1
|
Hafez OA, Chang RB. Regulation of Cardiac Function by the Autonomic Nervous System. Physiology (Bethesda) 2025; 40:0. [PMID: 39585760 DOI: 10.1152/physiol.00018.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
The autonomic nervous system is critical for regulating cardiovascular physiology. The neurocardiac axis encompasses multiple levels of control, including the motor circuits of the sympathetic and parasympathetic nervous systems, sensory neurons that contribute to cardiac reflexes, and the intrinsic cardiac nervous system that provides localized sensing and regulation of the heart. Disruption of these systems can lead to significant clinical conditions. Recent advances have enhanced our understanding of the autonomic control of the heart, detailing the specific neuronal populations involved and their physiologic roles. In this review, we discuss this research at each level of the neurocardiac axis. We conclude by discussing the clinical field of neurocardiology and attempts to translate this new understanding of neurocardiac physiology to the clinic. We highlight the contributions of autonomic dysfunction in prevalent cardiovascular diseases and assess the current status of novel neuroscience-based treatment approaches.
Collapse
Affiliation(s)
- Omar A Hafez
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
- M.D.-Ph.D. Program, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Rui B Chang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
2
|
Valenza G, Matić Z, Catrambone V. The brain-heart axis: integrative cooperation of neural, mechanical and biochemical pathways. Nat Rev Cardiol 2025:10.1038/s41569-025-01140-3. [PMID: 40033035 DOI: 10.1038/s41569-025-01140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
The neural and cardiovascular systems are pivotal in regulating human physiological, cognitive and emotional states, constantly interacting through anatomical and functional connections referred to as the brain-heart axis. When this axis is dysfunctional, neurological conditions can lead to cardiovascular disorders and, conversely, cardiovascular dysfunction can substantially affect brain health. However, the mechanisms and fundamental physiological components of the brain-heart axis remain largely unknown. In this Review, we elucidate these components and identify three primary pathways: neural, mechanical and biochemical. The neural pathway involves the interaction between the autonomic nervous system and the central autonomic network in the brain. The mechanical pathway involves mechanoreceptors, particularly those expressing mechanosensitive Piezo protein channels, which relay crucial information about blood pressure through peripheral and cerebrovascular connections. The biochemical pathway comprises many endogenous compounds that are important mediators of neural and cardiovascular function. This multisystem perspective calls for the development of integrative approaches, leading to new clinical specialties in neurocardiology.
Collapse
Affiliation(s)
- Gaetano Valenza
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
| | - Zoran Matić
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Vincenzo Catrambone
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Pedroni A, Yilmaz E, Del Vecchio L, Bhattarai P, Vidal IT, Dai YWE, Koutsogiannis K, Kizil C, Ampatzis K. Decoding the molecular, cellular, and functional heterogeneity of zebrafish intracardiac nervous system. Nat Commun 2024; 15:10483. [PMID: 39632839 PMCID: PMC11618350 DOI: 10.1038/s41467-024-54830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
The proper functioning of the heart relies on the intricate interplay between the central nervous system and the local neuronal networks within the heart itself. While the central innervation of the heart has been extensively studied, the organization and functionality of the intracardiac nervous system (IcNS) remain largely unexplored. Here, we present a comprehensive taxonomy of the IcNS, utilizing single-cell RNA sequencing, anatomical studies, and electrophysiological techniques. Our findings reveal a diverse array of neuronal types within the IcNS, exceeding previous expectations. We identify a subset of neurons exhibiting characteristics akin to pacemaker/rhythmogenic neurons similar to those found in Central Pattern Generator networks of the central nervous system. Our results underscore the heterogeneity within the IcNS and its key role in regulating the heart's rhythmic functionality. The classification and characterization of the IcNS presented here serve as a valuable resource for further exploration into the mechanisms underlying heart functionality and the pathophysiology of associated cardiac disorders.
Collapse
Affiliation(s)
- Andrea Pedroni
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Elanur Yilmaz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Lisa Del Vecchio
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Prabesh Bhattarai
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Inés Talaya Vidal
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Yu-Wen E Dai
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
| | | |
Collapse
|
4
|
Ma J, Bizanti A, Kwiat AM, Barton K, Nguyen D, Madas J, Toledo Z, Bendowski K, Chen J, Cheng ZJ. Spinal Afferent Innervation From Left Dorsal Root Ganglia in the Flat-Mounts of Whole Atria of Rats: Anterograde Tracing. J Comp Neurol 2024; 532:e25681. [PMID: 39620894 DOI: 10.1002/cne.25681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 12/15/2024]
Abstract
The spinal afferent innervation of the heart helps to regulate cardiac functions by sending sensory information through the dorsal root ganglia (DRG) to the brain. However, the distribution and morphology of spinal afferents in the heart are not well characterized due to tracer selections, the surgical access to upper thoracic DRGs, and the thickness of the heart tissues. In this study, we injected tracer dextran biotin (DB) into the left DRGs (C8-T3) of male Sprague-Dawley rats (3-5 months). After 16 days, flat-mounts of the whole left and right atria were prepared and diaminobenzidine stained. Then, the DB-labeled axons in the tissues were imaged, traced, and digitized using the Neurolucida system. Our results showed that the DB-labeled axons from left DRGs entered the left precaval vein and projected to the left and right atria, with predominant projection in the left atrial wall. DB-labeled varicose axons were observed in different layers, mostly in the epicardium and myocardium, but much less in the endocardium. In those layers, these spinal afferent axons branched out into simple to complex terminal arborizations, forming close appositions with cardiac muscles, intrinsic cardiac ganglia, blood vessels, and fat tissue. This work, for the first time, characterized cardiac spinal afferent distribution of the rat atria using anterograde tracing, which will provide the foundation for future studies of topographical cardiac spinal afferent innervation and remodeling in heart disease models.
Collapse
Affiliation(s)
- Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Andrew M Kwiat
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Kayla Barton
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jazune Madas
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Zulema Toledo
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Kohlton Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
5
|
Kurhaluk N, Lukash O, Kamiński P, Tkaczenko H. L-Arginine and Intermittent Hypoxia Are Stress-Limiting Factors in Male Wistar Rat Models. Int J Mol Sci 2024; 25:12364. [PMID: 39596428 PMCID: PMC11595073 DOI: 10.3390/ijms252212364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The aim of this study was to evaluate the combined effects of L-arginine, intermittent hypoxia training (IHT), and acute stress on oxygen-dependent processes in rats, including mitochondrial oxidative phosphorylation, microsomal oxidation, and the intensity of lipoperoxidation processes. In addition, our study investigated how the modulatory effect of the NO synthase mechanism on the concentration of catecholamines (CA), such as adrenaline and noradrenaline, and their biosynthetic precursors (DOPA, dopamine) varies depending on the cholinergic (acetylcholine, Ach-acetylcholinesterase, AChE) status in rats. This study investigated the protective stress-limiting effects of L-arginine impact and IHT in the blood and liver of rats. The results showed that L-arginine promoted the maintenance of NAD-dependent oxidation in mitochondria, which was detrimental compared to succinate oxidation, and was accompanied by depletion of respiratory activity reserves under stress induced by high concentrations of CA. The interdependence of SC-dependent oxidation and the functional role of NAD-dependent substrate oxidation in the mitochondrial respiratory chain in stress conditions induced using inhibitors revealed the importance of the NO system. Administration of L-arginine during the IHT course prior to stress exposure increased the compensatory capacity of the organism. L-arginine increased the compensatory capacity of the sympathoadrenal system in stress-exposed rats. In the early stages of IHT, modulation of the CA concentration was observed with a concomitant increase in lipoperoxidation processes, and in the final stages of IHT, the CA concentrations increased, but there was also an inhibition of lipoperoxidation, which was particularly enhanced by the administration of L-arginine. The increase in blood concentrations of CA and ACh was accompanied by a decrease in AChE activity at different stages of adaptation to hypoxia induced by IHT (days 5, 10, and 14). Thus, the IHT method significantly mobilises the reserve capacity of oxygen-dependent processes through the system of CA, ACh-AChE mediated by nitric oxide.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, PL 76-200 Słupsk, Poland;
| | - Oleksandr Lukash
- Department of Ecology, Geography and Nature Management, T.H. Shevchenko National University “Chernihiv Colehium”, Hetmana Polubotka St. 53, 14013 Chernihiv, Ukraine;
| | - Piotr Kamiński
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland;
- Department of Ecology and Environmental Protection, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland
- Department of Biotechnology, Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland
| | - Halina Tkaczenko
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, PL 76-200 Słupsk, Poland;
| |
Collapse
|
6
|
Braczko F, Fischl SR, Reinders J, Lieder HR, Kleinbongard P. Activation of the nonneuronal cholinergic cardiac system by hypoxic preconditioning protects isolated adult cardiomyocytes from hypoxia/reoxygenation injury. Am J Physiol Heart Circ Physiol 2024; 327:H70-H79. [PMID: 38700468 PMCID: PMC11380960 DOI: 10.1152/ajpheart.00211.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Activation of the vagus nerve mediates cardioprotection and attenuates myocardial ischemia/reperfusion (I/R) injury. In response to vagal activation, acetylcholine (ACh) is released from the intracardiac nervous system (ICNS) and activates intracellular cardioprotective signaling cascades. Recently, however, a nonneuronal cholinergic cardiac system (NNCCS) in cardiomyocytes has been described as an additional source of ACh. To investigate whether the NNCCS mediates cardioprotection in the absence of vagal and ICNS activation, we used a reductionist approach of isolated adult rat ventricular cardiomyocytes without neuronal cells, using hypoxic preconditioning (HPC) as a protective stimulus. Adult rat ventricular cardiomyocytes were isolated, the absence of neuronal cells was confirmed, and HPC was induced by 10/20 min hypoxia/reoxygenation (H/R) before subjection to 30/5 min H/R to simulate I/R injury. Cardiomyocyte viability was assessed by trypan blue staining at baseline and after HPC+H/R or H/R. Intra- and extracellular ACh was quantified using liquid chromatography-coupled mass spectrometry at baseline, after HPC, after hypoxia, and after reoxygenation, respectively. In a subset of experiments, muscarinic and nicotinic ACh receptor (m- and nAChR) antagonists were added during HPC or during H/R. Cardiomyocyte viability at baseline (69 ± 4%) was reduced by H/R (10 ± 3%). With HPC, cardiomyocyte viability was preserved after H/R (25 ± 6%). Intra- and extracellular ACh increased during hypoxia; HPC further increased both intra- and extracellular ACh (from 0.9 ± 0.7 to 1.5 ± 1.0 nmol/mg; from 0.7 ± 0.6 to 1.1 ± 0.7 nmol/mg, respectively). The addition of mAChR and nAChR antagonists during HPC had no impact on HPC's protection; however, protection was abrogated when antagonists were added during H/R (cardiomyocyte viability after H/R: 23 ± 5%; 13 ± 4%). In conclusion, activation of the NNCCS is involved in cardiomyocyte protection; HPC increases intra- and extracellular ACh during H/R, and m- and nAChRs are causally involved in HPC's cardiomyocyte protection during H/R. The interplay between upstream ICNS activation and NNCCS activation in myocardial cholinergic metabolism and cardioprotection needs to be investigated in future studies.NEW & NOTEWORTHY The intracardiac nervous system is considered to be involved in ischemic conditioning's cardioprotection through the release of acetylcholine (ACh). However, we demonstrate that hypoxic preconditioning (HPC) protects from hypoxia/reoxygenation injury and increases intra- and extracellular ACh during hypoxia in isolated adult ventricular rat cardiomyocytes. HPC's protection involves cardiomyocyte muscarinic and nicotinic ACh receptor activation. Thus, besides the intracardiac nervous system, a nonneuronal cholinergic cardiac system may also be causally involved in cardiomyocyte protection by ischemic conditioning.
