1
|
Yuan Y, Huang J, Wei G, Hu G, Yu H, Tao Y. Potential mechanism of circKIAA1429 accelerating the progression of hepatocellular carcinoma. Infect Agent Cancer 2025; 20:12. [PMID: 40025575 PMCID: PMC11872318 DOI: 10.1186/s13027-025-00645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND This study investigates the underlying mechanism of circKIAA1429 (hsa_circ_0084922) in hepatocellular carcinoma (HCC) progression. METHODS circKIAA1429, SETD1A, NAP1L3, and GLIS2 expressions in HCC cells were detected by RT-qPCR or western blot. The stability of circKIAA1429 was tested after treatment with actinomycin D and Rnase R enzyme. circKIAA1429 expression was knocked down, followed by detection of cell proliferation, apoptosis, and migration/invasion using CCK-8, flow cytometry, and transwell. RIP and RNA pull-down were performed to validate the binding between circKIAA1429 and SETD1A, while ChIP analysis determined the enrichment of SETD1A and H3K4me3 or H3K27me3 on GLIS2 or NAP1L3 promoter. A nude mouse xenograft tumor model was establish to test the effect of circKIAA1429 on tumorigenicity. RESULTS circKIAA1429 and NAP1L3 were highly expressed in HCC cells, while GLIS2 was poorly expressed. Knockdown of circKIAA1429 repressed cell proliferation/invasion/migration and facilitated apoptosis. Mechanistically, circKIAA1429 directly interacted with SETD1A to reduce the enrichment of SETD1A and H3K4me3 or H3K27me3 on GLIS2 or NAP1L3 promoter, thus diminishing GLIS2 expression and elevating NAP1L3 expression. In vivo, circKIAA1429 promotes tumorigenesis via GLIS2/NAP1L3. CONCLUSION circKIAA1429 interacts with SETD1A to inhibit the enrichment of H3K4me3 and H3K27me3 on GLIS2 or NAP1L3 promoter, thus inhibiting/promoting the expression of GLIS2/NAP1L3 and accelerating the progression of HCC.
Collapse
Affiliation(s)
- Yiting Yuan
- Department of General Surgery, The First People's Hospital of Tongxiang, No. 1918, Xiaochang East Road, Wutong Street, Tongxiang City, Zhejiang Province, 314500, PR China
| | - Junwei Huang
- Department of General Surgery, The First People's Hospital of Tongxiang, No. 1918, Xiaochang East Road, Wutong Street, Tongxiang City, Zhejiang Province, 314500, PR China
| | - Guifen Wei
- Department of General Surgery, The First People's Hospital of Tongxiang, No. 1918, Xiaochang East Road, Wutong Street, Tongxiang City, Zhejiang Province, 314500, PR China
| | - Guang Hu
- Department of General Surgery, The First People's Hospital of Tongxiang, No. 1918, Xiaochang East Road, Wutong Street, Tongxiang City, Zhejiang Province, 314500, PR China
| | - Hongmei Yu
- Department of General Surgery, The First People's Hospital of Tongxiang, No. 1918, Xiaochang East Road, Wutong Street, Tongxiang City, Zhejiang Province, 314500, PR China
| | - Yiming Tao
- Department of General Surgery, The First People's Hospital of Tongxiang, No. 1918, Xiaochang East Road, Wutong Street, Tongxiang City, Zhejiang Province, 314500, PR China.
| |
Collapse
|
2
|
Shah V, Lam HY, Leong CHM, Sakaizawa R, Shah JS, Kumar AP. Epigenetic Control of Redox Pathways in Cancer Progression. Antioxid Redox Signal 2025. [PMID: 39815993 DOI: 10.1089/ars.2023.0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Significance: Growing evidence indicates the importance of redox reactions homeostasis, mediated predominantly by reactive oxygen species (ROS) in influencing the development, differentiation, progression, metastasis, programmed cell death, tumor microenvironment, and therapeutic resistance of cancer. Therefore, reviewing the ROS-linked epigenetic changes in cancer is fundamental to understanding the progression and prevention of cancer. Recent Advances: We review in depth the molecular mechanisms involved in ROS-mediated epigenetic changes that lead to alteration of gene expression by altering DNA, modifying histones, and remodeling chromatin and noncoding RNA. Critical Issues: In cancerous cells, alterations of the gene-expression regulatory elements could be generated by the virtue of imbalance in tumor microenvironment. Various oxidizing agents and mitochondrial electron transport chain are the major pathways that generate ROS. ROS plays a key role in carcinogenesis by activating pro-inflammatory signaling pathways and DNA damage. This loss of ROS-mediated epigenetic regulation of the signaling pathways may promote tumorigenesis. We address all such aspects in this review. Future Directions: Developments in this growing field of epigenetics are expected to contribute to further our understanding of human health and diseases such as cancer and to test the clinical applications of redox-based therapy. Recent studies of the cancer-epigenetic landscape have revealed pervasive deregulation of the epigenetic factors in cancer. Thus, the study of interaction between ROS and epigenetic factors in cancer holds a great promise in the development of effective and targeted treatment modalities. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Vandit Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Charlene Hoi-Mun Leong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reo Sakaizawa
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jigna S Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Chen K, Shuen TWH, Chow PKH. The association between tumour heterogeneity and immune evasion mechanisms in hepatocellular carcinoma and its clinical implications. Br J Cancer 2024; 131:420-429. [PMID: 38760445 PMCID: PMC11300599 DOI: 10.1038/s41416-024-02684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. The emergence of combination therapy, atezolizumab (anti-PDL1, immune checkpoint inhibitor) and bevacizumab (anti-VEGF) has revolutionised the management of HCC. Despite this breakthrough, the best overall response rate with first-line systemic therapy is only about 30%, owing to intra-tumoural heterogeneity, complex tumour microenvironment and the lack of predictive biomarkers. Many groups have attempted to classify HCC based on the immune microenvironment and have consistently observed better outcomes in immunologically "hot" HCC. We summarised possible mechanisms of tumour immune evasion based on the latest literature and the rationale for combination/sequential therapy to improve treatment response. Lastly, we proposed future strategies and therapies to overcome HCC immune evasion to further improve treatment outcomes of HCC.
Collapse
Affiliation(s)
- Kaina Chen
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Timothy W H Shuen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Pierce K H Chow
- Duke-NUS Medical School, Singapore, Singapore.
- Department of Hepato-pancreato-biliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore, Singapore.
- Program in Translational and Clinical Liver Cancer Research, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Castilho RM, Castilho LS, Palomares BH, Squarize CH. Determinants of Chromatin Organization in Aging and Cancer-Emerging Opportunities for Epigenetic Therapies and AI Technology. Genes (Basel) 2024; 15:710. [PMID: 38927646 PMCID: PMC11202709 DOI: 10.3390/genes15060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
This review article critically examines the pivotal role of chromatin organization in gene regulation, cellular differentiation, disease progression and aging. It explores the dynamic between the euchromatin and heterochromatin, coded by a complex array of histone modifications that orchestrate essential cellular processes. We discuss the pathological impacts of chromatin state misregulation, particularly in cancer and accelerated aging conditions such as progeroid syndromes, and highlight the innovative role of epigenetic therapies and artificial intelligence (AI) in comprehending and harnessing the histone code toward personalized medicine. In the context of aging, this review explores the use of AI and advanced machine learning (ML) algorithms to parse vast biological datasets, leading to the development of predictive models for epigenetic modifications and providing a framework for understanding complex regulatory mechanisms, such as those governing cell identity genes. It supports innovative platforms like CEFCIG for high-accuracy predictions and tools like GridGO for tailored ChIP-Seq analysis, which are vital for deciphering the epigenetic landscape. The review also casts a vision on the prospects of AI and ML in oncology, particularly in the personalization of cancer therapy, including early diagnostics and treatment optimization for diseases like head and neck and colorectal cancers by harnessing computational methods, AI advancements and integrated clinical data for a transformative impact on healthcare outcomes.
Collapse
Affiliation(s)
- Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Leonard S. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
| | - Bruna H. Palomares
- Oral Diagnosis Department, Piracicaba School of Dentistry, State University of Campinas, Piracicaba 13414-903, Sao Paulo, Brazil;
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
5
|
Phoyen S, Sanpavat A, Ma-on C, Stein U, Hirankarn N, Tangkijvanich P, Jindatip D, Whongsiri P, Boonla C. H4K20me3 upregulated by reactive oxygen species is associated with tumor progression and poor prognosis in patients with hepatocellular carcinoma. Heliyon 2023; 9:e22589. [PMID: 38144275 PMCID: PMC10746411 DOI: 10.1016/j.heliyon.2023.e22589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Epigenetic alteration by oxidative stress is vitally involved in carcinogenesis and cancer progression. Previously, we demonstrated that oxidative stress was increased in hepatocellular carcinoma (HCC) patients and associated with tumor aggressiveness. Herein, we immunohistochemically investigated whether histone methylation, specifically H4K20me3, was upregulated in human hepatic tissues obtained from HCC patients (n = 100). Also, we experimentally explored if the H4K20me3 was upregulated by reactive oxygen species (ROS) and contributed to tumor progression in HCC cell lines. We found that H4K20me3 level was increased in HCC tissues compared with the adjacent noncancerous liver tissues. H3K9me3 and H3K4me3 levels were also increased in HCC tissues. Cox regression analysis revealed that the elevated H4K20me3 level was associated with tumor recurrence and short survival in HCC patients. Experimentally, H2O2 provoked oxidative stress and induced H4K20me3 formation in HepG2 and Huh7 cells. Transcript expression of histone methyltransferase Suv420h2 (for H4K20me3), Suv39h1 (for H3K9me3), and Smyd3 (for H3K4me3) were upregulated in H2O2-treated HCC cells. H2O2 also induced epithelial-mesenchymal transition (EMT) in HCC cells, indicated by decreased E-cadherin but increased α-SMA and MMP-9 mRNA expression. Migration, invasion, and colony formation in HCC cells were markedly increased following the H2O2 exposure. Inhibition of H4K20me3 formation by A196 (a selective inhibitor of Suv420h2) attenuated EMT and reduced tumor migration in H2O2-treated HCC cells. In conclusion, we demonstrated for the first time that H4K20me3 level was increased in human HCC tissues, and it was independently associated with poor prognosis in HCC patients. ROS upregulated H4K20me3 formation, induced mRNA expression of EMT markers, and promoted tumor progression in human HCC cells. Inhibition of H4K20me3 formation reduced EMT and tumor aggressive phenotypes in ROS-treated HCC cells. Possibly, ROS-induced EMT and tumor progression in HCC cells was epigenetically mediated through an increased formation of repressive chromatin H4K20me3.
