1
|
Khoshbakht M, Forghanifard MM, Aghamollaei H, Amani J. In silico and in vitro evaluation of a PE38 and Nb-based recombinant immunotoxin targeting the GRP78 receptor in cancer cells. Biotechnol Appl Biochem 2025; 72:484-497. [PMID: 39397264 DOI: 10.1002/bab.2678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/10/2024] [Indexed: 10/15/2024]
Abstract
Cancer is a global health problem despite the most developed therapeutic modalities. The delivery of specific therapeutic agents to a target increases the effectiveness of cancer treatment by reducing side effects and post-treatment issues. Our aim in this study was to design a recombinant protein consisting of nanobody molecules and exotoxin that targets the surface GRP78 receptor on tumor cells. Bioinformatics methods make drug design and recombinant protein evaluation much easier before the laboratory steps. Two constructs were designed from a single-variable domain on heavy chain nanobody domains and PE toxin domains II, Ib, and III. The physicochemical properties, secondary structure, and solubility of the chimeric protein were analyzed using different software. Prostate cancer DU-145 and breast cancer MDA-MB-468 cell lines were used as GRP78-positive and negative controls, respectively. Accordingly, the cytotoxicity, binding affinity, cell internalization, and apoptosis were evaluated using MTT, enzyme-linked immunosorbent assay, and western blot. The results showed that in the DU-145 cell line, the cytotoxicity of two recombinant immunotoxins is dose and time-dependent. In MDA-MB-468 and HEK-293 cells, such an event does not occur. It is possible that two constructs designed for immunotoxins can attach to GRP78-positive cancer cells and then eradicate cancer cells by internalization and apoptosis. As our in vitro results were in line with in silico data confirming the Bioinformatics predictions, it can be concluded that the designed recombinant immunotoxins may exhibit therapeutic potential against GRP78-positive tumor cells.
Collapse
Affiliation(s)
- Mona Khoshbakht
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Hilan G, Daniel G, Collak F, Sabatino D, Willmore W. Cancer-Targeting Peptides Functionalized With Polyarginine Enables GRP78-Dependent Cell Uptake and siRNA Delivery Within the DU145 Prostate Cancer Cells. J Pept Sci 2025; 31:e70007. [PMID: 39967318 PMCID: PMC11836551 DOI: 10.1002/psc.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
This study investigated a peptide-based GRP78-targeting strategy for short-interfering (si) RNA delivery in cancer cells. Synthetic fluorescein-labeled amphiphilic peptides composed of the hydrophobic cell surface (cs) GRP78-targeting and hydrophilic, polycationic arginine-rich cell penetrating peptides demonstrated GRP78-dependent cell uptake in the DU145 prostate cancer cells, and to a lesser extent in the non-cancerous human lung fibroblast WI-38 cell line. Mechanistic studies revealed energy-dependent GRP78 receptor-mediated endocytosis of the GRP78-targeting peptide with polyarginine (W1-R9). The cytosolic accumulation of this peptide underscored its potential utility in siRNA delivery. Peptide:siRNA complexes formed stably condensed nanoparticles, with calcium functioning as an ionic stabilizer and additive promoting endosomal siRNA escape for RNA interference (RNAi) activity. Preliminary peptide-based siRNA transfections in the DU145 cells demonstrated that GRP78 knockdown led to an interplay in between pro-survival and cell death outcomes under ER stress induction. Thus, the GRP78-targeting polyarginine peptides enables efficient cell uptake for specific siRNA delivery in the DU145 cells. This class of bio-active synthetic peptides is important for the investigation of cancer biology, leading to the innovation of cancer-targeted gene delivery and therapy approaches.
Collapse
Affiliation(s)
- George Hilan
- Department of BiologyCarleton UniversityOttawaONCanada
| | - Grace Daniel
- Department of ChemistryCarleton UniversityOttawaONCanada
- Institute of BiochemistryCarleton UniversityOttawaONCanada
| | - Filiz Collak
- Department of BiologyCarleton UniversityOttawaONCanada
- Department of ChemistryCarleton UniversityOttawaONCanada
| | - David Sabatino
- Department of ChemistryCarleton UniversityOttawaONCanada
- Institute of BiochemistryCarleton UniversityOttawaONCanada
| | - William G. Willmore
- Department of BiologyCarleton UniversityOttawaONCanada
- Department of ChemistryCarleton UniversityOttawaONCanada
- Institute of BiochemistryCarleton UniversityOttawaONCanada
| |
Collapse
|
3
|
Abedi Dorcheh F, Balmeh N, Hejazi SH, Allahyari Fard N. Investigation of the mutated antimicrobial peptides to inhibit ACE2, TMPRSS2 and GRP78 receptors of SARS-CoV-2 and angiotensin II type 1 receptor (AT1R) as well as controlling COVID-19 disease. J Biomol Struct Dyn 2025; 43:1641-1664. [PMID: 38109185 DOI: 10.1080/07391102.2023.2292307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
SARS-CoV-2 is a global problem nowadays. Based on studies, some human receptors are involved in binding to SARS-CoV-2. Thus, the inhibition of these receptors can be effective in the treatment of Covid-19. Because of the proven benefits of antimicrobial peptides (AMPs) and the side effects of chemical drugs, they can be known as an alternative to recent medicines. RCSB PDB to obtain PDB id, StraPep and PhytAMP to acquire Bio-AMPs information and 3-D structure, and AlgPred, Toxinpred, TargetAntiAngio, IL-4pred, IL-6pred, ACPred and Hemopred databases were used to find the best score peptide features. HADDOCK 2.2 was used for molecular docking analysis, and UCSF Chimera software version 1.15, SWISS-MODEL and BIOVIA Discovery Studio Visualizer4.5 were used for mutation and structure modeling. Furthermore, MD simulation results were achieved from GROMACS 4.6.5. Based on the obtained results, the Moricin peptide was found to have the best affinity for ACE2. Moreover, Bacteriocin leucocin-A had the highest affinity for GRP78, Cathelicidin-6 had the best affinity for AT1R, and Bacteriocin PlnK had the best binding affinity for TMPRSS2. Additionally, Bacteriocin glycocin F, Bacteriocin lactococcin-G subunit beta and Cathelicidin-6 peptides were the most common compounds among the four receptors. However, these peptides also have some side effects. Consequently, the mutation eliminated the side effects, and MD simulation results indicated that the mutation proved the result of the docking analysis. The effect of AMPs on ACE2, GRP78, TMPRSS2 and AT1R receptors can be a novel treatment for Covid-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Abedi Dorcheh
- Department of Biotechnology, School of Bioscience and Biotechnology, Shahid Ashrafi Esfahani University of Isfahan, Sepahan Shahr, Iran
| | - Negar Balmeh
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najaf Allahyari Fard
- Department of Systems Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
4
|
Kaniuka O, Deregowska A, Bandura Y, Sabadashka M, Chala D, Kulachkovskyi O, Kubis H, Adamczyk-Grochala J, Sybirna N. Upregulation of GRP78 is accompanied by decreased antioxidant response and mitophagy promotion in streptozotocin-induced type 1 diabetes in rats. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167531. [PMID: 39353543 DOI: 10.1016/j.bbadis.2024.167531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Endoplasmic reticulum stress, oxidative stress, and mitochondrial dysfunction are interconnected processes involved in the pathogenesis of diabetes mellitus (DM). In the present study, we demonstrate a distinct unfolded protein response (UPR) signaling pathways in two mammalian models of DM: β-TC-6 cell line and streptozotocin-induced type 1 diabetes model in rats. However, a feature common to both systems was the upregulation of the GRP78 protein. Moreover, in vivo studies showed the disruption of the antioxidant system and an escalation of mitophagy against the background of a depletion of the level of ATP in pancreatic cells. In conclusion, we suggest that glucotoxic conditions induced GRP78 upregulation, and next cause depletion of the antioxidant pool and disruption of the functioning of antioxidant defense enzymes and in consequence promote mitophagy in pancreatic cells. Therefore, GRP78 may be considered as a potential therapeutic factor in patients with diabetes.
Collapse
Affiliation(s)
- O Kaniuka
- Department of Biochemistry, Ivan Franko National University of Lviv, 1, Universytetska St., 79000 Lviv, Ukraine.
| | - A Deregowska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Yu Bandura
- Department of Biochemistry, Ivan Franko National University of Lviv, 1, Universytetska St., 79000 Lviv, Ukraine.
| | - M Sabadashka
- Department of Biochemistry, Ivan Franko National University of Lviv, 1, Universytetska St., 79000 Lviv, Ukraine.
| | - D Chala
- Department of Biochemistry, Ivan Franko National University of Lviv, 1, Universytetska St., 79000 Lviv, Ukraine.
| | - O Kulachkovskyi
- Department of Biochemistry, Ivan Franko National University of Lviv, 1, Universytetska St., 79000 Lviv, Ukraine.
| | - H Kubis
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - J Adamczyk-Grochala
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - N Sybirna
- Department of Biochemistry, Ivan Franko National University of Lviv, 1, Universytetska St., 79000 Lviv, Ukraine.
| |
Collapse
|
5
|
AlBashtawi J, Al-Jaber H, Ahmed S, Al-Mansoori L. Impact of Obesity-Related Endoplasmic Reticulum Stress on Cancer and Associated Molecular Targets. Biomedicines 2024; 12:793. [PMID: 38672148 PMCID: PMC11047871 DOI: 10.3390/biomedicines12040793] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity, characterized by excessive body fat, is closely linked to endoplasmic reticulum (ER) stress, leading to insulin resistance and type 2 diabetes. Inflammatory pathways like c-Jun N-terminal kinase (JNK) worsen insulin resistance, impacting insulin signaling. Moreover, ER stress plays a substantial role in cancer, influencing tumor cell survival and growth by releasing factors like vascular endothelial growth factor (VEGF). The unfolded protein response (UPR) is pivotal in this process, offering both pro-survival and apoptotic pathways. This review offers an extensive exploration of the sophisticated connection between ER stress provoked by obesity and its role in both the onset and advancement of cancer. It delves into the intricate interplay between oncogenic signaling and the pathways associated with ER stress in individuals who are obese. Furthermore, this review sheds light on potential therapeutic strategies aimed at managing ER stress induced by obesity, with a focus on addressing cancer initiation and progression. The potential to alleviate ER stress through therapeutic interventions, which may encompass the use of small molecules, FDA-approved medications, and gene therapy, holds great promise. A more in-depth examination of pathways such as UPR, ER-associated protein degradation (ERAD), autophagy, and epigenetic regulation has the potential to uncover innovative therapeutic approaches and the identification of predictive biomarkers.
Collapse
Affiliation(s)
- Joud AlBashtawi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-J.); (S.A.)
| | - Sara Ahmed
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-J.); (S.A.)