Collapse
Affiliation(s)
- Felix Braczko
- Institute for Pathophysiology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Sara Romina Fischl
- Institute for Pathophysiology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jörg Reinders
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Helmut Raphael Lieder
- Institute for Pathophysiology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Paradiso B, Pauza DH, Limback C, Ottaviani G, Thiene G. From Psychostasis to the Discovery of Cardiac Nerves: The Origins of the Modern Cardiac Neuromodulation Concept. BIOLOGY 2024; 13:266. [PMID: 38666878 PMCID: PMC11047897 DOI: 10.3390/biology13040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
This review explores the historical development of cardiology knowledge, from ancient Egyptian psychostasis to the modern comprehension of cardiac neuromodulation. In ancient Egyptian religion, psychostasis was the ceremony in which the deceased was judged before gaining access to the afterlife. This ritual was also known as the "weighing of the heart" or "weighing of the soul". The Egyptians believed that the heart, not the brain, was the seat of human wisdom, emotions, and memory. They were the first to recognize the cardiocentric nature of the body, identifying the heart as the center of the circulatory system. Aristotle (fourth century BC) considered the importance of the heart in human physiology in his philosophical analyses. For Galen (third century AD), the heart muscle was the site of the vital spirit, which regulated body temperature. Cardiology knowledge advanced significantly in the 15th century, coinciding with Leonardo da Vinci and Vesalius's pioneering anatomical and physiological studies. It was William Harvey, in the 17th century, who introduced the concept of cardiac circulation. Servet's research and Marcello Malpighi's discovery of arterioles and capillaries provided a more detailed understanding of circulation. Richard Lower emerged as the foremost pioneer of experimental cardiology in the late 17th century. He demonstrated the heart's neural control by tying off the vagus nerve. In 1753, Albrecht von Haller, a professor at Göttingen, was the first to discover the heart's automaticity and the excitation of muscle fibers. Towards the end of the 18th century, Antonio Scarpa challenged the theories of Albrecht von Haller and Johann Bernhard Jacob Behrends, who maintained that the myocardium possessed its own "irritability", on which the heartbeat depended, and was independent of neuronal sensitivity. Instead, Scarpa argued that the heart required innervation to maintain life, refuting Galenic notions. In contemporary times, the study of cardiac innervation has regained prominence, particularly in understanding the post-acute sequelae of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) infection (PASC), which frequently involves cardiorespiratory symptoms and dysregulation of the intrinsic cardiac innervation. Recently, it has been recognized that post-acute sequelae of acute respiratory infections (ARIs) due to other pathogens can also be a cause of long-term vegetative and somatic symptoms. Understanding cardiac innervation and modulation can help to recognize and treat long COVID and long non-COVID-19 (coronavirus disease 2019) ARIs. This analysis explores the historical foundations of cardiac neuromodulation and its contemporary relevance. By focusing on this concept, we aim to bridge the gap between historical understanding and modern applications. This will illuminate the complex interplay between cardiac function, neural modulation, cardiovascular health, and disease management in the context of long-term cardiorespiratory symptoms and dysregulation of intrinsic cardiac innervations.
Collapse
Affiliation(s)
- Beatrice Paradiso
- Lino Rossi Research Center, Department of Biomedical, Surgical and Dental Sciences, Faculty of Medicine and Surgery, University of Milan, 20122 Milan, Italy;
- Consultant Cyto/Histopathologist (Anatomic Pathologist) Anatomic Pathology Unit, Dolo Hospital Venice, 30031 Dolo, Italy
| | - Dainius H. Pauza
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences Kaunas, 44307 Kaunas, Lithuania;
| | - Clara Limback
- Oxford University Hospitals, NHS Trust, Oxford OX3 7JH, UK;
| | - Giulia Ottaviani
- Lino Rossi Research Center, Department of Biomedical, Surgical and Dental Sciences, Faculty of Medicine and Surgery, University of Milan, 20122 Milan, Italy;
- Department of Biomedical, Surgical and Dental Sciences, Faculty of Medicine and Surgery, University of Milan, 20122 Milan, Italy
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Gaetano Thiene
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy;
| |
Collapse
|
8
|
Chen J, Bendowski KT, Bizanti A, Zhang Y, Ma J, Hoover DB, Gozal D, Shivkumar K, Cheng ZJ. Distribution and morphology of calcitonin gene-related peptide (CGRP) innervation in flat mounts of whole rat atria and ventricles. Auton Neurosci 2024; 251:103127. [PMID: 38211380 PMCID: PMC11639590 DOI: 10.1016/j.autneu.2023.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 01/13/2024]
Abstract
Calcitonin gene-related peptide (CGRP) is widely used as a marker for nociceptive afferent axons. However, the distribution of CGRP-IR axons has not been fully determined in the whole rat heart. Immunohistochemically labeled flat-mounts of the right and left atria and ventricles, and the interventricular septum (IVS) in rats for CGRP were assessed with a Zeiss imager to generate complete montages of the entire atria, ventricles, and septum, and a confocal microscope was used to acquire detailed images of selected regions. We found that 1) CGRP-IR axons extensively innervated all regions of the atrial walls including the sinoatrial node region, auricles, atrioventricular node region, superior/inferior vena cava, left pre-caval vein, and pulmonary veins. 2) CGRP-IR axons formed varicose terminals around individual neurons in some cardiac ganglia but passed through other ganglia without making appositions with cardiac neurons. 3) Varicose CGRP-IR axons innervated the walls of blood vessels. 4) CGRP-IR axons extensively innervated the right/left ventricular walls and IVS. Our data shows the rather ubiquitous distribution of CGRP-IR axons in the whole rat heart at single-cell/axon/varicosity resolution for the first time. This study lays the foundation for future studies to quantify the differences in CGRP-IR axon innervation between sexes, disease models, and species.
Collapse
Affiliation(s)
- Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Kohlton T Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - David Gozal
- Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Kalyanam Shivkumar
- Department of Medicine, Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California, Los Angeles, CA 90095, USA
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
9
|
Sassu E, Tumlinson G, Stefanovska D, Fernández MC, Iaconianni P, Madl J, Brennan TA, Koch M, Cameron BA, Preissl S, Ravens U, Schneider-Warme F, Kohl P, Zgierski-Johnston CM, Hortells L. Age-related structural and functional changes of the intracardiac nervous system. J Mol Cell Cardiol 2024; 187:1-14. [PMID: 38103633 DOI: 10.1016/j.yjmcc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Although aging is known to be associated with an increased incidence of both atrial and ventricular arrhythmias, there is limited knowledge about how Schwann cells (SC) and the intracardiac nervous system (iCNS) remodel with age. Here we investigate the differences in cardiac SC, parasympathetic nerve fibers, and muscarinic acetylcholine receptor M2 (M2R) expression in young and old mice. Additionally, we examine age-related changes in cardiac responses to sympathomimetic and parasympathomimetic drugs. METHODS AND RESULTS Lower SC density, lower SC proliferation and fewer parasympathetic nerve fibers were observed in cardiac and, as a control sciatic nerves from old (20-24 months) compared to young mice (2-3 months). In old mice, chondroitin sulfate proteoglycan 4 (CSPG4) was increased in sciatic but not cardiac nerves. Expression of M2R was lower in ventricular myocardium and ventricular conduction system from old mice compared to young mice, while no significant difference was seen in M2R expression in sino-atrial or atrio-ventricular node pacemaker tissue. Heart rate was slower and PQ intervals were longer in Langendorff-perfused hearts from old mice. Ventricular tachycardia and fibrillation were more frequently observed in response to carbachol administration in hearts from old mice versus those from young mice. CONCLUSIONS On the background of reduced presence of SC and parasympathetic nerve fibers, and of lower M2R expression in ventricular cardiomyocytes and conduction system of aged hearts, the propensity of ventricular arrhythmogenesis upon parasympathomimetic drug application is increased. Whether this is caused by an increase in heterogeneity of iCNS structure and function remains to be elucidated.
Collapse
Affiliation(s)
- Eliza Sassu
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79110 Freiburg, Germany
| | - Gavin Tumlinson
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Dragana Stefanovska
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79110 Freiburg, Germany
| | - Marbely C Fernández
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Pia Iaconianni
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Tomás A Brennan
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Manuel Koch
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Breanne A Cameron
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79110 Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany.
| | - Luis Hortells
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79110 Freiburg, Germany.
| |
Collapse
|
10
|
Bizanti A, Zhang Y, Toledo Z, Bendowski KT, Harden SW, Mistareehi A, Chen J, Gozal D, Heal M, Christie R, Hunter PJ, Paton JFR, Cheng ZJ. Chronic intermittent hypoxia remodels catecholaminergic nerve innervation in mouse atria. J Physiol 2024; 602:49-71. [PMID: 38156943 PMCID: PMC10842556 DOI: 10.1113/jp284961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/04/2023] [Indexed: 01/03/2024] Open
Abstract
Chronic intermittent hypoxia (CIH, a model for sleep apnoea) is a major risk factor for several cardiovascular diseases. Autonomic imbalance (sympathetic overactivity and parasympathetic withdrawal) has emerged as a causal contributor of CIH-induced cardiovascular disease. Previously, we showed that CIH remodels the parasympathetic pathway. However, whether CIH induces remodelling of the cardiac sympathetic innervation remains unknown. Mice (male, C57BL/6J, 2-3 months) were exposed to either room air (RA, 21% O2 ) or CIH (alternating 21% and 5.7% O2 , every 6 min, 10 h day-1 ) for 8-10 weeks. Flat-mounts of their left and right atria were immunohistochemically labelled for tyrosine hydroxylase (TH, a sympathetic marker). Using a confocal microscope (or fluorescence microscope) and Neurlocudia 360 digitization and tracing system, we scanned both the left and right atria and quantitatively analysed the sympathetic axon density in both groups. The segmentation data was mapped onto a 3D mouse heart scaffold. Our findings indicated that CIH significantly remodelled the TH immunoreactive (-IR) innervation of the atria by increasing its density at the sinoatrial node, the auricles and the major veins attached to the atria (P < 0.05, n = 7). Additionally, CIH increased the branching points of TH-IR axons and decreased the distance between varicosities. Abnormal patterns of TH-IR axons around intrinsic cardiac ganglia were also found following CIH. We postulate that the increased sympathetic innervation may further amplify the effects of enhanced CIH-induced central sympathetic drive to the heart. Our work provides an anatomical foundation for the understanding of CIH-induced autonomic imbalance. KEY POINTS: Chronic intermittent hypoxia (CIH, a model for sleep apnoea) causes sympathetic overactivity, cardiovascular remodelling and hypertension. We determined the effect of CIH on sympathetic innervation of the mouse atria. In vivo CIH for 8-10 weeks resulted in an aberrant axonal pattern around the principal neurons within intrinsic cardiac ganglia and an increase in the density, branching point, tortuosity of catecholaminergic axons and atrial wall thickness. Utilizing mapping tool available from NIH (SPARC) Program, the topographical distribution of the catecholaminergic innervation of the atria were integrated into a novel 3D heart scaffold for precise anatomical distribution and holistic quantitative comparison between normal and CIH mice. This work provides a unique neuroanatomical understanding of the pathophysiology of CIH-induced autonomic remodelling.
Collapse
Affiliation(s)
- Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zulema Toledo
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kohlton T Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Scott W Harden
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - David Gozal
- Joan C. Edwards School of medicine, Marshall University, Huntington, WV, USA
| | - Maci Heal
- MBF Bioscience, Williston, Vermont, USA
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Julian F R Paton
- Department Physiology, Manaaki Manawa-the Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
11
|
Ma J, Nguyen D, Madas J, Bizanti A, Mistareehi A, Kwiat AM, Chen J, Lin M, Christie R, Hunter P, Heal M, Baldwin S, Tappan S, Furness JB, Powley TL, Cheng Z(J. Organization and morphology of calcitonin gene-related peptide-immunoreactive axons in the whole mouse stomach. J Comp Neurol 2023; 531:1608-1632. [PMID: 37694767 PMCID: PMC10593087 DOI: 10.1002/cne.25519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 09/12/2023]
Abstract
Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers (e.g., substance P [SP] and calcitonin gene-related peptide [CGRP]). We recently examined the topographical organization and morphology of SP-immunoreactive (SP-IR) axons in the whole mouse stomach muscular layer. However, the distribution and morphological structure of CGRP-IR axons remain unclear. We used immunohistochemistry labeling and applied a combination of imaging techniques, including confocal and Zeiss Imager M2 microscopy, Neurolucida 360 tracing, and integration of axon tracing data into a 3D stomach scaffold to characterize CGRP-IR axons and terminals in the whole mouse stomach muscular layers. We found that: (1) CGRP-IR axons formed extensive terminal networks in both ventral and dorsal stomachs. (2) CGRP-IR axons densely innervated the blood vessels. (3) CGRP-IR axons ran in parallel with the longitudinal and circular muscles. Some axons ran at angles through the muscular layers. (4) They also formed varicose terminal contacts with individual myenteric ganglion neurons. (5) CGRP-IR occurred in DiI-labeled gastric-projecting neurons in the dorsal root and vagal nodose ganglia, indicating CGRP-IR axons were visceral afferent axons. (6) CGRP-IR axons did not colocalize with tyrosine hydroxylase or vesicular acetylcholine transporter axons in the stomach, indicating CGRP-IR axons were not visceral efferent axons. (7) CGRP-IR axons were traced and integrated into a 3D stomach scaffold. For the first time, we provided a topographical distribution map of CGRP-IR axon innervation of the whole stomach muscular layers at the cellular/axonal/varicosity scale.
Collapse
Affiliation(s)
- Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jazune Madas
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Andrew M. Kwiat
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Mabelle Lin
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Maci Heal
- MBF Bioscience, Williston, Vermont, USA
| | | | | | - John B. Furness
- Department of Anatomy & Physiology, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Terry L. Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
12
|
Salamon RJ, Halbe P, Kasberg W, Bae J, Audhya A, Mahmoud AI. Parasympathetic and sympathetic axons are bundled in the cardiac ventricles and undergo physiological reinnervation during heart regeneration. iScience 2023; 26:107709. [PMID: 37674983 PMCID: PMC10477065 DOI: 10.1016/j.isci.2023.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Sympathetic innervation influences homeostasis, repair, and pathology in the cardiac ventricles; in contrast, parasympathetic innervation is considered to have minimal contribution and influence in the ventricles. Here, we use genetic models, whole-mount imaging, and three-dimensional modeling to define cardiac nerve architecture during development, disease, and regeneration. Our approach reveals that parasympathetic nerves extensively innervate the cardiac ventricles. Furthermore, we identify that parasympathetic and sympathetic axons develop synchronously and are bundled throughout the ventricles. We further investigate cardiac nerve remodeling in the regenerative neonatal and the non-regenerative postnatal mouse heart. Our results show that the regenerating myocardium undergoes a unique process of physiological reinnervation, where proper nerve distribution and architecture is reestablished, in stark contrast to the non-regenerating heart. Mechanistically, we demonstrate that physiological reinnervation during regeneration is dependent on collateral artery formation. Our results reveal clinically significant insights into cardiac nerve plasticity which can identify new therapies for cardiac disease.