Collapse
Affiliation(s)
- Suchittra Phoyen
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anapat Sanpavat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chakriwong Ma-on
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ulrike Stein
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Depicha Jindatip
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patcharawalai Whongsiri
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chanchai Boonla
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Wang J, Wang F, Wang N, Zhang MY, Wang HY, Huang GL. Diagnostic and Prognostic Value of Protein Post-translational Modifications in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:1192-1200. [PMID: 37577238 PMCID: PMC10412711 DOI: 10.14218/jcth.2022.00006s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high incidence and cancer mortality worldwide. Post-translational modifications (PTMs) of proteins have a great impact on protein function. Almost all proteins can undergo PTMs, including phosphorylation, acetylation, methylation, glycosylation, ubiquitination, and so on. Many studies have shown that PTMs are related to the occurrence and development of cancers. The findings provide novel therapeutic targets for cancers, such as glypican-3 and mucin-1. Other clinical implications are also found in the studies of PTMs. Diagnostic or prognostic value, and response to therapy have been identified. In HCC, it has been shown that glycosylated alpha-fetoprotein (AFP) has a higher detection rate for early liver cancer than conventional AFP. In this review, we mainly focused on the diagnostic and prognostic value of PTM, in order to provide new insights into the clinical implication of PTM in HCC.
Collapse
Affiliation(s)
- Jing Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| | - Fangfang Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| | - Ning Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Guo-Liang Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
7
|
Wadhwani N, Nayak S, Wang Y, Hashizume R, Jie C, Mania-Farnell B, James CD, Xi G, Tomita T. WDR82-Mediated H3K4me3 Is Associated with Tumor Proliferation and Therapeutic Efficacy in Pediatric High-Grade Gliomas. Cancers (Basel) 2023; 15:3429. [PMID: 37444539 PMCID: PMC10340597 DOI: 10.3390/cancers15133429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are common malignant brain tumors without effective treatment and poor patient survival. Abnormal posttranslational modification at the histone H3 tail plays critical roles in tumor cell malignancy. We have previously shown that the trimethylation of lysine 4 at histone H3 (H3K4me3) plays a significant role in pediatric ependymoma malignancy and is associated with tumor therapeutic sensitivity. Here, we show that H3K4me3 and its methyltransferase WDR82 are elevated in pHGGs. A reduction in H3K4me3 by downregulating WDR82 decreases H3K4me3 promoter occupancy and the expression of genes associated with stem cell features, cell proliferation, the cell cycle, and DNA damage repair. A reduction in WDR82-mediated H3K4me3 increases the response of pediatric glioma cells to chemotherapy. These findings suggest that WDR82-mediated H3K4me3 is an important determinant of pediatric glioma malignancy and therapeutic response. This highlights the need for a more thorough understanding of the potential of WDR82 as an epigenetic target to increase therapeutic efficacy and improve the prognosis for children with malignant gliomas.
Collapse
Affiliation(s)
- Nitin Wadhwani
- Department of Pathology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sonali Nayak
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yufen Wang
- Department of Radio-oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rintaro Hashizume
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University Medicine and Health Sciences, Des Moines, IA 50312, USA
| | - Barbara Mania-Farnell
- Department of Biological Sciences, Purdue University Northwest, Hammond, IN 46323, USA
| | - Charles David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Guifa Xi
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Naik A, Dalpatraj N, Thakur N. Comparative analysis of the occupancy of Histone H3 Lysine 4 methylation in the cells treated with TGFβ and Interferonγ. Gene 2023:147601. [PMID: 37394048 DOI: 10.1016/j.gene.2023.147601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
In this current study, we have compared our H3K4me3 Chip-Sequencing data in PC3 cells in response to 6h and 24h TGFβ stimulation with the IFNγ stimulated/unstimulated HeLa S3 cells Since both TGFβ and IFNγ play an essential role in tumorigenesis both as a tumor promoter and tumor suppressor and known to antagonize each other's signalling, it would be of utmost importance to find out the regions undergoing histone modification changes in response to TGFβ and IFNγ and compare them to explore the genes common to both as well as the specific for each ligand. Our study has compared the genes showing H3K4me3 occupancy in response to both TGFβ and IFNγ. Several genes were found to be shared between the TGFβ and IFNγ. DAVID Functional enrichment analysis in the TGFβ and IFNγ dataset revealed association of genes with different biological processes such as miRNA-mediated gene silencing, positive regulation of ERK cascade, hypoxia-induced apoptosis repression, translational regulation and molecular functions such as TGFβR activity, GPCR activity, TGFβ binding activity. Further analysis of these genes can reveal fascinating insights into epigenetic regulation by growth factor stimulation.
Collapse
Affiliation(s)
- Ankit Naik
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Nidhi Dalpatraj
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Noopur Thakur
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| |
Collapse
|
9
|
Padilla A, Manganaro JF, Huesgen L, Roess DA, Brown MA, Crans DC. Targeting Epigenetic Changes Mediated by Members of the SMYD Family of Lysine Methyltransferases. Molecules 2023; 28:molecules28042000. [PMID: 36838987 PMCID: PMC9967872 DOI: 10.3390/molecules28042000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
A comprehensive understanding of the mechanisms involved in epigenetic changes in gene expression is essential to the clinical management of diseases linked to the SMYD family of lysine methyltransferases. The five known SMYD enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine (SAM) to specific lysines on histones and non-histone substrates. SMYDs family members have distinct tissue distributions and tissue-specific functions, including regulation of development, cell differentiation, and embryogenesis. Diseases associated with SMYDs include the repressed transcription of SMYD1 genes needed for the formation of ion channels in the heart leading to heart failure, SMYD2 overexpression in esophageal squamous cell carcinoma (ESCC) or p53-related cancers, and poor prognosis associated with SMYD3 overexpression in more than 14 types of cancer including breast cancer, colon cancer, prostate cancer, lung cancer, and pancreatic cancer. Given the importance of epigenetics in various pathologies, the development of epigenetic inhibitors has attracted considerable attention from the pharmaceutical industry. The pharmacologic development of the inhibitors involves the identification of molecules regulating both functional SMYD SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domains, a process facilitated by available X-ray structures for SMYD1, SMYD2, and SMYD3. Important leads for potential pharmaceutical agents have been reported for SMYD2 and SMYD3 enzymes, and six epigenetic inhibitors have been developed for drugs used to treat myelodysplastic syndrome (Vidaza, Dacogen), cutaneous T-cell lymphoma (Zoinza, Isrodax), and peripheral T-cell lymphoma (Beleodag, Epidaza). The recently demonstrated reversal of SMYD histone methylation suggests that reversing the epigenetic effects of SMYDs in cancerous tissues may be a desirable target for pharmacological development.
Collapse
Affiliation(s)
- Alyssa Padilla
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - John F. Manganaro
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Lydia Huesgen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Mark A. Brown
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
- Graduate Degree Program in Ecology, Department of Ethnic Studies, Global Health and Health Disparities, Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523-1612, USA
- Correspondence: (M.A.B.); (D.C.C.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Correspondence: (M.A.B.); (D.C.C.)
| |
Collapse
|
10
|
Oura K, Morishita A, Hamaya S, Fujita K, Masaki T. The Roles of Epigenetic Regulation and the Tumor Microenvironment in the Mechanism of Resistance to Systemic Therapy in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:2805. [PMID: 36769116 PMCID: PMC9917861 DOI: 10.3390/ijms24032805] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Primary liver cancer is the sixth most common cancer and the third most common cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is a major histologic type with a poor prognosis owing to the difficulty in early detection, the chemotherapy resistance, and the high recurrence rate of the disease. Despite recent advancements in HCC prevention and diagnosis, over 50% of patients are diagnosed at Barcelona Clinic Liver Cancer Stage B or C. Systemic therapies are recommended for unresectable HCC (uHCC) with major vascular invasion, extrahepatic metastases, or intrahepatic lesions that have a limited response to transcatheter arterial chemoembolization, but the treatment outcome tends to be unsatisfactory due to acquired drug resistance. Elucidation of the mechanisms underlying the resistance to systemic therapies and the appropriate response strategies to solve this issue will contribute to improved outcomes in the multidisciplinary treatment of uHCC. In this review, we summarize recent findings on the mechanisms of resistance to drugs such as sorafenib, regorafenib, and lenvatinib in molecularly targeted therapy, with a focus on epigenetic regulation and the tumor microenvironment and outline the approaches to improve the therapeutic outcome for patients with advanced HCC.
