1
|
Murugesan M, Mathiyalagan R, Ramadhania ZM, Nahar J, Luu CH, Phan VG, Yang DC, Zhou Q, Chan Kang S, Thambi T. Tailoring hyaluronic acid hydrogels: Impact of cross-linker length and density on skin rejuvenation as injectable dermal fillers and their potential effects on the MAPK signaling pathway suppression. Bioact Mater 2025; 49:154-171. [PMID: 40124594 PMCID: PMC11930439 DOI: 10.1016/j.bioactmat.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/25/2025] Open
Abstract
Hyaluronic acid (HA) hydrogels, obtained through cross-linking, provide a stable 3D environment that is important for controlled delivery and tissue engineering applications. Cross-linking density has a significant impact on the physicochemical properties of hydrogels, including their shape stability, mechanical stiffness and macromolecular diffusivity. However, often cross-linking chemistries require photoinitiator and catalyst that may be toxic and cause unwanted tissue response. Here, we prepared a series of HA hydrogel with varying cross-linker length and cross-linking density, which can be obtained by altering the feed ratio of three different cross-linkers from small molecules to macromolecules (e.g., 1,4-butanediol diglycidyl ether (BDDE), ferulic acid (FA), pluronic (PLU)), to ameliorate skin wrinkles in mice models. HA cross-linked with FA and PLU exhibited enzyme and temperature-dependent sol-to-gel phase transition, respectively, and the gels possess good injectability. In vitro test confirmed that HA hydrogels co-cultured with RAW 264.7 and HDF cells showed good biocompatibility. In particular, HA cross-linked with PLU stimulated the growth of HDF cells and HaCaT cells. HA cross-linked with PLU suppressed the expression levels of proteins involved in collagen degradation including mitogen-activated protein kinases (ERK, JNK, p38) and matrix metalloproteases (MMP-1, MMP-3, and MMP-9) resulting in increased deposition of Collagen I. The free-flowing sols of HA hydrogel precursors are subcutaneously injected into the back of BALB/c mice and form stable gels at the dermis layer and found to be non-toxic. More importantly, HA hydrogel cross-linked with PLU showed an enhanced anti-wrinkling effect in the wrinkled mice model. Thus, properties of HA hydrogels such as injectability, biocompatibility, and good anti-wrinkling effect altered through varying cross-linking density must be considered in the context of soft tissue engineering applications.
Collapse
Affiliation(s)
- Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin Si, Gyeonggi do, 17104, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin Si, Gyeonggi do, 17104, Republic of Korea
| | - Zelika Mega Ramadhania
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin Si, Gyeonggi do, 17104, Republic of Korea
| | - Jinnatun Nahar
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin Si, Gyeonggi do, 17104, Republic of Korea
| | - Cuong Hung Luu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - V.H. Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin Si, Gyeonggi do, 17104, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin Si, Gyeonggi do, 17104, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin Si, Gyeonggi do, 17104, Republic of Korea
| |
Collapse
|
2
|
Ma T, He J, Long Q, Wang Y, Chen F, Chen S, Xu K, Cao Y. Orientin attenuates UVB-induced skin photodamage by inhibiting ROS generation via the AMPK/Nrf2 axis. Int Immunopharmacol 2025; 155:114655. [PMID: 40239333 DOI: 10.1016/j.intimp.2025.114655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
The accumulation of reactive oxygen species (ROS) in the skin following UVB exposure is a key contributor to ultraviolet-induced skin photodamage. Orientin, a bioactive flavonoid, has demonstrated antioxidant properties in previous studies. However, its efficacy in treating skin photodamage remains inadequately understood. This study investigates the effects of orientin in preventing UVB-induced immortalized human keratinocytes (HaCaT cells) and BALB/c mouse skin photodamage by activating the AMPK/Nrf2 axis. Results show that orientin protects HaCaT cell viability after UVB exposure, reduces ROS levels, and upregulates antioxidant enzymes, including SOD1, HO-1, and NQO-1, while concurrently suppressing the expression of inflammatory mediators such as COX-2, IL-6, and IL-8. Additionally, orientin promotes AMPK phosphorylation, which facilitates Nrf2 nuclear translocation, thereby enhancing the antioxidant defense of cells. This effect is diminished upon inhibition of AMPK or Nrf2. In the BALB/c mouse model of photodamage, topical application of orientin alleviates symptoms like skin roughness, scaling, and erythema induced by UVB irradiation, while also elevating antioxidant enzyme expression in skin tissues. These findings suggest that orientin mitigates ultraviolet-induced skin photodamage both in vitro and in vivo, boosts cellular antioxidant capacity, and diminishes inflammatory responses, suggesting its potential for further exploration in skin photodamage management.
Collapse
Affiliation(s)
- Ting Ma
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Department of Dermatology, Guizhou Provincial People's Hospital, Guiyang 550000, Guizhou Province, China; Molecular Biology Laboratory, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Jing He
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Qiu Long
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Ye Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Feng Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Shaojie Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Kexin Xu
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yu Cao
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China.
| |
Collapse
|
3
|
Ma Y, Li C, Su W, Sun Z, Gao S, Xie W, Zhang B, Sui L. Carotenoids in Skin Photoaging: Unveiling Protective Effects, Molecular Insights, and Safety and Bioavailability Frontiers. Antioxidants (Basel) 2025; 14:577. [PMID: 40427459 PMCID: PMC12108434 DOI: 10.3390/antiox14050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Skin photoaging, driven primarily by ultraviolet radiation, remains a critical dermatological concern. Carotenoids, a class of natural pigments with potent antioxidant properties, have emerged as promising agents for preventing and mitigating photoaging. This review comprehensively integrates current understanding regarding the triggers of skin photoaging, oxidative stress and their associated signal pathways, the photoprotective roles and mechanisms of carotenoids, as well as their bioavailability. Common C40 carotenoids, such as β-carotene, lycopene, astaxanthin, lutein, and zeaxanthin demonstrate remarkable antioxidant activity, primarily attributed to their conjugated double bond structures. Many studies have demonstrated that both oral and topical administration of these C40 carotenoids can effectively alleviate skin photoaging. Specifically, they play a crucial role in promoting the formation of a new skin barrier and enhancing the production of collagen and elastin, key structural proteins essential for maintaining skin integrity and elasticity. Mechanistically, these carotenoids combat photoaging by effectively scavenging reactive oxygen species and modulating oxidative stress responsive signal pathways, including MAPK, Nrf2, and NF-κB. Notably, we also anticipate the anti-photoaging potential of novel carotenoids, with a particular emphasis on bacterioruberin, a C50 carotenoid derived from halophilic archaea. Bacterioruberin exhibits a superior radical scavenging capacity, outperforming the conventional C40 carotenoids. Furthermore, when considering the application of carotenoids, aspects such as safe dosage, bioavailability, and possible long term usage issues, including allergies and pigmentation disorders, must be taken into account. This review underscores the anti-photoaging mechanism of carotenoids, providing strategies and theoretical basis for the prevention and treatment of photoaging.
Collapse
Affiliation(s)
- Yingchao Ma
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin 300457, China; (Y.M.); (W.X.)
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China; (C.L.); (W.S.); (Z.S.); (S.G.)
| | - Chengxiang Li
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China; (C.L.); (W.S.); (Z.S.); (S.G.)
| | - Wanping Su
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China; (C.L.); (W.S.); (Z.S.); (S.G.)
| | - Zhongshi Sun
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China; (C.L.); (W.S.); (Z.S.); (S.G.)
| | - Shuo Gao
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China; (C.L.); (W.S.); (Z.S.); (S.G.)
| | - Wei Xie
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin 300457, China; (Y.M.); (W.X.)
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China; (C.L.); (W.S.); (Z.S.); (S.G.)
| | - Bo Zhang
- Tsinghua University Institute of TCM-X, Beijing 100084, China;
| | - Liying Sui
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin 300457, China; (Y.M.); (W.X.)
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China; (C.L.); (W.S.); (Z.S.); (S.G.)
| |
Collapse
|
4
|
Qin X, Zhai J, Zhou C, Wang Y, Chen M, Zhu L, Shi Q, Chen W, Zhang L, Luo X, Li K. A Randomized, Investigator-Blinded, Split-Face, Controlled Trial Assessing Efficacy and Satisfaction of CE Ferulic Serum Following Nonablative Fractional Fraxel Laser Treatment for Photoaging Skin in Chinese Population. J Cosmet Dermatol 2025; 24:e70251. [PMID: 40414817 DOI: 10.1111/jocd.70251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/07/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Following Nonablative fractional Fraxel laser (NAFL), a well-established treatment for skin rejuvenation, immediate post-procedural care is essential to address any potential complications and accelerate the healing process. AIMS To evaluate the efficacy and patient satisfaction of a topical skincare regimen containing vitamin C, vitamin E, and ferulic acid-CE Ferulic serum (CEF) following NAFL treatment in the Chinese population. METHODS In this randomized, investigator-blinded, split-face, controlled trial, patients with mild-to-moderate facial photodamage were randomized to receive CEF treatment on one side of the face and normal saline (NS) on the other side immediately after the NAFL procedure and daily during the 7-day follow-up. The primary endpoint was the change from baseline in erythema score on Day 7, with key secondary endpoints including changes from baseline in erythema index (EI), melanin index (MI), transepidermal water loss, skin hydration, skin sebum content, scabbing, edema, overall patient satisfaction, and post-procedure pain. RESULTS In total, 50 patients (female 45/50) were enrolled in this study, with a mean age of 31.6 years. The mean change from baseline in erythema score was significantly lower on the CEF side than on the NS side on Day 7 post-NAFL treatment (0.04 ± 0.40 vs. 0.18 ± 0.48, p = 0.011). The CEF side also exhibited improved changes in EI, MI, and skin hydration, as well as higher overall satisfaction and less pain compared with the NS side. CONCLUSIONS Applying CEF after NAFL treatment reduced erythema progression, maintained skin hydration, and promoted the healing process compared with NS. TRIAL REGISTRATION Chinese Clinical Trial Registry: ChiCTR2300069246.