Collapse
Affiliation(s)
- Rebecca J. Salamon
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Poorva Halbe
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jiyoung Bae
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
13
|
Kaplan A, Lakkis B, El-Samadi L, Karaayvaz EB, Booz GW, Zouein FA. Cooling Down Inflammation in the Cardiovascular System via the Nicotinic Acetylcholine Receptor. J Cardiovasc Pharmacol 2023; 82:241-265. [PMID: 37539950 DOI: 10.1097/fjc.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
ABSTRACT Inflammation is a major player in many cardiovascular diseases including hypertension, atherosclerosis, myocardial infarction, and heart failure. In many individuals, these conditions coexist and mutually exacerbate each other's progression. The pathophysiology of these diseases entails the active involvement of both innate and adaptive immune cells. Immune cells that possess the α7 subunit of the nicotinic acetylcholine receptor on their surface have the potential to be targeted through both pharmacological and electrical stimulation of the cholinergic system. The cholinergic system regulates the inflammatory response to various stressors in different organ systems by systematically suppressing spleen-derived monocytes and chemokines and locally improving immune cell function. Research on the cardiovascular system has demonstrated the potential for atheroma plaque stabilization and regression as favorable outcomes. Smaller infarct size and reduced fibrosis have been associated with improved cardiac function and a decrease in adverse cardiac remodeling. Furthermore, enhanced electrical stability of the myocardium can lead to a reduction in the incidence of ventricular tachyarrhythmia. In addition, improving mitochondrial dysfunction and decreasing oxidative stress can result in less myocardial tissue damage caused by reperfusion injury. Restoring baroreflex activity and reduction in renal damage can promote blood pressure regulation and help counteract hypertension. Thus, the present review highlights the potential of nicotinic acetylcholine receptor activation as a natural approach to alleviate the adverse consequences of inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- Department of Cardiology, Kemer Public Hospital, Kemer, Antalya, Turkey
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Bachir Lakkis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Lana El-Samadi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Ekrem Bilal Karaayvaz
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, France
| |
Collapse
|
14
|
Pauziene N, Ranceviene D, Rysevaite‐Kyguoliene K, Ragauskas T, Inokaitis H, Sabeckis I, Plekhanova K, Khmel O, Pauza DH. Neurochemical alterations of intrinsic cardiac ganglionated nerve plexus caused by arterial hypertension developed during ageing in spontaneously hypertensive and Wistar Kyoto rats. J Anat 2023; 243:630-647. [PMID: 37083051 PMCID: PMC10485580 DOI: 10.1111/joa.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
The acknowledged hypothesis of the cause of arterial hypertension is the emerging disbalance in sympathetic and parasympathetic regulations of the cardiovascular system. This disbalance manifests in a disorder of sustainability of endogenous autonomic and sensory neural substances including calcitonin gene-related peptide (CGRP). This study aimed to examine neurochemical alterations of intrinsic cardiac ganglionated nerve plexus (GP) triggered by arterial hypertension during ageing in spontaneously hypertensive rats of juvenile (prehypertensive, 8-9 weeks), adult (early hypertensive, 12-18 weeks) and elderly (persistent hypertensive, 46-60 weeks) age in comparison with the age-matched Wistar-Kyoto rats as controls. Parasympathetic, sympathetic and sensory neural structures of GP were analysed and evaluated morphometrically in tissue sections and whole-mount cardiac preparations. Both the elevated blood pressure and the evident ultrasonic signs of heart failure were identified for spontaneously hypertensive rats and in part for the aged control rats. The amount of adrenergic and immunoreactive to CGRP neural structures was increased in the adult group of spontaneously hypertensive rats along with the significant alterations that occurred during ageing. In conclusion, the revealed chemical alterations of GP support the hypothesis about the possible disbalance of efferent and afferent heart innervation and may be considered as the basis for the emergence and progression of arterial hypertension and perhaps even as a consequence of hypertension in the aged spontaneously hypertensive rats. The determined anatomical changes in the ageing Wistar-Kyoto rats suggest this breed being as inappropriate for its use as control animals for hypertension studies in older animal age.
Collapse
Affiliation(s)
- Neringa Pauziene
- Institute of Anatomy, Faculty of MedicineLithuanian University of Health SciencesKaunasLithuania
| | - Dalia Ranceviene
- Institute of Anatomy, Faculty of MedicineLithuanian University of Health SciencesKaunasLithuania
| | | | - Tomas Ragauskas
- Institute of Anatomy, Faculty of MedicineLithuanian University of Health SciencesKaunasLithuania
| | - Hermanas Inokaitis
- Institute of Anatomy, Faculty of MedicineLithuanian University of Health SciencesKaunasLithuania
| | - Ignas Sabeckis
- Institute of Anatomy, Faculty of MedicineLithuanian University of Health SciencesKaunasLithuania
| | - Khrystyna Plekhanova
- Institute of Anatomy, Faculty of MedicineLithuanian University of Health SciencesKaunasLithuania
| | - Olena Khmel
- Institute of Anatomy, Faculty of MedicineLithuanian University of Health SciencesKaunasLithuania
| | - Dainius H. Pauza
- Institute of Anatomy, Faculty of MedicineLithuanian University of Health SciencesKaunasLithuania
| |
Collapse
|
15
|
Inokaitis H, Pauziene N, Pauza DH. The distribution of sinoatrial nodal cells and their innervation in the pig. Anat Rec (Hoboken) 2023; 306:2333-2344. [PMID: 35643929 DOI: 10.1002/ar.24998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
The sinoatrial node (SAN) has been the object of interest of various studies. In experimental neurocardiology, the real challenge is the choice of the most appropriate animal model. Pig is routinely used animal due to its size and physiological features. Despite this, the anatomy and innervation of the pig SAN are not completely examined. This study analyses the distribution of SAN cells and their innervation in whole-mount preparations and the cross-sections of the pig right atrium. Our findings revealed the differences in the distribution of the SAN cells and their innervation pattern between pigs and other animals. The pig SAN myocytes were distributed around the root of the anterior vena cava. A meshwork of nerve fibers (NFs) in this area was four-fold denser compared to other right atrial areas and contained the adrenergic (positive for TH), cholinergic (positive for ChAT), nitrergic (positive for nNOS), and potentially sensory (positive for SP) NFs. The SAN area contained 98 ± 10 ganglia that involved 21 ± 2 neuronal somata per ganglion. The determined chemical phenotypes of ganglionic cells demonstrate their diversity in the pig SAN area as there were identified neuronal somata positive for ChAT, nNOS, TH, and simultaneously for ChAT/nNOS and ChAT/TH. Small intensively fluorescent cells were also abundant. The broad distribution of SAN cells, the chemical diversity, and the high density of neural components in the SAN area are comparable to the human one and, therefore, the pig may be considered as the appropriate animal model for experimental cardiology.
Collapse
Affiliation(s)
- Hermanas Inokaitis
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Neringa Pauziene
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H Pauza
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
16
|
Saburkina I, Pauziene N, Solomon OI, Rysevaite-Kyguoliene K, Pauza DH. Comparative gross anatomy of epicardiac ganglionated nerve plexi on the human and sheep cardiac ventricles. Anat Rec (Hoboken) 2023; 306:2302-2312. [PMID: 36181389 DOI: 10.1002/ar.25085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
Abstract
This study aimed to examine the distribution and quantitative parameters of the epicardiac ventricular neural ganglionated plexus in the hearts of humans and sheep, highlighting the differences of this plexus in humans and large models. Five non-sectioned pressure distended whole hearts of the human newborns and 10 hearts of newborn German black-faced lambs were investigated applying a histochemical method for acetylcholinesterase to stain epicardiac neural structures with their subsequent stereomicroscopic examination. In humans, the ventricular nerves are spread by four epicardiac nerve subplexuses, that is, the left and right coronary as well as the left and middle dorsal. In sheep, the ventricular nerves are spread by five epicardiac nerve subplexuses, that is, the left and right coronary, the left and middle dorsal and the right ventral ones. The ventricular epicardium involved up to 129 ganglia in humans and up to 198-in sheep. The largest number of the ventricular ganglionic cells in humans were located on the ventral side, in front of the conus arteriosus, while on sheep ventricles, the most numerous neurons distributed on the dorsal wall of the left ventricle. This comparative study of the morphological patterns of the human and sheep ventricles demonstrates that the sheep heart is neuroanatomically distinct from the human one and this must be taking into consideration using the sheep model for the heart physiology experiments.
Collapse
Affiliation(s)
- Inga Saburkina
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Neringa Pauziene
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - On Itai Solomon
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Dainius H Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
17
|
Lother A, Kohl P. The heterocellular heart: identities, interactions, and implications for cardiology. Basic Res Cardiol 2023; 118:30. [PMID: 37495826 PMCID: PMC10371928 DOI: 10.1007/s00395-023-01000-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The heterocellular nature of the heart has been receiving increasing attention in recent years. In addition to cardiomyocytes as the prototypical cell type of the heart, non-myocytes such as endothelial cells, fibroblasts, or immune cells are coming more into focus. The rise of single-cell sequencing technologies enables identification of ever more subtle differences and has reignited the question of what defines a cell's identity. Here we provide an overview of the major cardiac cell types, describe their roles in homeostasis, and outline recent findings on non-canonical functions that may be of relevance for cardiology. We highlight modes of biochemical and biophysical interactions between different cardiac cell types and discuss the potential implications of the heterocellular nature of the heart for basic research and therapeutic interventions.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Ma J, Nguyen D, Madas J, Bizanti A, Mistareehi A, Kwiat AM, Chen J, Lin M, Christie R, Hunter P, Heal M, Baldwin S, Tappan S, Furness JB, Powley TL, Cheng ZJ. Mapping the Organization and Morphology of Calcitonin Gene-Related Peptide (CGRP)-IR Axons in the Whole Mouse Stomach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541811. [PMID: 37398245 PMCID: PMC10312482 DOI: 10.1101/2023.05.23.541811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers [e.g., substance P (SP) and calcitonin gene-related peptide (CGRP)]. We recently examined the topographical organization and morphology of SP-immunoreactive (SP-IR) axons in the whole mouse stomach muscular layer. However, the distribution and morphological structure of CGRP-IR axons remain unclear. We used immunohistochemistry labeling and applied a combination of imaging techniques, including confocal and Zeiss Imager M2 microscopy, Neurolucida 360 tracing, and integration of axon tracing data into a 3D stomach scaffold to characterize CGRP-IR axons and terminals in the whole mouse stomach muscular layers. We found that: 1) CGRP-IR axons formed extensive terminal networks in both ventral and dorsal stomachs. 2) CGRP-IR axons densely innervated the blood vessels. 3) CGRP-IR axons ran in parallel with the longitudinal and circular muscles. Some axons ran at angles through the muscular layers. 4) They also formed varicose terminal contacts with individual myenteric ganglion neurons. 5) CGRP-IR occurred in DiI-labeled gastric-projecting neurons in the dorsal root and vagal nodose ganglia, indicating CGRP-IR axons were visceral afferent axons. 6) CGRP-IR axons did not colocalize with tyrosine hydroxylase (TH) or vesicular acetylcholine transporter (VAChT) axons in the stomach, indicating CGRP-IR axons were not visceral efferent axons. 7) CGRP-IR axons were traced and integrated into a 3D stomach scaffold. For the first time, we provided a topographical distribution map of CGRP-IR axon innervation of the whole stomach muscular layers at the cellular/axonal/varicosity scale.
Collapse
|
19
|
Yadav S, Waldeck-Weiermair M, Spyropoulos F, Bronson R, Pandey AK, Das AA, Sisti AC, Covington TA, Thulabandu V, Caplan S, Chutkow W, Steinhorn B, Michel T. Sensory ataxia and cardiac hypertrophy caused by neurovascular oxidative stress in chemogenetic transgenic mouse lines. Nat Commun 2023; 14:3094. [PMID: 37248315 PMCID: PMC10227029 DOI: 10.1038/s41467-023-38961-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/24/2023] [Indexed: 05/31/2023] Open
Abstract
Oxidative stress is associated with cardiovascular and neurodegenerative diseases. Here we report studies of neurovascular oxidative stress in chemogenetic transgenic mouse lines expressing yeast D-amino acid oxidase (DAAO) in neurons and vascular endothelium. When these transgenic mice are fed D-amino acids, DAAO generates hydrogen peroxide in target tissues. DAAO-TGCdh5 transgenic mice express DAAO under control of the putatively endothelial-specific Cdh5 promoter. When we provide these mice with D-alanine, they rapidly develop sensory ataxia caused by oxidative stress and mitochondrial dysfunction in neurons within dorsal root ganglia and nodose ganglia innervating the heart. DAAO-TGCdh5 mice also develop cardiac hypertrophy after chronic chemogenetic oxidative stress. This combination of ataxia, mitochondrial dysfunction, and cardiac hypertrophy is similar to findings in patients with Friedreich's ataxia. Our observations indicate that neurovascular oxidative stress is sufficient to cause sensory ataxia and cardiac hypertrophy. Studies of DAAO-TGCdh5 mice could provide mechanistic insights into Friedreich's ataxia.