Collapse
Affiliation(s)
- Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
| | | | | | | | | |
Collapse
|
11
|
Yang Z, Jia Y, Wang S, Zhang Y, Fan W, Wang X, He L, Shen X, Yang X, Zhang Y, Yang H. Retinoblastoma-Binding Protein 5 Regulates H3K4 Methylation Modification to Inhibit the Proliferation of Melanoma Cells by Inactivating the Wnt/ β-Catenin and Epithelial-Mesenchymal Transition Pathways. JOURNAL OF ONCOLOGY 2023; 2023:5093941. [PMID: 36866240 PMCID: PMC9974310 DOI: 10.1155/2023/5093941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
Histone 3 lysine 4 methylation (H3K4me), especially histone 3 lysine 4 trimethylation (H3K4me3), is one of the most extensively studied patterns of histone modification and plays crucial roles in many biological processes. However, as a part of H3K4 methyltransferase that participates in H3K4 methylation and transcriptional regulation, retinoblastoma-binding protein 5 (RBBP5) has not been well studied in melanoma. The present study sought to explore RBBP5-mediated H3K4 histone modification and the potential mechanisms in melanoma. RBBP5 expression in melanoma and nevi specimens was detected by immunohistochemistry. Western blotting was performed for three pairs of melanoma cancer tissues and nevi tissues. In vitro and in vivo assays were used to investigate the function of RBBP5. The molecular mechanism was determined using RT-qPCR, western blotting, ChIP assays, and Co-IP assays. Our study showed that RBBP5 was significantly downregulated in melanoma tissue and cells compared with nevi tissues and normal epithelia cells (P < 0.05). Reducing RBBP5 in human melanoma cells leads to H3K4me3 downregulation and promotes cell proliferation, migration, and invasion. On the one hand, we verified that WSB2 was an upstream gene of RBBP5-mediated H3K4 modification, which could directly bind to RBBP5 and negatively regulate its expression. On the other hand, we also confirmed that p16 (a cancer suppressor gene) was a downstream target of H3K4me3, the promoter of which can directly bind to H3K4me3. Mechanistically, our data revealed that RBBP5 inactivated the Wnt/β-catenin and epithelial-mesenchymal transition (EMT) pathways (P < 0.05), leading to melanoma suppression. Histone methylation is rising as an important factor affecting tumorigenicity and tumor progression. Our findings verified the significance of RBBP5-mediated H3K4 modification in melanoma and the potential regulatory mechanisms of melanoma proliferation and growth, suggesting that RBBP5 is a potential therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Zhiqin Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
- 2Departments of Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yue Jia
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Shaojia Wang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Yongjun Zhang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Wen Fan
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
- 3Departments of Reproduction, The Second Affiliated Hospital of Kunming Medical University, Kunming 650106, China
| | - Xin Wang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Liang He
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Xiaoyu Shen
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Xiangqun Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Yi Zhang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Hongying Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| |
Collapse
|
12
|
Tümen D, Heumann P, Gülow K, Demirci CN, Cosma LS, Müller M, Kandulski A. Pathogenesis and Current Treatment Strategies of Hepatocellular Carcinoma. Biomedicines 2022; 10:3202. [PMID: 36551958 PMCID: PMC9775527 DOI: 10.3390/biomedicines10123202] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent liver cancer with high lethality and low five-year survival rates leading to a substantial worldwide burden for healthcare systems. HCC initiation and progression are favored by different etiological risk factors including hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, non-/and alcoholic fatty liver disease (N/AFLD), and tobacco smoking. In molecular pathogenesis, endogenous alteration in genetics (TP53, TERT, CTNNB1, etc.), epigenetics (DNA-methylation, miRNA, lncRNA, etc.), and dysregulation of key signaling pathways (Wnt/β-catenin, JAK/STAT, etc.) strongly contribute to the development of HCC. The multitude and complexity of different pathomechanisms also reflect the difficulties in tailored medical therapy of HCC. Treatment options for HCC are strictly dependent on tumor staging and liver function, which are structured by the updated Barcelona Clinic Liver Cancer classification system. Surgical resection, local ablative techniques, and liver transplantation are valid and curative therapeutic options for early tumor stages. For multifocal and metastatic diseases, systemic therapy is recommended. While Sorafenib had been the standalone HCC first-line therapy for decades, recent developments had led to the approval of new treatment options as first-line as well as second-line treatment. Anti-PD-L1 directed combination therapies either with anti-VEGF directed agents or with anti-CTLA-4 active substances have been implemented as the new treatment standard in the first-line setting. However, data from clinical trials indicate different responses on specific therapeutic regimens depending on the underlying pathogenesis of hepatocellular cancer. Therefore, histopathological examinations have been re-emphasized by current international clinical guidelines in addition to the standardized radiological diagnosis using contrast-enhanced cross-sectional imaging. In this review, we emphasize the current knowledge on molecular pathogenesis of hepatocellular carcinoma. On this occasion, the treatment sequences for early and advanced tumor stages according to the recently updated Barcelona Clinic Liver Cancer classification system and the current algorithm of systemic therapy (first-, second-, and third-line treatment) are summarized. Furthermore, we discuss novel precautional and pre-therapeutic approaches including therapeutic vaccination, adoptive cell transfer, locoregional therapy enhancement, and non-coding RNA-based therapy as promising treatment options. These novel treatments may prolong overall survival rates in regard with quality of life and liver function as mainstay of HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
13
|
Nagaraju GP, Dariya B, Kasa P, Peela S, El-Rayes BF. Epigenetics in hepatocellular carcinoma. Semin Cancer Biol 2022; 86:622-632. [PMID: 34324953 DOI: 10.1016/j.semcancer.2021.07.017] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 07/25/2021] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and has a high fatality rate. Genetic and epigenetic aberrations are commonly observed in HCC. The epigenetic processes include chromatin remodelling, histone alterations, DNA methylation, and noncoding RNA (ncRNA) expression and are connected with the progression and metastasis of HCC. Due to their potential reversibility, these epigenetic alterations are widely targeted for the development of biomarkers. In-depth understanding of the epigenetics of HCC is critical for developing rational clinical strategies that can provide a meaningful improvement in overall survival and prediction of therapeutic outcomes. In this article, we have summarised the epigenetic modifications involved in HCC progression and highlighted the potential biomarkers for diagnosis and drug development.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali, 304022, Rajasthan, India
| | - Prameswari Kasa
- Dr. L.V. Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad 500004, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam, 532410 AP, India
| | - Bassel F El-Rayes
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
King D, Wilson CR, Herron L, Deng CL, Mehdi S, Tiwary P, Hof F, Isaacs L. Molecular recognition of methylated amino acids and peptides by Pillar[6]MaxQ. Org Biomol Chem 2022; 20:7429-7438. [PMID: 36097881 PMCID: PMC9632254 DOI: 10.1039/d2ob01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the molecular recognition properties of Pillar[n]MaxQ (P[n]MQ) toward a series of (methylated) amino acids, amino acid amides, and post-translationally modified peptides by a combination of 1H NMR, isothermal titration calorimetry, indicator displacement assays, and molecular dynamics simulations. We find that P6MQ is a potent receptor for N-methylated amino acid side chains. P6MQ recognized the H3K4Me3 peptide with Kd = 16 nM in phosphate buffered saline.
Collapse
Affiliation(s)
- David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Chelsea R Wilson
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lukas Herron
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Shams Mehdi
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
15
|
Wan C, Liu W, Jiang L, Dong S, Ma W, Wang S, Liu D. Knockdown of MKL1 ameliorates oxidative stress-induced chondrocyte apoptosis and cartilage matrix degeneration by activating TWIST1-mediated PI3K/AKT signaling pathway in rats. Autoimmunity 2022; 55:559-566. [PMID: 36046946 DOI: 10.1080/08916934.2022.2114466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Studies have reported that megakaryocytic leukemia 1 (MKL1) is closely related to the pathological process of a variety of inflammatory diseases, but its role in osteoarthritis (OA) needs to be clarified. This study aimed to investigate the regulatory role of MKL1 in oxidative stress-induced chondrocyte apoptosis and cartilage matrix degeneration. The expressions of target mRNAs and proteins were measured by using reverse transcription-quantitative polymerase chain reaction and western blotting. ELISA assay was used to measure the levels of IL-6, IL-8, and TNF-α in chondrocytes. And commercial kits based on different spectrophotometry or colorimetry methods were performed to validate oxidative stress. CCK-8 and apoptosis kits were used to determine cell viability and apoptosis. Rat OA model was established by anterior cruciate ligament transection (ACLT), and the expression of MKL1 was interfered by injecting sh-MKL1 lentiviral vector into caudal vein. The results showed that the expression of MKL1was induced by H2O2 in chondrocytes. Knockdown of MKL1 alleviated H2O2-induced inflammation and cell apoptosis, reduced H2O2-induced oxidative stress, and improved cartilage matrix degeneration of chondrocytes. Besides, inhibition of MKL1 regulated the activation of TWIST1-mediated PI3K/AKT signaling. Further studies have found that TWIST1-mediated PI3K/AKT signaling was involved in the regulation mechanism of MKL1 on chondrocyte apoptosis and cartilage matrix degeneration. Next, intervention with MKL1 inhibited the progression of OA in rats. These results demonstrated that MKL1 regulate the apoptosis and cartilage matrix degeneration of chondrocytes via TWIST1-mediated PI3K/AKT signaling.
Collapse
Affiliation(s)
- Chao Wan
- Department of the Joint and Bone Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Wei Liu
- Department of Pathophysiology, Binzhou Medical University, Binzhou, Shandong, China
| | - Limin Jiang
- Department of the Joint and Bone Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Shengjie Dong
- Department of the Joint and Bone Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Weihua Ma
- Department of the Joint and Bone Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Shijun Wang
- Department of the Joint and Bone Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Dan Liu
- Department of the Joint and Bone Surgery, Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
16
|
Comprehensive Analysis of Histone Modifications in Hepatocellular Carcinoma Reveals Different Subtypes and Key Prognostic Models. JOURNAL OF ONCOLOGY 2022; 2022:5961603. [PMID: 35957801 PMCID: PMC9359864 DOI: 10.1155/2022/5961603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Histone modification, an important epigenetic mechanism, is related to the carcinogenesis of hepatocellular carcinoma (HCC). In three datasets, we screened 88 epigenetic-dysregulated PCGs (epi-PCGs) , which were significantly associated with HCC survival and could cluster HCC into three molecular subtypes. These subtypes were associated with prognosis, immunomodulatory alterations, and response to different treatment strategies. Based on 88 epi-PCGs in the TCGA training set, a risk prediction model composed of 4 epi-PCGs was established. The model was closely related to the clinicopathological features and showed a strong predictive ability in different clinical subgroups. In addition, the risk prediction model was an independent prognostic factor for patients with HCC. The significance of epi-PCGs in HCC is revealed by our data analysis.
Collapse
|
17
|
Levidou G, Palamaris K, Sykaras AG, Andreadakis G, Masaoutis C, Theochari I, Korkolopoulou P, Rontogianni D, Theocharis S. Unraveling the Role of Histone Variant CENP-A and Chaperone HJURP Expression in Thymic Epithelial Neoplasms. Int J Mol Sci 2022; 23:ijms23158339. [PMID: 35955489 PMCID: PMC9368969 DOI: 10.3390/ijms23158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Recent advances demonstrate the role of chromatin regulators, including histone variants and histone chaperones, in cancer initiation and progression. Methods: Histone H3K4me3, histone variant centromere protein (CENP-A) and histone chaperones Holliday junction recognition protein (HJURP) as well as DAXX expression were examined immunohistochemically in 95 thymic epithelial tumor (TET) specimens. Our results were compared with the expression profile of DAXX, HJURP and CENP-A in gene expression profiling interactive analysis (GEPIA2). Results: The lymphocyte-poor B3- and C-type TETs were more frequently DAXX negative (p = 0.043). B3 and C-Type TETs showed higher cytoplasmic and nuclear CENP-A (p = 0.007 and p = 0.002) and higher cytoplasmic HJURP H-score (p < 0.001). Higher nuclear CENP-A and cytoplasmic HJURP expression was associated with advanced Masaoka−Koga stage (p = 0.048 and p < 0.001). A positive correlation between HJURP and CENP-A was also observed. The presence of cytoplasmic CENP-A expression was correlated with a favorable overall survival (p = 0.03). CENP-A overexpression in survival analysis of TCGA TETs showed similar results. H3K4me3 expression was not associated with any clinicopathological parameters. Conclusions: Our results suggest a significant interaction between CENP-A and HJURP in TETs. Moreover, we confirmed the presence of a cytoplasmic CENP-A immunolocalization, suggesting also a possible favorable prognostic value of this specific immunostaining pattern.
Collapse
Affiliation(s)
- Georgia Levidou
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
- Department of Pathology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Konstantinos Palamaris
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Alexandros G. Sykaras
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Georgios Andreadakis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Christos Masaoutis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Irene Theochari
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Penelope Korkolopoulou
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Dimitra Rontogianni
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
- Correspondence:
| |
Collapse
|
18
|
HAUSP Is a Key Epigenetic Regulator of the Chromatin Effector Proteins. Genes (Basel) 2021; 13:genes13010042. [PMID: 35052383 PMCID: PMC8774506 DOI: 10.3390/genes13010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
HAUSP (herpes virus-associated ubiquitin-specific protease), also known as Ubiquitin Specific Protease 7, plays critical roles in cellular processes, such as chromatin biology and epigenetics, through the regulation of different signaling pathways. HAUSP is a main partner of the “Epigenetic Code Replication Machinery,” ECREM, a large protein complex that includes several epigenetic players, such as the ubiquitin-like containing plant homeodomain (PHD) and an interesting new gene (RING), finger domains 1 (UHRF1), as well as DNA methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), histone methyltransferase G9a, and histone acetyltransferase TIP60. Due to its deubiquitinase activity and its ability to team up through direct interactions with several epigenetic regulators, mainly UHRF1, DNMT1, TIP60, the histone lysine methyltransferase EZH2, and the lysine-specific histone demethylase LSD1, HAUSP positions itself at the top of the regulatory hierarchies involved in epigenetic silencing of tumor suppressor genes in cancer. This review highlights the increasing role of HAUSP as an epigenetic master regulator that governs a set of epigenetic players involved in both the maintenance of DNA methylation and histone post-translational modifications.