Collapse
Affiliation(s)
| | | | - Chenxi Zhou
- Dexi Cosmetic Clinic, Deyi Skin Institution, Xi'an, China
| | | | | | - Lin Zhu
- Deyue Clinic, Shenzhen, China
| | - Qi Shi
- Deyue Clinic, Shenzhen, China
| | - Weiliang Chen
- Dexi Cosmetic Clinic, Deyi Skin Institution, Xi'an, China
| | - Liyuan Zhang
- Dexi Cosmetic Clinic, Deyi Skin Institution, Xi'an, China
| | - Xiao Luo
- Dexi Cosmetic Clinic, Deyi Skin Institution, Xi'an, China
| | - Kai Li
- Dexi Cosmetic Clinic, Deyi Skin Institution, Xi'an, China
| |
Collapse
|
5
|
Kaltchenko MV, Chien AL. Photoaging: Current Concepts on Molecular Mechanisms, Prevention, and Treatment. Am J Clin Dermatol 2025; 26:321-344. [PMID: 40072791 DOI: 10.1007/s40257-025-00933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Photoaging is the consequence of chronic exposure to solar irradiation, encompassing ultraviolet (UV), visible, and infrared wavelengths. Over time, this exposure causes cumulative damage, leading to both aesthetic changes and structural degradation of the skin. These effects manifest as rhytids, dyschromia, textural changes, elastosis, volume loss, telangiectasias, and hyperkeratosis, collectively contributing to a prematurely aged appearance that exceeds the skin's chronological age. The hallmarks of photoaging vary significantly by skin phototype. Skin of color tends to exhibit dyschromia and features associated with "intrinsic" aging, such as volume loss, while white skin is more prone to "extrinsic" aging characteristics, including rhytids and elastosis. Moreover, susceptibility to different wavelengths within the electromagnetic spectrum also differs by skin phototype, influencing the clinical presentation of photoaging, as well as prevention and treatment strategies. Fortunately, photoaging-and its associated adverse effects-is largely preventable and, to some extent, reversible. However, effective prevention and treatment strategies require careful tailoring to an individual's skin type. In this review, we summarize molecular mechanisms underlying photoaging, examine its clinical manifestations, outline risk factors and prevention strategies, and highlight recent advancements in its treatment.
Collapse
Affiliation(s)
- Maria V Kaltchenko
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna L Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Gomes August EM, Horn PA, Cavichioli N, Rebelo AM, Reinke CK, Zeni ALB. Seasonal Phenolic Profile, Antioxidant, and Photoprotective Activities of Psidium guajava L. Leaves. Chem Biodivers 2025; 22:e202402852. [PMID: 39737645 DOI: 10.1002/cbdv.202402852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/01/2025]
Abstract
This study aimed to evaluate the phytochemicals from extracts of Psidium guajava L. leaves (P. guajava extract [PGE]) and its antioxidant and photoprotective effects. PGE showed constant production of total phenolics and maintained high antioxidant capacity across seasons and years. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis revealed the phenolic compounds quercetin, catechin, gallic acid, epicatechin, vanillic acid, and syringic acid, as well as two new compounds, syringaldehyde and ferulic acid. The high sun protection factor (SPF) was observed in all seasons. The phytochemicals ferulic acid, syringic acid, and quercetin were correlated with cloudiness and humidity. Antioxidant activity was correlated with vanillic acid, ascorbic acid, flavonoids, and tannins, and SPF with temperature, antioxidant activity, flavonoids, vanillic acid, gallic acid, and catechin. The formulations containing UVA/UVB filters or not, plus aqueous autumn extract, showed an increase in SPF. Therefore, the results suggested that PGE has potential photoprotective and antioxidant agents for the production of new sunscreen formulations with environmental and health benefits.
Collapse
Affiliation(s)
- Elaine Mara Gomes August
- Laboratório Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
- Programa de Pós-Graduação em Química, Departamento de Química, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Priscila Aparecida Horn
- Laboratório Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Natalia Cavichioli
- Laboratório Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Andrey Martinez Rebelo
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina-EPAGRI, Itajai, Santa Catarina, Brazil
| | - Cássia Katrin Reinke
- Serviço Nacional de Aprendizagem Industrial-SENAI, Instituto SENAI de Tecnologia Ambiental, Blumenau, Santa Catarina, Brazil
| | - Ana Lúcia Bertarello Zeni
- Laboratório Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| |
Collapse
|
7
|
Han SH, Suh HJ, Lee SJ, Chang YB. Synergistic effects of oral milk ceramide-collagen peptides mixtures in preventing UV-induced inflammation and photoaging through TGF-β and NF-κB/MAPK signaling pathways in UV-exposed hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 268:113171. [PMID: 40319715 DOI: 10.1016/j.jphotobiol.2025.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
This study investigates the synergistic effects of oral milk ceramide-collagen peptides in inhibiting UV-induced inflammation and preventing photoaging. The optimal ratio of milk ceramide to collagen peptides was determined in HaCaT cells, and the effects of oral supplementation of milk ceramide-collagen peptides were evaluated in UV-exposed hairless mice. HaCaT cells did not exhibit cytotoxicity when treated with milk ceramide and collagen peptides at concentrations up to 200 μg/mL. UVB exposure decreased cell viability, but treatment with the milk ceramide-collagen peptides mixtures (1:1, 1:3) prevented further viability loss and improved collagen peptides synthesis markers, including MMPs and TIMPs. The combination also enhanced moisture-related factors (AQP3, FLG) and reduced inflammatory cytokines (IL-6, IL-1β) and COX expression. In hairless mice, oral supplementation of milk ceramide-collagen peptides mixture (1:1 ratio) improved skin hydration, reduced erythema, TEWL, skin thickness, and wrinkle formation in a dose-dependent manner. The treatment also suppressed the expression of MMPs and TIMPs, promoting collagen peptides synthesis. Furthermore, the mixtures regulated NF-κB and MAPK signaling pathways, reducing inflammation and photoaging. These results suggest that the 1:1 milk ceramide-collagen peptides mixture effectively prevents UV-induced skin damage and photoaging by enhancing collagen peptides production and improving skin barrier function.
Collapse
Affiliation(s)
- Sung Hee Han
- Institute of Human Behavior & Genetics, Korea University, 02841 Seoul, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Sang Jun Lee
- Holistic Bio Co., Ltd, 13494 Seongnam, Republic of Korea
| | - Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Chylińska N, Maciejczyk M. Hyaluronic Acid and Skin: Its Role in Aging and Wound-Healing Processes. Gels 2025; 11:281. [PMID: 40277717 PMCID: PMC12026949 DOI: 10.3390/gels11040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Hyaluronic acid (HA) is a linear, unbranched polysaccharide classified as a glycosaminoglycan. While HA is found in various tissues throughout the body, over half of its total proportion is found in the skin. The role of HA in the skin is complex and multifaceted. HA maintains proper hydration, elasticity, and skin firmness, serving as a key extracellular matrix (ECM) component. With age, HA production gradually decreases, leading to reduced water-binding capacity, drier and less elastic skin, and the formation of wrinkles. Additionally, HA plays an active role in the wound-healing process at every stage. This review summarizes the current background knowledge about the role of HA in skin aging and wound healing. We discuss the latest applications of HA in aging prevention, including anti-aging formulations, nutricosmetics, microneedles, nanoparticles, HA-based fillers, and skin biostimulators. Furthermore, we explore various HA-based dressings used in wound treatment, such as hydrogels, sponges, membranes, and films.
Collapse
Affiliation(s)
- Natalia Chylińska
- Independent Laboratory of Cosmetology, Medical University of Białystok, Akademicka 3, 15-267 Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Mickiewicza 2c, 15-022 Bialystok, Poland;
| |
Collapse
|
9
|
Guo J, Zhang SS, Gao J, Guo Y, Ho CT, Bai N. The genus Fraxinus L. (Oleaceae): A review of botany, traditional and modern applications, phytochemistry, and bioactivity. PHYTOCHEMISTRY 2025; 232:114371. [PMID: 39710351 DOI: 10.1016/j.phytochem.2024.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Fraxinus L., a member of the Oleaceae family with approximately 60 species worldwide, is widely distributed in the warm temperate zone of the northern hemisphere. It is not only used as a folk medicine for treating various illnesses but is also documented in medical books. The traditional Chinese medicine "Qin Pi" originated from this genus and is known for its efficacy in treating conditions such as intestinal inflammation, redness and pain in the eyes, abomination of redness and leucorrhoea, and bacterial infections. This paper aims to fill the gap in the existing literature by providing a comprehensive review and critical analysis of the Fraxinus genus plant. The discussion in this paper covers various aspects of the plant, including its botany, traditional and modern applications, phytochemistry, bioactivity, role in ecosystems, phytogenetic evolution, economic benefits, and future challenges. By synthesizing this information, the review aims to offer valuable insights for the advancement, utilization, and further research of the Fraxinus spp.. Phytochemical studies have identified a total of 281 chemical constituents in Fraxinus spp., including secoiridoids, coumarins, and flavonoids. These Fraxinus spp. plants exhibit a wide range of biological activities, such as anti-inflammatory, antioxidant, and antibacterial properties. Furthermore, this paper delves into potential research directions within the genus and addresses the challenges associated with achieving a comprehensive understanding of Fraxinus spp. This paper provides a comprehensive overview of Fraxinus spp., highlighting their bioactivity mechanism and the opportunity to facilitate the advancement of new pharmaceuticals.