Collapse
Affiliation(s)
- Shambhu Yadav
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Markus Waldeck-Weiermair
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Fotios Spyropoulos
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Roderick Bronson
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Apabrita Ayan Das
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Alexander C Sisti
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Taylor A Covington
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Venkata Thulabandu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Shari Caplan
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - William Chutkow
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Benjamin Steinhorn
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Thomas Michel
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Zhang Y, Bizanti A, Harden SW, Chen J, Bendowski K, Hoover DB, Gozal D, Shivkumar K, Heal M, Tappan S, Cheng ZJ. Topographical mapping of catecholaminergic axon innervation in the flat-mounts of the mouse atria: a quantitative analysis. Sci Rep 2023; 13:4850. [PMID: 37029119 PMCID: PMC10082215 DOI: 10.1038/s41598-023-27727-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/06/2023] [Indexed: 04/09/2023] Open
Abstract
The sympathetic nervous system is crucial for controlling multiple cardiac functions. However, a comprehensive, detailed neuroanatomical map of the sympathetic innervation of the heart is unavailable. Here, we used a combination of state-of-the-art techniques, including flat-mount tissue processing, immunohistochemistry for tyrosine hydroxylase (TH, a sympathetic marker), confocal microscopy and Neurolucida 360 software to trace, digitize, and quantitatively map the topographical distribution of the sympathetic postganglionic innervation in whole atria of C57Bl/6 J mice. We found that (1) 4-5 major extrinsic TH-IR nerve bundles entered the atria at the superior vena cava, right atrium (RA), left precaval vein and the root of the pulmonary veins (PVs) in the left atrium (LA). Although these bundles projected to different areas of the atria, their projection fields partially overlapped. (2) TH-IR axon and terminal density varied considerably between different sites of the atria with the greatest density of innervation near the sinoatrial node region (P < 0.05, n = 6). (3) TH-IR axons also innervated blood vessels and adipocytes. (4) Many principal neurons in intrinsic cardiac ganglia and small intensely fluorescent cells were also strongly TH-IR. Our work provides a comprehensive topographical map of the catecholaminergic efferent axon morphology, innervation, and distribution in the whole atria at single cell/axon/varicosity scale that may be used in future studies to create a cardiac sympathetic-brain atlas.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Scott W Harden
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Kohlton Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65201, USA
| | - Kalyanam Shivkumar
- Department of Medicine, Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California, Los Angeles, CA, 90095, USA
| | - Maci Heal
- MBF Bioscience, Williston, VT, 05495, USA
| | | | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA.
| |
Collapse
|
21
|
Sahoglu SG, Kazci YE, Karadogan B, Aydin MS, Nebol A, Turhan MU, Ozturk G, Cagavi E. High-resolution mapping of sensory fibers at the healthy and post-myocardial infarct whole transgenic hearts. J Neurosci Res 2023; 101:338-353. [PMID: 36517461 DOI: 10.1002/jnr.25150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/15/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
The sensory nervous system is critical to maintain cardiac function. As opposed to efferent innervation, less is known about cardiac afferents. For this, we mapped the VGLUT2-expressing cardiac afferent fibers of spinal and vagal origin by using the VGLUT2::tdTomato double transgenic mouse as an approach to visualize the whole hearts both at the dorsal and ventral sides. For comparison, we colabeled mixed-sex transgenic hearts with either TUJ1 protein for global cardiac innervation or tyrosine hydroxylase for the sympathetic network at the healthy state or following ischemic injury. Interestingly, the nerve density for global and VGLUT2-expressing afferents was found significantly higher on the dorsal side compared to the ventral side. From the global nerve innervation detected by TUJ1 immunoreactivity, VGLUT2 afferent innervation was detected to be 15-25% of the total network. The detailed characterization of both the atria and the ventricles revealed a remarkable diversity of spinal afferent nerve ending morphologies of flower sprays, intramuscular endings, and end-net branches that innervate distinct anatomical parts of the heart. Using this integrative approach in a chronic myocardial infarct model, we showed a significant increase in hyperinnervation in the form of axonal sprouts for cardiac afferents at the infarct border zone, as well as denervation at distal sites of the ischemic area. The functional and physiological consequences of the abnormal sensory innervation remodeling post-ischemic injury should be further evaluated in future studies regarding their potential contribution to cardiac dysfunction.
Collapse
Affiliation(s)
- Sevilay Goktas Sahoglu
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Neuroscience Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Yusuf Enes Kazci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Neuroscience Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Behnaz Karadogan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Serif Aydin
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aylin Nebol
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Medical Biology and Genetics Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Ugurcan Turhan
- Department of Cardiovascular Surgery, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Gurkan Ozturk
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, İstanbul, Turkey
| | - Esra Cagavi
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Medical Biology and Genetics Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
22
|
Abramov T, Suwansa-ard S, da Silva PM, Wang T, Dove M, O’Connor W, Parker L, Russell FD, Lovejoy DA, Cummins SF, Elizur A. A novel role for Teneurin C-terminal Associated Peptide (TCAP) in the regulation of cardiac activity in the Sydney rock oyster, Saccostrea glomerata. Front Endocrinol (Lausanne) 2023; 14:1020368. [PMID: 36814576 PMCID: PMC9939839 DOI: 10.3389/fendo.2023.1020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Teneurin C-terminal associated peptide (TCAP) is an ancient bioactive peptide that is highly conserved in metazoans. TCAP administration reduces cellular and behavioural stress in vertebrate and urochordate models, yet despite numerous studies in higher animals, there is limited knowledge of its role in invertebrates. In particular, there are no studies on TCAP's effects on the heart of any metazoan, which is a critical organ in the stress response. We used the Sydney rock oyster (SRO) as an invertebrate model to investigate a potential role for sroTCAP in regulating cardiac activity, including during stress. sroTCAP is localized to the neural innervation network of the SRO heart, and suggested binding with various heart proteins related to metabolism and stress, including SOD, GAPDH and metabotropic glutamate receptor. Intramuscular injection of sroTCAP (10 pmol) significantly altered the expression of heart genes that are known to regulate remodelling processes under different conditions, and modulated several gene families responsible for stress mitigation. sroTCAP (1 and 10 pmol) was shown to cause transient bradycardia (heart rate was reduced by up to 63% and for up to 40 min post-administration), indicative of an unstressed state. In summary, this study has established a role for a TCAP in the regulation of cardiac activity through modulation of physiological and molecular components associated with energy conservation, stress and adaptation. This represents a novel function for TCAP and may have implications for higher-order metazoans.
Collapse
Affiliation(s)
- Tomer Abramov
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Saowaros Suwansa-ard
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Patricia Mirella da Silva
- Invertebrate Immunology and Pathology Laboratory, Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Michael Dove
- New South Wales (NSW) Department of Primary Industries, Port Stephens Fisheries Institute Taylors Beach, Port Stephens NSW, Australia
| | - Wayne O’Connor
- New South Wales (NSW) Department of Primary Industries, Port Stephens Fisheries Institute Taylors Beach, Port Stephens NSW, Australia
| | - Laura Parker
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, NSW, Australia
| | - Fraser D. Russell
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - David A. Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
23
|
Salamon RJ, Halbe P, Kasberg W, Bae J, Audhya A, Mahmoud AI. Defining Cardiac Nerve Architecture During Development, Disease, and Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522405. [PMID: 36711742 PMCID: PMC9881855 DOI: 10.1101/2022.12.31.522405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cardiac nerves regulate neonatal mouse heart regeneration and are susceptible to pathological remodeling following adult injury. Understanding cardiac nerve remodeling can lead to new strategies to promote cardiac repair. Our current understanding of cardiac nerve architecture has been limited to two-dimensional analysis. Here, we use genetic models, whole-mount imaging, and three-dimensional modeling tools to define cardiac nerve architecture and neurovascular association during development, disease, and regeneration. Our results demonstrate that cardiac nerves sequentially associate with coronary veins and arteries during development. Remarkably, our results reveal that parasympathetic nerves densely innervate the ventricles. Furthermore, parasympathetic and sympathetic nerves develop synchronously and are intertwined throughout the ventricles. Importantly, the regenerating myocardium reestablishes physiological innervation, in stark contrast to the non-regenerating heart. Mechanistically, reinnervation during regeneration is dependent on collateral artery formation. Our results reveal how defining cardiac nerve remodeling during homeostasis, disease, and regeneration can identify new therapies for cardiac disease.
Collapse
|
24
|
Kahle AK, Klatt N, Jungen C, Dietenberger A, Kuklik P, Münkler P, Willems S, Nikolaev V, Pauza DH, Scherschel K, Meyer C. Acute Modulation of Left Ventricular Control by Selective Intracardiac Sympathetic Denervation. JACC Clin Electrophysiol 2022; 9:371-384. [PMID: 36752452 DOI: 10.1016/j.jacep.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND The sympathetic nervous system plays an integral role in cardiac physiology. Nerve fibers innervating the left ventricle are amenable to transvenous catheter stimulation along the coronary sinus (CS). OBJECTIVES The aim of the present study was to modulate left ventricular control by selective intracardiac sympathetic denervation. METHODS First, the impact of epicardial CS ablation on cardiac electrophysiology was studied in a Langendorff model of decentralized murine hearts (n = 10 each, ablation and control groups). Second, the impact of transvenous, anatomically driven axotomy by catheter-based radiofrequency ablation via the CS was evaluated in healthy sheep (n = 8) before and during stellate ganglion stimulation. RESULTS CS ablation prolonged epicardial ventricular refractory period without (41.8 ± 8.4 ms vs 53.0 ± 13.5 ms; P = 0.049) and with β1-2-adrenergic receptor blockade (47.8 ± 7.8 ms vs 73.1 ± 13.2 ms; P < 0.001) in mice. Supported by neuromorphological studies illustrating a circumferential CS neural network, intracardiac axotomy by catheter ablation via the CS in healthy sheep diminished the blood pressure increase during stellate ganglion stimulation (Δ systolic blood pressure 21.9 ± 10.9 mm Hg vs 10.5 ± 12.0 mm Hg; P = 0.023; Δ diastolic blood pressure 9.0 ± 5.5 mm Hg vs 3.0 ± 3.5 mm Hg; P = 0.039). CONCLUSIONS Transvenous, anatomically driven axotomy targeting nerve fibers along the CS enables acute modulation of left ventricular control by selective intracardiac sympathetic denervation.
Collapse
Affiliation(s)
- Ann-Kathrin Kahle
- Division of Cardiology, Angiology, and Intensive Care Medicine, Cardiac Neuro- and Electrophysiology Research Consortium, EVK Düsseldorf, Düsseldorf, Germany; Institute of Neural and Sensory Physiology, Cardiac Neuro- and Electrophysiology Research Consortium, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany; Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Niklas Klatt
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany; Department of Cardiology, Schön Klinik Neustadt in Holstein, Neustadt in Holstein, Germany
| | - Christiane Jungen
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany; Clinic for Cardiology, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Aaron Dietenberger
- Clinic for Cardiology, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Pawel Kuklik
- Department of Cardiology and Internal Intensive Care Medicine, Asklepios Hospital St. Georg, Hamburg, Germany
| | - Paula Münkler
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany; Clinic for Cardiology, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Willems
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany; Department of Cardiology and Internal Intensive Care Medicine, Asklepios Hospital St. Georg, Hamburg, Germany
| | - Viacheslav Nikolaev
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dainius H Pauza
- Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Katharina Scherschel
- Division of Cardiology, Angiology, and Intensive Care Medicine, Cardiac Neuro- and Electrophysiology Research Consortium, EVK Düsseldorf, Düsseldorf, Germany; Institute of Neural and Sensory Physiology, Cardiac Neuro- and Electrophysiology Research Consortium, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Christian Meyer
- Division of Cardiology, Angiology, and Intensive Care Medicine, Cardiac Neuro- and Electrophysiology Research Consortium, EVK Düsseldorf, Düsseldorf, Germany; Institute of Neural and Sensory Physiology, Cardiac Neuro- and Electrophysiology Research Consortium, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany.
| |
Collapse
|
25
|
Kazci YE, Sahoglu Goktas S, Aydin MS, Karadogan B, Nebol A, Turhan MU, Ozturk G, Cagavi E. Anatomical characterization of vagal nodose afferent innervation and ending morphologies at the murine heart using a transgenic approach. Auton Neurosci 2022; 242:103019. [PMID: 35905544 DOI: 10.1016/j.autneu.2022.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
Heart is an extensively innervated organ and its function is strictly coordinated by autonomic neural circuits. After pathological events such as myocardial infarction (MI), cardiac nerves undergo a structural and functional remodeling contributing to cardiac dysfunction. Although the efferent component of the cardiac nerves has been well described, sensory innervation of the heart has not been defined in detail. Considering its importance, comprehensive description of vagal afferent innervation on the whole heart would enable a better description of autonomic imbalances manifesting as sympathoexcitation and vagal withdrawal in post-ischemic states. To address this issue, we globally mapped the vagal nodose afferent fibers innervating the whole murine heart with unprecedented resolution. By using the Phox2b-Cre::tdTomato transgenic mouse line, we described the detailed distribution and distinct vagal sensory ending morphologies at both the dorsal and ventral sides of the mouse heart. By neural tracing analysis, we quantitated the distribution and prevalence of vagal afferent nerve fibers with varying diameters across dorsal and ventral surfaces of the heart. Moreover, we demonstrated that vagal afferents formed flower spray and end-net-like endings within the atria and ventricles. As distinct from the atria, vagal afferents formed intramuscular array-like endings within the ventricles. Furthermore, we showed that vagal afferents undergo structural remodeling by forming axonal sprouts around the infarct area in post-MI hearts. These findings improve our understanding of the potential effect of vagal afferent remodeling on autonomic imbalance and generation of cardiac arrhythmias and could prospectively contribute to the development of more effective neuromodulatory therapies.
