1
|
Huan F, Gao S, Gu Y, Ni L, Wu M, Li Y, Liu M, Yang Y, Xiao A, Liu G. Molecular Allergology: Epitope Discovery and Its Application for Allergen-Specific Immunotherapy of Food Allergy. Clin Rev Allergy Immunol 2025; 68:37. [PMID: 40198416 DOI: 10.1007/s12016-025-09052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
The prevalence of food allergy continues to rise, posing a significant burden on health and quality of life. Research on antigenic epitope identification and hypoallergenic agent design is advancing allergen-specific immunotherapy (AIT). This review focuses on food allergens from the perspective of molecular allergology, provides an overview of integration of bioinformatics and experimental validation for epitope identification, highlights hypoallergenic agents designed based on epitope information, and offers a valuable guidance to the application of hypoallergenic agents in AIT. With the development of molecular allergology, the characterization of the amino acid sequence and structure of the allergen at the molecular level facilitates T-/B-cell epitope identification. Alignment of the identified epitopes in food allergens revealed that the amino acid sequence of T-/B-cell epitopes barely overlapped, providing crucial data to design allergen molecules as a promising form for treating (FA) food allergy. Manipulating antigenic epitopes can reduce the allergenicity of allergens to obtain hypoallergenic agents, thereby minimizing the severe side effects associated with AIT. Currently, hypoallergenic agents are mainly developed through synthetic epitope peptides, genetic engineering, or food processing methods based on the identified epitope. New strategies such as DNA vaccines, signaling molecules coupling, and nanoparticles are emerging to improve efficiency. Although significant progress has been made in designing hypoallergenic agents for AIT, the challenge in clinical translation is to determine the appropriate dose and duration of treatment to induce long-term immune tolerance.
Collapse
Affiliation(s)
- Fei Huan
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Shuai Gao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Yi Gu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Lingna Ni
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Mingxuan Wu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Yongpeng Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Food Nutrition Safety and Advanced Processing, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, 361100, Fujian, China
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
- College of Environment and Public Health, Xiamen Huaxia University, 288 Tianma Road, Xiamen, 361024, Fujian, China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Food Nutrition Safety and Advanced Processing, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, 361100, Fujian, China.
| |
Collapse
|
2
|
Öztemiz Topcu E, Gadermaier G. To stay or not to stay intact as an allergen: the endolysosomal degradation assay used as tool to analyze protein immunogenicity and T cell epitopes. FRONTIERS IN ALLERGY 2024; 5:1440360. [PMID: 39071040 PMCID: PMC11272489 DOI: 10.3389/falgy.2024.1440360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Antigen uptake and processing of exogenous proteins is critical for adaptive immunity, particularly for T helper cell activation. Proteins undergo distinct proteolytic processing in endolysosomal compartments of antigen-presenting cells. The resulting peptides are presented on MHC class II molecules and specifically recognized by T cells. The in vitro endolysosomal degradation assay mimics antigen processing by incubating a protein of interest with a protease cocktail derived from the endolysosomal compartments of antigen presenting cells. The kinetics of protein degradation is monitored by gel electrophoresis and allows calculation of a protein's half-life and thus endolysosomal stability. Processed peptides are analyzed by mass spectrometry and abundant peptide clusters are shown to harbor T cell epitopes. The endolysosomal degradation assay has been widely used to study allergens, which are IgE-binding proteins involved in type I hypersensitivity. In this review article, we provide the first comprehensive overview of the endolysosomal degradation of 29 isoallergens and variants originating from the PR-10, Ole e 1-like, pectate lyase, defensin polyproline-linked, non-specific lipid transfer, mite group 1, 2, and 5, and tropomyosin protein families. The assay method is described in detail and suggestions for improved standardization and reproducibility are provided. The current hypothesis implies that proteins with high endolysosomal stability can induce an efficient immune response, whereas highly unstable proteins are degraded early during antigen processing and therefore not efficient for MHC II peptide presentation. To validate this concept, systematic analyses of high and low allergenic representatives of protein families should be investigated. In addition to purified molecules, allergen extracts should be degraded to analyze potential matrix effects and gastrointestinal proteolysis of food allergens. In conclusion, individual protein susceptibility and peptides obtained from the endolysosomal degradation assay are powerful tools for understanding protein immunogenicity and T cell reactivity. Systematic studies and linkage with in vivo sensitization data will allow the establishment of (machine-learning) tools to aid prediction of immunogenicity and allergenicity. The orthogonal method could in the future be used for risk assessment of novel foods and in the generation of protein-based immunotherapeutics.