Collapse
Affiliation(s)
- Jianjin Guo
- College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China; College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| | - Shan-Shan Zhang
- College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China; College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Jing Gao
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Naisheng Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
10
|
Wang Y, Shen X, Song S, Chen N, Wang Y, Liao W, Jia C, Zeng L. Evaluation of the Effect of Exosomes From Adipose Derived Stem Cells on Changes in GSH/ROS Levels During Skin Photoaging. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2025; 41:e70009. [PMID: 39835358 DOI: 10.1111/phpp.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Exosomes (Exos) from adipose derived stem cells (ADSCs) can delay skin photoaging, but their effects on reactive oxygen species (ROS) remains unclear. This study aimed to investigate the relationship between adipose derived stem cell exosomes (ADSCs-Exos) in anti-photoaging of skin and glutathione (GSH)/ ROS expression in human fibroblasts. METHODS A skin photoaging model was established by irradiating human fibroblasts with ultraviolet B (UVB) light in vitro. Next, exosomes from ADSCs were isolated for treating the photoaged fibroblasts. Afterwards, the alterations in photoaged fibroblasts were analyzed by a series of assays including senescence-associated β-galactosidase (SA-β-Gal) staining, p16 expression, ROS staining, and GSH content. RESULTS After a human fibroblast photoaging model was subjected to ADSCs-Exos treatment, we found that the high concentration exosome group had the highest GSH content. Cellular staining showed that levels of SA-β-Gal, p16, and ROS of the high concentration-treated group were lower than other groups. CONCLUSIONS ADSCs-Exos can protect skin fibroblasts from photoaging via increasing the ratio of GSH/ROS.
Collapse
Affiliation(s)
- Yiping Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, China
| | - Xu Shen
- Medical Cosmetology Department, The First People's Hospital of Changde City, Changde, China
| | - Shenghua Song
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, China
- Burns & Plastic Surgery Department, Dongguan Tungwah Hospital, Dongguan, China
| | - Nian Chen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, China
| | - Yihao Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, China
| | - Wanxing Liao
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, China
| | - Chiyu Jia
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, China
| | - Li Zeng
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
11
|
Hu X, Du S, Chen M, Yang H, He J, Zhang L, Tan B, Wu T, Duan X. Single-Cell Sequencing Combined with Transcriptome Sequencing to Explore the Molecular Mechanisms Related to Skin Photoaging. J Inflamm Res 2024; 17:11137-11160. [PMID: 39713718 PMCID: PMC11662644 DOI: 10.2147/jir.s496328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
Background The aging of skin is a diversified biological phenomenon, influenced by a combination of genetic and environmental factors. However, the specific mechanism of skin photoaging is not yet completely elucidated. Methods Gene expression profiles for photoaging patients were obtained from the Gene Expression Omnibus (GEO) collection. We conducted single-cell and intercellular communication investigations to identify potential gene sets. Predictive models were created using LASSO regression. The relationships between genes and immune cells were investigated using single sample gene set enrichment analysis (ssGSEA) and gene set variance analysis (GSVA). The molecular processes of important genes were studied using gene enrichment analysis. A miRNA network was created to look for target miRNAs connected with important genes, and transcriptional regulation analysis was used to identify related transcription factors. Finally, merging gene co-expression networks with drug prediction shows molecular pathways of photoaging and potential treatment targets. Furthermore, we validated the role of key genes, immune cell infiltration, and the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway in photoaging, which were identified through bioinformatics analysis, using in vivo reverse transcription quantitative PCR (RT-qPCR), immunofluorescence labeling, and Western blotting. Results This study discovered three key genes, including Atp2b1, Plekho2, and Tspan13, which perform crucial functions in the photoaging process. Immune cell infiltration analysis showed increased M1 macrophages and CD4 memory T cells in the photoaging group. Further signaling pathway analysis indicated that these key genes are enriched in multiple immune and metabolic pathways. The significant roles of Atp2b1, Plekho2, Tspan13, M1 macrophages infiltration, CD4 memory T cells infiltration and the AMPK pathway in photoaging was validated in vivo. Conclusion This research revealed the underlying molecular mechanisms of photoaging, indicating that key genes such as Atp2b1 and Tspan13 play crucial roles in the regulation of immune cell infiltration and metabolic pathways. These findings provide a new theory for the treatment of photoaging and provide prospective targets for the advancement of relevant drugs.
Collapse
Affiliation(s)
- Xinru Hu
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Shuang Du
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Meng Chen
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Hao Yang
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Jia He
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Lei Zhang
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Bowen Tan
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Tao Wu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Xi Duan
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| |
Collapse
|
12
|
Podgórska A, Kicman A, Wacewicz-Muczyńska M, Konończuk T, Niczyporuk M. Evaluating the Effects of Laser Treatments on Visible Changes in the Photoaging Process of the Skin Using Specialized Measuring Devices. J Clin Med 2024; 13:7439. [PMID: 39685897 DOI: 10.3390/jcm13237439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/17/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: The skin is the largest organ of the human body and is exposed to the aging process (not only chronological aging, but also photoaging). One of the methods used to correct visible skin changes due to photoaging is lasers. The aim of this study was to objectively evaluate the effect of Q-switched laser treatments on visible changes in the photoaging process among women using specialized measuring devices-ultrasound and Courage & Khazaka. Methods: The study included 36 women with visible signs of photoaged skin. The women were given a series of three treatments with a Fotona QX MAX fractional head laser. Both before and after the treatment, the women were examined for selected skin parameters with the help of specialized measuring devices such as Courage & Khazaka and skin ultrasound. Skin firmness and elasticity, the degree of hydration, TEWL and HL TOTAL levels, and MEP and HEP skin echogenicity were taken into account. The obtained results were tabulated and statistically analyzed. Results: Statistically significant differences were noted for parameters representing skin elasticity R2 [p = 0.0210] and R7 [p = 0.0302], TEWL [p = 0.0152] and HL TOTAL [p = 0.0367] on the forehead, and HL TOTAL [p = 0.0450] on the cheek. In addition, statistically significant differences were observed in the MEP/TP parameter on the forehead and cheek [p = 0.0236, 0.0475, respectively] and HEP/TP in the forehead area [p = 0.0367]. Conclusions: Q-switched laser treatments have a positive effect on the condition of women's skin. Therapy with this laser reduces the visible changes in the photoaging process in the face.
Collapse
Affiliation(s)
- Aleksandra Podgórska
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Białystok, Poland
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Białystok, Poland
| | | | | | - Marek Niczyporuk
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Białystok, Poland
| |
Collapse
|
13
|
Vukajlović JT, Djordjević K, Tosti T, Simić I, Grbović F, Milošević-Djordjević O. In vitro effect of Lenzites betulinus mushroom against therapy-induced DNA damage in peripheral blood lymphocytes of patients with acute coronary syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118640. [PMID: 39084274 DOI: 10.1016/j.jep.2024.118640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute coronary syndrome (ACS) represents a group of diseases that are the result of reduced blood flow to the heart. There are natural products, based on mushrooms, used traditionally in the treatment of cardiovascular diseases. AIM OF THE STUDY Assessment of the potential protective effect of L. betulinus mushroom against therapy-induced DNA damage in lymphocytes of patients with ACS in relation to the phytochemical properties of the mushroom. MATERIALS AND METHODS The study included 30 ACS patients and 30 healthy controls. The genotoxic potential of acetone and ethanol extract of L. betulinus was evaluated using the comet assay. The contents of minerals were determined by inductively coupled plasma optical emission spectrometry. Determination of sugars and organic acids was performed using a DIONEX ICS 3000 DP liquid chromatography system. Analysis of fatty acids was performed at Focus GC coupled with PolarisQ mass spectrometer. The total phenolic and flavonoid contents in the mushroom extracts were measured using spectrophotometric methods. The qualitative and quantitative content of polyphenolic compounds was investigated by the UHPLC-DADMS/MS method. RESULTS The comet assay showed that both mushroom extracts did not increase the level of DNA damage in the lymphocytes of healthy individuals, while they significantly decreased the %DNA damage and genetic damage index (p < 0.0005) in the therapy-induced lymphocytes of patients. The mushroom was very rich in phytochemical composition. The results showed that the most abundant components in the mushroom were phosphorus, potassium, sodium, sulfur, and calcium among minerals and glucose, fructose, galactose, sorbitol, and turanose among carbohydrates. Among organic acids were present in higher concentrations malic, citric, and maleic acids, while among fatty acids, the most abundant were trans-linoleic, cis-oleic, palmitic, docosahexaenoic and eicosadienoic acids. The results showed that the highest amount of total phenols and flavonoids in the mushroom extracts were obtained in the acetone extract. The most abundant polyphenolic compounds were chlorogenic acid and quercetin in both extracts of mushroom. CONCLUSIONS This study indicates that L. betulinus can be considered a mushroom with a high nutritional and functional value. Extracts of the mushroom were not genotoxic in tested concentrations in cultured human lymphocytes of healthy individuals, while in ACS patients they manifested a protective effect against therapy-induced DNA damage. The acetone extract showed a stronger protective effect against therapy-induced DNA damage, which is consistent with its phytochemical composition.