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-J.); (S.A.)
| |
Collapse
|
6
|
Yang M, Weng K, Guo Y, Huang L, Chen J, Lu H. GRP78 promotes bone metastasis of prostate cancer by regulating bone microenvironment through Sonic hedgehog signaling. Mol Carcinog 2024; 63:494-509. [PMID: 38085107 DOI: 10.1002/mc.23666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 02/03/2024]
Abstract
Bone metastasis is the leading cause of tumor-related deaths in patients with prostate cancer (PCa). The interactions between PCa and the bone microenvironment form a vicious cycle. However, the complex molecular mechanism by which PCa regulates the bone microenvironment remains unclear. To determine the role of glucose-regulated protein (GRP78) in bone metastasis and growth, we established intracardiac injection and tibial injection models, and performed their histological staining. To assess the effect of GRP78 on the differentiation of osteoblasts and osteoclasts, we performed cell co-culture, enzyme-linked immunosorbent assay, alizarin red staining, and tartrate-resistant acid phosphatase staining. We found that GRP78 is upregulated in PCa tissues and that its upregulation is associated with PCa progression in patients. Functional experiments showed that GRP78 overexpression in PCa cells considerably promotes bone metastasis and induces bone microstructure changes. Silencing GRP78 substantially inhibits the migration and invasion of PCa cells in vitro and bone metastasis and tumor growth in vivo. Mechanistically, GRP78 promotes the migration and invasion of PCa cells via the Sonic hedgehog (Shh) signaling pathway. Cell co-culture showed that GRP78 promotes the differentiation of osteoblasts and osteoclasts through Shh signaling. Our findings suggest that tumor-bone matrix interactions owing to GRP78-activated paracrine Shh signaling by PCa cells regulate the differentiation of osteoblasts and osteoclasts. This process promotes bone metastasis and the proliferation of PCa cells in the bone microenvironment. Targeting the GRP78/Shh axis can serve as a therapeutic strategy to prevent bone metastasis and improve the quality of life of patients with PCa.
Collapse
Affiliation(s)
- Minsheng Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Spine Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Kangqiang Weng
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yuanqing Guo
- Department of Spine Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Spine Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Junquan Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Spine Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hai Lu
- Department of Spine Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
7
|
Zare H, Bakherad H, Nasr Esfahani A, Norouzi M, Aghamollaei H, Mousavi Gargari SL, Mahmoodi F, Aliomrani M, Ebrahimizadeh W. Introduction of a new recombinant vaccine based on GRP78 for breast cancer immunotherapy and evaluation in a mouse model. BIOIMPACTS : BI 2023; 14:27829. [PMID: 38505675 PMCID: PMC10945302 DOI: 10.34172/bi.2023.27829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/04/2023] [Accepted: 07/29/2023] [Indexed: 03/21/2024]
Abstract
Introduction Breast cancer is one of the most prevalent malignancies in women. Several treatment options are available today, including surgery, chemotherapy, and radiotherapy. Immunotherapy, as a highly specific therapy, involves adaptive immune responses and immunological memory. In our present research, we used the recombinant C-terminal domain of the GRP78 (glucose- regulated protein 78) protein to induce an immune response and investigate its therapeutic impact in the 4T1 breast cancer model. Methods BALB/c mice were immunized with the cGRP78 protein. The humoral immune response was assessed by ELISA. Then, BALB/c mice were injected subcutaneously with 1×106 4T1 tumor cells. Subsequently, tumor size and survival rate measurements, MTT, and cytokine assays were performed. Results The animals receiving the cGRP78 vaccine showed significantly more favorable survival and slower tumor growth rates compared with unvaccinated tumor-bearing mice as the negative control mice. Circulating levels of tumoricidal cytokines such as IFNγ were higher, whereas tolerogenic cytokines such as IL-2, 6, and 10 either did not increase or had a decreasing trend in mice receiving cGRP78. Conclusion cGRP78 vaccines generated potent immunotherapeutic effects in a breast cancer mouse model. This novel strategy of targeting the GRP78 protein can promote the development of cancer vaccines and immunotherapies for breast cancer malignancies.
Collapse
Affiliation(s)
- Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Nasr Esfahani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamad Norouzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Mahmoodi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mahdi Aliomrani
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Science Research Center, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Walead Ebrahimizadeh
- Department of Surgery, Division of Urology, McGill University, and the Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada
| |
Collapse
|
8
|
Hashemi M, Zandieh MA, Talebi Y, Rahmanian P, Shafiee SS, Nejad MM, Babaei R, Sadi FH, Rajabi R, Abkenar ZO, Rezaei S, Ren J, Nabavi N, Khorrami R, Rashidi M, Hushmandi K, Entezari M, Taheriazam A. Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomed Pharmacother 2023; 160:114392. [PMID: 36804123 DOI: 10.1016/j.biopha.2023.114392] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer is among most malignant tumors around the world and this urological tumor can be developed as result of genomic mutations and their accumulation during progression towards advanced stage. Due to lack of specific symptoms in early stages of prostate cancer, most cancer patients are diagnosed in advanced stages that tumor cells display low response to chemotherapy. Furthermore, genomic mutations in prostate cancer enhance the aggressiveness of tumor cells. Docetaxel and paclitaxel are suggested as well-known compounds for chemotherapy of prostate tumor and they possess a similar function in cancer therapy that is based on inhibiting depolymerization of microtubules, impairing balance of microtubules and subsequent delay in cell cycle progression. The aim of current review is to highlight mechanisms of paclitaxel and docetaxel resistance in prostate cancer. When oncogenic factors such as CD133 display upregulation and PTEN as tumor-suppressor shows decrease in expression, malignancy of prostate tumor cells enhances and they can induce drug resistance. Furthermore, phytochemicals as anti-tumor compounds have been utilized in suppressing chemoresistance in prostate cancer. Naringenin and lovastatin are among the anti-tumor compounds that have been used for impairing progression of prostate tumor and enhancing drug sensitivity. Moreover, nanostructures such as polymeric micelles and nanobubbles have been utilized in delivery of anti-tumor compounds and decreasing risk of chemoresistance development. These subjects are highlighted in current review to provide new insight for reversing drug resistance in prostate cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sareh Sadat Shafiee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Roghayeh Babaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Dos Santos NS, Gonçalves DR, Balbinot B, Visioli F. Is GRP78 (Glucose-regulated protein 78) a prognostic biomarker in differents types of cancer? A systematic review and meta-analysis. Pathol Res Pract 2023; 242:154301. [PMID: 36610326 DOI: 10.1016/j.prp.2023.154301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
GRP78 is a chaperone with anti-apoptotic function associated with aggressive tumors. This systematic review aimed to evaluate GRP78 expression in cancer and its relation to prognosis outcomes. This review was conducted in different databases searching for human cancer studies assessing GRP78 immunohistochemical levels on tissue samples. A total of 98 manuscripts were included. In 62% of the studies, GRP78 was associated with a worse prognosis. A meta-analysis included 29 studies that detected a significantly higher expression of GRP78 in cancer tissues (RR= 2.35, 95% CI 1.75-3.15) compared to control. A meta-analysis of 3 and 5-years Overall Survival revealed an increased risk of death for tumors with high expression of GRP78 (RR=1.36, 95%CI 1.16-1,59, I2 = 57%) and (RR=1.65, 95%CI 1.22-2.21, I2 =64%), respectively. GRP78 is an important prognostic biomarker for different types of cancer and a promising therapeutic target.
Collapse
Affiliation(s)
- Natália Souza Dos Santos
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Douglas Rodrigues Gonçalves
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Oral Medicine Unit, Otorhinolaryngology Service, Hospital de Clínicas de Porto Alegre, Brazil
| | - Bianca Balbinot
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Experimental Center Research, Hospital de Clínicas de Porto Alegre, Brazil.
| |
Collapse
|
10
|
Bonsignore G, Martinotti S, Ranzato E. Endoplasmic Reticulum Stress and Cancer: Could Unfolded Protein Response Be a Druggable Target for Cancer Therapy? Int J Mol Sci 2023; 24:ijms24021566. [PMID: 36675080 PMCID: PMC9865308 DOI: 10.3390/ijms24021566] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Unfolded protein response (UPR) is an adaptive response which is used for re-establishing protein homeostasis, and it is triggered by endoplasmic reticulum (ER) stress. Specific ER proteins mediate UPR activation, after dissociation from chaperone Glucose-Regulated Protein 78 (GRP78). UPR can decrease ER stress, producing an ER adaptive response, block UPR if ER homeostasis is restored, or regulate apoptosis. Some tumour types are linked to ER protein folding machinery disturbance, highlighting how UPR plays a pivotal role in cancer cells to keep malignancy and drug resistance. In this review, we focus on some molecules that have been revealed to target ER stress demonstrating as UPR could be a new target in cancer treatment.
Collapse
|
11
|
Brentville VA, Symonds P, Chua J, Skinner A, Daniels I, Cook KW, Koncarevic S, Martinez-Pinna R, Shah S, Choudhury RH, Vaghela P, Weston D, Al-Omari A, Davis J, Durrant LG. Citrullinated glucose-regulated protein 78 is a candidate target for melanoma immunotherapy. Front Immunol 2022; 13:1066185. [PMID: 36544781 PMCID: PMC9760948 DOI: 10.3389/fimmu.2022.1066185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Post translational modification of proteins plays a significant role in immune recognition. In particular the modification of arginine to citrulline which is mediated by PAD enzymes is increased during cellular stress (autophagy) which permits the presentation of modified epitopes upon MHC class II molecules for recognition by CD4 T cells. Citrullination also occurs in tumour cells as a result of continuous environmental stresses and increased autophagy. We have shown in animal models the efficient stimulation of citrullinated epitope specific CD4 T cells resulting in dramatic elimination/regression of tumours. The ER chaperone glucose-regulated protein 78 (GRP78) is known to also be required for stress-induced autophagy and is directly linked to autophagosome formation. GRP78 is known to be highly expressed by many tumour types. In this study we investigate the potential of targeting citrullinated GRP78 for cancer therapy. Methods A citrullinated GRP78 specific antibody was used to assess citrullinated GRP78 expression in murine and human tumour cells by flow cytometry. Five peptides were selected and used to vaccinate HLA transgenic mice and immune responses were characterised by ex vivo cytokine ELISpot assay. T cell repertoire in humans was assessed through proliferation assays and cytokine ELISpot assay. Citrullinated peptide was identified in murine B16 melanoma by mass spectrometry and the peptide vaccine was assessed for tumour therapy in a mouse melanoma model. Results We show the identification CD4 T cell responses to one citrullinated GRP78 epitope that are restricted through HLA DP*0401 and HLA-DR*0101 alleles. This peptide is detected by mass spectrometry in B16 melanoma grown in vivo and citrulline specific CD4 responses to two peptides spanning this epitope mediate efficient therapy of established B16 melanoma tumours in HHDII/DP4 (p<0.0001) transgenic mouse model. Finally, we demonstrate the existence of a repertoire of responses to the citrullinated GRP78 peptide in healthy individuals (p=0.0023) with 13/17 (76%) individuals showing a response to this peptide. Conclusion We propose that citrullinated GRP78 is a candidate tumour antigen and vaccination against citrullinated GRP78 may provide a promising tumour therapy approach.