Collapse
|
3
|
Ding J, Zhu C, Jiang P, Qi L, Sun N, Lin S. Antarctic krill antioxidant peptides show inferior IgE-binding ability and RBL-2H3 cell degranulation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Zhang Z, Li XM, Wang H, Lin H, Xiao H, Li Z. Seafood allergy: Allergen, epitope mapping and immunotherapy strategy. Crit Rev Food Sci Nutr 2023; 63:1314-1338. [PMID: 36825451 DOI: 10.1080/10408398.2023.2181755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Seafoods are fashionable delicacies with high nutritional values and culinary properties, while seafood belongs to worldwide common food allergens. In recent years, many seafood allergens have been identified, while the diversity of various seafood species give a great challenge in identifying and characterizing seafood allergens, mapping IgE-binding epitopes and allergen immunotherapy development, which are critical for allergy diagnostics and immunotherapy treatments. This paper reviewed the recent progress on seafood (fish, crustacean, and mollusk) allergens, IgE-binding epitopes and allergen immunotherapy for seafood allergy. In recent years, many newly identified seafood allergens were reported, this work concluded the current situation of seafood allergen identification and designation by the World Health Organization (WHO)/International Union of Immunological Societies (IUIS) Allergen Nomenclature Sub-Committee. Moreover, this review represented the recent advances in identifying the IgE-binding epitopes of seafood allergens, which were helpful to the diagnosis, prevention and treatment for seafood allergy. Furthermore, the allergen immunotherapy could alleviate seafood allergy and provide promising approaches for seafood allergy treatment. This review represents the recent advances and future outlook on seafood allergen identification, IgE-binding epitope mapping and allergen immunotherapy strategies for seafood allergy prevention and treatment.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology and Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Hao Wang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Lewis SA, Peters B. T-cell epitope discovery and single-cell technologies to advance food allergy research. J Allergy Clin Immunol 2023; 151:15-20. [PMID: 36411114 PMCID: PMC9825656 DOI: 10.1016/j.jaci.2022.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022]
Abstract
There is good evidence for a role of T cells in food allergy, but there is a lack of mechanistic understanding and phenotypic markers of the specific T cells contributing to pathology. Recent technologic advancements have allowed for a new experimental paradigm where we can find and pull out rare antigen-specific T cells and characterize them at the single-cell level. However, studies in infectious disease and broader allergy have shown that these techniques benefit greatly from precisely defined T-cell epitopes. Food allergens have fewer epitopes currently available, but it is growing and promises to overcome this gap. With growing use of this experimental design, it will be important to unbiasedly map T-cell phenotypes across food allergy and look for commonalities and contrasts to other allergic and infectious diseases. Once a pathologic phenotype for T cells has been established, the frequencies of these cells can be monitored with simpler techniques that could be applied to the clinic and used in diagnosis, prediction of treatment responsiveness, and discovery of targets for new treatments.