Collapse
|
19
|
Liu Z, Sun J, Li C, Xu L, Liu J. MKL1 regulates hepatocellular carcinoma cell proliferation, migration and apoptosis via the COMPASS complex and NF-κB signaling. BMC Cancer 2021; 21:1184. [PMID: 34742274 PMCID: PMC8571910 DOI: 10.1186/s12885-021-08185-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Background Histone modification plays essential roles in hepatocellular carcinoma (HCC) pathogenesis, but the regulatory mechanisms remain poorly understood. In this study, we aimed to analyze the roles of Megakaryoblastic leukemia 1 (MKL1) and its regulation of COMPASS (complex of proteins associated with Set1) in HCC cells. Methods MKL1 expression in clinical tissues and cell lines were detected by bioinformatics, qRT-PCR and western blot. MKL1 expression in HCC cells were silenced with siRNA, followed by cell proliferation evaluation via Edu staining and colony formation, migration and invasion using the Transwell system, and apoptosis by Hoechst staining. HCC cell tumorigenesis was assessed by cancer cell line-based xenograft model, combined with H&E staining and IHC assays. Results MKL1 expression was elevated in HCC cells and clinical tissues which was correlated with poor prognosis. MKL1 silencing significantly repressed proliferation, migration, invasion and colony formation but enhanced apoptosis in HepG2 and Huh-7 cells. MKL1 silencing also inhibited COMPASS components and p65 protein expression in HepG2 and Huh-7 cells. HepG2 cell tumorigenesis in nude mice was severely impaired by MKL1 knockdown, resulted into suppressed Ki67 expression and cell proliferation. Conclusion MKL1 promotes HCC pathogenesis by regulating hepatic cell proliferation, migration and apoptosis via the COMPASS complex and NF-κB signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08185-w.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiuzheng Sun
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanzhi Li
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liyou Xu
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
20
|
Aoki Y, Yamamoto J, Tome Y, Hamada K, Masaki N, Inubushi S, Tashiro Y, Bouvet M, Endo I, Nishida K, Hoffman RM. Over-methylation of Histone H3 Lysines Is a Common Molecular Change Among the Three Major Types of Soft-tissue Sarcoma in Patient-derived Xenograft (PDX) Mouse Models. Cancer Genomics Proteomics 2021; 18:715-721. [PMID: 34697064 DOI: 10.21873/cgp.20292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/AIM Sarcomas are considered a heterogeneous disease with incomplete understanding of its molecular basis. In the present study, to further understand general molecular changes in sarcoma, patient-derived xenograft (PDX) mouse models of the three most common soft-tissue sarcomas: myxofibrosarcoma, undifferentiated pleomorphic sarcoma (UPS) and liposarcoma were established and the methylation status of histone H3 lysine marks was studied. MATERIALS AND METHODS Immunoblotting and immunohistochemical staining were used to quantify the extent of methylation of histone H3K4me3 and histone H3K9me3. RESULTS In all 3 sarcoma types in PDX models, histone H3K4me3 and H3K9me3 were found highly over-methylated compared to normal muscle tissue. CONCLUSION Histone H3 lysine over-methylation may be a general basis of malignancy of the major sarcoma types.
Collapse
Affiliation(s)
- Yusuke Aoki
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A.,Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Jun Yamamoto
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A.,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan;
| | - Kazuyuki Hamada
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| | - Noriyuki Masaki
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| | - Sachiko Inubushi
- Department of Breast and Endocrine Surgery, Kobe University Graduate School of Medicine, Hyogo, Japan
| | | | - Michael Bouvet
- Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, U.S.A.; .,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| |
Collapse
|
21
|
Gradl S, Steuber H, Weiske J, Szewczyk MM, Schmees N, Siegel S, Stoeckigt D, Christ CD, Li F, Organ S, Abbey M, Kennedy S, Chau I, Trush V, Barsyte-Lovejoy D, Brown PJ, Vedadi M, Arrowsmith C, Husemann M, Badock V, Bauser M, Haegebarth A, Hartung IV, Stresemann C. Discovery of the SMYD3 Inhibitor BAY-6035 Using Thermal Shift Assay (TSA)-Based High-Throughput Screening. SLAS DISCOVERY 2021; 26:947-960. [PMID: 34154424 DOI: 10.1177/24725552211019409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
SMYD3 (SET and MYND domain-containing protein 3) is a protein lysine methyltransferase that was initially described as an H3K4 methyltransferase involved in transcriptional regulation. SMYD3 has been reported to methylate and regulate several nonhistone proteins relevant to cancer, including mitogen-activated protein kinase kinase kinase 2 (MAP3K2), vascular endothelial growth factor receptor 1 (VEGFR1), and the human epidermal growth factor receptor 2 (HER2). In addition, overexpression of SMYD3 has been linked to poor prognosis in certain cancers, suggesting SMYD3 as a potential oncogene and attractive cancer drug target. Here we report the discovery of a novel SMYD3 inhibitor. We performed a thermal shift assay (TSA)-based high-throughput screening (HTS) with 410,000 compounds and identified a novel benzodiazepine-based SMYD3 inhibitor series. Crystal structures revealed that this series binds to the substrate binding site and occupies the hydrophobic lysine binding pocket via an unprecedented hydrogen bonding pattern. Biochemical assays showed substrate competitive behavior. Following optimization and extensive biophysical validation with surface plasmon resonance (SPR) analysis and isothermal titration calorimetry (ITC), we identified BAY-6035, which shows nanomolar potency and selectivity against kinases and other PKMTs. Furthermore, BAY-6035 specifically inhibits methylation of MAP3K2 by SMYD3 in a cellular mechanistic assay with an IC50 <100 nM. Moreover, we describe a congeneric negative control to BAY-6035. In summary, BAY-6035 is a novel selective and potent SMYD3 inhibitor probe that will foster the exploration of the biological role of SMYD3 in diseased and nondiseased tissues.
Collapse
Affiliation(s)
- Stefan Gradl
- Bayer AG, Global Drug Discovery, Berlin, Germany
| | | | - Joerg Weiske
- Bayer AG, Global Drug Discovery, Berlin, Germany
| | - Magda M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | | | | | | | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Shawna Organ
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Megha Abbey
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Steven Kennedy
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Viacheslav Trush
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Cheryl Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Kim HG, Sung JY, Na K, Kim SW. Low H3K9me3 Expression Is Associated With Poor Prognosis in Patients With Distal Common Bile Duct Cancer. In Vivo 2021; 34:3619-3626. [PMID: 33144476 DOI: 10.21873/invivo.12207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Histone modification is associated with tumorigenesis and cancer progression. Recent studies have revealed the prognostic value of histone modification; however, its prognostic role in distal bile duct cancer remains unclear. PATIENTS AND METHODS We analyzed the expression of H3K9me3, H4K20me3, and H3K36me3 and its correlation with survival outcomes in resected samples from 88 patients with distal bile duct cancer. RESULTS Low expression rates of H3K9me3, H4K20me3, and H3K36me3 were significantly associated with poor overall survival (p=0.003, 0.008, and 0.047, respectively) and event-free survival (p=0.03 for H3K9m3). Additionally, low-expression of H3K9me3 was an independent poor prognostic indicator (p<0.001; HR=7.85; 95% CI=2.693-22.883). CONCLUSION H3K9me3 was an independent poor prognostic factor in distal common bile duct cancer. Our results suggest that histone markers are potential prognostic markers and provide better management for patients at risk for an aggressive course of disease.
Collapse
Affiliation(s)
- Han Gyeol Kim
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Ji-Youn Sung
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Kiyong Na
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - So-Woon Kim
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Duan JL, Nie RC, Xiang ZC, Chen JW, Deng MH, Liang H, Wang FW, Luo RZ, Xie D, Cai MY. Prognostic Model for the Risk Stratification of Early and Late Recurrence in Hepatitis B Virus-Related Small Hepatocellular Carcinoma Patients with Global Histone Modifications. J Hepatocell Carcinoma 2021; 8:493-505. [PMID: 34095004 PMCID: PMC8170593 DOI: 10.2147/jhc.s309451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/06/2021] [Indexed: 01/27/2023] Open
Abstract
Background and Aim To assess the profile of global histone modifications in small hepatocellular carcinoma (small HCC) and identify its prognostic value in predicting recurrence. Methods The expression profiles of global histone modifications, including H2AK5AC, H2BK20AC, H3K4me2, H3K9AC, H3K18AC, H4K12AC, and H4R3me2, were evaluated with immunohistochemistry in 335 HBV related small HCC patients. Two histone signature classifiers were then developed using least absolute shrinkage and selection operator Cox regression. A nomogram was built using the classifier and independent risk factors. The performances of the classifier and nomogram were assessed by receiver operating characteristic curves. Results Histone modifications were more pronounced in tumor tissues than in adjacent liver tissues. In tumor tissues, the risk score built based on the seven-histone signature exhibited satisfactory prediction efficiency, with an AUC = 0.71 (0.63–0.79) for 2-year survival in the training cohort. Patients with a high risk score had shorter recurrence-free survival than those with a low risk score (HR: 1.96, 95% CI: 1.24–3.08, p = 0.004; HR: 1.95, 95% CI: 1.12–3.42, p = 0.019; and HR: 1.97, 95% CI: 1.39–2.80, p < 0.001 for the training, validation and total cohorts, respectively). Furthermore, the statistical nomogram built using the histone classifier for early recurrence had a C-index = 0.68. In non-neoplastic liver tissues, the hepatic signature based on H3K4me2 and H4R3me2 was related to late recurrence (HR: 2.00, 95% CI: 1.15–3.48, p = 0.01). Conclusion Global histone modifications in tumor and adjacent liver tissues are novel predictors of early and late recurrence, respectively, in HBV-related small HCC patients.
Collapse
Affiliation(s)
- Jin-Ling Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Run-Cong Nie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhi-Cheng Xiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jie-Wei Chen
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Min-Hua Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hu Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Feng-Wei Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Rong-Zhen Luo
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
24
|
The G-Protein-Coupled Estrogen Receptor (GPER) Regulates Trimethylation of Histone H3 at Lysine 4 and Represses Migration and Proliferation of Ovarian Cancer Cells In Vitro. Cells 2021; 10:cells10030619. [PMID: 33799631 PMCID: PMC8001910 DOI: 10.3390/cells10030619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is one of the most recognized epigenetic regulators of transcriptional activity representing, an epigenetic modification of Histone H3. Previous reports have suggested that the broad H3K4me3 domain can be considered as an epigenetic signature for tumor-suppressor genes in human cells. G-protein-coupled estrogen receptor (GPER), a new membrane-bound estrogen receptor, acts as an inhibitor on cell growth via epigenetic regulation in breast and ovarian cancer cells. This study was conducted to evaluate the relationship of GPER and H3K4me3 in ovarian cancer tissue samples as well as in two different cell lines (Caov3 and Caov4). Silencing of GPER by a specific siRNA and two selective regulators with agonistic (G1) and antagonistic (G15) activity were applied for consecutive in vitro studies to investigate their impacts on tumor cell growth and the changes in phosphorylated ERK1/2 (p-ERK1/2) and H3K4me3. We found a positive correlation between GPER and H3K4me3 expression in ovarian cancer patients. Patients overexpressing GPER as well as H3K4me3 had significantly improved overall survival. Increased H3K4me3 and p-ERK1/2 levels and attenuated cell proliferation and migration were observed in Caov3 and Caov4 cells via activation of GPER by G1. Conversely, antagonizing GPER activity by G15 resulted in opposite effects in the Caov4 cell line. In conclusion, interaction of GPER and H3K4me3 appears to be of prognostic significance for ovarian cancer patients. The results of the in vitro analyses confirm the biological rationale for their interplay and identify GPER agonists, such as G1, as a potential therapeutic approach for future investigations.