Collapse
Affiliation(s)
- Victoria Anne Brentville
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,*Correspondence: Victoria Anne Brentville,
| | - Peter Symonds
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - JiaXin Chua
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Anne Skinner
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ian Daniels
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Katherine Wendy Cook
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Sasa Koncarevic
- Proteome Sciences R & D GmbH & Co.KG, Frankfurt-am-Main, Germany
| | | | - Sabaria Shah
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ruhul Hasan Choudhury
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Poonam Vaghela
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Daisy Weston
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Abdullah Al-Omari
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - James Davis
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Lindy G. Durrant
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| |
Collapse
|
12
|
de la Calle CM, Shee K, Yang H, Lonergan PE, Nguyen HG. The endoplasmic reticulum stress response in prostate cancer. Nat Rev Urol 2022; 19:708-726. [PMID: 36168057 DOI: 10.1038/s41585-022-00649-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
In order to proliferate in unfavourable conditions, cancer cells can take advantage of the naturally occurring endoplasmic reticulum-associated unfolded protein response (UPR) via three highly conserved signalling arms: IRE1α, PERK and ATF6. All three arms of the UPR have key roles in every step of tumour progression: from cancer initiation to tumour growth, invasion, metastasis and resistance to therapy. At present, no cure for metastatic prostate cancer exists, as targeting the androgen receptor eventually results in treatment resistance. New research has uncovered an important role for the UPR in prostate cancer tumorigenesis and crosstalk between the UPR and androgen receptor signalling pathways. With an improved understanding of the mechanisms by which cancer cells exploit the endoplasmic reticulum stress response, targetable points of vulnerability can be uncovered.
Collapse
Affiliation(s)
- Claire M de la Calle
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Shee
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Heiko Yang
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Peter E Lonergan
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, St. James's Hospital, Dublin, Ireland
- Department of Surgery, Trinity College, Dublin, Ireland
| | - Hao G Nguyen
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Aynekin B, Akalin H, Muderris II, Acmaz G, Akgun H, Şahin IO, Gokce NC, Alzaidi Z, Erturk Zararsiz G, Ozkul Y, Dundar M, Saatci Ç. Biomarker potential of the GRP78 cell-free RNA in endometrial cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Circulating tumor cells represent an opportunity for the assessment of early recurrent disease or for real-time tracing of cancer. Glucose Regulated Protein 78 (GRP78) is known in the literature as a stress factor in endometrial cancer. We aimed to investigate the importance of the gene by targeting tumor traces circulating in the cell fluids of patients with Type 1 endometrial cancer, examining cell-free RNAs in patients’ samples and performing ROC analysis.
Methodology
In this study, 32 endometrial cancer patients and 20 controls were included. This in vitro study evaluated, the GRP78 cell-free mRNA expression levels in endometrial cancer patients, by quantitative real-time polymerase chain reaction qRT–PCR Light Cycler. Receiver operating characteristic (ROC) analysis is a tool used to identify the precision of a diagnostic test or prediction model. In our study, we investigated whether the expression levels of cell-free GRP78 mRNA could be used as a diagnostic criterion.
Results
The ROC curve results for endometrial cancer diagnostic criterion of cfRNA GRP78 mRNA indicated quite a significant value (p < 0.001).
Conclusion
Current findings show that cell-free mRNA GRP78 is now a criterion that can be used together with smear mRNA GRP78 without the need for invasive methods in endometrial cancer studies.
Collapse
|
14
|
Potential to Eradicate Cancer Stemness by Targeting Cell Surface GRP78. Biomolecules 2022; 12:biom12070941. [PMID: 35883497 PMCID: PMC9313351 DOI: 10.3390/biom12070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer stemness is proposed to be the main cause of metastasis and tumor relapse after conventional therapy due to the main properties of cancer stem cells. These include unlimited self-renewal, the low percentage in a cell population, asymmetric/symmetric cell division, and the hypothetical different nature for absorbing external substances. As the mechanism of how cancer stemness is maintained remains unknown, further investigation into the basic features of cancer stemness is required. Many articles demonstrated that glucose-regulated protein 78 (GRP78) plays a key role in cancer stemness, suggesting that this molecule is feasible for targeting cancer stem cells. This review summarizes the history of finding cancer stem cells, as well as the functions of GRP78 in cancer stemness, for discussing the possibility of targeting GRP78 to eradicate cancer stemness.
Collapse
|
15
|
Jeyapala R, Kamdar S, Olkhov-Mitsel E, Zlotta A, Fleshner N, Visakorpi T, van der Kwast T, Bapat B. Combining CAPRA-S with tumor IDC/C features improves the prognostication of biochemical recurrence in prostate cancer patients. Clin Genitourin Cancer 2022; 20:e217-e226. [DOI: 10.1016/j.clgc.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
|
16
|
Kulbay M, Paimboeuf A, Ozdemir D, Bernier J. Review of cancer cell resistance mechanisms to apoptosis and actual targeted therapies. J Cell Biochem 2021; 123:1736-1761. [PMID: 34791699 DOI: 10.1002/jcb.30173] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 11/11/2022]
Abstract
The apoptosis pathway is a programmed cell death mechanism that is crucial for cellular and tissue homeostasis and organ development. There are three major caspase-dependent pathways of apoptosis that ultimately lead to DNA fragmentation. Cancerous cells are known to highly regulate the apoptotic pathway and its role in cancer hallmark acquisition has been discussed over the past decades. Numerous mutations in cancer cell types have been reported to be implicated in chemoresistance and treatment outcome. In this review, we summarize the mutations of the caspase-dependant apoptotic pathways that are the source of cancer development and the targeted therapies currently available or in trial.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada.,Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Adeline Paimboeuf
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Derman Ozdemir
- Department of Medicine, One Brooklyn Health-Brookdale Hospital Medical Center, Brooklyn, New York, USA
| | - Jacques Bernier
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| |
Collapse
|
17
|
Zuo Q, Ou Y, Zhong S, Yu H, Zhan F, Zhang M. Targeting GRP78 enhances the sensitivity of HOS osteosarcoma cells to pyropheophorbide-α methyl ester-mediated photodynamic therapy via the Wnt/β-catenin signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1387-1397. [PMID: 34494093 PMCID: PMC8507956 DOI: 10.1093/abbs/gmab115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT), which is a new method for treating tumors, has been used in the treatment of cancer. In-depth research has shown that PDT cannot completely kill tumor cells, indicating that tumor cells are resistant to PDT. Glucose regulatory protein 78 (GRP78), which is a key regulator of endoplasmic reticulum stress, has been confirmed to be related to tumor resistance and recurrence, but there are relatively few studies on the further mechanism of GRP78 in PDT. Our experiment aimed to observe the role of GRP78 in HOS human osteosarcoma cells treated with pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPα-PDT) and to explore the possible mechanism by which the silencing of GRP78 expression enhances the sensitivity of HOS osteosarcoma cells to MPPα-PDT. HOS osteosarcoma cells were transfected with siRNA-GRP78. Apoptosis and reactive oxygen species (ROS) levels were detected by Hoechst staining and flow cytometry, cell viability was detected by Cell Counting Kit-8 assay, GRP78 protein fluorescence intensity was detected by immunofluorescence, and apoptosis-related proteins, cell proliferation-related proteins, and Wnt pathway-related proteins were detected by western blot. The results showed that MPPα-PDT can induce HOS cell apoptosis and increase GRP78 expression. After successful siRNA-GRP78 transfection, HOS cell proliferation was decreased, and apoptosis-related proteins expressions was increased, Wnt/β-catenin-related proteins expressions was decreased, and ROS levels was increased. In summary, siRNA-GRP78 enhances the sensitivity of HOS cells to MPPα-PDT, the mechanism may be related to inhibiting Wnt pathway activation and increasing ROS levels.
Collapse
Affiliation(s)
- Qiang Zuo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shenxi Zhong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haoyang Yu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fangbiao Zhan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Muzi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
18
|
Tong YT, Wang H, Wei D, Prakash LR, Kim M, Tzeng CWD, Lee JE, Rashid A, Koay EJ, Wolff RA, Maitra A, Katz MH, Wang H. GRP78 expression and prognostic significance in patients with pancreatic ductal adenocarcinoma treated with neoadjuvant therapy versus surgery first. Pancreatology 2021; 21:1378-1385. [PMID: 34429247 PMCID: PMC8541920 DOI: 10.1016/j.pan.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Glucose-regulated protein 78 (GRP78) plays an essential role in protein folding, transportation, and degradation, thus regulates ER homeostasis and promotes cell survival, proliferation and invasion. GRP78 expression in PDAC patients who received neoadjuvant therapy has not been reported. METHODS This retrospective study of resected PDAC patients included 125 patients treated with neoadjuvant therapy (NAT) and 140 patients treated with surgery first (SF). The expression of GRP78 was evaluated by immunohistochemistry on tissue microarrays and the results were correlated with clinicopathologic parameters and survival. RESULTS GRP78 expression was higher in SF patients compared to NAT patients (P < 0.001). In SF cohort, the median disease-free survival (DFS) and overall survival (OS) for patients with GRP78-positive tumors were 11.2 months and 25.0 months, respectively, compared to DFS of 52.1 months (P = 0.008) and OS of 69.5 months (P = 0.02) for those with GRP78-negative tumors. GRP78 expression correlated with higher frequency of recurrent/metastasis (P = 0.045). In NAT cohort, GRP78 expression correlated with shorter OS (P = 0.03), but not DFS (P = 0.08). GRP78 expression was an independent prognosticator for both DFS (P = 0.02) and OS (P = 0.049) in SF cohort and was an independent prognosticator for OS (P = 0.03), but not for DFS (P = 0.06) in NAT cohort by multivariate analysis. CONCLUSIONS Our study showed that GRP78 expression in NAT cohort is lower than that in SF cohort. GRP78 expression correlated with shorter survival in both SF and NAT patients. Our findings suggest that targeting GRP78 may help to improve the prognosis in PDAC patients.
Collapse
Affiliation(s)
- Yi Tat Tong
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Hua Wang
- Department Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Dongguang Wei
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Laura R Prakash
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Michael Kim
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Asif Rashid
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Eugene J Koay
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Robert A Wolff
- Department Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Anirban Maitra
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Matthew Hg Katz
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Huamin Wang
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
A biomimetic natural sciences approach to understanding the mechanisms of ageing in burden of lifestyle diseases. Clin Sci (Lond) 2021; 135:1251-1272. [PMID: 34037207 DOI: 10.1042/cs20201452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
The worldwide landscape of an ageing population and age-related disease brings with it huge socio-economic and public healthcare concerns across nations. Correspondingly, monumental human and financial resources have been invested in biomedical research, with a mission to decode the mechanisms of ageing and how these contribute to age-related disease. Multiple hallmarks of ageing have been identified that are common across taxa, highlighting their fundamental importance. These include dysregulated mitochondrial metabolism and telomeres biology, epigenetic modifications, cell-matrix interactions, proteostasis, dysregulated nutrient sensing, stem cell exhaustion, inflammageing and immuno-senescence. While our understanding of the molecular basis of ageing is improving, it remains a complex and multifactorial process that remains to be fully understood. A key aspect of the shortfall in our understanding of the ageing process lies in translating data from standard animal models to humans. Consequently, we suggest that a 'biomimetic' and comparative approach, integrating knowledge from species in the wild, as opposed to inbred genetically homogenous laboratory animals, can provide powerful insights into human ageing processes. Here we discuss some particularities and comparative patterns among several species from the animal kingdom, endowed with longevity or short lifespans and unique metabolic profiles that could be potentially exploited to the understanding of ageing and age-related diseases. Based upon lessons from nature, we also highlight several avenues for renewed focus in the pathophysiology of ageing and age-related disease (i.e. diet-microbiome-health axis, oxidative protein damage, adaptive homoeostasis and planetary health). We propose that a biomimetic alliance with collaborative research from different disciplines can improve our understanding of ageing and age-related diseases with long-term sustainable utility.