Collapse
Affiliation(s)
- Sloan A Lewis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, Calif
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, Calif; Department of Medicine, University of California San Diego, La Jolla, Calif.
| |
Collapse
|
6
|
Kamath SD, Scheiblhofer S, Johnson CM, Machado Y, McLean T, Taki AC, Ramsland PA, Iyer S, Joubert I, Hofer H, Wallner M, Thalhamer J, Rolland J, O’Hehir R, Briza P, Ferreira F, Weiss R, Lopata AL. Effect of structural stability on endolysosomal degradation and T-cell reactivity of major shrimp allergen tropomyosin. Allergy 2020; 75:2909-2919. [PMID: 32436591 PMCID: PMC7687109 DOI: 10.1111/all.14410] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tropomyosins are highly conserved proteins, an attribute that forms the molecular basis for their IgE antibody cross-reactivity. Despite sequence similarities, their allergenicity varies greatly between ingested and inhaled invertebrate sources. In this study, we investigated the relationship between the structural stability of different tropomyosins, their endolysosomal degradation patterns, and T-cell reactivity. METHODS We investigated the differences between four tropomyosins-the major shrimp allergen Pen m 1 and the minor allergens Der p 10 (dust mite), Bla g 7 (cockroach), and Ani s 3 (fish parasite)-in terms of IgE binding, structural stability, endolysosomal degradation and subsequent peptide generation, and T-cell cross-reactivity in a BALB/c murine model. RESULTS Tropomyosins displayed different melting temperatures, which did not correlate with amino acid sequence similarities. Endolysosomal degradation experiments demonstrated differential proteolytic digestion, as a function of thermal stability, generating different peptide repertoires. Pen m 1 (Tm 42°C) and Der p 10 (Tm 44°C) elicited similar patterns of endolysosomal degradation, but not Bla g 7 (Tm 63°C) or Ani s 3 (Tm 33°C). Pen m 1-specific T-cell clones, with specificity for regions highly conserved in all four tropomyosins, proliferated weakly to Der p 10, but did not proliferate to Bla g 7 and Ani s 3, indicating lack of T-cell epitope cross-reactivity. CONCLUSIONS Tropomyosin T-cell cross-reactivity, unlike IgE cross-reactivity, is dependent on structural stability rather than amino acid sequence similarity. These findings contribute to our understanding of cross-sensitization among different invertebrates and design of suitable T-cell peptide-based immunotherapies for shrimp and related allergies.
Collapse
Affiliation(s)
- Sandip D. Kamath
- Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQldAustralia
| | | | | | - Yoan Machado
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
- Centre of Blood ResearchUniversity of British ColumbiaVancouverBCCanada
| | - Thomas McLean
- School of ScienceRMIT UniversityMelbourneVic.Australia
| | - Aya C. Taki
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneMelbourneVic.Australia
| | | | - Swati Iyer
- Department of PhysiologyUniversity of MelbourneMelbourneVic.Australia
| | | | - Heidi Hofer
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| | - Michael Wallner
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| | - Josef Thalhamer
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| | - Jennifer Rolland
- Department of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of Allergy, Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Alfred HospitalMelbourneVic.Australia
| | - Robyn O’Hehir
- Department of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of Allergy, Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Alfred HospitalMelbourneVic.Australia
| | - Peter Briza
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| | - Fatima Ferreira
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| | - Richard Weiss
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| | - Andreas L. Lopata
- Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQldAustralia
| |
Collapse
|
7
|
Ehsan M, Haseeb M, Hu R, Ali H, Memon MA, Yan R, Xu L, Song X, Zhu X, Li X. Tropomyosin: An Excretory/Secretory Protein from Haemonchus contortus Mediates the Immuno-Suppressive Potential of Goat Peripheral Blood Mononuclear Cells In Vitro. Vaccines (Basel) 2020; 8:vaccines8010109. [PMID: 32121527 PMCID: PMC7157511 DOI: 10.3390/vaccines8010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
During host-parasite interactions, binding of excretory/secretory proteins (ESPs) on the host immune cells is considered the fundamental phase for regulation of immune responses. In this study, gene encoding Haemonchus contortus tropomyosin (Hc-TpMy), was successfully cloned and expressed, and the recombinant protein after host cell surface attachment was evaluated for immune functional analysis with goat peripheral blood mononuclear cells (PBMCs) in vitro. The isopropyl-β-D-thiogalactopyranoside (IPTG)-induced recombinant protein was successfully recognized by the sera of rat experimentally infected with rHc-TpMy. The immunofluorescence assay detected attachment of rHc-TpMy on the surface of host PBMCs. Furthermore, immunoregulatory roles of rHc-TpMy on cytokines expression, PBMC proliferation, migration, nitric oxide (NO) production, apoptosis and monocytes phagocytosis were observed. The results showed that expression of IL-4 and IFN-γ cytokines, cell proliferation, NO production and PBMC migration were significantly suppressed by goat PBMCs after co-incubation with rHc-TpMy protein. However, the productions of IL-10, IL-17 and TGF-β1 cytokines, PBMCs apoptosis and monocytes phagocytosis were elevated at dose dependent manner. Our findings indicated that rHc-TpMy is an important ES binding protein exhibit distinct immuno-suppressive roles on goat PBMCs which might be a potential molecular target to control haemonchosis in future.