Collapse
|
25
|
Noberini R, Robusti G, Bonaldi T. Mass spectrometry-based characterization of histones in clinical samples: applications, progresses, and challenges. FEBS J 2021; 289:1191-1213. [PMID: 33415821 PMCID: PMC9291046 DOI: 10.1111/febs.15707] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
In the last 15 years, increasing evidence linking epigenetics to various aspects of cancer biology has prompted the investigation of histone post-translational modifications (PTMs) and histone variants in the context of clinical samples. The studies performed so far demonstrated the potential of this type of investigations for the discovery of both potential epigenetic biomarkers for patient stratification and novel epigenetic mechanisms potentially targetable for cancer therapy. Although traditionally the analysis of histones in clinical samples was performed through antibody-based methods, mass spectrometry (MS) has emerged as a more powerful tool for the unbiased, comprehensive, and quantitative investigation of histone PTMs and variants. MS has been extensively used for the analysis of epigenetic marks in cell lines and animal tissue and, thanks to recent technological advances, is now ready to be applied also to clinical samples. In this review, we will provide an overview on the quantitative MS-based analysis of histones, their PTMs and their variants in cancer clinical samples, highlighting current achievements and future perspectives for this novel field of research. Among the different MS-based approaches currently available for histone PTM profiling, we will focus on the 'bottom-up' strategy, namely the analysis of short proteolytic peptides, as it has been already successfully employed for the analysis of clinical samples.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Robusti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
26
|
Mungamuri SK, Nagasuryaprasad K. Epigenetic mechanisms of hepatocellular carcinoma progression: Potential therapeutic opportunities. EPIGENETICS AND METABOLOMICS 2021:279-296. [DOI: 10.1016/b978-0-323-85652-2.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
27
|
The Role of Histone Acetylation-/Methylation-Mediated Apoptotic Gene Regulation in Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21238894. [PMID: 33255318 PMCID: PMC7727670 DOI: 10.3390/ijms21238894] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetics, an inheritable phenomenon, which influences the expression of gene without altering the DNA sequence, offers a new perspective on the pathogenesis of hepatocellular carcinoma (HCC). Nonalcoholic steatohepatitis (NASH) is projected to account for a significant share of HCC incidence due to the growing prevalence of various metabolic disorders. One of the major molecular mechanisms involved in epigenetic regulation, post-translational histone modification seems to coordinate various aspects of NASH which will further progress to HCC. Mounting evidence suggests that the orchestrated events of cellular and nuclear changes during apoptosis can be regulated by histone modifications. This review focuses on the current advances in the study of acetylation-/methylation-mediated histone modification in apoptosis and the implication of these epigenetic regulations in HCC. The reversibility of epigenetic alterations and the agents that can target these alterations offers novel therapeutic approaches and strategies for drug development. Further molecular mechanistic studies are required to enhance information governing these epigenetic modulators, which will facilitate the design of more effective diagnosis and treatment options.
Collapse
|
28
|
Vougiouklakis T, Bernard BJ, Nigam N, Burkitt K, Nakamura Y, Saloura V. Clinicopathologic significance of protein lysine methyltransferases in cancer. Clin Epigenetics 2020; 12:146. [PMID: 33050946 PMCID: PMC7557092 DOI: 10.1186/s13148-020-00897-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/01/2020] [Indexed: 12/26/2022] Open
Abstract
Protein lysine methyltransferases (PKMTs) constitute a large family of approximately 50 chromatin modifiers that mono-, di- and/or tri-methylate lysine residues on histone and non-histone substrates. With the advent of The Cancer Genome Atlas, it became apparent that this family of chromatin modifiers harbors frequent genetic and expression alterations in multiple types of cancer. In this regard, past and ongoing preclinical studies have provided insight into the mechanisms of action of some of these enzymes, laying the ground for the ongoing development of PKMT inhibitors as novel anticancer therapeutics. The purpose of this review is to summarize existing data obtained by different research groups through immunohistochemical analysis of the protein expression levels of PKMTs, and their respective clinicopathologic associations. We focused on studies that used immunohistochemistry to associate protein expression levels of specific PKMTs, as well as several established histone methylation marks, with clinicopathologic features and survival outcomes in various cancer types. We also review ongoing clinical trials of PKMT inhibitors in cancer treatment. This review underscores the clinical relevance and potential of targeting the family of PKMT enzymes as the next generation of cancer therapy.
Collapse
Affiliation(s)
| | - Benjamin J Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Kyunghee Burkitt
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Yusuke Nakamura
- Cancer Precision Medicine Research Center, Japanese Foundation for Cancer Research, Koto, Japan
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
29
|
Liu YX, Li QZ, Cao YN, Zhang LQ. Identification of key genes and important histone modifications in hepatocellular carcinoma. Comput Struct Biotechnol J 2020; 18:2657-2669. [PMID: 33033585 PMCID: PMC7533298 DOI: 10.1016/j.csbj.2020.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 01/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death in the world. It has been reported that HCC is closely related to the changes of histone modifications. However, finding histone modification patterns in key genes which related to HCC is still an important task. In our study, the patterns of 11 kinds of histone modifications in the promoter regions for the different types of genes were analyzed by hierarchical screening for hepatocyte (normal) cell line and HepG2 (tumor) cell line. The important histone modifications and their key modification regions in different types of genes were found. The results indicate that these important genes may play a pivotal role in the occurrence of HCC. By analyzing the differences of histone modifications and gene expression levels for these important genes between the two cell lines, we found that the signals of H3K4me3, H3K27ac, H3K9ac, and H3K4me2 in HCC are significantly stronger. The changed regions of important histone modifications in 17 key genes were also identified. For example, the H3K4me3 signals increased 150 times in regions (−1500, −500) bp and (0, 1000) bp of ARHGAP5 in tumor cell line than in normal cell line. Finally, a prognostic risk scoring model was constructed, and the effects of key genes on the prognosis of HCC were verified by the survival analysis. Our results may provide a more precise potential therapeutic targets for identifying key genes and histone modifications in HCC as new biomarkers.
Collapse
Key Words
- Biomarkers
- DHLEG, Different highly and lowly expressed genes
- Gene expression
- H2AFZ, H2A histone family member Z
- H3K27ac, Histone H3 acetylated at lysine 27
- H3K27me3, Histone H3 trimethylated at lysine 27
- H3K36me3, Histone H3 trimethylated at lysine 36
- H3K4me1, Histone H3 monomethylated at lysine 4
- H3K4me2, Histone H3 dimethylated at lysine 4
- H3K4me3, Histone H3 trimethylated at lysine 4
- H3K79me2, Histone H3 dimethylated at lysine 79
- H3K9ac, Histone H3 acetylated at lysine 9
- H3K9me3, Histone H3 trimethylated at lysine 9
- H4K20me1, Histone H4 monomethylated at lysine 20
- HCC, Hepatocellular carcinoma
- Histone modification signals
- NH, The genes are highly expressed in normal cell line but not in tumor cell line
- NH-TL, The genes are highly expressed in normal cell line and lowly expressed in tumor cell line
- NL, The genes are lowly expressed in normal cell line but not in tumor cell line
- NL-TH, The genes are lowly expressed in normal cell line and highly expressed in tumor cell line
- ONCO, Oncogenes
- Oncogenes
- TH, The genes are highly expressed in tumor cell line but not in normal cell line
- TL, The genes are lowly expressed in tumor cell line but not in normal cell line
- TSG, Tumor suppressor genes
- Tumor suppressor genes
Collapse
Affiliation(s)
- Yu-Xian Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.,The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Yan-Ni Cao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
30
|
Chandra P, Dixit R, Pratap A, Mishra S, Mishra R, Shukla VK. Analysis of SET and MYND Domain-Containing Protein 3 (SMYD3) Expression in Gallbladder Cancer: a Pilot Study. Indian J Surg Oncol 2020; 12:111-117. [PMID: 33994736 DOI: 10.1007/s13193-020-01168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
The Suvar, Enhancer of zeste, and Trithorax (SET) and myeloid-Nervy-DEAF-1 (MYND) domain-containing protein 3 (SMYD3) is a histone lysine methyltransferase and has been recently unveiled to play significant roles in the progression of human cancer via regulating various key cancer-associated genes and pathways. The role of SMYD3 in gallbladder cancer (GBC) still needs to be studied. In the present study, we examined the SMYD3 gene expression at mRNA and protein level to look its impact on risk for developing gallbladder carcinogenesis. SMYD3 expression was evaluated by immunohistochemistry and reverse transcriptase PCR (RT-PCR) from 30 cases each of GBC and cholelithiasis patients. The expression was compared with different clinicopathological parameters. The SMYD3 expression was found to be significantly upregulated in GBC than cholelithiasis group (p < 0.05). The SMYD3 with increased expression level was observed in 73.3% of the GBC cases (p < 0.05). Moreover, mRNA SMYD3 expression was observed in 73.3% of GBC and 10% of control (p < 0.05). Our results indicated that the overexpression of SMYD3 plays an important role in the GBC progression, and SMYD3 may represent useful biomarker for gallbladder cancer patients.
Collapse
Affiliation(s)
- Pushkar Chandra
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| | - Ruhi Dixit
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| | - Arvind Pratap
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| | - Suman Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajnikant Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| |
Collapse
|
31
|
Liu A, Wu Q, Peng D, Ares I, Anadón A, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Martínez MA. A novel strategy for the diagnosis, prognosis, treatment, and chemoresistance of hepatocellular carcinoma: DNA methylation. Med Res Rev 2020; 40:1973-2018. [PMID: 32525219 DOI: 10.1002/med.21696] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/29/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022]
Abstract
The cancer mortality rate of hepatocellular carcinoma (HCC) is the second highest in the world and the therapeutic options are limited. The incidence of this deadly cancer is rising at an alarming rate because of the high degree of resistance to chemo- and radiotherapy, lack of proper, and adequate vaccination to hepatitis B, and lack of consciousness and knowledge about the disease itself and the lifestyle of the people. DNA methylation and DNA methylation-induced epigenetic alterations, due to their potential reversibility, open the access to develop novel biomarkers and therapeutics for HCC. The contribution to these epigenetic changes in HCC development still has not been thoroughly summarized. Thus, it is necessary to better understand the new molecular targets of HCC epigenetics in HCC diagnosis, prevention, and treatment. This review elaborates on recent key findings regarding molecular biomarkers for HCC early diagnosis, prognosis, and treatment. Currently emerging epigenetic drugs for the treatment of HCC are summarized. In addition, combining epigenetic drugs with nonepigenetic drugs for HCC treatment is also mentioned. The molecular mechanisms of DNA methylation-mediated HCC resistance are reviewed, providing some insights into the difficulty of treating liver cancer and anticancer drug development.