Collapse
|
20
|
Alsterda A, Asha K, Powrozek O, Repak M, Goswami S, Dunn AM, Memmel HC, Sharma-Walia N. Salubrinal Exposes Anticancer Properties in Inflammatory Breast Cancer Cells by Manipulating the Endoplasmic Reticulum Stress Pathway. Front Oncol 2021; 11:654940. [PMID: 34094947 PMCID: PMC8173155 DOI: 10.3389/fonc.2021.654940] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) regulates protein folding, post-translational modifications, lipid synthesis, and calcium signaling to attenuate the accumulation of misfolded proteins causing ER stress and maintains cellular homeostasis. The tumor microenvironment is rich in soluble cytokines, chemokines, growth, and angiogenic factors and can drive the ER’s abnormal functioning in healthy cells. Cancer cells adapt well to the tumor microenvironment induced ER stress. We identified that the inflammatory breast cancer (IBC) cells abundantly express osteoprotegerin (OPG) and their tumor microenvironment is rich in OPG protein. OPG also called osteoclast differentiation factor/osteoclastogenesis inhibitory factor (OCIF) is a soluble decoy receptor for receptor activator of nuclear factor-kappa B ligand (RANKL). Employing mass spectrometry analysis, we identified a set of ER chaperones associated with OPG in IBC cell lysates (SUM149PT, SUM1315MO2) compared to healthy human mammary epithelial cells (HMEC). Proximity ligation assay (PLA) and immunoprecipitation assay validated the interaction between OPG and ER chaperone and master regulator of unfolded protein response (UPR) GRP78/BiP (glucose-regulated protein/Binding immunoglobulin protein). We detected remarkably high gene expression of CCAAT enhancer-binding protein homologous protein (CHOP), inositol-requiring enzyme 1 (IRE1α), protein disulfide-isomerase (PDI), PKR-like ER kinase (PERK), activating transcription factor 4 (ATF4), X-box binding protein 1 (XBP-1) and growth arrest and DNA damage-inducible protein (GADD34) in SUM149PT and SUM190PT cells when compared to HMEC. Similarly, tissue sections of human IBC expressed high levels of ER stress proteins. We evaluated cell death and apoptosis upon Salubrinal and phenylbutyrate treatment in healthy and IBC cells by caspase-3 activity and cleaved poly (ADP-ribose) polymerase (PARP) protein assay. IBC (SUM149PT and SUM190PT) cells were chemosensitive to Salubrinal treatment, possibly via inhibition in OPG secretion, upregulating ATF4, and CHOP, thus ultimately driving caspase-3 mediated IBC cell death. Salubrinal treatment upregulated PDI, which connects ER stress to oxidative stress. We observed increased ROS production and reduced cell proliferation of Salubrinal treated IBC cells. Treatment with antioxidants could rescue IBC cells from ROS and aborted cell proliferation. Our findings implicate that manipulating ER stress with Salubrinal may provide a safer and tailored strategy to target the growth of inflammatory and aggressive forms of breast cancer.
Collapse
Affiliation(s)
- Andrew Alsterda
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Kumari Asha
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Olivia Powrozek
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Miroslava Repak
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Sudeshna Goswami
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | | | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
21
|
Aghamollaei H, Ghanei M, Rasaee MJ, Latifi AM, Bakherad H, Fasihi-Ramandi M, Taheri RA, Gargari SLM. Isolation and characterization of a novel nanobody for detection of GRP78 expressing cancer cells. Biotechnol Appl Biochem 2021; 68:239-246. [PMID: 32270531 DOI: 10.1002/bab.1916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/25/2020] [Indexed: 11/07/2022]
Abstract
Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum (ER) chaperone that has been shown that is overexpressed in cancer cells. Overexpression of GRP78 on cancer cells makes this molecule a suitable candidate for cancer detection and targeted therapy. VHH is the binding fragment of camelid heavy-chain antibodies also known as "nanobody." The aim of this study is to isolate and produce a new recombinant nanobody using phage display technique to detect cancer cells. Using the c-terminal domain of GRP78 (CGRP) as an antigen, four rounds of biopanning were performed, and high-affinity binders were selected by ELISA. Their affinity and functionality were characterized by surface plasmon resonance (SPR) cell ELISA and immunocytochemistry. A unique nanobody named V80 was purified. ELISA and SPR showed that this antibody had high specificity and affinity to the GRP78. Immunofluorescence analysis showed that V80 could specifically bind to the HepG2 and A549 cancer cell lines. This novel recombinant nanobody could bind to the cell surface of different cancer cells. After further evaluation, this nanobody can be used as a new tool for cancer detection and tumor therapy.
Collapse
Affiliation(s)
- Hossein Aghamollaei
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohammad Latifi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
22
|
Phang CW, Abd Malek SN, Karsani SA. Flavokawain C exhibits anti-tumor effects on in vivo HCT 116 xenograft and identification of its apoptosis-linked serum biomarkers via proteomic analysis. Biomed Pharmacother 2021; 137:110846. [PMID: 33761587 DOI: 10.1016/j.biopha.2020.110846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 11/18/2022] Open
Abstract
Chalcones and their derivatives belong to the flavonoid family. They have been extensively studied for their anticancer properties and some have been approved for clinical use. In this study, the in vivo anti-tumor activity of flavokawain C (FKC), a naturally occurring chalcone found in Kava (Piper methysticum Forst) was evaluated in HCT 116 cells (colon carcinoma). We also attempted to identify potential biomarkers and/or molecular targets in serum with applicability in predicting treatment outcome. The anti-tumor effects and toxicity of FKC were assessed using the xenograft nude mice model. Cisplatin was used as positive control. The anti-proliferative and apoptotic activities were then evaluated in tumor tissues treated with FKC. Furthermore, two-dimensional electrophoresis (2-DE) followed by protein identification using MALDI-TOF/TOF-MS/MS was performed to compare the serum proteome profiles between healthy nude mice and nude mice bearing HCT 116 tumor treated with vehicle solution and FKC, respectively. Our results showed that FKC treatment significantly inhibited HCT 116 tumor growth. In vivo toxicity studies showed that administration of FKC did not cause damage to major organs and had no significant effect on body weight. FKC was found to induce apoptosis in tumor, and this was associated with increased expression of cleaved caspase-3 and decreased expression of Ki67 in tumor tissues. Our proteomic analysis identified five proteins that changed in abundance - Ig mu chain C region (secreted form), GRP78, hemopexin, kininogen-1 and apolipoprotein E. Overall, our findings demonstrated the potential of FKC as an anti-cancer agent for the treatment of colon carcinoma.
Collapse
Affiliation(s)
- Chung-Weng Phang
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Sri Nurestri Abd Malek
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
23
|
Robinson CM, Talty A, Logue SE, Mnich K, Gorman AM, Samali A. An Emerging Role for the Unfolded Protein Response in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13020261. [PMID: 33445669 PMCID: PMC7828145 DOI: 10.3390/cancers13020261] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and one of the leading causes of cancer-associated deaths in the world. It is characterised by dismal response rates to conventional therapies. A major challenge in treatment strategies for PDAC is the presence of a dense stroma that surrounds the tumour cells, shielding them from treatment. This unique tumour microenvironment is fuelled by paracrine signalling between pancreatic cancer cells and supporting stromal cell types including the pancreatic stellate cells (PSC). While our molecular understanding of PDAC is improving, there remains a vital need to develop effective, targeted treatments. The unfolded protein response (UPR) is an elaborate signalling network that governs the cellular response to perturbed protein homeostasis in the endoplasmic reticulum (ER) lumen. There is growing evidence that the UPR is constitutively active in PDAC and may contribute to the disease progression and the acquisition of resistance to therapy. Given the importance of the tumour microenvironment and cytokine signalling in PDAC, and an emerging role for the UPR in shaping the tumour microenvironment and in the regulation of cytokines in other cancer types, this review explores the importance of the UPR in PDAC biology and its potential as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Claire M. Robinson
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Aaron Talty
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Susan E. Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Katarzyna Mnich
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Adrienne M. Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
- Correspondence:
| |
Collapse
|
24
|
Ninkovic S, Harrison SJ, Quach H. Glucose-regulated protein 78 (GRP78) as a potential novel biomarker and therapeutic target in multiple myeloma. Expert Rev Hematol 2020; 13:1201-1210. [PMID: 32990063 DOI: 10.1080/17474086.2020.1830372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Glucose-regulated protein 78 (GRP78) is a stress-inducible molecular chaperone expressed within the endoplasmic reticulum where it acts as a master regulator of the unfolded protein response (UPR) pathway. At times of ER stress, activation of the UPR, a multimolecular pathway, limits proteotoxicity induced by misfolded proteins. In malignancies, including multiple myeloma which is characterized by an accumulation of misfolded immunoglobulins, GRP78 expression is increased, with notable translocation of GRP78 to the cell surface. Studies suggest cell-surface GRP78 (csGRP78) to be of prognostic significance with emerging evidence that it interacts with a myriad of co-ligands to activate signaling pathways promoting cell proliferation and survival or apoptosis. AREAS COVERED This review focuses on the role of ER and csGRP78 in physiology and oncogenesis in multiple myeloma, addressing factors that shift the balance in GRP78 signaling from survival to apoptosis. The role of GRP78 as a potential prognostic biomarker is explored and current therapeutics in development aimed at targeting csGRP78 are addressed. We conducted a PubMed literature search using the keywords 'GRP78,' 'multiple myeloma' reviewing studies prior to 2020. EXPERT OPINION Cell-surface GRP78 expression is a potential novel prognostic biomarker in myeloma and targeting of csGRP78 is promising and requires further investigation.
Collapse
Affiliation(s)
- Slavisa Ninkovic
- Department of Haematology, St. Vincent's Hospital Melbourne , Fitzroy, Australia.,Department of Medicine, University of Melbourne , Fitzroy, Australia
| | - Simon J Harrison
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital , Melbourne, Australia.,Sir Peter MacCallum Dept of Oncology, University of Melbourne , Parkville, Australia
| | - Hang Quach
- Department of Haematology, St. Vincent's Hospital Melbourne , Fitzroy, Australia.,Department of Medicine, University of Melbourne , Fitzroy, Australia
| |
Collapse
|
25
|
Molecular chaperones in tumors of salivary glands. J Mol Histol 2020; 51:109-115. [PMID: 32300923 DOI: 10.1007/s10735-020-09871-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
Abstract
The salivary glands are key components of the mouth and play a central role in its physiology. Their importance may be appreciated considering their number, occurrence in pairs, and distribution in the mouth: two parotids, two submandibular, two sublingual, and many other small ones scattered throughout the mouth. They produce saliva, without which ingestion of non-liquid nutrients and speech would be practically impossible. Nevertheless, the physiology and pathology of salivary glands are poorly understood. For instance, tumors of salivary glands occur, and their incidence is on the rise, but their etiology and pathogenesis are virtually unknown, although some risk factors have been identified. Likewise, the role of the chaperoning system in the development, normal functioning, and pathology, including carcinogenesis, remains to be determined. This scarcity of basic knowledge impedes progress in diagnosis, disease monitoring, and therapeutics of salivary gland tumors. We are currently involved in examining the chaperoning system of human salivary glands and we performed a search of the literature to determine what has been reported relating to oncology. We found data pertaining to six components of the chaperone system, namely HSP27, HSP60, HSP70, HSP84, HSP86, and GRP78, and to another HSP, the heme-oxygenase H-O1, also named HSP32, which does not belong in the chaperoning system but seemed to have potential as a biomarker for diagnostic purposes as much as the HSP/chaperones mentioned above. The reported quantitative variations of the six chaperones were distinctive enough to distinguish malignant from benign tumors, suggesting that these molecules hold potential as biomarkers useful in differential diagnosis. Also, the quantitative variations described accompanying tumor development, as observed in cancers of other organs, encourages research to elucidate whether chaperones play a role in the initiation and/or progression of salivary gland tumors.