Collapse
Affiliation(s)
- Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China; (R.H.); (X.Z.)
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Ruisi Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China; (R.H.); (X.Z.)
| | - Haider Ali
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Xingquan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China; (R.H.); (X.Z.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
- Correspondence: ; Tel.: +86-25-8439-9000; Fax: +86-25-8439-9000
| |
Collapse
|
8
|
Ekezie FGC, Sun DW, Cheng JH. Altering the IgE binding capacity of king prawn (Litopenaeus Vannamei) tropomyosin through conformational changes induced by cold argon-plasma jet. Food Chem 2019; 300:125143. [DOI: 10.1016/j.foodchem.2019.125143] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/10/2019] [Accepted: 07/06/2019] [Indexed: 10/26/2022]
|
9
|
Faisal M, Dargahi N, Vasiljevic T, Donkor ON. Immunomodulatory properties of selectively processed prawn protein fractions assessed using human peripheral blood mononuclear cells. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Md Faisal
- Advanced Food Systems Research Unit Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine Victoria University Werribee Campus PO Box 14428 Melbourne Victoria 8001 Australia
| | - Narges Dargahi
- Advanced Food Systems Research Unit Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine Victoria University Werribee Campus PO Box 14428 Melbourne Victoria 8001 Australia
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine Victoria University Werribee Campus PO Box 14428 Melbourne Victoria 8001 Australia
| | - Osaana N. Donkor
- Advanced Food Systems Research Unit Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine Victoria University Werribee Campus PO Box 14428 Melbourne Victoria 8001 Australia
| |
Collapse
|
10
|
Faisal M, Vasiljevic T, Donkor ON. A review on methodologies for extraction, identification and quantification of allergenic proteins in prawns. Food Res Int 2019; 121:307-318. [PMID: 31108753 DOI: 10.1016/j.foodres.2019.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 12/26/2022]
Abstract
Prawn allergy is one of the most common food-borne allergies and current prevention is by avoidance. This review paper summarised different methodologies for the extraction, identification and quantification of prawn protein allergens, reported in various research studies. Following extraction, allergenic components have been analysed using well-established methodologies, such as SDS-PAGE, Immunoblotting, ELISA, CD Spectroscopy, HPLC, DBPCFC, SPT etc. Moreover, the preference towards Aptamer-based technique for allergenicity analysis has also been highlighted in this review paper. The summary of these methodologies will provide a reference platform for present and future research directions.