Collapse
Affiliation(s)
- Yusuf Enes Kazci
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey; Istanbul Medipol University, Institute of Health Sciences, Neuroscience Program, Istanbul, Turkey; Deparment of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Sevilay Sahoglu Goktas
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey; Istanbul Medipol University, Institute of Health Sciences, Neuroscience Program, Istanbul, Turkey; Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Serif Aydin
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Behnaz Karadogan
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Aylin Nebol
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey; Istanbul Medipol University, Institute of Health Sciences, Medical Biology and Genetics Graduate Program, Istanbul, Turkey
| | - Mehmet Ugurcan Turhan
- Cerrahpasa Medical School, Department of Cardiovascular Surgery, Istanbul University, Istanbul, Turkey
| | - Gurkan Ozturk
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey; Istanbul Medipol University, Institute of Health Sciences, Neuroscience Program, Istanbul, Turkey; Physiology Department, International School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Esra Cagavi
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey; Deparment of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Istanbul Medipol University, Institute of Health Sciences, Medical Biology and Genetics Graduate Program, Istanbul, Turkey.
| |
Collapse
|
26
|
Vörös I, Onódi Z, Tóth VÉ, Gergely TG, Sághy É, Görbe A, Kemény Á, Leszek P, Helyes Z, Ferdinandy P, Varga ZV. Saxagliptin Cardiotoxicity in Chronic Heart Failure: The Role of DPP4 in the Regulation of Neuropeptide Tone. Biomedicines 2022; 10:1573. [PMID: 35884882 PMCID: PMC9312997 DOI: 10.3390/biomedicines10071573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Dipeptidyl-peptidase-4 (DPP4) inhibitors are novel medicines for diabetes. The SAVOR-TIMI-53 clinical trial revealed increased heart-failure-associated hospitalization in saxagliptin-treated patients. Although this side effect could limit therapeutic use, the mechanism of this potential cardiotoxicity is unclear. We aimed to establish a cellular platform to investigate DPP4 inhibition and the role of its neuropeptide substrates substance P (SP) and neuropeptide Y (NPY), and to determine the expression of DDP4 and its neuropeptide substrates in the human heart. Western blot, radio-, enzyme-linked immuno-, and RNA scope assays were performed to investigate the expression of DPP4 and its substrates in human hearts. Calcein-based viability measurements and scratch assays were used to test the potential toxicity of DPP4 inhibitors. Cardiac expression of DPP4 and NPY decreased in heart failure patients. In human hearts, DPP4 mRNA is detectable mainly in cardiomyocytes and endothelium. Treatment with DPP4 inhibitors alone/in combination with neuropeptides did not affect viability but in scratch assays neuropeptides decreased, while saxagliptin co-administration increased fibroblast migration in isolated neonatal rat cardiomyocyte-fibroblast co-culture. Decreased DPP4 activity takes part in the pathophysiology of end-stage heart failure. DPP4 compensates against the elevated sympathetic activity and altered neuropeptide tone. Its inhibition decreases this adaptive mechanism, thereby exacerbating myocardial damage.
Collapse
Grants
- NVKP-16-1-2016-0017, 2017-1.2.1-NKP-2017-00002 National Research, Development, and Innovation Office of Hungary
- NKFIA; FK134751, K139237 National Research, Development, and Innovation Office of Hungary
- ÚNKP-21-3-II-SE-14 New National Excellence Program of the Ministry for Innovation and Technology
- EFOP-3.6.3-VEKOP-16-2017-00009 National Research, Development, and Innovation Office of Hungary
- 739593 European Union's Horizon 2020 Research and Innovation Programme
- LP-2021-14 Momentum Research Grant from the Hungarian Academy of Sciences
- 2020-4.1.1.-TKP2020 Ministry for Innovation and Technology in Hungary
- TKP2021-EGA/TKP2021-NVA/TKP2021-NKTA, TKP2021-EGA-16, TKP2021-EGA-13, and 2020-1.1.6-JÖVŐ-2021-00013 by NKFIA. Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund
Collapse
Affiliation(s)
- Imre Vörös
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (I.V.); (Z.O.); (V.É.T.); (T.G.G.); (É.S.); (A.G.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Zsófia Onódi
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (I.V.); (Z.O.); (V.É.T.); (T.G.G.); (É.S.); (A.G.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Viktória Éva Tóth
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (I.V.); (Z.O.); (V.É.T.); (T.G.G.); (É.S.); (A.G.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás G. Gergely
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (I.V.); (Z.O.); (V.É.T.); (T.G.G.); (É.S.); (A.G.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| | - Éva Sághy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (I.V.); (Z.O.); (V.É.T.); (T.G.G.); (É.S.); (A.G.); (P.F.)
| | - Anikó Görbe
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (I.V.); (Z.O.); (V.É.T.); (T.G.G.); (É.S.); (A.G.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Ágnes Kemény
- Szentágothai János Research Centre, University of Pécs, 7624 Pécs, Hungary; (Á.K.); (Z.H.)
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- Department of Medical Biology, University of Pécs, 7624 Pécs, Hungary
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński National Institute of Cardiology, 04-628 Warszawa, Poland;
| | - Zsuzsanna Helyes
- Szentágothai János Research Centre, University of Pécs, 7624 Pécs, Hungary; (Á.K.); (Z.H.)
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- PharmInVivo Ltd., 7629 Pécs, Hungary
| | - Péter Ferdinandy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (I.V.); (Z.O.); (V.É.T.); (T.G.G.); (É.S.); (A.G.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Zoltán V. Varga
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; (I.V.); (Z.O.); (V.É.T.); (T.G.G.); (É.S.); (A.G.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
27
|
Ramos-Mondragon R, Edokobi N, Hodges SL, Wang S, Bouza AA, Canugovi C, Scheuing C, Juratli L, Abel WR, Noujaim SF, Madamanchi NR, Runge MS, Lopez-Santiago LF, Isom LL. Neonatal Scn1b-null mice have sinoatrial node dysfunction, altered atrial structure, and atrial fibrillation. JCI Insight 2022; 7:152050. [PMID: 35603785 PMCID: PMC9220823 DOI: 10.1172/jci.insight.152050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Loss-of-function (LOF) variants in SCN1B, encoding the voltage-gated sodium channel β1/β1B subunits, are linked to neurological and cardiovascular diseases. Scn1b-null mice have spontaneous seizures and ventricular arrhythmias and die by approximately 21 days after birth. β1/β1B Subunits play critical roles in regulating the excitability of ventricular cardiomyocytes and maintaining ventricular rhythmicity. However, whether they also regulate atrial excitability is unknown. We used neonatal Scn1b-null mice to model the effects of SCN1B LOF on atrial physiology in pediatric patients. Scn1b deletion resulted in altered expression of genes associated with atrial dysfunction. Scn1b-null hearts had a significant accumulation of atrial collagen, increased susceptibility to pacing induced atrial fibrillation (AF), sinoatrial node (SAN) dysfunction, and increased numbers of cholinergic neurons in ganglia that innervate the SAN. Atropine reduced the incidence of AF in null animals. Action potential duration was prolonged in null atrial myocytes, with increased late sodium current density and reduced L-type calcium current density. Scn1b LOF results in altered atrial structure and AF, demonstrating the critical role played by Scn1b in atrial physiology during early postnatal mouse development. Our results suggest that SCN1B LOF variants may significantly impact the developing pediatric heart.
Collapse
Affiliation(s)
| | | | | | | | | | - Chandrika Canugovi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | - Sami F. Noujaim
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marschall S. Runge
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Lori L. Isom
- Department of Pharmacology and
- Department of Neurology and
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Zhang D, Tu H, Hu W, Duan B, Zimmerman MC, Li YL. Hydrogen Peroxide Scavenging Restores N-Type Calcium Channels in Cardiac Vagal Postganglionic Neurons and Mitigates Myocardial Infarction-Evoked Ventricular Arrhythmias in Type 2 Diabetes Mellitus. Front Cardiovasc Med 2022; 9:871852. [PMID: 35548411 PMCID: PMC9082497 DOI: 10.3389/fcvm.2022.871852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveWithdrawal of cardiac vagal activity is associated with ventricular arrhythmia-related high mortality in patients with type 2 diabetes mellitus (T2DM). Our recent study found that reduced cell excitability of cardiac vagal postganglionic (CVP) neurons is involved in cardiac vagal dysfunction and further exacerbates myocardial infarction (MI)-evoked ventricular arrhythmias and mortality in T2DM. However, the mechanisms responsible for T2DM-impaired cell excitability of CVP neurons remain unclear. This study tested if and how elevation of hydrogen peroxide (H2O2) inactivates CVP neurons and contributes to cardiac vagal dysfunction and ventricular arrhythmogenesis in T2DM.Methods and ResultsRat T2DM was induced by a high-fat diet plus streptozotocin injection. Local in vivo transfection of adenoviral catalase gene (Ad.CAT) successfully induced overexpression of catalase and subsequently reduced cytosolic H2O2 levels in CVP neurons in T2DM rats. Ad.CAT restored protein expression and ion currents of N-type Ca2+ channels and increased cell excitability of CVP neurons in T2DM. Ad.CAT normalized T2DM-impaired cardiac vagal activation, vagal control of ventricular function, and heterogeneity of ventricular electrical activity. Additionally, Ad.CAT not only reduced the susceptibility to ventricular arrhythmias, but also suppressed MI-evoked lethal ventricular arrhythmias such as VT/VF in T2DM.ConclusionsWe concluded that endogenous H2O2 elevation inhibited protein expression and activation of N-type Ca2+ channels and reduced cell excitability of CVP neurons, which further contributed to the withdrawal of cardiac vagal activity and ventricular arrhythmogenesis in T2DM. Our current study suggests that the H2O2-N-type Ca2+ channel signaling axis might be an effective therapeutic target to suppress ventricular arrhythmias in T2DM patients with MI.
Collapse
Affiliation(s)
- Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wenfeng Hu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Yu-Long Li
| |
Collapse
|
29
|
Lizot G, Pasqualin C, Tissot A, Pagès S, Faivre JF, Chatelier A. Molecular and functional characterization of the mouse intracardiac nervous system. Heart Rhythm 2022; 19:1352-1362. [PMID: 35447308 DOI: 10.1016/j.hrthm.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The intracardiac nervous system (ICNS) refers to clusters of neurons, located within the heart, which participate to the neuronal regulation of cardiac functions and which are involved in the initiation of cardiac arrhythmias. Therefore, deciphering its role in cardiac physiology and physiopathology is mandatory. OBJECTIVE The aim of this study is to provide a phenotypic, electrophysiological and pharmacological characterization of the mouse ICNS, which is still poorly characterized. METHODS Global cardiac innervation and phenotypic diversity were investigated using immunohistochemistry on cleared murine heart and on tissue sections. Patch clamp technique was used for electrophysiological and pharmacological characterization of isolated mouse intracardiac neurons. RESULTS We have identified the expression of seven distinct neuronal markers within mouse ICNS, thus proving the neurochemical diversity of this network. Of note, it was the first time that the existence of neurons expressing the calcium binding protein calbindin, the neuropeptide Y (NPY) and the cocain and amphetamine regulated transcript (CART) peptide, was described in the mouse. Electrophysiological studies also revealed the existence of four different neuronal populations based on their electrical behavior. Finally, we showed that these neurons can be modulated by several neuromodulators. CONCLUSION This study showed that mouse ICNS presents a molecular and functional complexity similar to other species, and is therefore a suitable model to decipher the role of individual neuronal subtypes regarding the modulation of cardiac function and the initiation of cardiac arrhythmias.