Collapse
|
26
|
Zhang X, Zhang Y, Lin F, Shi X, Xiang L, Li L. Shh Overexpression Is Correlated with GRP78 and AR Expression in Primary Prostate Cancer: Clinicopathological Features and Outcomes in a Chinese Cohort. Cancer Manag Res 2020; 12:1569-1578. [PMID: 32184660 PMCID: PMC7060775 DOI: 10.2147/cmar.s231218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Shh plays an important role in prostate cancer progression, but its correlation with GRP78 and AR is elusive. Methods The study included 539 patients in total, of which 443 had primary prostate carcinoma and 96 patients had benign prostatic hyperplasia (BPH). The clinicopathologic features, histologic scores of protein expression, and correlations between protein and disease state were studied in this cohort. Kaplan–Meier and Pearson correlation analyses were used to compare measures between groups. We performed immunohistochemistry to evaluate the expression of the Shh protein in benign prostatic hyperplasia (n=96) and prostate cancer (Gleason scores ≤6 [n=399] or ≥7 [n=44]). We quantified the expression of Shh, AR, and GRP78 using the weighted histoscore method, studied the correlation between Shh expression and AR and GRP78, and evaluated the impact of Shh protein expression on patient survival. Results Shh expression was significantly higher in prostate cancer with Gleason scores ≥7 than in cancer with lower Gleason scores or benign hyperplasia and was much higher in AR-positive cancer than in AR-negative cancer. Shh is overexpressed in high-grade prostate cancer and is positively correlated with the expression of both GRP78 and AR. Conclusion Therefore, Shh may be a useful prognostic marker and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pathology, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| | - Yanmin Zhang
- Department of Pathology, Gaomi People's Hospital, Gaomi 261500, People's Republic of China
| | - Fanzhong Lin
- Department of Pathology, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| | - Xin Shi
- Department of Pathology, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| | - Longquan Xiang
- Department of Pathology, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| | - Liang Li
- Department of Pathology, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| |
Collapse
|
27
|
Samanta S, Tamura S, Dubeau L, Mhawech-Fauceglia P, Miyagi Y, Kato H, Lieberman R, Buckanovich RJ, Lin YG, Neamati N. Clinicopathological significance of endoplasmic reticulum stress proteins in ovarian carcinoma. Sci Rep 2020; 10:2160. [PMID: 32034256 PMCID: PMC7005787 DOI: 10.1038/s41598-020-59116-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related mortality in the United States due to the late-stage disease at diagnosis. Overexpression of GRP78 and PDI following endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) promote growth and invasion in cancer. To identify novel prognostic biomarkers in EOC, here we determined the expression of ER stress-associated proteins (GRP78, ATF6 and PERK) and correlated with clinical outcome in EOC. Tissue microarray (TMA) samples from 415 tissues collected from three cancer centers (UM, USC, and KCCRI) were used to assess the expression levels of ER-associated proteins using immunohistochemistry (IHC). We observed that the expression levels of GRP78 (p < 0.0001), ATF6 (p < 0.0001), and PERK (p < 0.0001) were significantly increased in specimens of EOC compared to normal tissues, including in the serous subtype (p < 0.0001). Previously we reported that high expression of PDI correlated with poor patient survival in EOC. Here we showed that overexpression of GRP78 and PDI protein expression correlated with poor patient survival (p = 0.03), while low expression of combined GRP78 and PDI correlated with better survival (p = 0.01) in high-grade serous. The increased expression of ER stress-associated proteins in EOC suggests a role for ER stress and the UPR in EOC. More importantly, our results demonstrate that GRP78 and PDI are potential biomarkers for EOC and could be used as dual prognostic markers.
Collapse
Affiliation(s)
- Soma Samanta
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Shuzo Tamura
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Louis Dubeau
- USC/Norris Comprehensive Cancer Center and Department of Pathology, Keck School of Medicine of USC, 1441 Eastlake Avenue, Los Angeles, CA, 90089, USA
| | - Paulette Mhawech-Fauceglia
- USC/Norris Comprehensive Cancer Center and Department of Pathology, Keck School of Medicine of USC, 1441 Eastlake Avenue, Los Angeles, CA, 90089, USA
| | - Yohei Miyagi
- Research Institute and Department of Gynecologic Oncology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Hisamori Kato
- Research Institute and Department of Gynecologic Oncology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Rich Lieberman
- Department of Internal Medicine, Division of Hematology-Oncology, Division of Gynecologic Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Ronald J Buckanovich
- Department of Internal Medicine, Division of Hematology-Oncology, Division of Gynecologic Oncology, University of Michigan, Ann Arbor, MI, USA
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvonne G Lin
- USC/Norris Comprehensive Cancer Center and Department of Obstetrics-Gynecology, Keck School of Medicine of USC, 1441 Eastlake Avenue, Los Angeles, CA, 90089, USA
- Genentech-Roche, 1 DNA Way, South San Francisco, CA, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
28
|
Li ZF, Xu WW, Li JD, Tao FL, Chen JX, Xu JH. Nucleotide exchange factor SIL1 promotes the progress of breast cancer cells via regulating the cell cycle and apoptosis. Sci Prog 2020; 103:36850419891046. [PMID: 31791191 PMCID: PMC10452748 DOI: 10.1177/0036850419891046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Breast cancer, as one of the most malignant tumors, poses a serious threat to the lives of females. Nucleotide exchange factor SIL1 is an important regulator of endoplasmic reticulum function that might have a specific role in tumor progression. In this study, we aimed to investigate the effect of SIL1 on the proliferation, apoptosis, and metastasis of human breast cancer. SIL1-specific small interfering RNA was transfected into two breast cancer cell lines, MCF7 and MDA-MB-231, to generate SIL1 knockdown cells. Clone formation and Cell Counting Kit-8 assays were performed to determine cell proliferation. Wound healing and transwell assays were used to detect the cell migration and invasion, respectively. Cell cycle and apoptosis were determined by flow cytometry. The messenger RNA and protein levels of target genes were analyzed using quantitative real-time PCR and western blot. According to the results of TCGA and GTEx database analysis, we determined that SIL1 was overexpressed in 1085 breast cancer samples compared with 291 normal samples. Knockdown of SIL1 inhibited the proliferation, migration, and invasion of MCF7 and MDA-MB-231 cells, accordingly. The cell cycle was blocked at the G1 phase following transfection of SIL1-specific small interfering RNA through the inhibition of Cyclin D1, CDK4, and CDK6. SIL1 knockdown induced apoptosis and also promoted the activity of Caspase9 and Bax. Furthermore, SIL1 was able to promote phosphorylation of ERK1/2. Based on these results, SIL1 might act as an oncogene and accelerate the progression of human breast cancer.
Collapse
Affiliation(s)
- Zhi-feng Li
- Department of Breast Surgery, Nantong Maternity and Child Health Care Hospital, Nantong, China
| | - Wei-wei Xu
- Department of Oncology, Nantong Tumour Hospital, Nantong, China
| | - Ji-dan Li
- Department of Breast Surgery, Nantong Maternity and Child Health Care Hospital, Nantong, China
| | - Feng-ling Tao
- Department of Breast Surgery, Nantong Maternity and Child Health Care Hospital, Nantong, China
| | - Jian-xin Chen
- Department of Breast Surgery, Nantong Maternity and Child Health Care Hospital, Nantong, China
| | - Jin-hua Xu
- Department of Traditional Chinese Medicine, Nantong Tumour Hospital, Nantong, China
| |
Collapse
|
29
|
The Role of HSF1 and the Chaperone Network in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:101-111. [PMID: 32297214 DOI: 10.1007/978-3-030-40204-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tumors are stressful environments. As tumors evolve from single mutated cancer cells into invasive malignancies they must overcome various constraints and barriers imposed by a hostile microenvironment. To achieve this, cancer cells recruit and rewire cells in their microenvironment to become pro-tumorigenic. We propose that chaperones are vital players in this process, and that activation of stress responses helps tumors adapt and evolve into aggressive malignancies, by enabling phenotypic plasticity in the tumor microenvironment (TME). In this chapter we will review evidence supporting non-cancer-cell-autonomous activity of chaperones in human patients and mouse models of cancer, discuss the mechanisms by which this non-cell-autonomous activity is mediated and provide an evolutionary perspective on the basis of this phenomenon.
Collapse
|
30
|
Direito I, Fardilha M, Helguero LA. Contribution of the unfolded protein response to breast and prostate tissue homeostasis and its significance to cancer endocrine response. Carcinogenesis 2019; 40:203-215. [PMID: 30596981 DOI: 10.1093/carcin/bgy182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/25/2022] Open
Abstract
Resistant breast and prostate cancers remain a major clinical problem, new therapeutic approaches and better predictors of therapeutic response are clearly needed. Because of the involvement of the unfolded protein response (UPR) in cell proliferation and apoptosis evasion, an increasing number of publications support the hypothesis that impairments in this network trigger and/or exacerbate cancer. Moreover, UPR activation could contribute to the development of drug resistance phenotypes in both breast and prostate cancers. Therefore, targeting this pathway has recently emerged as a promising strategy in anticancer therapy. This review addresses the contribution of UPR to breast and prostate tissues homeostasis and its significance to cancer endocrine response with focus on the current progress on UPR research related to cancer biology, detection, prognosis and treatment.
Collapse
Affiliation(s)
| | - Margarida Fardilha
- Signal Transduction Laboratory, Department of Medical Sciences, Institute for Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | | |
Collapse
|
31
|
Hoter A, Rizk S, Naim HY. The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11081194. [PMID: 31426412 PMCID: PMC6721600 DOI: 10.3390/cancers11081194] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancer types in men worldwide. Heat shock proteins (HSPs) are molecular chaperones that are widely implicated in the pathogenesis, diagnosis, prognosis, and treatment of many cancers. The role of HSPs in PCa is complex and their expression has been linked to the progression and aggressiveness of the tumor. Prominent chaperones, including HSP90 and HSP70, are involved in the folding and trafficking of critical cancer-related proteins. Other members of HSPs, including HSP27 and HSP60, have been considered as promising biomarkers, similar to prostate-specific membrane antigen (PSMA), for PCa screening in order to evaluate and monitor the progression or recurrence of the disease. Moreover, expression level of chaperones like clusterin has been shown to correlate directly with the prostate tumor grade. Hence, targeting HSPs in PCa has been suggested as a promising strategy for cancer therapy. In the current review, we discuss the functions as well as the role of HSPs in PCa progression and further evaluate the approach of inhibiting HSPs as a cancer treatment strategy.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
32
|
Nayak D, Katoch A, Sharma D, Faheem MM, Chakraborty S, Sahu PK, Chikan NA, Amin H, Gupta AP, Gandhi SG, Mukherjee D, Goswami A. Indolylkojyl methane analogue IKM5 potentially inhibits invasion of breast cancer cells via attenuation of GRP78. Breast Cancer Res Treat 2019; 177:307-323. [DOI: 10.1007/s10549-019-05301-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/27/2019] [Indexed: 01/17/2023]
|
33
|
Pötsch I, Baier D, Keppler BK, Berger W. Challenges and Chances in the Preclinical to Clinical Translation of Anticancer Metallodrugs. METAL-BASED ANTICANCER AGENTS 2019. [DOI: 10.1039/9781788016452-00308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite being “sentenced to death” for quite some time, anticancer platinum compounds are still the most frequently prescribed cancer therapies in the oncological routine and recent exciting news from late-stage clinical studies on combinations of metallodrugs with immunotherapies suggest that this situation will not change soon. It is perhaps surprising that relatively simple molecules like cisplatin, discovered over 50 years ago, are still widely used clinically, while none of the highly sophisticated metal compounds developed over the last decade, including complexes with targeting ligands and multifunctional (nano)formulations, have managed to obtain clinical approval. In this book chapter, we summarize the current status of ongoing clinical trials for anticancer metal compounds and discuss the reasons for previous failures, as well as new opportunities for the clinical translation of metal complexes.