Collapse
Affiliation(s)
- M Faisal
- Advanced Food Systems Research Unit, Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.
| | - T Vasiljevic
- Advanced Food Systems Research Unit, Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.
| | - O N Donkor
- Advanced Food Systems Research Unit, Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.
| |
Collapse
|
11
|
Lv L, Lin H, Li Z, Ahmed I, Mi N, Chen G. Allergenicity of acrolein-treated shrimp tropomyosin evaluated using RBL-2H3 cell and mouse model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4374-4378. [PMID: 29427351 DOI: 10.1002/jsfa.8954] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/10/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Food processing effects can modify protein functional properties. However, protein was oxidized inevitably by lipid peroxidation during food processing. Acrolein, a primary by-product of lipid peroxidation, can modify the structural and functional properties of protein. The aim of the research was to analyze the effect of acrolein on allergenicity of TM, a major allergen in shrimp. RESULTS The overall allergenic effects of acrolein-treated TM were evaluated using female BALB/c mice and a mediator-releasing RBL-2H3 cell line. Acrolein-treated TM significantly decreased TM-specific immunoglobulin E/G1 levels, and histamine and mMCP-1 release in mouse serum. Release of inflammatory mediators such as β-hexosaminidase, histamine, cysteinyl leukotriene and prostaglandin D2 was clearly suppressed after acrolein treatment. CONCLUSION These results indicate that acrolein-induced tropomyosin modification can decrease the allergenicity of TM. This reduction contributes to allergenic potential changes in shrimp during processing and preservation. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liangtao Lv
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Zhenxing Li
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Ishfaq Ahmed
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Nasha Mi
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Guanzhi Chen
- The Affiliated Hospital of Qingdao University, Qingdao, PR China
| |
Collapse
|
12
|
Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018; 100:28-57. [PMID: 29858102 DOI: 10.1016/j.molimm.2018.04.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.
Collapse
|
13
|
Khor SS, Morino R, Nakazono K, Kamitsuji S, Akita M, Kawajiri M, Yamasaki T, Kami A, Hoshi Y, Tada A, Ishikawa K, Hine M, Kobayashi M, Kurume N, Kamatani N, Tokunaga K, Johnson TA. Genome-wide association study of self-reported food reactions in Japanese identifies shrimp and peach specific loci in the HLA-DR/DQ gene region. Sci Rep 2018; 8:1069. [PMID: 29348432 PMCID: PMC5773682 DOI: 10.1038/s41598-017-18241-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
Food allergy is an increasingly important health problem in the world. Several genome-wide association studies (GWAS) focused on European ancestry samples have identified food allergy-specific loci in the HLA class II region. We conducted GWAS of self-reported reactivity with common foods using the data from 11011 Japanese women and identified shrimp and peach allergy-specific loci in the HLA-DR/DQ gene region tagged by rs74995702 (P = 6.30 × 10−17, OR = 1.91) and rs28359884 (P = 2.3 × 10−12, OR = 1.80), respectively. After HLA imputation using a Japanese population-specific reference, the most strongly associated haplotype was HLA-DRB1*04:05-HLA-DQB1*04:01 for shrimp allergy (P = 3.92 × 10−19, OR = 1.99) and HLA-DRB1*09:01-HLA-DQB1*03:03 for peach allergy (P = 1.15 × 10−7, OR = 1.68). Additionally, both allergies’ associated variants were eQTLs for several HLA genes, with HLA-DQA2 the single eQTL gene shared between the two traits. Our study suggests that allergy to certain foods may be related to genetic differences that tag both HLA alleles having particular epitope binding specificities as well as variants modulating expression of particular HLA genes. Investigating this further could increase our understanding of food allergy aetiology and potentially lead to better therapeutic strategies for allergen immunotherapies.