Collapse
Affiliation(s)
| | - Côme Pasqualin
- PReTI laboratory, UR 24184, University of Poitiers, France
| | - Audrey Tissot
- Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland
| | - Stephane Pagès
- Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland
| | | | | |
Collapse
|
30
|
Aras K, Gams A, Faye R, Brennan J, Goldrick K, Li J, Zhong Y, Chiang CH, Smith EH, Poston MD, Chivers J, Hanna P, Mori S, Ajijola OA, Shivkumar K, Hoover DB, Viventi J, Rogers JA, Bernus O, Efimov IR. Electrophysiology and Arrhythmogenesis in the Human Right Ventricular Outflow Tract. Circ Arrhythm Electrophysiol 2022; 15:e010630. [PMID: 35238622 PMCID: PMC9052172 DOI: 10.1161/circep.121.010630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Right ventricular outflow tract (RVOT) is a common source of ventricular tachycardia, which often requires ablation. However, the mechanisms underlying the RVOT's unique arrhythmia susceptibility remain poorly understood due to lack of detailed electrophysiological and molecular studies of the human RVOT. METHODS We conducted optical mapping studies in 16 nondiseased donor human RVOT preparations subjected to pharmacologically induced adrenergic and cholinergic stimulation to evaluate susceptibility to arrhythmias and characterize arrhythmia dynamics. RESULTS We found that under control conditions, RVOT has shorter action potential duration at 80% repolarization relative to the right ventricular apical region. Treatment with isoproterenol (100 nM) shortened action potential duration at 80% repolarization and increased incidence of premature ventricular contractions (P=0.003), whereas acetylcholine (100 μM) stimulation alone had no effect on action potential duration at 80% repolarization or premature ventricular contractions. However, acetylcholine treatment after isoproterenol stimulation reduced the incidence of premature ventricular contractions (P=0.034) and partially reversed action potential duration at 80% repolarization shortening (P=0.029). Immunolabeling of RVOT (n=4) confirmed the presence of cholinergic marker VAChT (vesicular acetylcholine transporter) in the region. Rapid pacing revealed RVOT susceptibility to both concordant and discordant alternans. Investigation into transmural arrhythmia dynamics showed that arrhythmia wave fronts and phase singularities (rotors) were relatively more organized in the endocardium than in the epicardium (P=0.006). Moreover, there was a weak but positive spatiotemporal autocorrelation between epicardial and endocardial arrhythmic wave fronts and rotors. Transcriptome analysis (n=10 hearts) suggests a trend that MAPK (mitogen-activated protein kinase) signaling, calcium signaling, and cGMP-PKG (protein kinase G) signaling are among the pathways that may be enriched in the male RVOT, whereas pathways of neurodegeneration may be enriched in the female RVOT. CONCLUSIONS Human RVOT electrophysiology is characterized by shorter action potential duration relative to the right ventricular apical region. Cholinergic right ventricular stimulation attenuates the arrhythmogenic effects of adrenergic stimulation, including increase in frequency of premature ventricular contractions and shortening of wavelength. Right ventricular arrhythmia is characterized by positive spatial-temporal autocorrelation between epicardial-endocardial arrhythmic wave fronts and rotors that are relatively more organized in the endocardium.
Collapse
Affiliation(s)
- Kedar Aras
- Department of Biomedical Engineering, the George Washington University, Washington, DC
- Department of Materials Science and Engineering, Ohio State University, Columbus, OH
| | - Anna Gams
- Department of Biomedical Engineering, the George Washington University, Washington, DC
| | - Rokhaya Faye
- Department of Biomedical Engineering, the George Washington University, Washington, DC
- LIRYC Institute, Bordeaux University, France
| | - Jaclyn Brennan
- Department of Biomedical Engineering, the George Washington University, Washington, DC
| | - Katherine Goldrick
- Department of Biomedical Engineering, the George Washington University, Washington, DC
| | - Jinghua Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
- Department of Materials Science and Engineering, Ohio State University, Columbus, OH
| | - Yishan Zhong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL
| | - Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Elizabeth H. Smith
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN
| | - Megan D. Poston
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN
| | - Jacqueline Chivers
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN
| | - Peter Hanna
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA
| | - Shumpei Mori
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA
| | - Donald B. Hoover
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - John A. Rogers
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | | | - Igor R. Efimov
- Department of Biomedical Engineering, the George Washington University, Washington, DC
| |
Collapse
|
31
|
Stress-related dysautonomias and neurocardiology-based treatment approaches. Auton Neurosci 2022; 239:102944. [DOI: 10.1016/j.autneu.2022.102944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/13/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022]
|
32
|
Stoyek MR, Hortells L, Quinn TA. From Mice to Mainframes: Experimental Models for Investigation of the Intracardiac Nervous System. J Cardiovasc Dev Dis 2021; 8:149. [PMID: 34821702 PMCID: PMC8620975 DOI: 10.3390/jcdd8110149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
The intracardiac nervous system (IcNS), sometimes referred to as the "little brain" of the heart, is involved in modulating many aspects of cardiac physiology. In recent years our fundamental understanding of autonomic control of the heart has drastically improved, and the IcNS is increasingly being viewed as a therapeutic target in cardiovascular disease. However, investigations of the physiology and specific roles of intracardiac neurons within the neural circuitry mediating cardiac control has been hampered by an incomplete knowledge of the anatomical organisation of the IcNS. A more thorough understanding of the IcNS is hoped to promote the development of new, highly targeted therapies to modulate IcNS activity in cardiovascular disease. In this paper, we first provide an overview of IcNS anatomy and function derived from experiments in mammals. We then provide descriptions of alternate experimental models for investigation of the IcNS, focusing on a non-mammalian model (zebrafish), neuron-cardiomyocyte co-cultures, and computational models to demonstrate how the similarity of the relevant processes in each model can help to further our understanding of the IcNS in health and disease.
Collapse
Affiliation(s)
- Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS 15000, Canada;
| | - Luis Hortells
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg–Bad Krozingen, 79110 Freiburg, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS 15000, Canada;
- School of Biomedical Engineering, Dalhousie University, Halifax, NS 15000, Canada
| |
Collapse
|
33
|
Ragauskas T, Rysevaite-Kyguoliene K, Pauziene N, Inokaitis H, Pauza DH. Chemical phenotypes of intrinsic cardiac neurons in the newborn pig (Sus scrofa domesticus Erxleben, 1777). J Morphol 2021; 283:51-65. [PMID: 34727377 DOI: 10.1002/jmor.21426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 10/30/2021] [Indexed: 11/12/2022]
Abstract
Intrinsic cardiac neurons (ICNs) are crucial cells in the neural regulation of heart rhythm, myocardial contractility, and coronary blood flow. ICNs exhibit diversity in their morphology and neurotransmitters that probably are age-dependent. Therefore, neuroanatomical heart studies have been currently focused on the identification of chemical phenotypes of ICNs to disclose their possible functions in heart neural regulation. Employing whole-mount immunohistochemistry, we examined ICNs from atria of the newborn pigs (Sus scrofa domesticus) as ICNs at this stage of development have never been neurochemically characterized so far. We found that the majority of the examined ICNs (>60%) were of cholinergic phenotype. Biphenotypic neuronal somata (NS), that is, simultaneously positive for two neuronal markers, were also rather common and distributed evenly within the sampled ganglia. Simultaneous positivity for cholinergic and adrenergic neuromarkers was specific in 16.4%, for cholinergic and nitrergic-in 3.5% of the examined NS. Purely either adrenergic or nitrergic ICNs were observed at 13% and 3.1%, correspondingly. Purely adrenergic and nitrergic NS were the most frequent in the ventral left atrial subplexus. Similarly to neuronal phenotype, sizes of NS also varied depending on the atrial region providing insights into their functional implications. Axons, but not NS, positive for classic sensory neuronal markers (vesicular glutamate transporter 2 and calcitonin gene-related peptide) were identified within epicardiac nerves and ganglia. Moreover, a substantial number of ICNs could not be attributed to any phenotype as they were not immunoreactive for antisera used in this study. Numerous dendrites with putative peptidergic and adrenergic contacts on cholinergic NS contributed to neuropil of ganglia. Our observations demonstrate that intrinsic cardiac ganglionated plexus is not fully developed in the newborn pig despite of dense network of neuronal processes and numerous signs of neural contacts within ganglia.
Collapse
Affiliation(s)
- Tomas Ragauskas
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Neringa Pauziene
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Hermanas Inokaitis
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius Haroldas Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
34
|
Harper AA, Adams DJ. Electrical properties and synaptic transmission in mouse intracardiac ganglion neurons in situ. Physiol Rep 2021; 9:e15056. [PMID: 34582125 PMCID: PMC8477906 DOI: 10.14814/phy2.15056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
The intrinsic cardiac nervous system represents the final site of signal integration for neurotransmission to the myocardium to enable local control of cardiac performance. The electrophysiological characteristics and ganglionic transmission of adult mouse intrinsic cardiac ganglion (ICG) neurons were investigated using a whole-mount ganglion preparation of the excised right atrial ganglion plexus and intracellular microelectrode recording techniques. The passive and active electrical properties of ICG neurons and synaptic transmission including synaptic response strength and efficacy as a function of stimulation frequency were examined. The resting membrane potential and input resistance of ICG neurons were -47.9 ± 4.0 mV and 197.2 ± 81.5 MΩ, respectively. All neurons had somatic action potentials with overshoots of >+15 mV and after-hyperpolarizations having an average of 10 mV amplitude and ~45 ms half duration. Phasic discharge activities were recorded from the majority of neurons studied and several types of excitatory synaptic responses were recorded following inputs from the vagus or interganglionic nerve trunk(s). Most postganglionic neurons (>75%) received a strong, suprathreshold synaptic input and reliably followed high-frequency repetitive nerve stimulation up to at least 50 Hz. Nerve-evoked synaptic transmission was blocked by extracellular Cd2+ , ω-conotoxin CVIE, or α-conotoxin RegIIA, a selective α3-containing nicotinic acetylcholine receptor antagonist. Synaptic transmission and the electrical properties of murine ICG neurons contribute to the pattern of discharge which regulates chronotropic, dromotropic, and inotropic elements of cardiac function.
Collapse
Affiliation(s)
- Alexander A. Harper
- Illawarra Health and Medical Research Institute (IHMRI)University of WollongongWollongongNew South WalesAustralia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI)University of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
35
|
Celotto C, Sánchez C, Mountris KA, Laguna P, Pueyo E. Location of Parasympathetic Innervation Regions From Electrograms to Guide Atrial Fibrillation Ablation Therapy: An in silico Modeling Study. Front Physiol 2021; 12:674197. [PMID: 34456743 PMCID: PMC8385640 DOI: 10.3389/fphys.2021.674197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/11/2021] [Indexed: 01/18/2023] Open
Abstract
The autonomic nervous system (ANS) plays an essential role in the generation and maintenance of cardiac arrhythmias. The cardiac ANS can be divided into its extrinsic and intrinsic components, with the latter being organized in an epicardial neural network of interconnecting axons and clusters of autonomic ganglia called ganglionated plexi (GPs). GP ablation has been associated with a decreased risk of atrial fibrillation (AF) recurrence, but the accurate location of GPs is required for ablation to be effective. Although GP stimulation triggers both sympathetic and parasympathetic ANS branches, a predominance of parasympathetic activity has been shown. This study aims was to develop a method to locate atrial parasympathetic innervation sites based on measurements from a grid of electrograms (EGMs). Electrophysiological models representative of non-AF, paroxysmal AF (PxAF), and persistent AF (PsAF) tissues were developed. Parasympathetic effects were modeled by increasing the concentration of the neurotransmitter acetylcholine (ACh) in randomly distributed circles across the tissue. Different circle sizes of ACh and fibrosis geometries were considered, accounting for both uniform diffuse and non-uniform diffuse fibrosis. Computational simulations were performed, from which unipolar EGMs were computed in a 16 × 1 6 electrode mesh. Different distances of the electrodes to the tissue (0.5, 1, and 2 mm) and noise levels with signal-to-noise ratio (SNR) values of 0, 5, 10, 15, and 20 dB were tested. The amplitude of the atrial EGM repolarization wave was found to be representative of the presence or absence of ACh release sites, with larger positive amplitudes indicating that the electrode was placed over an ACh region. Statistical analysis was performed to identify the optimal thresholds for the identification of ACh sites. In all non-AF, PxAF, and PsAF tissues, the repolarization amplitude rendered successful identification. The algorithm performed better in the absence of fibrosis or when fibrosis was uniformly diffuse, with a mean accuracy of 0.94 in contrast with a mean accuracy of 0.89 for non-uniform diffuse fibrotic cases. The algorithm was robust against noise and worked for the tested ranges of electrode-to-tissue distance. In conclusion, the results from this study support the feasibility to locate atrial parasympathetic innervation sites from the amplitude of repolarization wave.