Collapse
Affiliation(s)
- Isabella Pötsch
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Dina Baier
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
| | - Walter Berger
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| |
Collapse
|
34
|
Jiang B, Zhang R, Zhang J, Hou Y, Chen X, Zhou M, Tian X, Hao C, Fan K, Yan X. GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy. Am J Cancer Res 2019; 9:2167-2182. [PMID: 31149036 PMCID: PMC6531302 DOI: 10.7150/thno.30867] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/29/2018] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer deaths, primarily due to its high incidence of recurrence and metastasis. Considerable efforts have therefore been undertaken to develop effective therapies; however, effective anti-HCC therapies rely on identification of suitable biomarkers, few of which are currently available for drug targeting. Methods: GRP78 was identified as the membrane receptor of HCC-targeted peptide SP94 by immunoprecipitation and mass spectrum analysis. To develop an effective anti-HCC drug nanocarrier, we first displayed GRP78-targeted peptide SP94 onto the exterior surface of Pyrococcus furiosus ferritin Fn (HccFn) by genetic engineering approach, and then loaded doxorubicin (Dox) into the cavities of HccFn via urea-based disassembly/reassembly method, thereby constructing a drug nanocarrier called HccFn-Dox. Results: We demonstrated that HccFn nanocage encapsulated ultra-high dose of Dox (up to 400 molecules Dox/protein nanocage). In vivo animal experiments showed that Dox encapsulated in HccFn-Dox was selectively delivered into HCC tumor cells, and effectively killed subcutaneous and lung metastatic HCC tumors. In addition, HccFn-Dox significantly reduced drug exposure to healthy organs and improved the maximum tolerated dose by six-fold compared with free Dox. Conclusion: In conclusion, our findings clearly demonstrate that GRP78 is an effective biomarker for HCC therapy, and GRP78-targeted HccFn nanocage is effective in delivering anti-HCC drug without damage to healthy tissue.
Collapse
|
35
|
Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int J Mol Sci 2019; 20:ijms20071792. [PMID: 30978945 PMCID: PMC6479341 DOI: 10.3390/ijms20071792] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows cells to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and unfolded protein. This is of great importance to secretory cells because, in order for proteins to traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth of literature has implicated UPR in immune responses, less attention has been given to the role of UPR in T cell development and function. This review discusses the importance of UPR in T cell development, homeostasis, activation, and effector functions. We also speculate about how UPR may be manipulated in T cells to ameliorate pathologies.
Collapse
|
36
|
Przystal JM, Waramit S, Pranjol MZI, Yan W, Chu G, Chongchai A, Samarth G, Olaciregui NG, Tabatabai G, Carcaboso AM, Aboagye EO, Suwan K, Hajitou A. Efficacy of systemic temozolomide-activated phage-targeted gene therapy in human glioblastoma. EMBO Mol Med 2019; 11:e8492. [PMID: 30808679 PMCID: PMC6460351 DOI: 10.15252/emmm.201708492] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal primary intracranial malignant neoplasm in adults and most resistant to treatment. Integration of gene therapy and chemotherapy, chemovirotherapy, has the potential to improve treatment. We have introduced an intravenous bacteriophage (phage) vector for dual targeting of therapeutic genes to glioblastoma. It is a hybrid AAV/phage, AAVP, designed to deliver a recombinant adeno-associated virus genome (rAAV) by the capsid of M13 phage. In this vector, dual tumor targeting is first achieved by phage capsid display of the RGD4C ligand that binds the αvβ3 integrin receptor. Second, genes are expressed from a tumor-activated and temozolomide (TMZ)-induced promoter of the glucose-regulated protein, Grp78 Here, we investigated systemic combination therapy using TMZ and targeted suicide gene therapy by the RGD4C/AAVP-Grp78 Firstly, in vitro we showed that TMZ increases endogenous Grp78 gene expression and boosts transgene expression from the RGD4C/AAVP-Grp78 in human GBM cells. Next, RGD4C/AAVP-Grp78 targets intracranial tumors in mice following intravenous administration. Finally, combination of TMZ and RGD4C/AAVP-Grp78 targeted gene therapy exerts a synergistic effect to suppress growth of orthotopic glioblastoma.
Collapse
Affiliation(s)
- Justyna Magdalena Przystal
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Sajee Waramit
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Md Zahidul Islam Pranjol
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Wenqing Yan
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Grace Chu
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Aitthiphon Chongchai
- Thailand Excellence Centre for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai, Thailand
| | - Gargi Samarth
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Nagore Gene Olaciregui
- Institute de Recerca Sant Joan de Deu, Barcelona, Spain
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Ghazaleh Tabatabai
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for CNS Tumors, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ Partner Site Tübingen, Tübingen, Germany
| | - Angel Montero Carcaboso
- Institute de Recerca Sant Joan de Deu, Barcelona, Spain
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Eric Ofori Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, Faculty of Medicine, London, UK
| | - Keittisak Suwan
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Amin Hajitou
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
37
|
Hypoxia Induced ER Stress Response as an Adaptive Mechanism in Cancer. Int J Mol Sci 2019; 20:ijms20030749. [PMID: 30754624 PMCID: PMC6387291 DOI: 10.3390/ijms20030749] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
It is evident that regions within tumors are deprived of oxygen, which makes the microenvironment hypoxic. Cancer cells experiencing hypoxia undergo metabolic alterations and cytoprotective adaptive mechanisms to survive such stringent conditions. While such mechanisms provide potential therapeutic targets, the mechanisms by which hypoxia regulates adaptive responses-such as ER stress response, unfolded protein response (UPR), anti-oxidative responses, and autophagy-remain elusive. In this review, we summarize the complex interplay between hypoxia and the ER stress signaling pathways that are activated in the hypoxic microenvironment of the tumors.
Collapse
|
38
|
Ozpiskin OM, Zhang L, Li JJ. Immune targets in the tumor microenvironment treated by radiotherapy. Am J Cancer Res 2019; 9:1215-1231. [PMID: 30867826 PMCID: PMC6401500 DOI: 10.7150/thno.32648] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT), the major anti-cancer modality for more than half of cancer patients after diagnosis, has the advantage of local tumor control with relatively less systematic side effects comparing to chemotherapy. However, the efficacy of RT is limited by acquired tumor resistance leading to the risks of relapse and metastasis. To further enhance the efficacy of RT, with the renaissances of targeted immunotherapy (TIT), increasing interests are raised on RT combined with TIT including cancer vaccines, T-cell therapy, and antibody-based immune checkpoint blockers (ICB) such as anti-CTLA-4 and anti-PD1/PD-L1. In achieving a significant synergy between RT and TIT, the dynamics of radiation-induced response in tumor cells and stromal cells, especially the cross-talk between tumor cells and immune cells in the irradiated tumor microenvironment (ITME) as highlighted in recent literature are to be elucidated. The abscopal effect refereeing the RT-induced priming function outside of ITME could be compromised by the immune-suppressive factors such as CD47 and PD-L1 on tumor cells and Treg induced or enhanced in the ITME. Cell surface receptors temporally or permanently induced and bioactive elements released from dead cells could serve antigenic source (radiation-associated antigenic proteins, RAAPs) to the host and have functions in immune regulation on the tumor. This review is attempted to summarize a cluster of factors that are inducible by radiation and targetable by antibodies, or have potential to be immune regulators to synergize tumor control with RT. Further characterization of immune regulators in ITME will deepen our understanding of the interplay among immune regulators in ITME and discover new effective targets for the combined modality with RT and TIT.
Collapse
|
39
|
Sokolowska I, Ngounou Wetie AG, Woods AG, Jayathirtha M, Darie CC. Role of Mass Spectrometry in Investigating a Novel Protein: The Example of Tumor Differentiation Factor (TDF). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:417-433. [PMID: 31347062 DOI: 10.1007/978-3-030-15950-4_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Better understanding of central nervous system (CNS) molecules can include the identification of new molecules and their receptor systems. Discovery of novel proteins and elucidation of receptor targets can be accomplished using mass spectrometry (MS). We describe a case study of such a molecule, which our lab has studied using MS in combination with other protein identification techniques, such as immunohistochemistry and Western Blotting. This molecule is known as tumor differentiation factor (TDF), a recently-found protein secreted by the pituitary into the blood. TDF mRNA has been detected in brain; not heart, placenta, lung, liver, skeletal muscle, or pancreas. Currently TDF has an unclear function, and prior to our studies, its localization was only minimally understood, with no understanding of receptor targets. We investigated the distribution of TDF in the rat brain using immunohistochemistry (IHC) and immunofluorescence (IF). TDF protein was detected in pituitary and most other brain regions, in specific neurons but not astrocytes. We found TDF immunoreactivity in cultured neuroblastoma, not astrocytoma. These data suggest that TDF is localized to neurons, not to astrocytes. Our group also conducted studies to identify the TDF receptor (TDF-R). Using LC-MS/MS and Western blotting, we identified the members of the Heat Shock 70-kDa family of proteins (HSP70) as potential TDF-R candidates in both MCF7 and BT-549 human breast cancer cells (HBCC) and PC3, DU145, and LNCaP human prostate cancer cells (HPCC), but not in HeLa cells, NG108 neuroblastoma, or HDF-a and BLK CL.4 cells fibroblasts or fibroblast-like cells. These studies have combined directed protein identification techniques with mass spectrometry to increase our understanding of a novel protein that may have distinct actions as a hormone in the body and as a growth factor in the brain.