Collapse
Affiliation(s)
- Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China.,Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
32
|
Expression of H3K4me3 and H3K9ac in breast cancer. J Cancer Res Clin Oncol 2020; 146:2017-2027. [PMID: 32468423 PMCID: PMC7324433 DOI: 10.1007/s00432-020-03265-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Breast cancer is the leading cause of cancer death in females. Histone modifications have been shown to have an influence on the gene expression. This study focusses on the histone modifications H3K9ac and H3K4me3 in breast cancer and their impact on survival METHODS: H3K4me3 and H3K9ac expression was immunohistochemically examined in 235 tissue samples. RESULTS Positive estrogen receptor status was correlated with a higher IRS of the nuclear (p = 0.033), and of the cytoplasmic H3K4me3 staining (p = 0.009). H3K9ac intensity was associated to the Her2 status (p = 0.045) and to poor prognosis in cells with positive Ki67 status (p = 0.013). A high intensity of nuclear H3K4me3 staining was found to be correlated with a lower 10-year-survival (p = 0.026) and with lower breast cancer-specific survival (p = 0.004). High percentage score (> 190) of H3K9ac expression was correlated to worse breast cancer-specific survival (p = 0.005). Shorter progression-free survival was found in patients with nuclear (p = 0.013) and cytoplasmic H3K4me3expression (p = 0.024) and H3K9ac expression (p = 0.023). CONCLUSION This analysis provides new evidence of histone modifications in breast cancer. High H3K4me3 and H3K9ac expression was correlated with survival rates. Further investigation of histone modifications in breast cancer could lead to a more profound understanding of the molecular mechanisms of cancer development and could result in new therapeutic strategies.
Collapse
|
33
|
Gao W, Jia Z, Tian Y, Yang P, Sun H, Wang C, Ding Y, Zhang M, Zhang Y, Yang D, Tian Z, Zhou J, Ruan Z, Wu Y, Ni B. HBx Protein Contributes to Liver Carcinogenesis by H3K4me3 Modification Through Stabilizing WD Repeat Domain 5 Protein. Hepatology 2020; 71:1678-1695. [PMID: 31544250 DOI: 10.1002/hep.30947] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Cancer is typically considered as a genetic and epigenetic disease. Although numerous studies have indicated that an aberrant structure, function, or expression level of epigenetic enzymes contribute to many tumor types, precisely how the epigenetic mechanisms are involved in the hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC) remains unknown. APPROACH AND RESULTS In this study, we found that the WD repeat domain 5 protein (WDR5)-a core subunit of histone H3 lysine 4 methyltransferase complexes, which catalyze the generation of histone H3 lysine 4 trimethylation (H3K4me3) modification-is highly expressed in HBV-related HCC and promotes HCC development. WDR5 plays a critical role in HBV-driven cell proliferation and tumor growth in mice, and the WDR5-0103 small-molecule inhibitor of WDR5 activity compromises HBV- and hepatitis B x protein (HBx)-driven tumor proliferation. The aberrantly high WDR5 protein level was found to involve HBx through its stabilization of the WDR5 protein by inhibiting the interaction between the damage-specific DNA-binding protein 1/cullin-4 and WDR5, causing decreased ubiquitination of the WDR5 protein. HBx was found to colocalize with WDR5 on chromatin genome wide and promotes genome-wide H3K4me3 modification by means of WDR5. Furthermore, the recruitment of HBx to promoters of target genes relied on its interaction with WDR5 through its α-helix domain. WDR5 was also found to promote HBV transcription through H3K4 modification of covalently closed circular DNA minichromosome, and WDR5-0103 was able to inhibit HBV transcription. Finally, the in vitro and in vivo data further proved that HBx exerted its tumor-promoting function in a WDR5-dependent manner. CONCLUSIONS Our data reveals that WDR5 is a key epigenetic determinant of HBV-induced tumorigenesis and that the HBx-WDR5-H3K4me3 axis may be a potential therapeutic target in HBV-induced liver pathogenesis.
Collapse
Affiliation(s)
- Weiwu Gao
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Zhengcai Jia
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yi Tian
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | | | - Hui Sun
- Department of Rheumatology and Immunology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chenhui Wang
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Yi Ding
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
- Allen Institute for Brain Science, Seattle, WA
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
| | - Yi Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
| | - Di Yang
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Zhiqiang Tian
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Jian Zhou
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Zhihua Ruan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| |
Collapse
|
34
|
H3K4me3 Is a Potential Mediator for Antiproliferative Effects of Calcitriol (1α,25(OH)2D3) in Ovarian Cancer Biology. Int J Mol Sci 2020; 21:ijms21062151. [PMID: 32245092 PMCID: PMC7139961 DOI: 10.3390/ijms21062151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Posttranslational histone modification plays an important role in tumorigenesis. Histone modification is a dynamic response of chromatin to various signals, such as the exposure to calcitriol (1α,25(OH)2D3). Recent studies suggested that histone modification levels could be used to predict patient outcomes in various cancers. Our study evaluated the expression level of histone 3 lysine 4 trimethylation (H3K4me3) in a cohort of 156 epithelial ovarian cancer (EOC) cases by immunohistochemical staining and analyzed its correlation to patient prognosis. The influence of 1α,25(OH)2D3 on the proliferation of ovarian cancer cells was measured by BrdU proliferation assay in vitro. We could show that higher levels of H3K4me3 were correlated with improved overall survival (median overall survival (OS) not reached vs. 37.0 months, p = 0.047) and identified H3K4me3 as a potential prognostic factor for the present cohort. Ovarian cancer cell 1α,25(OH)2D3 treatment induced H3K4me3 protein expression and exhibited antiproliferative effects. By this, the study suggests a possible impact of H3K4me3 expression on EOC progression as well as its relation to calcitriol (1α,25(OH)2D3) treatment. These results may serve as an explanation on how 1α,25(OH)2D3 mediates its known antiproliferative effects. In addition, they further underline the potential benefit of 1α,25(OH)2D3 supplementation in context of ovarian cancer care.
Collapse
|
35
|
Histone methyltransferases regulate the transcriptional expression of ERα and the proliferation of tamoxifen-resistant breast cancer cells. Breast Cancer Res Treat 2020; 180:45-54. [PMID: 31897900 PMCID: PMC7031178 DOI: 10.1007/s10549-019-05517-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/26/2019] [Indexed: 12/31/2022]
Abstract
Purpose Although tamoxifen remains the frontline treatment for ERα-positive breast cancers, resistance to this drug limits its clinical efficacy. Most tamoxifen-resistant patients retain ERα expression which may support growth and progression of breast cancers. Therefore, we investigated epigenetic regulation of ERα that may provide a rationale for targeting ERα in these patients. Methods Expression levels of the mixed-lineage leukemia (MLL) family of proteins in tamoxifen-resistant breast cancer cells and publicly available breast cancer patient data sets were analyzed. Histone methylation levels in ERα promoter regions were assessed using chromatin immunoprecipitation. Expression levels of ERα and its target gene were analyzed using western blotting and real-time qPCR. Cell-cycle was analyzed by flow cytometry. Results The expression of MLL3 and SET-domain-containing 1A (SET1A) were increased in tamoxifen-resistant breast cancers. An MLL3 chromatin immunoprecipitation-sequencing data analysis and chromatin immunoprecipitation experiments for MLL3 and SET1A suggested that these proteins bound to enhancer or intron regions of the ESR1 gene and regulated histone H3K4 methylation status. Depletion of MLL3 or SET1A downregulated the expression level of ERα and inhibited the growth of tamoxifen-resistant breast cancer cells. Additional treatment with fulvestrant resulted in a synergistic reduction of ERα levels and the growth of the cells. Conclusions The enhanced expression of MLL3 and SET1A in tamoxifen-resistant breast cancer cells supported the ERα-dependent growth of these cells by increasing ERα expression. Our results suggest that targeting these histone methyltransferases might provide an attractive strategy to overcome endocrine resistance. Electronic supplementary material The online version of this article (10.1007/s10549-019-05517-0) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Epigenetic regulation of histone H3 in the process of hepatocellular tumorigenesis. Biosci Rep 2019; 39:BSR20191815. [PMID: 31320544 PMCID: PMC6680372 DOI: 10.1042/bsr20191815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Better understanding of epigenetic regulation of hepatocellular carcinoma (HCC) will help us to cure this most common malignant liver cancer worldwide. The underlying mechanisms of HCC tumorigenesis are genomic aberrations regulated by genetic and epigenetic modifications. Histone H3 lysine modifications regulate histone structure and modulate transcriptional factor binding with target gene promoters. Targetting genes include VASH2, fatty acids synthase, RIZ1, FBP1, MPP1/3, YAP, which affect tumorigenesis, metabolisms, angiogenesis, and metastasis. Signal pathway studies demonstrate that the HGF-MET-MLL axis, phosphatase and tensin homolog (PTEN)-PI3K-Akt axis; WNT-β-catenin signal pathway is involved in histone H3 modification. A variety of factors such as virus infection, reactive oxygen species, food-borne toxins, irradiation, or non-coding RNA cause hepatocellular DNA damage or modification. Dysfunctional DNA repair mechanisms, including those at the epigenetic level are also major causes of HCC tumorigenesis. The development of therapies based on epigenetic regulatory mechanisms has great potential to advance the care of HCC patients in the future.
Collapse
|
37
|
Zhou M, Li Y, Lin S, Chen Y, Qian Y, Zhao Z, Fan H. H3K9me3, H3K36me3, and H4K20me3 Expression Correlates with Patient Outcome in Esophageal Squamous Cell Carcinoma as Epigenetic Markers. Dig Dis Sci 2019; 64:2147-2157. [PMID: 30788686 DOI: 10.1007/s10620-019-05529-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/11/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Histone methylation, as an essential pattern of posttranslational modifications, contributes to multiple cancer-related biological processes. Dysregulation of histone methylation is now considered a biomarker for cancer prognosis. AIMS This study investigated and evaluated the potential role of four histone lysine trimethylation markers as biomarkers for esophageal squamous cell carcinoma (ESCC) prognosis. METHODS Tissue arrays were made from 135 paraffin-embedded ESCC samples and examined for histone markers by immunohistochemistry, and 10 pairs of cancer and noncancerous mucosa tissues from ESCC patients were investigated with Western blot. Chi-squared test, Kaplan-Meier analysis with log-rank test, and Cox proportional hazard trend analyses were performed to assess the prognostic values of the markers. RESULTS Histone 3 lysine 4 trimethylation (H3K4me3), histone 3 lysine 9 trimethylation (H3K9me3), and histone 4 lysine 20 trimethylation (H4K20me3), but not histone 3 lysine 36 trimethylation (H3K36me3), showed stronger immunostaining signals in tumor tissues than in the corresponding adjacent non-neoplastic mucosa tissues. The expression patterns of H3K36me3, H3K9me3, and H4K20me3 correlated with tumor infiltrating depth, lymph node involvement, and pTNM stage. Low-scoring H3K9me3 and H4K20me3 predicted better prognosis, while H3K36me3 manifested the opposite trend. Poor prognosis occurred in ESCC patients with expression patterns of high levels of H3K9me3, high levels of H4K20me3, and low levels of H3K36me3 expression. CONCLUSIONS H3K9me3, H4K20me3, and H3K36me3 showed a close relationship with clinical features and were considered independent risk factors for survival of ESCC patients. The combination of H3K9me3, H4K20me3, and H3K36me3 expression, rather than the expression of a single histone marker, is believed to further enhance evaluations of ESCC prognosis and management.