Collapse
Affiliation(s)
- Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ryoko Morino
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | | | | | | | - Tatsuya Yamasaki
- Life Science Group, Healthcare Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Azusa Kami
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Yuria Hoshi
- Life Science Group, Healthcare Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Asami Tada
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | - Maaya Hine
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Miki Kobayashi
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Nami Kurume
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | | |
Collapse
|
14
|
Chen YY, Chan KM. Transcriptional inhibition of TCDD-mediated induction of cytochrome P450 1A1 and alteration of protein expression in a zebrafish hepatic cell line following the administration of TCDD and Cd 2. Toxicol Lett 2017; 282:121-135. [PMID: 29107029 DOI: 10.1016/j.toxlet.2017.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/27/2022]
Abstract
We studied the effects of Cd2+ on TCDD-mediated induction of the cytochrome P450 1A1 (cyp1a1) gene using a zebrafish liver cell line (ZFL). Our results showed that Cd2+ inhibited the TCDD-mediated induction of the cyp1a1 protein, enzyme activity, and mRNA expression level. Cd2+ also down-regulated levels of the aryl hydrocarbon receptor (ahr2) and the aryl hydrocarbon receptor nuclear translocator 2b (arnt2b) mRNAs. Compared with TCDD (3nM) treatment alone, co-treatment with Cd2+ (0-30μM) and TCDD (3nM) significantly inhibited the activity of the luciferase reporter gene constructs harboring the distal promoter region (P-2626/-2009) of CYP1A1 and the synthetic 3XRE gene promoter. This indicates that Cd2+ decreased the level of TCDD-induced cyp1a1 through transcriptional inhibition. Proteomic analysis was also used to evaluate the effect of Cd2+ on TCDD-altered protein expression in ZFL cells. The identified proteins are mainly enzymes of the glycolysis pathway and proteasomes, and have anti-oxidative and anti-stress effects.
Collapse
Affiliation(s)
- Ying Ying Chen
- School of Life Sciences, Faculty of Science, Chinese University, Sha Tin, Hong Kong
| | - King Ming Chan
- School of Life Sciences, Faculty of Science, Chinese University, Sha Tin, Hong Kong.
| |
Collapse
|
15
|
Lozano-Ojalvo D, López-Fandiño R. Immunomodulating peptides for food allergy prevention and treatment. Crit Rev Food Sci Nutr 2017; 58:1629-1649. [PMID: 28102702 DOI: 10.1080/10408398.2016.1275519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among the most promising strategies currently assayed against IgE-mediated allergic diseases stands the possibility of using immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. This review focuses on the beneficial effects of food derived immunomodulating peptides on food allergy, which can be directly exerted in the intestinal tract or once being absorbed through the intestinal epithelial barrier to interact with immune cells. Food peptides influence intestinal homeostasis by maintaining and reinforcing barrier function or affecting intestinal cell-signalling to nearby immune cells and mucus secretion. In addition, they can stimulate cells of the innate and adaptive immune system while supressing inflammatory responses. Peptides represent an attractive alternative to whole allergens to enhance the safety and efficacy of immunotherapy treatments. The conclusions drawn from curative and preventive experiments in murine models are promising, although there is a need for more pre-clinical studies to further explore the immunomodulating strategy and its mechanisms and for a deeper knowledge of the peptide sequence and structural requirements that determine the immunoregulatory function.
Collapse
Affiliation(s)
- Daniel Lozano-Ojalvo
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| | - Rosina López-Fandiño
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| |
Collapse
|
16
|