Collapse
Affiliation(s)
- Jovana Tubić Vukajlović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, 34000, Kragujevac, Serbia
| | - Katarina Djordjević
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, 34000, Kragujevac, Serbia
| | - Tomislav Tosti
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, 11158, Belgrade, Serbia
| | - Ivan Simić
- University of Kragujevac, Faculty of Medical Sciences, Department of Internal Medicine, 34000, Kragujevac, Serbia; University Clinical Center Kragujevac, Department of Cardiology, 34000, Kragujevac, Serbia
| | - Filip Grbović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, 34000, Kragujevac, Serbia
| | - Olivera Milošević-Djordjević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, 34000, Kragujevac, Serbia; University of Kragujevac, Faculty of Medical Sciences, Department of Genetics, 34000, Kragujevac, Serbia.
| |
Collapse
|
14
|
Sun J, Jiang Y, Fu J, He L, Guo X, Ye H, Yin C, Li H, Jiang H. Beneficial Effects of Epigallocatechin Gallate in Preventing Skin Photoaging: A Review. Molecules 2024; 29:5226. [PMID: 39598619 PMCID: PMC11596539 DOI: 10.3390/molecules29225226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Skin photoaging, primarily caused by ultraviolet (UV) radiation, leads to skin metabolic disorders, which have adverse psychological and physiological effects on individuals. However, traditional medications for repairing skin photoaging cause side effects. Natural bioactive compounds have been shown to prevent and treat skin photoaging with fewer side effects. Epigallocatechin gallate (EGCG), the main substance in tea polyphenols, is a natural bioactive compound with a range of properties. This review summarizes the beneficial effects and mechanisms of EGCG, as well as the application forms of EGCG in repairing photoaged skin. Results indicated that EGCG has repair effects, including improving elasticity, enhancing moisturization, inhibiting damage, and reducing pigmentation of photoaged skin. It has also been demonstrated that EGCG delivery systems, modified EGCG, and combinations with other bioactive substances could be used for repairing photoaged skin due to its poor stability and low bioavailability. EGCG effectively repairs various types of skin damage caused by UV radiation while maintaining normal skin structure and function. It is, therefore, an effective candidate for repairing photoaged skin. These results could provide references for the development and application of EGCG products for the treatment of photoaged skin.
Collapse
Affiliation(s)
- Jiaqiang Sun
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.S.); (J.F.); (X.G.); (H.Y.); (C.Y.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| | - Yuelu Jiang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.J.); (H.L.)
| | - Jing Fu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.S.); (J.F.); (X.G.); (H.Y.); (C.Y.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
- Key Laboratory of Special Economic Animal and Plant Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Linlin He
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.S.); (J.F.); (X.G.); (H.Y.); (C.Y.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| | - Xinmiao Guo
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.S.); (J.F.); (X.G.); (H.Y.); (C.Y.)
| | - Hua Ye
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.S.); (J.F.); (X.G.); (H.Y.); (C.Y.)
| | - Cuiyuan Yin
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.S.); (J.F.); (X.G.); (H.Y.); (C.Y.)
| | - Hongbo Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.J.); (H.L.)
| | - Heyuan Jiang
- Key Laboratory of Special Economic Animal and Plant Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
15
|
Guo X, He L, Sun J, Ye H, Yin C, Zhang W, Han H, Jin W. Exploring the Potential of Anthocyanins for Repairing Photoaged Skin: A Comprehensive Review. Foods 2024; 13:3506. [PMID: 39517290 PMCID: PMC11545459 DOI: 10.3390/foods13213506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Long-term exposure to ultraviolet (UV) rays can result in skin photoaging, which is primarily characterized by dryness, roughness, pigmentation, and a loss of elasticity. However, the clinical drugs commonly employed to treat photoaged skin often induce adverse effects on the skin. Anthocyanins (ACNs) are water-soluble pigments occurring abundantly in various flowers, fruits, vegetables, and grains and exhibiting a range of biological activities. Studies have demonstrated that ACNs contribute to the repair of photoaged skin due to their diverse biological characteristics and minimal side effects. Evidence suggests that the stability of ACNs can be enhanced through encapsulation or combination with other substances to improve their bioavailability and permeability, ultimately augmenting their efficacy in repairing photoaged skin. A growing body of research utilizing cell lines, animal models, and clinical studies has produced compelling data demonstrating that ACNs mitigate skin photoaging by reducing oxidative stress, alleviating the inflammatory response, improving collagen synthesis, alleviating DNA damage, and inhibiting pigmentation. This review introduces sources of ACNs while systematically summarizing their application forms as well as mechanisms for repairing photoaged skin. Additionally, it explores the potential role of ACNs in developing functional foods. These findings may provide valuable insight into using ACNs as promising candidates for developing functional products aimed at repairing photoaged skin.
Collapse
Affiliation(s)
- Xinmiao Guo
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Linlin He
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Jiaqiang Sun
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Hua Ye
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Cuiyuan Yin
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Weiping Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
| | - Hao Han
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Black Organic Food Engineering Center, Shaanxi University of Technology, Hanzhong 723001, China
| | - Wengang Jin
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
16
|
Barolet AC, Magne B, Barolet D, Germain L. Differential Nitric Oxide Responses in Primary Cultured Keratinocytes and Fibroblasts to Visible and Near-Infrared Light. Antioxidants (Basel) 2024; 13:1176. [PMID: 39456430 PMCID: PMC11504005 DOI: 10.3390/antiox13101176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
NO is a crucial signaling molecule involved in skin health, the immune response, and the protection against environmental stressors. This study explores how different wavelengths of light, namely blue (455 nm), red (660 nm), and near infrared (NIR, 850 nm), affect nitric oxide (NO) production in skin cells. Primary keratinocytes and fibroblasts from three donors were exposed to these wavelengths, and NO production was quantified using a DAF-FM fluorescent probe. The results demonstrated that all three wavelengths stimulated NO release, with blue light showing the most pronounced effect. Specifically, blue light induced a 1.7-fold increase in NO in keratinocytes compared to red and NIR light and a 2.3-fold increase in fibroblasts compared to red light. Notably, fibroblasts exposed to NIR light produced 1.5 times more NO than those exposed to red light, while keratinocytes consistently responded more robustly across all wavelengths. In conclusion, blue light significantly boosts NO production in both keratinocytes and fibroblasts, making it the most effective wavelength. Red and NIR light, while less potent, also promote NO production and could serve as complementary therapeutic options, particularly for minimizing potential photoaging effects.
Collapse
Affiliation(s)
- Augustin C. Barolet
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.C.B.); (B.M.)
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Centre, Quebec City, QC G1J 1Z4, Canada
- RoseLab Skin Optics Research Laboratory, Laval, QC H7T 0G3, Canada;
| | - Brice Magne
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.C.B.); (B.M.)
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Centre, Quebec City, QC G1J 1Z4, Canada
| | - Daniel Barolet
- RoseLab Skin Optics Research Laboratory, Laval, QC H7T 0G3, Canada;
- Dermatology Division, Department of Medicine, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.C.B.); (B.M.)
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Centre, Quebec City, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
17
|
Achmad AA, Tangdilintin F, Stephanie, Enggi CK, Sulistiawati, Rifai Y, Aliyah, Permana AD, Manggau MA. Development of dissolving microneedles loaded with fucoidan for enhanced anti-aging activity: An in vivo study in mice animal model. Eur J Pharm Biopharm 2024; 202:114362. [PMID: 38871091 DOI: 10.1016/j.ejpb.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Skin aging occurs naturally as essential skin components gradually decline, leading to issues such as fine lines, wrinkles, and pigmentation. Fucoidan, a natural bioactive compound, holds potential for addressing these age-related concerns. However, its hydrophilic nature and substantial molecular weight hinder its absorption into the skin. In this study, we utilized polyvinyl pyrrolidone K30 (PVP) and polyvinyl alcohol (PVA) as polymers to fabricate dissolving microneedles loaded with fucoidan (DMN-F). The DMN-F formulations were examined for physical characteristics, stability, permeability, toxicity, and efficacy in animal models. These formulations exhibited consistent polymer blends with a conical structure and uniform cone-shaped design. Microneedle structure and penetration capability gradually decreased with increasing fucoidan concentration, with storage recommended at approximately 33 % relative humidity (RH). Ex vivo studies showed that DMN-F efficiently delivered up to 95.03 ± 2.36 % of the total fucoidan concentration into the skin. In vivo investigations revealed that DMN-F effectively reduced wrinkles, improved skin elasticity, maintained moisture levels, and increased epidermal thickness. Histological images provided additional evidence of DMN-F's positive effects on these aging parameters. The results confirm that the DMN-F formulation effectively delivers fucoidan into the skin, allowing it to treat and mitigate signs of aging.