Collapse
Affiliation(s)
- Menghan Zhou
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China.,Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210018, China
| | - Yiping Li
- Department of Pathology, Medical School, Southeast University, Nanjing, 210009, China
| | - Shaofeng Lin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, China.,Department of Oncology, Fujian Provincial Cancer Hospital, Fuzhou, 350000, China
| | - Yanping Chen
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Yanyan Qian
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Zhujiang Zhao
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
38
|
Lin F, Wu D, Fang D, Chen Y, Zhou H, Ou C. STAT3-induced SMYD3 transcription enhances chronic lymphocytic leukemia cell growth in vitro and in vivo. Inflamm Res 2019; 68:739-749. [PMID: 31218443 DOI: 10.1007/s00011-019-01257-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 04/01/2019] [Accepted: 05/30/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE AND DESIGN The purpose of this study was to investigate the roles of SMYD3 and STAT3 in chronic lymphocytic leukemia (CLL) and the possible underlying mechanisms. MATERIALS Blood samples were collected from 20 patients with CLL and 20 hematologically normal donors. Human cell lines K562, HL-60, MEG-1, and BALL-1 were performed in vitro and BALB/c nude mouse was used in subcutaneous tumor experiments. TREATMENT WP1066 (30 mg/kg) was also injected intratumorally two days after the first lentivirus treatment and then every four days for a total of four injections and 3 µM WP1066 was carried out for 48 h to downregulate STAT3 phosphorylation. METHODS We performed studies using the human CLL cell line MEG-1 in vitro and nude mouse subcutaneous tumor experiments in vivo. Differential expression of RNAs was determined using qRT-PCR. The CCK-8 assay and colony formation assay were conducted to evaluate cell proliferation. Flow cytometry was performed to assess cell apoptosis. The relative protein levels were detected using western blotting. Chromatin immunoprecipitation (ChIP) assays, luciferase reporter assays and WP1066, a STAT3 inhibitor, were used to explore the regulatory mechanisms of proteases and transcription factors. A subcutaneous tumor model was constructed to verify the results in vivo. RESULTS SMYD3 and STAT3 expressions positively correlated with the progression of CLL. Upregulation of SMYD3 significantly promoted the proliferation and inhibited the expression of apoptosis-related genes. The results of the ChIP assays and luciferase reporter assays suggested that STAT3 targeted the promoter region of SMYD3 and, thus, promoted SMYD3 transcription. Downregulation of the phosphorylation of STAT3 by WP1066 notably inhibited the binding of STAT3 to the SMYD3 promoter, and subsequently downregulated SMYD3 transcription. The STAT3 inhibitor inhibited CLL cell growth in vivo, and overexpression of SMYD3 promoted CLL cell growth. Furthermore, overexpression of SMYD3 reversed the inhibitory effects of the STAT3 inhibitor on CLL cell growth. CONCLUSIONS The STAT3-mediated transcription of SMYD3 plays a role in promoting the progression of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Fujia Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong, China
| | - Danjuan Wu
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dan Fang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yao Chen
- Department of Hematology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Haitao Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong, China
| | - Caiwen Ou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No 111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
39
|
Chen Z, Yu W, Zhou Q, Zhang J, Jiang H, Hao D, Wang J, Zhou Z, He C, Xiao Z. A Novel lncRNA IHS Promotes Tumor Proliferation and Metastasis in HCC by Regulating the ERK- and AKT/GSK-3β-Signaling Pathways. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:707-720. [PMID: 31128422 PMCID: PMC6535504 DOI: 10.1016/j.omtn.2019.04.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are involved in a variety of biological processes such as tumor proliferation and metastasis. A close relationship between hepatitis B virus X protein (HBx) and SMYD3 in promoting the proliferation and metastasis of hepatocellular carcinoma (HCC) was recently reported. However, the exact oncogenic mechanism of HBx-SMYD3 remains unknown. In this study, by performing lncRNA microarray analysis, we identified a novel lncRNA that was regulated by both HBx and SMYD3, and we named it lncIHS (lncRNA intersection between HBx microarray and SMYD3 microarray). lncIHS was overexpressed in HCC and decreased the survival rate of HCC patients. Knockdown of lncIHS inhibited HCC cell migration, invasion, and proliferation, and vice versa. Further study showed that lncIHS positively regulated the expression of epithelial mesenchymal transition (EMT)-related markers c-Myc and Cyclin D1, as well as the activation of the ERK- and AKT-signaling pathways. lncIHS exerted its oncogenic effect through ERK and AKT signaling. Moreover, results from transcriptome-sequencing analysis and mass spectrometry showed that lncIHS regulated multiple genes that were the upstream molecules of the ERK- and AKT-signaling pathways. Therefore, our findings suggest a regulatory network of ERK and AKT signaling through lncIHS, which is downstream of HBx-SMYD3, and they indicate that lncIHS may be a potential target for treating HCC.
Collapse
Affiliation(s)
- Zheng Chen
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wei Yu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiming Zhou
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jianlong Zhang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hai Jiang
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Jie Wang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhenyu Zhou
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Chuanchao He
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Zhiyu Xiao
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
40
|
Kumar A, Kumari N, Nallabelli N, Prasad R. Pathogenic and Therapeutic Role of H3K4 Family of Methylases and Demethylases in Cancers. Indian J Clin Biochem 2019; 34:123-132. [PMID: 31092985 DOI: 10.1007/s12291-019-00828-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Histone modifications occupy an essential position in the epigenetic landscape of the cell, and their alterations have been linked to cancers. Histone 3 lysine 4 (H3K4) methylation has emerged as a critical epigenetic cue for the regulation of gene transcription through dynamic modulation by several H3K4 methyltransferases (writers) and demethylases (erasers). Any disturbance in the delicate balance of writers and erasers can result in the mis-regulation of H3K4 methylation, which has been demonstrated in several human cancers. Therefore, H3K4 methylation has been recognized as a putative therapeutic or prognostic tool and drug trials of different inhibitors of this process have demonstrated promising results. Henceforth, more detailed knowledge of H3K4 methylation is utmost important for elucidating the complex cellular processes, which might help in improving the disease outcome. The primary focus of this review will be directed on deciphering the role of H3K4 methylation along with its writers/erasers in different cancers.
Collapse
Affiliation(s)
- Aman Kumar
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Niti Kumari
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Nayudu Nallabelli
- 2Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Rajendra Prasad
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| |
Collapse
|
41
|
Amplification of SMYD3 promotes tumorigenicity and intrahepatic metastasis of hepatocellular carcinoma via upregulation of CDK2 and MMP2. Oncogene 2019; 38:4948-4961. [PMID: 30842588 DOI: 10.1038/s41388-019-0766-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/04/2019] [Accepted: 01/23/2019] [Indexed: 12/13/2022]
Abstract
SMYD3, a member that belongs to the SET and MYND-domain (SMYD) family, has also been proven to largely participate in gene transcription regulation and progression of several human cancers as a histone lysine methyltransferase. However, the role and significance of SMYD3 in both the clinic and progression of hepatocellular carcinoma (HCC) remain unclear. Herein, we find that SMYD3 is increased in cirrhotic livers, and strikingly upregulated in hepatocellular carcinoma (HCC) tissues and cell lines. Subsequent analyses suggest that high expression level of SMYD3 significantly correlates with the malignant characteristics of HCC, and predicts poor prognosis in patients. Our results show that overexpression of SMYD3 increases, while silencing of SMYD3 inhibits, cell proliferation, invasiveness and tumorigenicity both in vitro and in vivo. SMYD3 also promotes intrahepatic metastasis of HCC cells. For the mechanisms, we identify that SMYD3 bound to CDK2 and MMP2 promoter and increased H3K4me3 modification at the corresponding promoters to promote gene transcription. Importantly, pharmacological targeting of SMYD3 with BCI-121 inhibitor effectively repressed the tumorigenicity of HCC cells. Finally, our results show that gene locus amplification is a cause for SMYD3 overexpression in HCC. These findings not only uncover that SMYD3 overexpression promotes the tumorigenicity and intrahepatic metastasis of HCC cell via upregulation of CDK2 and MMP2, but also suggest SMYD3 could be a practical prognosis marker or therapeutic target against the disease.
Collapse
|
42
|
Diagnostic utility of epigenetics in breast cancer - A review. Cancer Treat Res Commun 2019; 19:100125. [PMID: 30802811 DOI: 10.1016/j.ctarc.2019.100125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 12/18/2022]
Abstract
Epigenetic alterations are clearly involved in cancer initiation and progression as recent epigenetic studies of genomic DNA, histone modifications and micro-RNA alterations suggest that these are playing an important role in the incidence of breast cancer. Epigenetic information has recently gained the attention of researchers because epigenetic modification of the genome in breast cancer is still an evolving area for researchers. Several active compounds present in foods, poisons, drugs, and industrial chemicals may as a result of epigenetic mechanisms increase or decrease the risk of breast cancer. Epigenetic regulation is critical in normal growth and development and closely conditions the transcriptional potential of genes. Epigenetic mechanisms convey genomic adaption to an environment thereby ultimately contributing towards given phenotype. In addition to the use of epigenetic alterations as a means of screening, epigenetic alterations in a tumor or adjacent tissues or peripheral blood may also help clinicians in determining prognosis and treatment of breast cancer. As we understand specific epigenetic alterations contributing to breast tumorigenesis and prognosis, these discoveries will lead to significant advances for breast cancer treatment, like in therapeutics that target methylation and histone modifications in breast cancer and the newer versions of the drugs are likely to play an important role in future clinical treatment.
