypertrophy under low BSA concentrations. To the best of our knowledge, this is the first study showing improved chondrogenicity and the tendency for hypertrophy with low BSA concentration compared to standard levels. Once the tendency for hypertrophy is understood, the determination of BSA concentration might be used to tune hASC chondrogenic or osteogenic differentiation.
Collapse
Affiliation(s)
- Isabel Casado-Losada
- Department of Orthopedics and Trauma-Surgery, Division of Trauma-Surgery, Medical University of Vienna, 1090 Vienna, Austria; (I.C.-L.); (M.A.)
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria (E.P.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Melanie Acosta
- Department of Orthopedics and Trauma-Surgery, Division of Trauma-Surgery, Medical University of Vienna, 1090 Vienna, Austria; (I.C.-L.); (M.A.)
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria (E.P.); (S.W.)
| | - Barbara Schädl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria (E.P.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Eleni Priglinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria (E.P.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department for Orthopedics and Traumatology, Kepler University Hospital GmbH, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria (E.P.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Sylvia Nürnberger
- Department of Orthopedics and Trauma-Surgery, Division of Trauma-Surgery, Medical University of Vienna, 1090 Vienna, Austria; (I.C.-L.); (M.A.)
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria (E.P.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|