Collapse
Affiliation(s)
| | | | - Stephanie
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Sulistiawati
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Yusnita Rifai
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Aliyah
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| | | |
Collapse
|
18
|
Hu X, Chen M, Nawaz J, Duan X. Regulatory Mechanisms of Natural Active Ingredients and Compounds on Keratinocytes and Fibroblasts in Mitigating Skin Photoaging. Clin Cosmet Investig Dermatol 2024; 17:1943-1962. [PMID: 39224224 PMCID: PMC11368101 DOI: 10.2147/ccid.s478666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Background The mechanism underlying skin photoaging remains elusive because of the intricate cellular and molecular changes that contribute to this phenomenon, which have yet to be elucidated. In photoaging, the roles of keratinocytes and fibroblasts are vital for maintaining skin structure and elasticity. But these cells can get photo-induced damage during photoaging, causing skin morphological changes. Recently, the function of natural active ingredients in treating and preventing photoaging has drawn more attention, with researches often focusing on keratinocytes and fibroblasts. Methods We searched for studies published from 2007 to January 2024 in the Web of Science, PubMed, and ScienceDirect databases through the following keywords: natural plant, natural plant products or phytochemicals, traditional Chinese Medicine or Chinese herbal, plant extracts, solar skin aging, skin photoaging, and skin wrinkling. This review conducted the accordance of Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Results In total, 87 researches were included in this review (Figure 1). In keratinocytes, natural compounds may primarily regulate signal pathways such as the NF-κB, MAPK, PI3K/AKT, and Nrf2/ARE pathways, reducing inflammation and cellular damage, thus slowing skin photoaging. Additionally, in fibroblasts, natural active ingredients primarily promote the TGF-β pathway, inhibit MMPs activity, and enhance collagen synthesis while potentially modulating the mTOR pathway, thereby protecting the dermal collagen network and reducing wrinkle formation. Several trials showed that natural compounds that regulate keratinocytes and fibroblasts responses have significant and safe therapeutic effects. Conclusion The demand for natural product-based ingredients in sunscreen formulations is rising. Natural compounds show promising anti-photoaging effects by targeting cellular pathways in keratinocytes and fibroblasts, providing potential therapeutic strategies. However, comprehensive clinical studies are needed to verify their efficacy and safety in mitigating photoaging, which should use advanced pharmacological methods to uncover the complex anti-photoaging mechanisms of natural compounds.
Collapse
Affiliation(s)
- Xinru Hu
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Meng Chen
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Jahanzeb Nawaz
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Xi Duan
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| |
Collapse
|
19
|
Liu K, Zhao C, Zhang K, Yang X, Feng R, Zong Y, He Z, Zhao Y, Du R. Pilose Antler Protein Relieves UVB-Induced HaCaT Cells and Skin Damage. Molecules 2024; 29:4060. [PMID: 39274908 PMCID: PMC11397021 DOI: 10.3390/molecules29174060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Extended exposure to UVB (280-315 nm) radiation results in oxidative damage and inflammation of the skin. Previous research has demonstrated that pilose antler extracts have strong anti-inflammatory properties and possess antioxidant effects. This study aimed to elucidate the mechanism of pilose antler protein in repairing photodamage caused by UVB radiation in HaCaT cells and ICR mice. Pilose antler protein (PAP) was found to increase the expression of type I collagen and hyaluronic acid in HaCaT cells under UVB irradiation while also inhibiting reactive oxygen species (ROS) production and oxidative stress in vitro. In vivo, the topical application of pilose antler protein effectively attenuated UVB-induced skin damage in ICR mice by reducing interleukin-1β (IL-β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and inhibiting skin inflammation while alleviating UVB-induced oxidative stress. It was shown that pilose antler protein repaired UVB-induced photodamage through the MAPK and TGF-β/Smad pathways.
Collapse
Affiliation(s)
- Kaiyue Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chenxu Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ke Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoyue Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ruyi Feng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
20
|
Peng B, Hao Y, Chen Y, Yu S, Qu L. Chemical constituents and bioactivities of fermented rose (from Yunnan) extract. Nat Prod Res 2024:1-8. [PMID: 38967008 DOI: 10.1080/14786419.2024.2371995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Natural plant extracts have gained significant attention in research due to their low toxicity, and potent antioxidant, and anti-aging properties. The present study investigated the phytochemical composition of a fermented rose extract (FRE), and evaluated its antioxidant, skin whitening, and anti-aging activities in vitro. The results showed that the FRE was rich in polyphenols and flavonoids. A total of 13 major compounds were identified by Liquid Chromatography-Mass Spectrometry (LC-MS), with astragalin as the primary component. In vitro, analysis of antioxidant activity showed that FRE effectively eliminated 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and dose-dependent reduced intracellular reactive oxygen species (ROS) levels. The FRE dose-dependent inhibited tyrosinase, collagenase, and hyaluronidase activity, reduced intracellular melanin synthesis, up-regulated the expression of collagen type I alpha 1 (COL1A1) and collagen type III alpha 1 (COL3A1), and down-regulated matrix metalloproteinases (MMPs) expression. Additionally, treatment with FRE significantly downregulated the expression of mitogen-activated protein kinase 1 (MAPK1), suggesting that FRE may modulate MAPK signaling pathways for skin anti-aging.
Collapse
Affiliation(s)
- Bo Peng
- Yunnan Botanee Bio-technology Group Co., Ltd, Kunming, China
| | - Yining Hao
- Yunnan Botanee Bio-technology Group Co., Ltd, Kunming, China
| | - Yueyue Chen
- Yunnan Botanee Bio-technology Group Co., Ltd, Kunming, China
| | - Shishuai Yu
- Yunnan Botanee Bio-technology Group Co., Ltd, Kunming, China
| | - Liping Qu
- Yunnan Botanee Bio-technology Group Co., Ltd, Kunming, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd, Kunming, China
| |
Collapse
|
21
|
Cho EC, Ahn S, Shin KO, Lee JB, Hwang HJ, Choi YJ. Protective Effect of Red Light-Emitting Diode against UV-B Radiation-Induced Skin Damage in SKH:HR-2 Hairless Mice. Curr Issues Mol Biol 2024; 46:5655-5667. [PMID: 38921009 PMCID: PMC11202801 DOI: 10.3390/cimb46060338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
In this in vivo study on hairless mice, we examined the effects of light-emitting diode (LED) treatment applied prior to ultraviolet B (UVB) irradiation. We found that pre-treating with LED improved skin morphological and histopathological conditions compared to those only exposed to UVB irradiation. In our study, histological evaluation of collagen and elastic fibers after LED treatment prior to UVB irradiation showed that this pretreatment significantly enhanced the quality of fibers, which were otherwise poor in density and irregularly arranged due to UV exposure alone. This suggests that LED treatment promotes collagen and elastin production, leading to improved skin properties. Additionally, we observed an increase in Claudin-1 expression and a reduction in nuclear factor-erythroid 2-related factor 2 (Nrf-2) and heme-oxygenase 1 (HO-1) expression within the LED-treated skin tissues, suggesting that LED therapy may modulate key skin barrier proteins and oxidative stress markers. These results demonstrate that pretreatment with LED light can enhance the skin's resistance to UVB-induced damage by modulating gene regulation associated with skin protection. Further investigations are needed to explore the broader biological effects of LED therapy on other tissues such as blood vessels. This study underscores the potential of LED therapy as a non-invasive approach to enhance skin repair and counteract the effects of photoaging caused by UV exposure.
Collapse
Affiliation(s)
- Eun-Chae Cho
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea; (E.-C.C.); (S.A.)
| | - Surin Ahn
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea; (E.-C.C.); (S.A.)
| | - Kyung-Ok Shin
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea;
| | | | - Hyo-Jeong Hwang
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Yean-Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea;
| |
Collapse
|
22
|
Mo X, Chen X, Pan X, Lu Y, Pan G, Xie J, Pan Z, Li L, Tian H, Li Y. Protective effect of Helianthus annuus seed byproduct extract on ultraviolet radiation-induced injury in skin cells. Photochem Photobiol 2024; 100:756-771. [PMID: 37727996 DOI: 10.1111/php.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Helianthus annuus seed byproduct is a residual product obtained after seed oil extraction. The present study investigated the preventive and repair effects of the H. annuus seed byproduct ethanol extract (HSE) on ultraviolet radiation (UVR)-induced injury in human immortalized keratinocytes (HaCaTs) and human skin fibroblasts (HSFs). Results revealed that the total phenolic acid and oligosaccharide content in HSE was >50%. HSE had a stronger preventive effect on UVR-induced injury than the repair effect. Moreover, phenolic acids were the main active component of HSE mediating the preventative effect. In HaCaTs and HSFs, HSE prevented UVR-induced injury by inhibiting excessive ROS production. It reduced the secretion of tumor necrosis TNF-α, IL-1α, IL-1β, IL-6, and IL-8 by inhibiting the level of ROS, thus reducing inflammation-mediated injury to skin cells. In addition, HSE inhibited the expression of various mRNA kinases in the MAPK-ERK/p38/JNK pathway. This downregulated the expression of activator protein-1 (AP-1) mRNA and further reduced the secretion of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-9 as well as reduced UVR-induced injury to the cells. In conclusion, HSE is a broad-spectrum, natural UV filter with high efficiency and low toxicity that has the potential to be used in sunscreen products.
Collapse
Affiliation(s)
- Xiaoying Mo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaochun Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaojiao Pan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yantong Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Guangjuan Pan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jielan Xie
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhenzhen Pan
- Key Laboratory of TCM Extraction and Purification and Quality Analysis (Guangxi University of Chinese Medicine), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
- National Demonstration Center for Experimental Traditional Chinese Pharmacology (Guangxi University of Chinese Medicine), Nanning, China
| | - Li Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Hui Tian
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yaohua Li
- Key Laboratory of TCM Extraction and Purification and Quality Analysis (Guangxi University of Chinese Medicine), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
- National Demonstration Center for Experimental Traditional Chinese Pharmacology (Guangxi University of Chinese Medicine), Nanning, China
| |
Collapse
|
23
|
Sharma P, Dhiman T, Negi RS, OC A, Gupta K, Bhatti JS, Thareja S. A comprehensive review of the molecular mechanisms driving skin photoaging and the recent advances in therapeutic interventions involving natural polyphenols. SOUTH AFRICAN JOURNAL OF BOTANY 2024; 166:466-482. [DOI: 10.1016/j.sajb.2024.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
24
|
Zhong X, Deng Y, Yang H, Du X, Liu P, Du Y. Role of autophagy in skin photoaging: A narrative review. Medicine (Baltimore) 2024; 103:e37178. [PMID: 38394552 PMCID: PMC11309671 DOI: 10.1097/md.0000000000037178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
As the largest organ of the human body, the skin serves as the primary barrier against external damage. The continuous increase in human activities and environmental pollution has resulted in the ongoing depletion of the ozone layer. Excessive exposure to ultraviolet (UV) radiation enhances the impact of external factors on the skin, leading to photoaging. Photoaging causes physical and psychological damage to the human body. The prevention and management of photoaging have attracted increased attention in recent years. Despite significant progress in understanding and mitigating UV-induced photoaging, the precise mechanisms through which autophagy contributes to the prevention of photoaging remain unclear. Given the important role of autophagy in repairing UV-induced DNA damage and scavenging oxidized lipids, autophagy is considered a novel strategy for preventing the occurrence of photoaging and other UV light-induced skin diseases. This review aims to elucidate the biochemical and clinical features of photoaging, the relationship of skin photoaging and chronological aging, the mechanisms underlying skin photoaging and autophagy, and the role of autophagy in skin photoaging.