Collapse
|
43
|
Zeng FM, He JZ, Wang SH, Liu DK, Xu XE, Wu JY, Li EM, Xu LY. A Novel Three-Gene Model Predicts Prognosis and Therapeutic Sensitivity in Esophageal Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9828637. [PMID: 31886273 PMCID: PMC6899311 DOI: 10.1155/2019/9828637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/07/2019] [Indexed: 02/05/2023]
Abstract
To precisely predict the clinical outcome and determine the optimal treatment options for patients with esophageal squamous cell carcinoma (ESCC) remains challenging. Prognostic models based on multiple molecular markers of tumors have been shown to have superiority over the use of single biomarkers. Our previous studies have identified the crucial role of ezrin in ESCC progression, which prompted us to hypothesize that ezrin-associated proteins contribute to the pathobiology of ESCC. Herein, we explored the clinical value of a molecular model constructed based on ezrin-associated proteins in ESCC patients. We revealed that the ezrin-associated proteins (MYC, PDIA3, and ITGA5B1) correlated with the overall survival (OS) and disease-free survival (DFS) of patients with ESCC. High expression of MYC was associated with advanced pTNM-stage (P=0.011), and PDIA3 and ITGA5B1 were correlated with both lymph node metastasis (PDIA3: P < 0.001; ITGA5B1: P=0.001) and pTNM-stage (PDIA3: P=0.001; ITGA5B1: P=0.009). Furthermore, we found that, compared with the current TNM staging system, the molecular model elicited from the expression of MYC, PDIA3, and ITGA5B1 shows higher accuracy in predicting OS (P < 0.001) or DFS (P < 0.001) in ESCC patients. Moreover, ROC and regression analysis demonstrated that this model was an independent predictor for OS and DFS, which could also help determine a subgroup of ESCC patients that may benefit from chemoradiotherapy. In conclusion, our study has identified a novel molecular prognosis model, which may serve as a complement for current clinical risk stratification approaches and provide potential therapeutic targets for ESCC treatment.
Collapse
Affiliation(s)
- Fa-Min Zeng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jian-Zhong He
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shao-Hong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong, China
| | - De-kai Liu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Medical Records Management, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xiu-E. Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jian-Yi Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
44
|
Dhanasekaran R, Nault JC, Roberts LR, Zucman-Rossi J. Genomic Medicine and Implications for Hepatocellular Carcinoma Prevention and Therapy. Gastroenterology 2019; 156:492-509. [PMID: 30404026 PMCID: PMC6340723 DOI: 10.1053/j.gastro.2018.11.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is poorly understood, but recent advances in genomics have increased our understanding of the mechanisms by which hepatitis B virus, hepatitis C virus, alcohol, fatty liver disease, and other environmental factors, such as aflatoxin, cause liver cancer. Genetic analyses of liver tissues from patients have provided important information about tumor initiation and progression. Findings from these studies can potentially be used to individualize the management of HCC. In addition to sorafenib, other multi-kinase inhibitors have been approved recently for treatment of HCC, and the preliminary success of immunotherapy has raised hopes. Continued progress in genomic medicine could improve classification of HCCs based on their molecular features and lead to new treatments for patients with liver cancer.
Collapse
Affiliation(s)
| | - Jean-Charles Nault
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte De Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Liver Unit, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bondy, France; Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jessica Zucman-Rossi
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte De Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Hôpital Europeen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
45
|
Liu H, Li Y, Li J, Liu Y, Cui B. H3K4me3 and Wdr82 are associated with tumor progression and a favorable prognosis in human colorectal cancer. Oncol Lett 2018; 16:2125-2134. [PMID: 30008910 PMCID: PMC6036332 DOI: 10.3892/ol.2018.8902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/15/2018] [Indexed: 12/25/2022] Open
Abstract
Histone methylation is closely associated with the occurrence of cancer. Histone H3 trimethylation at lysine 4 (H3K4me3) has been reported to modulate the expression of tumor-associated expression and be altered during the progression of several human cancers. WD Repeat Domain 82 (Wdr82), a key epigenetics-associated factor, is a component of the H3K4me3 methyltransferase complex. An aim of the present study was to determine H3K4me3 and Wdr82 expression and their clinical significances in colorectal cancer (CRC). Immunohistochemistry results demonstrated that the expression level of the H3K4me3 and Wdr82 were significantly decreased in CRC tissues compared with paired noncancerous tissues from 123 patients with CRC. Furthermore, the negative expression of H3K4me3 and Wdr82 expression were significantly associated with lymph node (n=33, P=0.0001) and liver metastasis (n=30, P=0.0001). Additionally, multivariate Cox regression analysis indicated that the low expression level of H3K4me3 or Wdr82 was associated with reduced overall survival (OS, P<0.05), and patients with a low H3K4me3 and Wdr82 expression had a significantly poorer outcome compared with patients with a high expression of H3K4me3 and Wdr82 (P=0.0001), suggesting that H3K4me3 and Wdr82 expression were independent factors for OS in patients with CRC. In conclusion, the decreased expressions of H3K4me3 and Wdr82 were associated with a poor prognosis in CRC. The combined expression of H3K4me3 and Wdr82 may serve as a novel prognostic marker for CRC.
Collapse
Affiliation(s)
- He Liu
- Department of Colorectal Surgery, Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yongmin Li
- Department of Colorectal Surgery, Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Jingwen Li
- Department of Colorectal Surgery, Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Binbin Cui
- Department of Colorectal Surgery, Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
46
|
Li S, Shen L, Chen KN. Association between H3K4 methylation and cancer prognosis: A meta-analysis. Thorac Cancer 2018; 9:794-799. [PMID: 29737623 PMCID: PMC6026618 DOI: 10.1111/1759-7714.12647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Background Histone H3 lysine 4 methylation (H3K4 methylation), including mono‐methylation (H3K4me1), di‐methylation (H3K4me2), or tri‐methylation (H3K4me3), is one of the epigenetic modifications to histone proteins, which are related to the transcriptional activation of genes. H3K4 methylation has both tumor inhibiting and promoting effects, and the prognostic value of H3K4 methylation in cancer remains controversial. Therefore, we performed a systematic review and meta‐analysis to examine the association between H3K4 methylation and cancer prognosis. Methods A comprehensive search of PubMed, Web of Science, ScienceDirect, Embase, and Ovid databases was conducted to identify studies investigating the association between H3K4 methylation and prognosis of patients with malignant tumors. The data and characteristics of each study were extracted, and the hazard ratio (HR) at a 95% confidence interval (CI) was calculated to estimate the effect. Results A total of 1474 patients in 10 studies were enrolled in this meta‐analysis. The pooled HR of 1.52 (95% CI 1.02–2.26) indicated that patients with a lower level of H3K4me2 expression were expected to have shorter overall survival, while the pooled HR of 0.45 (95% CI 0.27–0.74) indicated that patients with a lower level of H3K4me3 expression were expected to have longer overall survival. Conclusion This meta‐analysis indicates that increased H3K4me3 expression and decreased H3K4me2 expression might be predictive factors of poor prognosis in cancer. Further large cohort studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Simin Li
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Luyan Shen
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ke-Neng Chen
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
47
|
Cui Z, Li H, Liang F, Mu C, Mu Y, Zhang X, Liu J. Effect of high WDR5 expression on the hepatocellular carcinoma prognosis. Oncol Lett 2018; 15:7864-7870. [PMID: 29731905 PMCID: PMC5921231 DOI: 10.3892/ol.2018.8298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 02/22/2018] [Indexed: 01/22/2023] Open
Abstract
WD repeat domain 5 (WDR5) serves an important role in various biological functions through the epigenetic regulation of gene transcription. Aberrant expression of WDR5 has been observed in various types of human cancer, including prostate cancer, breast cancer and leukemia. However, the role of WDR5 expression and its clinical implications in hepatocellular carcinoma (HCC) remain largely unknown. The present study investigated the WDR5 expression pattern in HCC. It was demonstrated that the mRNA and protein levels of WDR5 were upregulated in HCC cancer tissues compared with normal adjacent tissues using reverse transcription-quantitative polymerase chain reaction and western blotting. Furthermore, the elevated WDR5 protein level was significantly associated with the histological grade (P=0.038), tumor size (P=0.023), tumor-node-metastasis stage (P=0.035) and reduced long-term survival time. Additionally, it was demonstrated through the shRNA-mediated knockdown of WDR5 in HCC cells in vitro that WDR5 expression promotes cell proliferation using an MTT assay. Taken together, the results suggested that WDR5 overexpression may have an oncogenic effect in HCC, and may be a promising biomarker for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Zhoujun Cui
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Hongbo Li
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Feng Liang
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Cuiling Mu
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Yuhua Mu
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Xuegong Zhang
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Jundong Liu
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
48
|
Lohitesh K, Chowdhury R, Mukherjee S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int 2018; 18:44. [PMID: 29568237 PMCID: PMC5859782 DOI: 10.1186/s12935-018-0538-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/12/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality, accounting for almost 90% of total liver cancer burden. Surgical resection followed by adjuvant and systemic chemotherapy are the most meticulously followed treatment procedures but the complex etiology and high metastatic potential of the disease renders surgical treatment futile in majority of the cases. Another hindrance to the scenario is the acquired resistance to drugs resulting in relapse of the disease. Hence, to provide insights into development of novel therapeutic targets and diagnostic biomarkers, this review focuses on the various molecular mechanisms underlying chemoresistance in HCC. We have provided a comprehensive summary of the various strategies adopted by HCC cells, extending from apoptosis evasion, autophagy activation, drug expulsion to epigenetic transformation as modes of therapy resistance. The role of stem cells in imparting chemoresistance is also discussed. Furthermore, the review also focuses on how this knowledge might be exploited for the development of an effective, prospective therapy against HCC.
Collapse
Affiliation(s)
- K Lohitesh
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| | - Rajdeep Chowdhury
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| | - Sudeshna Mukherjee
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| |
Collapse
|
49
|
Methylation of S100A8 is a promising diagnosis and prognostic marker in hepatocellular carcinoma. Oncotarget 2018; 7:56798-56810. [PMID: 27462864 PMCID: PMC5302953 DOI: 10.18632/oncotarget.10792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
The abnormality of DNA methylation is one of the major epigenetic alterations in the human hepatocellular carcinoma (HCC). We have assessed the global genomic DNA methylation profiles in human HCC patients by using the Infinium Human Methylation27 BeadChip. A CpG loci of S100A8 was found to be significantly hypomethylated in HCC. Pooled meta-analysis of five validation public datasets demonstrated its methylation level was significantly lower for HCC compared to paired adjacent normal tissues. Quantitative pyrosequencing analysis also showed that the S100A8 methylation level was decreased in cancer tissues (31.90%±13.31%) than that in the paired adjacent normal tissues (65.33%±3.64%, p<0.01). The area under the ROC curve (AUC) value was 0.950 (p<0.01). Kaplan-Meier survival curves revealed that hypomethylation of S100A8 was associated with shortened overall survival (OS) and progression-free survival (PFS) (log rank p<0.05). Multivariate Cox proportional hazards model also indicated significantly shorter OS (HR, 1.709; 95 % CI, 1.127–2.591) and PFS (HR, 1.767; 95 % CI, 1.168–2.974) were observed in the low-methylation-level group compared to the high-methylation-level group. Furthermore, S100A8 overexpression in Huh7 and MHCC-97H hepatoma cell lines led to increased cell proliferation, migration, invasion, and tumor growth. These findings suggested S100A8 methylation to be served as potential diagnosis and prognosis marker for HCC. S100A8 also may play as a tumor promoter in HCC.
Collapse
|
50
|
Hosseini A, Minucci S. Alterations of Histone Modifications in Cancer. EPIGENETICS IN HUMAN DISEASE 2018:141-217. [DOI: 10.1016/b978-0-12-812215-0.00006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|