Lv L, Lin H, Li Z, Ahmed I, Chen G. Determining the effect of malondialdehyde on the IgE-binding capacity of shrimp tropomyosin upon in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4588-4594. [PMID: 28349532 DOI: 10.1002/jsfa.8328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Stability in simulated gastric fluids is considered an important parameter for the estimation of food allergenicity. Moreover, proteins in food are highly susceptible to lipid oxidation during processing and preservation. In this study, the change in the IgE-binding capacity of malondialdehyde (MDA)-treated shrimp tropomyosin (TM) following in vitro digestion was investigated by SDS-PAGE and western blot. RESULTS Shrimp TM treated with different concentrations of MDA was slightly degraded and became increasingly resistant to pepsin digestion over time. While untreated TM was rapidly degraded, MDA-treated TM showed some resistance and was degraded by trypsin only after increasing the digestion time. Results of immunoblotting studies on IgE using sera from patients allergic to shrimp indicated that the IgE-binding capacity of TM and MDA (50 mmol L-1 )-treated TM decreased slightly after pepsin digestion and significantly decreased after trypsin digestion. CONCLUSION The study indicated that the resistance of TM to degradation increased after oxidation. The treatment with proteases, especially trypsin, is quite effective in decreasing the IgG/IgE-binding capacity of shrimp TM. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liangtao Lv
- Lab of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Hong Lin
- Lab of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Zhenxing Li
- Lab of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Ishfaq Ahmed
- Lab of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Guanzhi Chen
- The Affiliated Hospital of Medical College Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
17
|
Effect of thermal processing on T cell reactivity of shellfish allergens - Discordance with IgE reactivity. PLoS One 2017; 12:e0173549. [PMID: 28273149 PMCID: PMC5342306 DOI: 10.1371/journal.pone.0173549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/23/2017] [Indexed: 12/26/2022] Open
Abstract
Crustacean allergy is a major cause of food-induced anaphylaxis. We showed previously that heating increases IgE reactivity of crustacean allergens. Here we investigate the effects of thermal processing of crustacean extracts on cellular immune reactivity. Raw and cooked black tiger prawn, banana prawn, mud crab and blue swimmer crab extracts were prepared and IgE reactivity assessed by ELISA. Mass spectrometry revealed a mix of several allergens in the raw mud crab extract but predominant heat-stable tropomyosin in the cooked extract. PBMC from crustacean-allergic and non-atopic control subjects were cultured with the crab and prawn extracts and proliferation of lymphocyte subsets was analysed by CFSE labelling and flow cytometry. Effector responses were assessed by intracellular IL-4 and IFN-γ, and regulatory T (CD4+CD25+CD127loFoxp3+) cell proportions in cultures were also compared by flow cytometry. For each crustacean species, the cooked extract had greater IgE reactivity than the raw (mud crab p<0.05, other species p<0.01). In contrast, there was a trend for lower PBMC proliferative responses to cooked compared with raw extracts. In crustacean-stimulated PBMC cultures, dividing CD4+ and CD56+ lymphocytes showed higher IL-4+/IFN-γ+ ratios for crustacean-allergic subjects than for non-atopics (p<0.01), but there was no significant difference between raw and cooked extracts. The percentage IL-4+ of dividing CD4+ cells correlated with total and allergen-specific IgE levels (prawns p<0.01, crabs p<0.05). Regulatory T cell proportions were lower in cultures stimulated with cooked compared with raw extracts (mud crab p<0.001, banana prawn p<0.05). In conclusion, cooking did not substantially alter overall T cell proliferative or cytokine reactivity of crustacean extracts, but decreased induction of Tregs. In contrast, IgE reactivity of cooked extracts was increased markedly. These novel findings have important implications for improved diagnostics, managing crustacean allergy and development of future therapeutics. Assessment of individual allergen T cell reactivity is required.
Collapse
|
18
|
Yuan F, Lv L, Li Z, Mi N, Chen H, Lin H. Effect of transglutaminase-catalyzed glycosylation on the allergenicity and conformational structure of shrimp (Metapenaeus ensis) tropomyosin. Food Chem 2017; 219:215-222. [DOI: 10.1016/j.foodchem.2016.09.139] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/12/2016] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
|
19
|
Gleich GJ, Sebastian K, Firszt R, Wagner LA. Shrimp allergy: Gastrointestinal symptoms commonly occur in the absence of IgE sensitization. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2015; 4:316-8. [PMID: 26563673 DOI: 10.1016/j.jaip.2015.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 08/09/2015] [Accepted: 09/18/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Gerald J Gleich
- Department of Dermatology, Medicine and Pediatrics, The Health Sciences Center, The University of Utah School of Medicine, Salt Lake City, Utah.