Collapse
Affiliation(s)
- Xiaojiao Zhong
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ying Deng
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongqiu Yang
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoshuang Du
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ping Liu
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yu Du
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
25
|
Geng R, Kang SG, Huang K, Tong T. Dietary supplementation with α-ionone alleviates chronic UVB exposure-induced skin photoaging in mice. Food Funct 2024; 15:1884-1898. [PMID: 38328833 DOI: 10.1039/d3fo04379g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Photoaging is widely regarded as the most significant contributor to skin aging damage. It is triggered by prolonged exposure to ultraviolet (UV) light and typically manifests as dryness and the formation of wrinkles. Nutritional intervention is a viable strategy for preventing and treating skin photoaging. In previous studies, we demonstrated that α-ionone had ameliorating effects on photoaging in both epidermal keratinocytes and dermal fibroblasts. Here, we investigated the potential anti-photoaging effects of dietary α-ionone using a UVB-irradiated male C57BL/6N mouse model. Our findings provided compelling evidence that dietary α-ionone alleviates wrinkle formation, skin dryness, and epidermal thickening in chronic UVB-exposed mice. α-Ionone accumulated in mouse skin after 14 weeks of dietary intake of α-ionone. α-Ionone increased collagen density and boosted the expression of collagen genes, while attenuating the UVB-induced increase of matrix metalloproteinase genes in the skin tissues. Furthermore, α-ionone suppressed the expression of senescence-associated secretory phenotypes and reduced the expression of the senescence marker p21 and DNA damage marker p53 in the skin of UVB-irradiated mice. Transcriptome sequencing results showed that α-ionone modifies gene expression profiles of skin. Multiple pathway enrichment analyses on both the differential genes and the entire genes revealed that α-ionone significantly affects multiple physiological processes and signaling pathways associated with skin health and diseases, of which the p53 signaling pathway may be the key signaling pathway. Taken together, our findings reveal that dietary α-ionone intervention holds promise in reducing the risks of skin photoaging, offering a potential strategy to address skin aging concerns.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, PR China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun 58554, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, PR China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, PR China
| |
Collapse
|
26
|
Geng R, Kang SG, Huang K, Tong T. Dietary Isoeugenol Supplementation Attenuates Chronic UVB-Induced Skin Photoaging and Modulates Gut Microbiota in Mice. Nutrients 2024; 16:481. [PMID: 38398805 PMCID: PMC10892115 DOI: 10.3390/nu16040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Photoaging, the primary cause of skin aging damage, results from chronic ultraviolet (UV) exposure, leading to dryness and wrinkle formation. Nutritional intervention has emerged as a practical approach for preventing and addressing the effect of skin photoaging. The primary aromatic compound isolated from clove oil, isoeugenol (IE), has antibacterial, anti-inflammatory, and antioxidant qualities that work to effectively restrict skin cancer cell proliferation. This investigation delved into the advantages of IE in alleviating skin photoaging using UVB-irradiated skin fibroblasts and female SKH-1 hairless mouse models. IE alleviated UVB-induced photodamage in Hs68 dermal fibroblasts by inhibiting matrix metalloproteinase secretion and promoting extracellular matrix synthesis. In photoaged mice, dietary IE reduced wrinkles, relieved skin dryness, inhibited epidermal thickening, and prevented collagen loss. Additionally, the intestinal dysbiosis caused by prolonged UVB exposure was reduced with an IE intervention. The results of Spearman's analysis showed a strong correlation between skin photoaging and gut microbiota. Given the almost unavoidable UVB exposure in contemporary living, this research demonstrated the efficacy of dietary IE in reversing skin photoaging, presenting a promising approach to tackle concerns related to extrinsic skin aging.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun 58554, Republic of Korea;
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| |
Collapse
|
27
|
Park SM, Jung CJ, Lee DG, Yu YE, Ku TH, Hong MS, Lim TK, Paeng KI, Cho HK, Cho IJ, Ku SK. Elaeagnus umbellata Fruit Extract Protects Skin from Ultraviolet-Mediated Photoaging in Hairless Mice. Antioxidants (Basel) 2024; 13:195. [PMID: 38397793 PMCID: PMC10885948 DOI: 10.3390/antiox13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Photoaging refers to the accumulation of skin damage which includes wrinkle formation, loss of elasticity, and epidermal thickening due to repeated ultraviolet (UV) irradiation. The present study investigated the protective effects of Elaeagnus umbellata fruit extract (Elaea) on UV-mediated photoaged skin of SKH1 hairless mice and compared the effects of Elaea with ascorbic acid. Although there was no difference in body weight between groups during experimental period, oral administration of 50-200 mg/kg Elaea once daily for 15 weeks significantly prevented an increase in skin weight, epithelial thickening of epidermis, and apoptosis caused by UV irradiation. Skin replica and histopathological analyses revealed that Elaea dose-dependently decreased wrinkle and microfold formation. In addition, Elaea administration restored UV-mediated reduction in type I collagen and hyaluronan through the inhibition of matrix metalloproteinases and p38 mitogen-activated protein kinase expression. Moreover, Elaea suppressed UV-dependent increases in superoxide anion production, fatty acid oxidation, and protein nitration by up-regulating antioxidant system. Furthermore, Elaea alleviated infiltration of inflammatory cells in UV-irradiated skin. The preventive effects of 100 mg/kg Elaea administration against UV-induced photoaging were similar to those by 100 mg/kg ascorbic acid. Collectively, the present study suggests that the E. umbellata fruit is a promising edible candidate to prevent skin photoaging.
Collapse
Affiliation(s)
- Seok-Man Park
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (S.-M.P.); (C.-J.J.); (D.-G.L.)
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Cheol-Jong Jung
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (S.-M.P.); (C.-J.J.); (D.-G.L.)
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Dae-Geon Lee
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (S.-M.P.); (C.-J.J.); (D.-G.L.)
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Yeong-Eun Yu
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Tae-Hun Ku
- Okchundang Korean Medicine Clinic, Ulsan 44900, Republic of Korea;
| | - Mu-Seok Hong
- Rodam Korean Medical Clinic, Seoul 06038, Republic of Korea; (M.-S.H.); (T.-K.L.); (K.-I.P.); (H.-K.C.)
| | - Tae-Kyung Lim
- Rodam Korean Medical Clinic, Seoul 06038, Republic of Korea; (M.-S.H.); (T.-K.L.); (K.-I.P.); (H.-K.C.)
| | - Kwong-Il Paeng
- Rodam Korean Medical Clinic, Seoul 06038, Republic of Korea; (M.-S.H.); (T.-K.L.); (K.-I.P.); (H.-K.C.)
| | - Hyun-Ki Cho
- Rodam Korean Medical Clinic, Seoul 06038, Republic of Korea; (M.-S.H.); (T.-K.L.); (K.-I.P.); (H.-K.C.)
| | - Il-Je Cho
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (S.-M.P.); (C.-J.J.); (D.-G.L.)
| |
Collapse
|
28
|
Tong T, Geng R, Kang SG, Li X, Huang K. Revitalizing Photoaging Skin through Eugenol in UVB-Exposed Hairless Mice: Mechanistic Insights from Integrated Multi-Omics. Antioxidants (Basel) 2024; 13:168. [PMID: 38397766 PMCID: PMC10886361 DOI: 10.3390/antiox13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic ultraviolet (UV) exposure causes photoaging, which is primarily responsible for skin damage. Nutritional intervention is a viable strategy for preventing and treating skin photoaging. Eugenol (EU) presents anti-inflammatory and antioxidant properties, promotes wound healing, and provides contact dermatitis relief. This study explored the ability of EU to mitigate skin photoaging caused by UVB exposure in vitro and in vivo. EU alleviated UVB-induced skin photodamage in skin cells, including oxidative stress damage and extracellular matrix (ECM) decline. Dietary EU alleviated skin photoaging by promoting skin barrier repair, facilitating skin tissue regeneration, and modulating the skin microenvironment in photoaged mice. The transcriptome sequencing results revealed that EU changed the skin gene expression profiles. Subsequent pathway enrichment analyses indicated that EU might reverse the pivotal ECM-receptor interaction and cytokine-cytokine receptor interaction signaling pathways. Furthermore, EU alleviated the intestinal dysbiosis induced by chronic UVB exposure. Spearman analysis results further revealed the close connection between gut microbiota and skin photoaging. Considering the near-inevitable UVB exposure in modern living, the findings showed that the EU effectively reverted skin photoaging, offering a potential strategy for addressing extrinsic skin aging.