Collapse
Affiliation(s)
- Izabela Sokolowska
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA.
| | - Armand G Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Alisa G Woods
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
40
|
Gkouveris I, Nikitakis NG, Aseervatham J, Ogbureke KUE. Interferon γ suppresses dentin sialophosphoprotein in oral squamous cell carcinoma cells resulting in antitumor effects, via modulation of the endoplasmic reticulum response. Int J Oncol 2018; 53:2423-2432. [PMID: 30320380 PMCID: PMC6203152 DOI: 10.3892/ijo.2018.4590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022] Open
Abstract
The expression of proinflammatory cytokines in various malignant neoplasms is widely considered to represent the host immune response to tumor development. The role of interferon (IFN)γ in head and neck squamous cell carcinoma, and its association with endoplasmic reticulum (ER) stress pathways, remains a subject of ongoing investigation. Dentin sialophosphoprotein (DSPP), which is a member of the small integrin-binding N-linked glycoproteins family, has been implicated in malignant transformation and invasion of oral squamous cell carcinoma (OSCC). Recent studies have established matrix metalloproteinase (MMP)20 as the cognate MMP partner of DSPP. The present study examined the effects of IFNγ treatment on DSPP and MMP20 expression, ER stress, the unfolded protein response (UPR), and calcium (Ca) homeostasis regulatory mechanisms in OSCC cells. The OSC2 OSCC cell line was treated with IFNγ at specific time-points. At each time-point, the mRNA expression levels of DSPP and MMP20, and those of ER-stress-, UPR- and Ca homeostasis-associated proteins [78-kDa glucose-regulated protein (GRP78), sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2b), inositol 1,4,5-trisphosphate receptor (IP3r), protein kinase R-like ER kinase (PERK) and inositol-requiring enzyme 1 (IRE1)], were assessed by reverse transcription-quantitative polymerase chain reaction. The protein expression levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), proliferating cell nuclear antigen (PCNA) and cytochrome c were analyzed by western blotting. Cell viability, apoptosis and migration were evaluated by MTT, Annexin V-fluorescein isothiocyanate flow cytometry and wound-healing assays, respectively. IFNγ treatment significantly downregulated the mRNA expression levels of the major ER stress regulator GRP78 and, to a lesser extent, the UPR-associated molecule IRE1; however, IFNγ had no significant effect on PERK. With regards to ER Ca homeostasis molecules, treatment with IFNγ downregulated the mRNA expression levels of SERCA2b and upregulated those of IP3r. Furthermore, DSPP and MMP20 mRNA expression levels were significantly reduced following IFNγ treatment. Notably, treatment with IFNγ hampered OSC2 migration, reduced cell viability and PCNA protein expression, enhanced apoptosis, downregulated Bcl-2, and upregulated Bax and cytochrome c. Overall, IFNγ inhibited OSCC cell viability and migration, and increased apoptosis, possibly by regulating ER stress and UPR mechanisms. In addition, IFNγ-induced DSPP and MMP20 downregulation may correspond with alteration in ER Ca homeostasis.
Collapse
Affiliation(s)
- Ioannis Gkouveris
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Jaya Aseervatham
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Kalu U E Ogbureke
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| |
Collapse
|
41
|
Kim C, Kim B. Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: A Review. Nutrients 2018; 10:nu10081021. [PMID: 30081573 PMCID: PMC6115829 DOI: 10.3390/nu10081021] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second biggest cause of death worldwide. Despite a number of studies being conducted, the effective mechanism for treating cancer has not yet been fully understood. The tumor-microenvironment such as hypoxia, low nutrients could disturb function of endoplasmic reticulum (ER) to maintain cellular homeostasis, ultimately leading to the accumulation of unfolded proteins in ER, so-called ER stress. The ER stress has a close relation with cancer. ER stress initiates unfolded protein response (UPR) to re-establish ER homeostasis as an adaptive pathway in cancer. However, persistent ER stress triggers the apoptotic pathway. Therefore, blocking the adaptive pathway of ER stress or facilitating the apoptotic pathway could be an anti-cancer strategy. Recently, natural products and their derivatives have been reported to have anti-cancer effects via ER stress. Here, we address mechanisms of ER stress-mediated apoptosis and highlight strategies for cancer therapy by utilizing ER stress. Furthermore, we summarize anti-cancer activity of the natural products via ER stress in six major types of cancers globally (lung, breast, colorectal, gastric, prostate and liver cancer). This review deepens the understanding of ER stress mechanisms in major cancers as well as the suppressive impact of natural products against cancers via ER stress.
Collapse
Affiliation(s)
- Changmin Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
42
|
Gkouveris I, Nikitakis NG, Aseervatham J, Ogbureke KUE. The tumorigenic role of DSPP and its potential regulation of the unfolded protein response and ER stress in oral cancer cells. Int J Oncol 2018; 53:1743-1751. [PMID: 30015841 DOI: 10.3892/ijo.2018.4484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/14/2018] [Indexed: 11/05/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is upregulated in various human cancers, including head and neck squamous cell carcinoma. Cancer cells are commonly found under constant endoplasmic reticulum (ER) stress and exhibit increased levels of misfolded proteins, due to gene mutations and a stressful microenvironment. The present study examined the effects of DSPP silencing on the regulation of ER stress and the unfolded protein response (UPR) in oral cancer cells. A recently established stable DSPP short hairpin (sh)RNA-silenced OSC2 oral cancer cell line was used. The mRNA expression levels of ER stress-associated proteins, including 78 kDa glucose-regulated protein (GRP78), sarcoplasmic/endoplasmic reticulum calcium ATPase 2b (SERCA2b), inositol 1,4,5-trisphosphate receptor (IP3r), protein kinase R-like endoplasmic reticulum kinase (PERK), serine/threonine-protein kinase/endoribonuclease IRE1 (IRE1), activating transcription factor 6 (ATF6) and matrix metalloproteinase 20 (MMP20), were assessed by reverse transcription-quantitative polymerase chain reaction. The expression levels of apoptosis-related [B‑cell lymphoma 2 (Bcl2), Bcl2-associated X protein (Bax) and cytochrome c] and cell proliferation-related [proliferating cell nuclear antigen (PCNA)] proteins were analyzed by western blotting. Cell viability, apoptosis and migration were monitored by MTT assay, Annexin V-fluorescein isothiocyanate flow cytometry and wound-healing assay, respectively. In transiently transfected puromycin‑free OSC2 cells, DSPP silencing markedly downregulated the mRNA expression levels of major ER stress regulators, including GRP78, SERCA2b, PERK, IRE1 and ATF6, as well as MMP20. DSPP silencing also resulted in decreased cell viability and migration, and enhanced apoptosis. Furthermore, PCNA and Bcl2 levels were decreased, whereas Bax and cytochrome c protein levels were increased in DSPP-silenced OSC2 cells. Sustained puromycin treatment partially counteracted the effects of DSPP silencing on the mRNA expression levels of ER stress-related proteins and MMP20, and on the migratory capacity of OSC2 cells. However, following puromycin treatment of DSPP-silenced cells, cell viability was further reduced and apoptosis was enhanced. In conclusion, these data provide evidence to suggest that DSPP may be involved in ER stress mechanisms in oral squamous cell carcinoma, since its downregulation in OSC2 cells led to significant alterations in the levels of major ER stress-associated proteins, and subsequent collapse of the UPR system.
Collapse
Affiliation(s)
- Ioannis Gkouveris
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Jaya Aseervatham
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Kalu U E Ogbureke
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| |
Collapse
|
43
|
Varlamova EG. Participation of selenoproteins localized in the ER in the processes occurring in this organelle and in the regulation of carcinogenesis-associated processes. J Trace Elem Med Biol 2018; 48:172-180. [PMID: 29773177 DOI: 10.1016/j.jtemb.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/11/2018] [Accepted: 04/02/2018] [Indexed: 01/12/2023]
Abstract
The functions performed by the ER are diverse: synthesis of steroid hormones, synthesis of proteins for the plasma membrane, lysosomes, as well as proteins meant for exocytosis, protein folding, formation of disulfide bonds, N-linked glycosylation, etc. Selenoproteins localized in this organelle are definitely involved in the processes occurring in it, and the most common of them include participation in protein degradation, regulation of ER stress and redox metabolism. ER stress has been registered in many types of cancer cells. The ability to persist under prolonged ER stress increases their survival, resistance to drugs and immunity. Disturbances in the redox regulation of the cell cycle, which result in the accumulation of misfolded proteins in the ER, viral infection, disruption of Ca2+ regulation, are known to cause an evolutionarily conserved reaction - unfolded protein response (UPR) and, ultimately, lead to ER stress. Since selenoproteins, as oxidoreductases, possess antioxidant properties, and their role in the regulation of important processes, such as carcinogenesis and ER stress, has been actively studied in the recent decades, the subject of this review is highly relevant.
Collapse
Affiliation(s)
- Elena Gennadyevna Varlamova
- Federal State Institution of Science, Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
44
|
Ogawa H, Kaira K, Takahashi K, Shimizu A, Altan B, Yoshinari D, Asao T, Oyama T. Prognostic role of BiP/GRP78 expression as ER stress in patients with gastric adenocarcinoma. Cancer Biomark 2018; 20:273-281. [PMID: 28854502 DOI: 10.3233/cbm-170062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE The glucose-regulated protein 78 (GRP78), also referred to as immunoglobulin heavy chain binding protein (BiP) (BiP/GRP78), is a major molecular chaperone in the endoplasmic reticulum (ER) and is extensively expressed in human neoplasms. Although the enhanced expression of BiP/GRP78 has been described to be associated with poor prognosis in gastric cancer (GC), details regarding its prognostic significance remain unclear. The aim of this study was to elucidate the prognostic role of BiP/GRP78 in patients with GC. METHODS Study subjects included 328 patients who underwent surgical resection. Tumor specimens of primary tumors underwent immunohistochemical staining for BiP/GRP78. RESULTS BiP/GRP78 was highly expressed in 57% (188/328) of patients. High expression of BiP/GRP78 was significantly associated with older age, male, disease staging, T factor, lymph node metastases, differentiation, lymphatic permeation, and vascular invasion. According to univariate analysis, age, disease staging, T factor, N factor, lymphatic permeation, vascular invasion, and BiP/GRP78 expression were significant prognostic factors for OS. In particular, high BiP/GRP78 expression was proven to be a significant predictor of prognosis in patients with older age, female sex, early disease stage, T1-2 factor, well or moderately differentiated tumors, and negative vascular invasion. CONCLUSION BiP/GRP78 is significantly associated with tumor aggressiveness and progression. The increased expression of BiP/GRP78 was identified as an independent factor for predicting poor OS in patients with early stage of disease, especially T1-2 factor.
Collapse
Affiliation(s)
- Hiroomi Ogawa
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Kengo Takahashi
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Akira Shimizu
- Department of Dermatology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Bolag Altan
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Daisuke Yoshinari
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Takayuki Asao
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| |
Collapse
|
45
|
Viswanath ANI, Lim JW, Seo SH, Lee JY, Lim SM, Pae AN. GRP78‐targeted in‐silico virtual screening of novel anticancer agents. Chem Biol Drug Des 2018; 92:1555-1566. [DOI: 10.1111/cbdd.13322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Ambily Nath Indu Viswanath
- Convergence Research Center for Diagnosis, Treatment and Care System of DementiaKorea Institute of Science and Technology Seoul Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and Technology Seoul Korea
| | - Ji Woong Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of DementiaKorea Institute of Science and Technology Seoul Korea
- KHU‐KIST Department of Converging Science and TechnologyKyungHee University Seoul Korea
| | - Seon Hee Seo
- Convergence Research Center for Diagnosis, Treatment and Care System of DementiaKorea Institute of Science and Technology Seoul Korea
| | - Jae Yeol Lee
- KHU‐KIST Department of Converging Science and TechnologyKyungHee University Seoul Korea
| | - Sang Min Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of DementiaKorea Institute of Science and Technology Seoul Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of DementiaKorea Institute of Science and Technology Seoul Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and Technology Seoul Korea
- KHU‐KIST Department of Converging Science and TechnologyKyungHee University Seoul Korea
| |
Collapse
|
46
|
Shen K, Johnson DW, Vesey DA, McGuckin MA, Gobe GC. Role of the unfolded protein response in determining the fate of tumor cells and the promise of multi-targeted therapies. Cell Stress Chaperones 2018; 23:317-334. [PMID: 28952072 PMCID: PMC5904077 DOI: 10.1007/s12192-017-0844-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Although there have been advances in our understanding of carcinogenesis and development of new treatments, cancer remains a common cause of death. Many regulatory pathways are incompletely understood in cancer development and progression, with a prime example being those related to the endoplasmic reticulum (ER). The pathological sequelae that arise from disruption of ER homeostasis are not well defined. The ER is an organelle that is responsible for secretory protein biosynthesis and the quality control of protein folding. The ER triggers an unfolded protein response (UPR) when misfolded proteins accumulate, and while the UPR acts to restore protein folding and ER homeostasis, this response can work as a switch to determine the death or survival of cells. The treatment of cancer with agents that target the UPR has shown promising outcomes. The UPR has wide crosstalk with other signaling pathways. Multi-targeted cancer therapies which target the intersections within signaling networks have shown synergistic tumoricidal effects. In the present review, the basic cellular and signaling pathways of the ER and UPR are introduced; then the crosstalk between the ER and other signaling pathways is summarized; and ultimately, the evidence that the UPR is a potential target for cancer therapy is discussed. Regulation of the UPR downstream signaling is a common therapeutic target for different tumor types. Tumoricidal effects achieved from modulating the UPR downstream signaling could be enhanced by phosphodiesterase 5 (PDE5) inhibitors. Largely untapped by Western medicine for cancer therapies are Chinese herbal medicines. This review explores and discusses the value of some Chinese herbal extracts as PDE5 inhibitors.