| | - Kate Sebastian
- Department of Dermatology, Medicine and Pediatrics, The Health Sciences Center, The University of Utah School of Medicine, Salt Lake City, Utah
| | - Rafael Firszt
- Department of Dermatology, Medicine and Pediatrics, The Health Sciences Center, The University of Utah School of Medicine, Salt Lake City, Utah
| | - Lori A Wagner
- Department of Dermatology, Medicine and Pediatrics, The Health Sciences Center, The University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
20
|
Renand A, Newbrough S, Wambre E, DeLong JH, Robinson D, Kwok WW. Arginine kinase Pen m 2 as an important shrimp allergen recognized by TH2 cells. J Allergy Clin Immunol 2014; 134:1456-1459.e7. [PMID: 25224098 DOI: 10.1016/j.jaci.2014.07.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/07/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Amedee Renand
- Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | - Sally Newbrough
- Department of Medicine, University of Washington, Seattle, Wash
| | - Erik Wambre
- Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | | | | | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, Wash; Department of Medicine, University of Washington, Seattle, Wash.
| |
Collapse
|
21
|
Ravkov EV, Pavlov IY, Martins TB, Gleich GJ, Wagner LA, Hill HR, Delgado JC. Identification and validation of shrimp-tropomyosin specific CD4 T cell epitopes. Hum Immunol 2013; 74:1542-9. [PMID: 23993987 PMCID: PMC3870591 DOI: 10.1016/j.humimm.2013.08.276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/26/2013] [Accepted: 08/10/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Shellfish allergy is an immune-mediated adverse reaction to allergenic shellfish and is responsible for significant morbidity and mortality. CD4 T cell responses play an important role in the pathophysiological mechanisms of sensitization and in production of IgE. OBJECTIVE We sought to identify and validate CD4 T cell shrimp tropomyosin-derived epitopes and characterize CD4 T cell responses in subjects with a clinical history of shellfish allergy. METHOD Using an in vitro MHC-peptide binding assay, we screened 91 overlapping peptides and identified 28 epitopes with moderate and strong binding capacities; 3 additional peptides were included based on MHC binding prediction score. These peptides were then examined in proliferation and cytokine release assays with T cells from allergic subjects. RESULT 17 epitopes restricted to DRB(∗)01:01, DRB1(∗)03:01, DRB1(∗)04:01, DRB1(∗)09:01, DQB1(∗)02:01, DQB1(∗)03:02 and DQB1(∗)05:01 alleles were identified and validated by both the MHC binding and the functional assays. Two peptides showed specificities to more than one MHC class II allele. We demonstrated that these peptides exert functional responses in an epitope specific manner, eliciting predominantly IL-6 and IL-13. CONCLUSION The identified epitopes are specific to common MHC class II alleles in the general population. Our study provides important data for the design of peptide-based immunotherapy of shrimp-allergic patients.
Collapse
Affiliation(s)
- Eugene V. Ravkov
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Igor Y. Pavlov
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Thomas B. Martins
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Gerald J. Gleich
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Lori A. Wagner
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Harry R. Hill
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Julio C. Delgado
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| |
Collapse
|
22
|
Wambre E, James EA, Kwok WW. Characterization of CD4+ T cell subsets in allergy. Curr Opin Immunol 2012; 24:700-6. [PMID: 22889592 DOI: 10.1016/j.coi.2012.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 12/16/2022]
Abstract
Allergen specific T(H)2 cells are a key component of allergic disease, but their characterization has been hindered by technical limitations and lack of epitope data. Knowledge about the factors that drive the differentiation of naïve T cells into allergy-promoting T(H)2 cells and the influence of allergen specific immunotherapy on the phenotype and function of allergen-specific T cells have also been limited. Recent advances indicate that innate and adaptive immune factors drive the development of diverse subsets of allergen-specific T cells. While allergen-specific T cells are present even in non-allergic subjects, highly differentiated T(H)2 cells are present only in allergic subjects and their disappearance correlates with successful immunotherapy. Therefore, elimination of pathogenic T(H)2 cells is an essential step in tolerance induction.
Collapse
Affiliation(s)
- Erik Wambre
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101-2795, USA
| | | | | |
Collapse
|