Collapse
Affiliation(s)
- Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun 58554, Republic of Korea;
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| |
Collapse
|
29
|
Hajialiasgary Najafabadi A, Soheilifar MH, Masoudi-Khoram N. Exosomes in skin photoaging: biological functions and therapeutic opportunity. Cell Commun Signal 2024; 22:32. [PMID: 38217034 PMCID: PMC10785444 DOI: 10.1186/s12964-023-01451-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024] Open
Abstract
Exosomes are tiny extracellular vesicles secreted by most cell types, which are filled with proteins, lipids, and nucleic acids (non-coding RNAs, mRNA, DNA), can be released by donor cells to subsequently modulate the function of recipient cells. Skin photoaging is the premature aging of the skin structures over time due to repeated exposure to ultraviolet (UV) which is evidenced by dyspigmentation, telangiectasias, roughness, rhytides, elastosis, and precancerous changes. Exosomes are associated with aging-related processes including, oxidative stress, inflammation, and senescence. Anti-aging features of exosomes have been implicated in various in vitro and pre-clinical studies. Stem cell-derived exosomes can restore skin physiological function and regenerate or rejuvenate damaged skin tissue through various mechanisms such as decreased expression of matrix metalloproteinase (MMP), increased collagen and elastin production, and modulation of intracellular signaling pathways as well as, intercellular communication. All these evidences are promising for the therapeutic potential of exosomes in skin photoaging. This review aims to investigate the molecular mechanisms and the effects of exosomes in photoaging.
Collapse
Affiliation(s)
- Amirhossein Hajialiasgary Najafabadi
- Department of Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Goettingen, Germany
- Department of Pathology, Research Group Translational Epigenetics, University of Goettingen, 37075, Goettingen, Germany
| | | | - Nastaran Masoudi-Khoram
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Lin CH, Lin MH, Chung YK, Alalaiwe A, Hung CF, Fang JY. Exploring the potential of the nano-based sunscreens and antioxidants for preventing and treating skin photoaging. CHEMOSPHERE 2024; 347:140702. [PMID: 37979799 DOI: 10.1016/j.chemosphere.2023.140702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Excessive exposure to sunlight, especially UV irradiation, causes skin photodamage. Sunscreens, such as TiO2 and ZnO, can potentially prevent UV via scattering, reflection, and absorption. Topical antioxidants are another means of skin photoprotection. Developing nanoparticles for sunscreens and antioxidants is recommended for photoaging prevention and treatment as it can improve uncomfortable skin appearance, stability, penetration, and safety. This study reviewed the effects of nano-sized sunscreens and antioxidants on skin photoprevention by examining published studies and articles from PubMed, Scopus, and Google Scholar, which explore the topics of skin photoaging, skin senescence, UV radiation, keratinocyte, dermal fibroblast, sunscreen, antioxidant, and nanoparticle. The researchers of this study also summarized the nano-based UV filters and therapeutics for mitigating skin photoaging. The skin photodamage mechanisms are presented, followed by the introduction of current skin photoaging treatment. The different nanoparticle types used for topical delivery were also explored in this study. This is followed by the mechanisms of how nanoparticles improve the UV filters and antioxidant performance. Lastly, recent investigations were reviewed on nanoparticulate sunscreens and antioxidants in skin photoaging management. Sunscreens and antioxidants for topical application have different concepts. Topical antioxidants are ideal for permeating into the skin to exhibit free radical scavenging activity, while UV filters are prescribed to remain on the skin surface without absorption to exert the UV-blocking effect without causing toxicity. The nanoparticle design strategy for meeting the different needs of sunscreens and antioxidants is also explored in this study. Although the benefits of using nanoparticles for alleviating photodamage are well-established, more animal-based and clinical studies are necessary.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Ming-Hsien Lin
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Kuo Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
31
|
Park SH, Park J, Lee M, Jun W, Kim J, Geum J, Kim OK, Lee J. Wheat Ceramide Powder Mitigates Ultraviolet B-Induced Oxidative Stress and Photoaging by Inhibiting Collagen Proteolysis and Promoting Collagen Synthesis in Hairless Mice. Prev Nutr Food Sci 2023; 28:418-426. [PMID: 38188085 PMCID: PMC10764234 DOI: 10.3746/pnf.2023.28.4.418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
The protective effects of wheat ceramide powder (WC-P) on ultraviolet B (UVB)-induced skin oxidative stress and photoaging in hairless mice were investigated in this study. Moreover, the activities of antioxidant enzymes, inflammation, wrinkle formation-related pathway, and moisturizing capacity were evaluated. Mice were randomly divided into six groups (n=8): normal control (non-UVB irradiation), control (UVB irradiation), L-ascorbic acid [positive control, UVB irradiation with dietary supplementation of L-ascorbic acid at 100 mg/kg/body weight (bw)], WC-P5 (UVB irradiation with dietary supplementation of WC-P at 5 mg/kg/bw), WC-P20 (UVB irradiation with dietary supplementation of WC-P at 20 mg/kg/bw), and WC-P40 (UVB irradiation with dietary supplementation of WC-P at 40 mg/kg/bw). AIN-96G diet and water were supplemented ad libitum, and 100 mL of L-ascorbic acid and WC-P dissolved in water were forcefully administered orally to mice. UVB irradiation resulted in dehydration and wrinkle formation in the dorsal skin of mice. However, WC-P supplementation suppressed. Furthermore, WC-P supplementation enhanced the activites of antioxidant enzymes and expression of transforming growth factor-β receptor I, procollaten C-endopeptideas enhancer protein, hyaluronan synthase, and ceramide synthase 4 and reduced the activation of the inflammation and the c-Jun N-terminal kinase/c-FOS/c-Jun- mediated matrix metalloproteinase pathways. These findings demonstrate that WC-P can protect the skin from UVB-induced oxidative stress, inflammation, and photoaging by inhibiting collagen proteolysis and promoting collagen synthesis, thereby promoting skin health.
Collapse
Affiliation(s)
- Seong-Hoo Park
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| | - Jeongjin Park
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| | - Woojin Jun
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Korea
| | - Jin Kim
- GREEN STORE, Inc., Gyeonggi 13558, Korea
| | | | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| |
Collapse
|
32
|
Alsadi N, Yasavoli-Sharahi H, Mueller R, Cuenin C, Chung F, Herceg Z, Matar C. Protective Mechanisms of Polyphenol-Enriched Blueberry Preparation in Preventing Inflammation in the Skin against UVB-Induced Damage in an Animal Model. Antioxidants (Basel) 2023; 13:25. [PMID: 38275645 PMCID: PMC10812677 DOI: 10.3390/antiox13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
UVB significantly impacts the occurrence of cutaneous disorders, ranging from inflammatory to neoplastic diseases. Polyphenols derived from plants have been found to exhibit photoprotective effects against various factors that contribute to skin cancer. During the fermentation of the polyphenol-enriched blueberry preparation (PEBP), small oligomers of polyphenols were released, thus enhancing their photoprotective effects. This study aimed to investigate the protective effects of PEBP on UVB-induced skin inflammation. Topical preparations of polyphenols were applied to the skin of dorsally shaved mice. Mice were subsequently exposed to UVB and were sacrificed 90 min after UVB exposure. This study revealed that pretreatment with PEBP significantly inhibited UVB-induced recruitment of mast and neutrophil cells and prevented the loss of skin thickness. Furthermore, the findings show that PEBP treatment resulted in the downregulation of miR-210, 146a, and 155 and the upregulation of miR-200c and miR-205 compared to the UVB-irradiated mice. Additionally, PEBP was found to reduce the expression of IL-6, IL-1β, and TNFα, inhibiting COX-2 and increasing IL-10 after UVB exposure. Moreover, DNA methylation analysis indicated that PEBP might potentially reduce the activation of inflammation-related pathways such as MAPK, Wnt, Notch, and PI3K-AKT signaling. Our finding suggests that topical application of PEBP treatment may effectively prevent UVB-induced skin damage by inhibiting inflammation.
Collapse
Affiliation(s)
- Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (N.A.); (H.Y.-S.)
| | - Rudolf Mueller
- Pathology and Laboratory Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (F.C.); (Z.H.)
| | - Felicia Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (F.C.); (Z.H.)
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan University, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (F.C.); (Z.H.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
33
|
Park AY, Lee JO, Jang Y, Kim YJ, Lee JM, Kim SY, Kim BJ, Yoo KH. Exosomes derived from human dermal fibroblasts protect against UVB‑induced skin photoaging. Int J Mol Med 2023; 52:120. [PMID: 37888610 PMCID: PMC10635689 DOI: 10.3892/ijmm.2023.5323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Exosomes are used as innovative treatment options for repairing skin defects, such as aging, atopic dermatitis and wounds. However, the effects of exosomes obtained from human foreskin fibroblasts BJ‑5ta (BJ‑5ta Exo) on ultraviolet B (UVB)‑mediated photoaging have not been previously reported, at least to the best of our knowledge. Therefore, the present study aimed to investigate the anti‑photoaging effects of BJ‑5ta Exo on UVB radiation in human skin fibroblasts and SKH‑1 hairless mice. The results revealed that BJ‑5ta Exo decreased the production of reactive oxygen species and inhibited the decrease in the expression levels of superoxide dismutase 1 and 2, glutathione peroxidase and catalase following UVB exposure. In addition, BJ‑5ta Exo attenuated the decrease in nuclear factor erythroid 2‑related factor 2 levels induced by UVB rays, indicating its scavenging activity against oxidative stress. Moreover, BJ‑5ta Exo inhibited the UVB‑induced increase in the levels of γH2AX, p53/21 and cleaved PARP, whereas it promoted DNA double‑strand break repair through radiation sensitive 52 and effectively activated the TGF‑β1/Smad pathway. BJ‑5ta Exo also protected against UVB‑induced senescence, as indicated by the downregulation in the levels of senescence‑associated β‑galactosidase and p16. In a mouse model of photoaging, BJ‑5ta Exo prevented the UVB‑induced increase in transepidermal water loss, wrinkle formation and MMP‑1 expression, while also suppressing the UVB‑mediated decrease in collagen type I and elastin levels in the dorsal skin. Overall, the findings of the present study suggest that BJ‑5ta Exo represent an effective anti‑photoaging agent, which can be used as a component in cosmetic products.