Collapse
Affiliation(s)
- Kunyu Shen
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - David W Johnson
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - David A Vesey
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Michael A McGuckin
- Mucosal Disease Inflammatory Disease Biology and Therapeutics Group, UQ Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
47
|
Luo C, Fan W, Jiang Y, Zhou S, Cheng W. Glucose-Related Protein 78 Expression and Its Effects on Cisplatin-Resistance in Cervical Cancer. Med Sci Monit 2018; 24:2197-2209. [PMID: 29650944 PMCID: PMC5916091 DOI: 10.12659/msm.906413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background GRP78, the 78-kDa glucose-regulated protein, occupies a significant position in endoplasmic reticulum stress. Emerging evidences have shown that GRP78 induces chemoresistance in several tumors; however, the role of GRP78 in cervical cancer (CVC) still needs to be elucidated clearly. Material/Methods In the present study, we evaluated the expression levels of GRP78 in CVC tissues collected from patients through immunocytochemistry, western blot, and real-time PCR. To explore the exact role of GRP78 in CVC cells in the presence of cisplatin, we generated GRP78 knockdown CVC cells through small interfering RNA. After transfection, the apoptosis rate was assessed by flow cytometry. Then the expression levels of caspase-3, CHOP, and Bcl-2 in GRP78 knockdown cells were determined by western blot. Results The GRP78 levels in CVC tissues were increased significantly. Three types of CVC cells HeLa, SiHa, and C33A were treated with different concentrations of cisplatin and cultured for 12 hours, 24 hours, and 48 hours respectively. And SiHa cells exhibited the highest resistance to cisplatin at all time. Specifically, after 25 μM cisplatin treatment, more than 80% of C33A cells underwent apoptosis, whereas the apoptotic rate of SiHa cells was only 30–40%. Data suggested that GRP78 silencing increased chemo-sensitivity and improved the effects of cisplatin-induced apoptosis in SiHa cells. Moreover, inhibition of GRP78 could upregulate caspase-3 and CHOP expression and downregulate Bcl-2 expression. Conclusions GRP78 may represent a key bio-marker of CVC and silencing GRP78 may strengthen the resistance against cisplatin. GRP78 may be a potential molecular target for CVC therapies in future.
Collapse
Affiliation(s)
- Chengyan Luo
- Department of Gynecology, Jiangsu Province Hospital, The first Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wen Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Yi Jiang
- Department of Gynecology, Jiangsu Province Hospital, The first Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Shulin Zhou
- Department of Gynecology, Jiangsu Province Hospital, The first Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wenjun Cheng
- Department of Gynecology, Jiangsu Province Hospital, The first Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
48
|
Al-Hashimi AA, Lebeau P, Majeed F, Polena E, Lhotak Š, Collins CAF, Pinthus JH, Gonzalez-Gronow M, Hoogenes J, Pizzo SV, Crowther M, Kapoor A, Rak J, Gyulay G, D'Angelo S, Marchiò S, Pasqualini R, Arap W, Shayegan B, Austin RC. Autoantibodies against the cell surface-associated chaperone GRP78 stimulate tumor growth via tissue factor. J Biol Chem 2017; 292:21180-21192. [PMID: 29066620 PMCID: PMC5743090 DOI: 10.1074/jbc.m117.799908] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/05/2017] [Indexed: 12/24/2022] Open
Abstract
Tumor cells display on their surface several molecular chaperones that normally reside in the endoplasmic reticulum. Because this display is unique to cancer cells, these chaperones are attractive targets for drug development. Previous epitope-mapping of autoantibodies (AutoAbs) from prostate cancer patients identified the 78-kDa glucose-regulated protein (GRP78) as one such target. Although we previously showed that anti-GRP78 AutoAbs increase tissue factor (TF) procoagulant activity on the surface of tumor cells, the direct effect of TF activation on tumor growth was not examined. In this study, we explore the interplay between the AutoAbs against cell surface-associated GRP78, TF expression/activity, and prostate cancer progression. First, we show that tumor GRP78 expression correlates with disease stage and that anti-GRP78 AutoAb levels parallel prostate-specific antigen concentrations in patient-derived serum samples. Second, we demonstrate that these anti-GRP78 AutoAbs target cell-surface GRP78, activating the unfolded protein response and inducing tumor cell proliferation through a TF-dependent mechanism, a specific effect reversed by neutralization or immunodepletion of the AutoAb pool. Finally, these AutoAbs enhance tumor growth in mice bearing human prostate cancer xenografts, and heparin derivatives specifically abrogate this effect by blocking AutoAb binding to cell-surface GRP78 and decreasing TF expression/activity. Together, these results establish a molecular mechanism in which AutoAbs against cell-surface GRP78 drive TF-mediated tumor progression in an experimental model of prostate cancer. Heparin derivatives counteract this mechanism and, as such, represent potentially appealing compounds to be evaluated in well-designed translational clinical trials.
Collapse
Affiliation(s)
- Ali A Al-Hashimi
- From the Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
- the Department of Surgery, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
| | - Paul Lebeau
- From the Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
| | - Fadwa Majeed
- From the Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
| | - Enio Polena
- From the Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
| | - Šárka Lhotak
- From the Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
| | - Celeste A F Collins
- From the Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
| | - Jehonathan H Pinthus
- From the Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
- the Department of Surgery, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
| | - Mario Gonzalez-Gronow
- the Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | - Jen Hoogenes
- From the Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
- the Department of Surgery, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
| | - Salvatore V Pizzo
- the Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | - Mark Crowther
- From the Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
| | - Anil Kapoor
- From the Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
- the Department of Surgery, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
| | - Janusz Rak
- the Department of Pediatrics, Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Gabriel Gyulay
- From the Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
| | - Sara D'Angelo
- the University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87106
- the Divisions of Molecular Medicine and
| | - Serena Marchiò
- the University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87106
- the Divisions of Molecular Medicine and
- the Department of Oncology, University of Turin, 10124 Turin, Italy, and
- the Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 10060 Candiolo, Italy
| | - Renata Pasqualini
- the University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87106
- the Divisions of Molecular Medicine and
| | - Wadih Arap
- the University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87106
- Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131
| | - Bobby Shayegan
- From the Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
- the Department of Surgery, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
| | - Richard C Austin
- From the Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada,
| |
Collapse
|
49
|
Pomatto LCD, Davies KJA. The role of declining adaptive homeostasis in ageing. J Physiol 2017; 595:7275-7309. [PMID: 29028112 PMCID: PMC5730851 DOI: 10.1113/jp275072] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Adaptive homeostasis is "the transient expansion or contraction of the homeostatic range for any given physiological parameter in response to exposure to sub-toxic, non-damaging, signalling molecules or events, or the removal or cessation of such molecules or events" (Davies, 2016). Adaptive homeostasis enables biological systems to make continuous short-term adjustments for optimal functioning despite ever-changing internal and external environments. Initiation of adaptation in response to an appropriate signal allows organisms to successfully cope with much greater, normally toxic, stresses. These short-term responses are initiated following effective signals, including hypoxia, cold shock, heat shock, oxidative stress, exercise-induced adaptation, caloric restriction, osmotic stress, mechanical stress, immune response, and even emotional stress. There is now substantial literature detailing a decline in adaptive homeostasis that, unfortunately, appears to manifest with ageing, especially in the last third of the lifespan. In this review, we present the hypothesis that one hallmark of the ageing process is a significant decline in adaptive homeostasis capacity. We discuss the mechanistic importance of diminished capacity for short-term (reversible) adaptive responses (both biochemical and signal transduction/gene expression-based) to changing internal and external conditions, for short-term survival and for lifespan and healthspan. Studies of cultured mammalian cells, worms, flies, rodents, simians, apes, and even humans, all indicate declining adaptive homeostasis as a potential contributor to age-dependent senescence, increased risk of disease, and even mortality. Emerging work points to Nrf2-Keap1 signal transduction pathway inhibitors, including Bach1 and c-Myc, both of whose tissue concentrations increase with age, as possible major causes for age-dependent loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C. D. Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
| | - Kelvin J. A. Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
- Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of LettersArts & Sciences: the University of Southern CaliforniaLos AngelesCA 90089‐0191USA
| |
Collapse
|
50
|
Riha R, Gupta-Saraf P, Bhanja P, Badkul S, Saha S. Stressed Out - Therapeutic Implications of ER Stress Related Cancer Research. ACTA ACUST UNITED AC 2017; 2:156-167. [PMID: 29445586 DOI: 10.7150/oncm.22477] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The unfolded protein response (UPR) is an established and well-studied cellular response to the stress and serves to relieve the stress and reinstate cellular homeostasis. It occurs in the endoplasmic reticulum (ER), responsible of properly folding and processing of secretory and transmembrane proteins. It is extremely sensitive to alteration in homeostasis caused by various internal or external stressors which leads to accumulation of misfolded or unfolded proteins in the ER lumen. The UPR works by restoring protein homeostasis in the ER, either through the boosting of protein-folding and degradation capability or by assuaging the demands for such effects, and can cause the activation of cell death if unable to do so. Cancer cells have adapted to gain advantage from the UPR and keeping the cell away from apoptosis and promoting survival, including survival of the cancer stem cells and evading the immune system. Several components of the UPR are overexpressed in a malignant cell and are responsible for resistance from various chemotherapy options and radiotherapy, which are also responsible for causing ER stress and activating the UPR. In this review, we discuss the various ways in which UPR can aid different cancers to survive and evade therapy and highlight recent research, which exploits the UPR to confer sensitivity to these cancer cells against various drugs and radiation.
Collapse
Affiliation(s)
- Randal Riha
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Pooja Gupta-Saraf
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Payel Bhanja
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Samyak Badkul
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Subhrajit Saha
- Department of Radiation Oncology, University of Kansas Medical Center.,Department of Cancer Biology, University of Kansas Medical Center
| |
Collapse
|