Collapse
Affiliation(s)
- Chiara Celotto
- Aragon Institute of Engineering Research-I3A-, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Carlos Sánchez
- Aragon Institute of Engineering Research-I3A-, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Konstantinos A. Mountris
- Aragon Institute of Engineering Research-I3A-, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Pablo Laguna
- Aragon Institute of Engineering Research-I3A-, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Esther Pueyo
- Aragon Institute of Engineering Research-I3A-, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| |
Collapse
|
36
|
Moss A, Robbins S, Achanta S, Kuttippurathu L, Turick S, Nieves S, Hanna P, Smith EH, Hoover DB, Chen J, Cheng Z(J, Ardell JL, Shivkumar K, Schwaber JS, Vadigepalli R. A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system. iScience 2021; 24:102713. [PMID: 34337356 PMCID: PMC8324809 DOI: 10.1016/j.isci.2021.102713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/12/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
We developed a spatially-tracked single neuron transcriptomics map of an intrinsic cardiac ganglion, the right atrial ganglionic plexus (RAGP) that is a critical mediator of sinoatrial node (SAN) activity. This 3D representation of RAGP used neuronal tracing to extensively map the spatial distribution of the subset of neurons that project to the SAN. RNA-seq of laser capture microdissected neurons revealed a distinct composition of RAGP neurons compared to the central nervous system and a surprising finding that cholinergic and catecholaminergic markers are coexpressed, suggesting multipotential phenotypes that can drive neuroplasticity within RAGP. High-throughput qPCR of hundreds of laser capture microdissected single neurons confirmed these findings and revealed a high dimensionality of neuromodulatory factors that contribute to dynamic control of the heart. Neuropeptide-receptor coexpression analysis revealed a combinatorial paracrine neuromodulatory network within RAGP informing follow-on studies on the vagal control of RAGP to regulate cardiac function in health and disease.
Collapse
Affiliation(s)
- Alison Moss
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaina Robbins
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sirisha Achanta
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lakshmi Kuttippurathu
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott Turick
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sean Nieves
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter Hanna
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Elizabeth H. Smith
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Donald B. Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jeffrey L. Ardell
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, UCLA, Los Angeles, CA, USA
| | - James S. Schwaber
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
37
|
Leung C, Robbins S, Moss A, Heal M, Osanlouy M, Christie R, Farahani N, Monteith C, Chen J, Hunter P, Tappan S, Vadigepalli R, Cheng Z(J, Schwaber JS. 3D single cell scale anatomical map of sex-dependent variability of the rat intrinsic cardiac nervous system. iScience 2021; 24:102795. [PMID: 34355144 PMCID: PMC8324857 DOI: 10.1016/j.isci.2021.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/05/2021] [Accepted: 06/24/2021] [Indexed: 02/01/2023] Open
Abstract
We developed and analyzed a single cell scale anatomical map of the rat intrinsic cardiac nervous system (ICNS) across four male and three female hearts. We find the ICNS has a reliable structural organizational plan across individuals that provide the foundation for further analyses of the ICNS in cardiac function and disease. The distribution of the ICNS was evaluated by 3D visualization and data-driven clustering. The pattern, distribution, and clustering of ICNS neurons across all male and female rat hearts is highly conserved, demonstrating a coherent organizational plan where distinct clusters of neurons are consistently localized. Female hearts had fewer neurons, lower packing density, and slightly reduced distribution, but with identical localization. We registered the anatomical data from each heart to a geometric scaffold, normalizing their 3D coordinates for standardization of common anatomical planes and providing a path where multiple experimental results and data types can be integrated and compared.
Collapse
Affiliation(s)
- Clara Leung
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Shaina Robbins
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alison Moss
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Mahyar Osanlouy
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Rajanikanth Vadigepalli
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - James S. Schwaber
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
38
|
Hanna P, Dacey MJ, Brennan J, Moss A, Robbins S, Achanta S, Biscola NP, Swid MA, Rajendran PS, Mori S, Hadaya JE, Smith EH, Peirce SG, Chen J, Havton LA, Cheng Z(J, Vadigepalli R, Schwaber J, Lux RL, Efimov I, Tompkins JD, Hoover DB, Ardell JL, Shivkumar K. Innervation and Neuronal Control of the Mammalian Sinoatrial Node a Comprehensive Atlas. Circ Res 2021; 128:1279-1296. [PMID: 33629877 PMCID: PMC8284939 DOI: 10.1161/circresaha.120.318458] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/23/2021] [Indexed: 01/01/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Peter Hanna
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
- UCLA Molecular, Cellular & Integrative Physiology Program, UCLA
| | - Michael J. Dacey
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
- UCLA Molecular, Cellular & Integrative Physiology Program, UCLA
| | - Jaclyn Brennan
- Bioengineering, George Washington University, Washington, DC
| | - Alison Moss
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Shaina Robbins
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Sirisha Achanta
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | | | - Mohammed A. Swid
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
| | - Pradeep S. Rajendran
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
| | - Shumpei Mori
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
| | - Joseph E. Hadaya
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
| | | | | | - Jin Chen
- University of Central Florida, Burnett School of Biomedical Sciences, College of Medicine, Orlando, FL
| | - Leif A. Havton
- Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY
- Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
- VA RR&D National Center of Excellence for the Medical Consequences of Spinal and; Cord Injury and Neurology Service, James J. Peters Veterans Administration Medical Center, Bronx, NY
| | - Zixi (Jack) Cheng
- University of Central Florida, Burnett School of Biomedical Sciences, College of Medicine, Orlando, FL
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - James Schwaber
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Robert L. Lux
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
| | - Igor Efimov
- Bioengineering, George Washington University, Washington, DC
| | - John D. Tompkins
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
| | - Donald B. Hoover
- Biomedical Sciences
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University
| | - Jeffrey L. Ardell
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
- UCLA Molecular, Cellular & Integrative Physiology Program, UCLA
| | - Kalyanam Shivkumar
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
- UCLA Molecular, Cellular & Integrative Physiology Program, UCLA
| |
Collapse
|
39
|
Characterization of the HCN Interaction Partner TRIP8b/PEX5R in the Intracardiac Nervous System of TRIP8b-Deficient and Wild-Type Mice. Int J Mol Sci 2021; 22:ijms22094772. [PMID: 33946275 PMCID: PMC8125662 DOI: 10.3390/ijms22094772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
The tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b/PEX5R) is an interaction partner and auxiliary subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are key for rhythm generation in the brain and in the heart. Since TRIP8b is expressed in central neurons but not in cardiomyocytes, the TRIP8b-HCN interaction has been studied intensely in the brain, but is deemed irrelevant in the cardiac conduction system. Still, to date, TRIP8b has not been studied in the intrinsic cardiac nervous system (ICNS), a neuronal network located within epicardial fat pads. In vitro electrophysiological studies revealed that TRIP8b-deficient mouse hearts exhibit increased atrial refractory and atrioventricular nodal refractory periods, compared to hearts of wild-type littermates. Meanwhile, heart rate, sino-nodal recovery time, and ventricular refractory period did not differ between genotypes. Trip8b mRNA was detected in the ICNS by quantitative polymerase chain reaction. RNAscope in situ hybridization confirmed Trip8b localization in neuronal somata and nerve fibers. Additionally, we found a very low amount of mRNAs in the sinus node and atrioventricular node, most likely attributable to the delicate fibers innervating the conduction system. In contrast, TRIP8b protein was not detectable. Our data suggest that TRIP8b in the ICNS may play a role in the modulation of atrial electrophysiology beyond HCN-mediated sino-nodal control of the heart.
Collapse
|
40
|
Navickaite I, Pauziene N, Pauza DH. Anatomical evidence of non-parasympathetic cardiac nitrergic nerve fibres in rat. J Anat 2021; 238:20-35. [PMID: 32790077 PMCID: PMC7755078 DOI: 10.1111/joa.13291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023] Open
Abstract
Neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) plays a major role in the neural control of circulation and in many cardiovascular diseases. However, the exact mechanism of how NO regulates these processes is still not fully understood. This study was designed to determine the possible sources of nitrergic nerve fibres supplying the heart attempting to imply their role in the cardiac neural control. Sections of medulla oblongata, vagal nerve, its rootlets and nodose ganglia, vagal cardiac branches, Th1 -Th5 spinal cord segments, dorsal root ganglia of C8 -Th5 spinal nerves, and stellate ganglia from 28 Wistar rats were examined applying double immunohistochemical staining for nNOS combined with choline acetyltransferase (ChAT), peripherin, substance P, calcitonin gene-related peptide, tyrosine hydroxylase or myelin basic protein. Our findings show that the most abundant population of purely nNOS-immunoreactive (IR) neuronal somata (NS) was observed in the nodose ganglia (37.4 ± 1.3%). A high number of nitrergic NFs spread along the vagal nerve and entered its cardiac branches. All nitrergic neuronal somata (NS) in the nucleus ambiguus were simultaneously immunoreactive (IR) to ChAT and composed only a small subset of neurons (6%). In the dorsal nucleus of vagal nerve, biphenotypic nNOS-IR/ChAT-IR neurons composed 7.0 ± 1.0%, while small purely nNOS-IR neurons were scarce. Nitrergic NS were plentifully distributed within the nuclei of solitary tract. In the examined dorsal root and stellate ganglia, a few nitrergic NS were sporadically present. The majority of sympathetic NS in the intermediolateral nucleus were simultaneously immunoreactive for nNOS and ChAT. In conclusion, an abundant population of nitrergic NS in the nodose ganglion implies that neuronal NO is involved in afferent cardiac innervation. Nevertheless, nNOS-IR neurons identified within vagal nuclei may play a role in the transmission of preganglionic parasympathetic nerve impulses.
Collapse
Affiliation(s)
- Ieva Navickaite
- Faculty of MedicineInstitute of AnatomyLithuanian University of Health SciencesKaunasLithuania
| | - Neringa Pauziene
- Faculty of MedicineInstitute of AnatomyLithuanian University of Health SciencesKaunasLithuania
| | - Dainius H. Pauza
- Faculty of MedicineInstitute of AnatomyLithuanian University of Health SciencesKaunasLithuania
| |
Collapse
|
41
|
Shenton FC, Campbell T, Jones JFX, Pyner S. Distribution and morphology of sensory and autonomic fibres in the subendocardial plexus of the rat heart. J Anat 2021; 238:36-52. [PMID: 32783212 PMCID: PMC7754995 DOI: 10.1111/joa.13284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023] Open
Abstract
Cardiac reflexes originating from sensory receptors in the heart ensure blood supply to vital tissues and organs in the face of constantly changing demands. Atrial volume receptors are mechanically sensitive vagal afferents which relay to the medulla and hypothalamus, affecting vasopressin release and renal sympathetic activity. To date, two anatomically distinct sensory endings have been identified which may subserve cardiac mechanosensation: end-nets and flower-spray endings. To map the distribution of atrial receptors in the subendocardial space, we have double-labelled rat right atrial whole mounts for neurofilament heavy chain (NFH) and synaptic vesicle protein 2 (SV2) and generated high-resolution maps of the rat subendocardial neural plexus at the cavo-atrial region. In order to elucidate the nature of these fibres, double labelling with synaptophysin (SYN) and either NFH, calcitonin gene-related peptide (CGRP), choline acetyltransferase (ChAT) or tyrosine hydroxylase (TH) was performed. The findings show that subendocardial nerve nets are denser at the superior cavo-atrial junction than the mid-atrial region. Adluminal plexuses had the finest diameters and stained positively for synaptic vesicles (SV2 and SYN), CGRP and TH. These plexuses may represent sympathetic post-ganglionic fibres and/or sensory afferents. The latter are candidate substrates for type B volume receptors which are excited by stretch during atrial filling. Deeper nerve fibres appeared coarser and may be cholinergic (positive staining for ChAT). Flower-spray endings were never observed using immunohistochemistry but were delineated clearly with the intravital stain methylene blue. We suggest that differing nerve fibre structures form the basis by which atrial deformation and hence atrial filling is reflected to the brain.
Collapse
Affiliation(s)
| | - Thomas Campbell
- Discipline of AnatomySchool of MedicineUniversity College DublinDublin 4Ireland
| | - James F. X. Jones
- Discipline of AnatomySchool of MedicineUniversity College DublinDublin 4Ireland
| | - Susan Pyner
- Department of BiosciencesDurham UniversityDurhamUK
| |
Collapse
|
42
|
Hadaya J, Ardell JL. Autonomic Modulation for Cardiovascular Disease. Front Physiol 2020; 11:617459. [PMID: 33414727 PMCID: PMC7783451 DOI: 10.3389/fphys.2020.617459] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Dysfunction of the autonomic nervous system has been implicated in the pathogenesis of cardiovascular disease, including congestive heart failure and cardiac arrhythmias. Despite advances in the medical and surgical management of these entities, progression of disease persists as does the risk for sudden cardiac death. With improved knowledge of the dynamic relationships between the nervous system and heart, neuromodulatory techniques such as cardiac sympathetic denervation and vagal nerve stimulation (VNS) have emerged as possible therapeutic approaches for the management of these disorders. In this review, we present the structure and function of the cardiac nervous system and the remodeling that occurs in disease states, emphasizing the concept of increased sympathoexcitation and reduced parasympathetic tone. We review preclinical evidence for vagal nerve stimulation, and early results of clinical trials in the setting of congestive heart failure. Vagal nerve stimulation, and other neuromodulatory techniques, may improve the management of cardiovascular disorders, and warrant further study.