Collapse
Affiliation(s)
- A Yeon Park
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jung Ok Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Youna Jang
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yu-Jin Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jung Min Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Su-Young Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kwang Ho Yoo
- Department of Dermatology, Chung-Ang University Gwang-Myeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea
| |
Collapse
|
34
|
Kim TY, Park NJ, Jo BG, Lee BS, Keem MJ, Kwon TH, Kim KH, Kim SN, Yang MH. Anti-Wrinkling Effect of 3,4,5-tri- O-caffeoylquinic Acid from the Roots of Nymphoides peltata through MAPK/AP-1, NF-κB, and Nrf2 Signaling in UVB-Irradiated HaCaT Cells. Antioxidants (Basel) 2023; 12:1899. [PMID: 37891978 PMCID: PMC10604296 DOI: 10.3390/antiox12101899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Nymphoides peltata has been widely used pharmacologically in traditional Chinese medicine to treat heat strangury and polyuria. The aim of this study was to isolate the bioactive components from N. peltata and evaluate their potential use as antioxidant and anti-wrinkle agents. Phytochemical investigation of the methanolic extract of N. peltata roots led to the isolation of 15 compounds (1-15), which were structurally determined as α-spinasterol (1), 3-O-β-D-glucopyranosyl-oleanolic acid 28-O-β-D-glucuronopyranoside (2), 4-hydroxybenzoic acid (3), protocatechuic acid (4), vanillic acid (5), p-coumaric acid (6), caffeic acid (7), ferulic acid (8), neochlorogenic acid (neo-CQA) (9), chlorogenic acid (CQA) (10), cryptochlorogenic acid (crypto-CQA) (11), isochlorogenic acid B (3,4-DCQA) (12), isochlorogenic acid A (3,5-DCQA) (13), isochlorogenic acid C (4,5-DCQA) (14), and 3,4,5-tri-O-caffeoylquinic acid (TCQA) (15). Of these 15 compounds, compound 2 was a new oleanane saponin, the chemical structure of which was characterized by 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data and high-resolution electrospray ionization mass spectrometry (HRESIMS), as well as chemical reaction. Biological evaluation of the isolated compounds revealed that 3,4,5-tri-O-caffeoylquinic acid (TCQA) significantly improved Nrf2 levels in an Nrf2-ARE reporter HaCaT cell screening assay. TCQA was found to potently inhibit the Nrf2/HO-1 pathway and to possess strong anti-wrinkle activity by modulating the MAPK/NF-κB/AP-1 signaling pathway and thus inhibiting MMP-1 synthesis in HaCaT cells exposed to UVB. Our results suggest that TCQA isolated from N. peltata might be useful for developing effective antioxidant and anti-wrinkle agents.
Collapse
Affiliation(s)
- Tae-Young Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - No-June Park
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Beom-Geun Jo
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Min-Ji Keem
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Taek-Hwan Kwon
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Min Hye Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| |
Collapse
|
35
|
Lestari W, Hasballah K, Listiawan MY, Sofia S. Antioxidant and phytometabolite profiles of ethanolic extract from the cascara pulp of Coffea arabica collected from Gayo Highland: A study for potential anti-photoaging agent. F1000Res 2023; 12:12. [PMID: 37771615 PMCID: PMC10523095 DOI: 10.12688/f1000research.126762.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/30/2023] Open
Abstract
Background: As the most abundant coffee by-product, cascara pulp has been considered a good source of antioxidants which could be used to prevent photoaging. The aim of this study was to determine the phytometabolite profiles, antioxidant and photoaging properties of the ethanolic extract of Coffea arabica cascara pulp. Methods: Ethanolic maceration was performed on the fine powder of C. arabica cascara pulp collected from Gayo Highland, Aceh Province, Indonesia. The filtrate obtained was evaluated for its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, total phenolic content (TPC), and total flavonoid content (TFC). The phytometabolite profiling was conducted qualitatively using reagents and quantitatively using gas chromatography-mass spectroscopy (GC-MS). The potential of the cascara pulp phytometabolites in inhibiting activator protein-1 (AP-1) was evaluated through molecular docking. Results: The extract had TPC and TFC of 2.04 mg gallic acid equivalent/g extract and 91.81 mg quercetin equivalent/g extract, respectively. The half-maximal inhibitory concentration (IC 50) for the DPPH inhibition reached as low as 9.59 mg/L. Qualitative phytocompound screening revealed the presence of alkaloids, saponins, tannins, flavonoids, steroids, quinones, polyphenols, and triterpenoids. GC-MS revealed the extract containing 5-hydroxy-methylfurfural (22.31%); 2,5-dimethyl-4-hydroxy-3(2H)-furanone (0.74%); and caffeine (21.07%), which could form interaction with AP-1 with binding energies of -172.8, -150.8, and -63.188 kJ/mol, respectively. Conclusion: Ethanolic extract from C. arabica cascara pulp potentially have anti-photoaging properties which is worthy for further investigations in the future.
Collapse
Affiliation(s)
- Wahyu Lestari
- Department of Dermatology, Dr. Zainoel Abidin General Hospital, Banda Aceh, 24415, Indonesia
- Department of Dermatology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Doctoral Program in Medical Science, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Kartini Hasballah
- Department of Pharmacology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - M. Yulianto Listiawan
- Department of Dermatology, Faculty of Medicine,, Universitas Airlangga, Surabaya, 60131, Indonesia
| | - Sofia Sofia
- Department of Biochemistry, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Master of Public Health, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|
36
|
Rodríguez-Luna A, Zamarrón A, Juarranz Á, González S. Clinical Applications of Polypodium leucotomos (Fernblock ®): An Update. Life (Basel) 2023; 13:1513. [PMID: 37511888 PMCID: PMC10381169 DOI: 10.3390/life13071513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Exposure to sun radiation leads to higher risk of sunburn, pigmentation, immunosuppression, photoaging and skin cancer. In addition to ultraviolet radiation (UVR), recent research indicates that infrared radiation (IR) and visible light (VIS) can play an important role in the pathogenesis of some of these processes. Detrimental effects associated with sun exposure are well known, but new studies have shown that DNA damage continues to occur long after exposure to solar radiation has ended. Regarding photoprotection strategies, natural substances are emerging for topical and oral photoprotection. In this sense, Fernblock®, a standardized aqueous extract of the fern Polypodium Leucotomos (PLE), has been widely administered both topically and orally with a strong safety profile. Thus, this extract has been used extensively in clinical practice, including as a complement to photodynamic therapy (PDT) for treating actinic keratoses (AKs) and field cancerization. It has also been used to treat skin diseases such as photodermatoses, photoaggravated inflammatory conditions and pigmentary disorders. This review examines the most recent developments in the clinical application of Fernblock® and assesses how newly investigated action mechanisms may influence its clinical use.
Collapse
Affiliation(s)
- Azahara Rodríguez-Luna
- Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), 28933 Alcorcón, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Alicia Zamarrón
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), 28049 Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), 28049 Madrid, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Alcalá de Henares University, 28805 Madrid, Spain
| |
Collapse
|
37
|
Yang G, Hu S, Jiang H, Cheng K. Peelable Microneedle Patches Deliver Fibroblast Growth Factors to Repair Skin Photoaging Damage. Nanotheranostics 2023; 7:380-392. [PMID: 37426882 PMCID: PMC10327422 DOI: 10.7150/ntno.79187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Rationale: UV light deeply penetrates the dermis, leading to inflammation and cell death with prolonged exposure. This is a major contributor to skin photoaging. In the pharmaceutical field, fibroblast growth factors (FGFs) have gained popularity for enhancing skin quality as they facilitate tissue remodeling and re-epithelization. Nonetheless, their effectiveness is significantly hindered by limited absorption. Methods: We have successfully created a dissolving microneedle (MN) patch that contains hyaluronic acid (HA) loaded with FGF-2 and FGF-21. This patch aims to improve the therapeutic efficiency of these growth factors while providing a simple administration method. We determined the performance of this patch in an animal model of skin photoaging. Results: The FGF-2/FGF-21-loaded MN (FGF-2/FGF-21 MN) patch demonstrated a consistent structure and suitable mechanical properties, allowing for easy insertion and penetration into mouse skin. Within 10 minutes of application, the patch released approximately 38.50 ± 13.38% of the loaded drug. Notably, the FGF-2/FGF-21 MNs exhibited significant improvements in UV-induced acute skin inflammation and reduced mouse skin wrinkles within a span of two weeks. Furthermore, the positive effects continued to enhance over a four-week treatment period. Conclusion: The proposed HA-based peelable MN patch provides an efficient approach for transdermal drug delivery, providing a promising method for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Guojun Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, 33 Ba-Da-Chu Rd., Beijing, 100144, P.R. China
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, 33 Ba-Da-Chu Rd., Beijing, 100144, P.R. China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|