Collapse
Affiliation(s)
- Joseph Hadaya
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States.,Molecular, Cellular, and Integrative Physiology Program, UCLA, Los Angeles, CA, United States
| | - Jeffrey L Ardell
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States
| |
Collapse
|
43
|
Fedele L, Brand T. The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 2020; 7:jcdd7040054. [PMID: 33255284 PMCID: PMC7712215 DOI: 10.3390/jcdd7040054] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
The cardiac autonomic nervous system (CANS) plays a key role for the regulation of cardiac activity with its dysregulation being involved in various heart diseases, such as cardiac arrhythmias. The CANS comprises the extrinsic and intrinsic innervation of the heart. The intrinsic cardiac nervous system (ICNS) includes the network of the intracardiac ganglia and interconnecting neurons. The cardiac ganglia contribute to the tight modulation of cardiac electrophysiology, working as a local hub integrating the inputs of the extrinsic innervation and the ICNS. A better understanding of the role of the ICNS for the modulation of the cardiac conduction system will be crucial for targeted therapies of various arrhythmias. We describe the embryonic development, anatomy, and physiology of the ICNS. By correlating the topography of the intracardiac neurons with what is known regarding their biophysical and neurochemical properties, we outline their physiological role in the control of pacemaker activity of the sinoatrial and atrioventricular nodes. We conclude by highlighting cardiac disorders with a putative involvement of the ICNS and outline open questions that need to be addressed in order to better understand the physiology and pathophysiology of the ICNS.
Collapse
Affiliation(s)
- Laura Fedele
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| | - Thomas Brand
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| |
Collapse
|
44
|
Tedoldi A, Argent L, Montgomery JM. The role of the tripartite synapse in the heart: how glial cells may contribute to the physiology and pathophysiology of the intracardiac nervous system. Am J Physiol Cell Physiol 2020; 320:C1-C14. [PMID: 33085497 DOI: 10.1152/ajpcell.00363.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the major roles of the intracardiac nervous system (ICNS) is to act as the final site of signal integration for efferent information destined for the myocardium to enable local control of heart rate and rhythm. Multiple subtypes of neurons exist in the ICNS where they are organized into clusters termed ganglionated plexi (GP). The majority of cells in the ICNS are actually glial cells; however, despite this, ICNS glial cells have received little attention to date. In the central nervous system, where glial cell function has been widely studied, glia are no longer viewed simply as supportive cells but rather have been shown to play an active role in modulating neuronal excitability and synaptic plasticity. Pioneering studies have demonstrated that in addition to glia within the brain stem, glial cells within multiple autonomic ganglia in the peripheral nervous system, including the ICNS, can also act to modulate cardiovascular function. Clinically, patients with atrial fibrillation (AF) undergoing catheter ablation show high plasma levels of S100B, a protein produced by cardiac glial cells, correlated with decreased AF recurrence. Interestingly, S100B also alters GP neuron excitability and neurite outgrowth in the ICNS. These studies highlight the importance of understanding how glial cells can affect the heart by modulating GP neuron activity or synaptic inputs. Here, we review studies investigating glia both in the central and peripheral nervous systems to discuss the potential role of glia in controlling cardiac function in health and disease, paying particular attention to the glial cells of the ICNS.
Collapse
Affiliation(s)
- Angelo Tedoldi
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Liam Argent
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
45
|
Sergeevichev D, Fomenko V, Strelnikov A, Dokuchaeva A, Vasilieva M, Chepeleva E, Rusakova Y, Artemenko S, Romanov A, Salakhutdinov N, Chernyavskiy A. Botulinum Toxin-Chitosan Nanoparticles Prevent Arrhythmia in Experimental Rat Models. Mar Drugs 2020; 18:md18080410. [PMID: 32748868 PMCID: PMC7460516 DOI: 10.3390/md18080410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
Several experimental studies have recently demonstrated that temporary autonomic block using botulinum toxin (BoNT/A1) might be a novel option for the treatment of atrial fibrillation. However, the assessment of antiarrhythmic properties of BoNT has so far been limited, relying exclusively on vagal stimulation and rapid atrial pacing models. The present study examined the antiarrhythmic effect of specially formulated BoNT/A1-chitosan nanoparticles (BTN) in calcium chloride-, barium chloride- and electrically induced arrhythmia rat models. BTN enhanced the effect of BoNT/A1. Subepicardial injection of BTN resulted in a significant antiarrhythmic effect in investigated rat models. BTN formulation antagonizes arrhythmia induced by the activation of Ca, K and Na channels.
Collapse
|
46
|
Liu C, Jiang H, Yu L, S Po S. Vagal Stimulation and Arrhythmias. J Atr Fibrillation 2020; 13:2398. [PMID: 33024499 DOI: 10.4022/jafib.2398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
I mbalance of the sympathetic and parasympathetic nervous systems is probably the most prevalent autonomic mechanism underlying many a rrhythmias . Recently, vagus nerve stimulation ( VNS has emerged as a novel therapeutic modality to treat arrhythmias through its anti adrenergic and anti inflammatory actions . C linical trials applying VNS to the cervical vagus nerve in heart failure pati en ts yielded conflicting results, possibly due to limited understanding of the optimal stimulation parameters for the targeted cardiovascular diseases. Transcutaneous VNS by stimulating the auricular branch of the vagus nerve, has attracted great attention d ue to its noninvasiveness. In this r eview, we summarize current knowledge about the complex relationship between VNS and cardiac arrhythmias and discuss recent advances in using VNS , particularly transcutaneous VNS , to treat arrhythmias.
Collapse
Affiliation(s)
- Chengzhe Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Sunny S Po
- Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, O K USA
| |
Collapse
|
47
|
Ashton JL, Argent L, Smith JEG, Jin S, Sands GB, Smaill BH, Montgomery JM. Evidence of structural and functional plasticity occurring within the intracardiac nervous system of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2020; 318:H1387-H1400. [DOI: 10.1152/ajpheart.00020.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have developed intracardiac neuron whole cell recording techniques in atrial preparations from control and spontaneous hypertensive rats. This has enabled the identification of significant synaptic plasticity in the intracardiac nervous system, including enhanced postsynaptic current frequency, increased synaptic terminal density, and altered postsynaptic receptors. This increased synaptic drive together with altered cardiac neuron electrophysiology could increase intracardiac nervous system excitability and contribute to the substrate for atrial arrhythmia in hypertensive heart disease.
Collapse
Affiliation(s)
- Jesse L. Ashton
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Liam Argent
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Joscelin E. G. Smith
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Sangjun Jin
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Gregory B. Sands
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
- Bioengineering Institute, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Bruce H. Smaill
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
- Bioengineering Institute, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Johanna M. Montgomery
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
48
|
Achanta S, Gorky J, Leung C, Moss A, Robbins S, Eisenman L, Chen J, Tappan S, Heal M, Farahani N, Huffman T, England S, Cheng ZJ, Vadigepalli R, Schwaber JS. A Comprehensive Integrated Anatomical and Molecular Atlas of Rat Intrinsic Cardiac Nervous System. iScience 2020; 23:101140. [PMID: 32460006 PMCID: PMC7327996 DOI: 10.1016/j.isci.2020.101140] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022] Open
Abstract
We have developed and integrated several technologies including whole-organ imaging and software development to support an initial precise 3D neuroanatomical mapping and molecular phenotyping of the intracardiac nervous system (ICN). While qualitative and gross anatomical descriptions of the anatomy of the ICN have each been pursued, we here bring forth a comprehensive atlas of the entire rat ICN at single-cell resolution. Our work precisely integrates anatomical and molecular data in the 3D digitally reconstructed whole heart with resolution at the micron scale. We now display the full extent and the position of neuronal clusters on the base and posterior left atrium of the rat heart, and the distribution of molecular phenotypes that are defined along the base-to-apex axis, which had not been previously described. The development of these approaches needed for this work has produced method pipelines that provide the means for mapping other organs. Comprehensive single-neuron-scale mapping of the intrinsic cardiac nervous system Whole-organ high-throughput imaging and reconstruction at a cellular resolution 3D anatomical framework for spatially tracked single-neuron molecular phenotypes Integrated histology, neuron mapping, and molecular profiles for 3D organ reconstruction
Collapse
Affiliation(s)
- Sirisha Achanta
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan Gorky
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Clara Leung
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Alison Moss
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaina Robbins
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leonard Eisenman
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | | | | | | | | | | | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Koza Y, Aydın MD, Bayram E, Sipal S, Altaş E, Soyalp C, Koza EA. The Role of Cardiac Ganglia in the Prevention of Coronary Atherosclerosis: An Analytical Examination of Cholesterol-fed Rabbits. Balkan Med J 2020; 37:79-83. [PMID: 31712246 PMCID: PMC7094178 DOI: 10.4274/balkanmedj.galenos.2019.2019.8.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background The heart is innervated by the autonomic nervous system, which contributes to the control of the heart’s rhythm and coronary circulation. It has been suggested that the cardiac fibers of the vagus nerve play important roles in controlling circulatory functions and in protecting against atherosclerotic pathologies in coronary arteries. Aims To investigate the presence of atherosclerotic differences in the coronary arteries of cholesterol-fed rabbits by measuring the density of cardiac ganglia neurons. Study Design Animal experiment. Methods This study was conducted using 45 male rabbits. Over a period of 16 weeks, they were kept on an atherogenic diet of water ad libitum and high fat (8.6%) containing saturated fatty acids with 205 mg/kg of cholesterol (1%) per day. Then, their hearts were removed and examined by histopathological methods. Atherosclerotic plaques of the main coronary arteries were examined using the Cavalieri method. Atherosclerosis index values (AIVs) were estimated as the wall surface area/plaque surface area, and the results were analyzed with the Kruskal-Wallis and Mann-Whitney U tests. Results While the average atherosclerosis index value was estimated to be ≤8% in 21 animals, the atherosclerosis index value was 9-20% in animals with minor plaque detection (n=11) and ≥20% in animals with major plaque detection (n=10). Increased atherosclerosis index values were more common in animals with low neuron densities than in animals with high neuron densities (p<0.017). Conclusion The low neuron density of the cardiac ganglia in cholesterol-fed rabbits is associated with an increased atherosclerotic plaque incidence and volume.
Collapse
Affiliation(s)
- Yavuzer Koza
- Department of Cardiology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Mehmet Dumlu Aydın
- Department of Neurosurgery, Atatürk University School of Medicine, Erzurum, Turkey
| | - Ednan Bayram
- Department of Cardiology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Sare Sipal
- Department of Pathology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Ender Altaş
- Clinic of Cardiology, Erzurum Training and Research Hospital, Erzurum, Turkey
| | - Celaleddin Soyalp
- Department of Anesthesiology, 100. Yıl University School of Medicine, Van, Turkey
| | - Enise Armağan Koza
- Clinic of Anesthesiology, Erzurum Training and Research Hospital, Erzurum, Turkey
| |
Collapse
|
50
|
Cao LL, Holmes AP, Marshall JM, Fabritz L, Brain KL. Dynamic monitoring of single-terminal norepinephrine transporter rate in the rodent cardiovascular system: A novel fluorescence imaging method. Auton Neurosci 2020; 223:102611. [PMID: 31901784 PMCID: PMC6977090 DOI: 10.1016/j.autneu.2019.102611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/29/2019] [Accepted: 12/14/2019] [Indexed: 12/17/2022]
Abstract
Here, we validate the use of a novel fluorescent norepinephrine transporter (NET) substrate for dynamic measurements of transporter function in rodent cardiovascular tissue; this technique avoids the use of radiotracers and provides single-terminal resolution. Rodent (Wistar rats and C57BL/6 mice) hearts and mesenteric arteries (MA) were isolated, loaded with NET substrate Neurotransmitter Transporter Uptake Assay (NTUA) ex vivo and imaged with confocal microscopy. NTUA labelled noradrenergic nerve terminals in all four chambers of the heart and on the surface of MA. In all tissues, a temperature-dependent, stable linear increase in intra-terminal fluorescence upon NTUA exposure was observed; this was abolished by NET inhibitor desipramine (1 μM) and reversed by indirectly-acting sympathomimetic amine tyramine (10 μM). NET reuptake rates were similar across the mouse cardiac chambers. In both species, cardiac NET activity was significantly greater than in MA (by 62 ± 29% (mouse) and 21 ± 16% (rat)). We also show that mouse NET reuptake rate was twice as fast as that in the rat (for example, in the heart, by 94 ± 30%). Finally, NET reuptake rate in the mouse heart was attenuated with muscarinic agonist carbachol (10 μM) thus demonstrating the potential for parasympathetic regulation of norepinephrine clearance. Our data provide the first demonstration of monitoring intra-terminal NET function in rodent cardiovascular tissue. This straightforward method allows dynamic measurements of transporter rate in response to varying physiological conditions and drug treatments; this offers the potential to study new mechanisms of sympathetic dysfunction associated with cardiovascular disease.
Collapse
Affiliation(s)
- Lily L Cao
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Andrew P Holmes
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Janice M Marshall
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Larissa Fabritz
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom; Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.
| | - Keith L Brain
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|