1
|
Zhu L, Li XJ, Gangadaran P, Jing X, Ahn BC. Tumor-associated macrophages as a potential therapeutic target in thyroid cancers. Cancer Immunol Immunother 2023; 72:3895-3917. [PMID: 37796300 PMCID: PMC10992981 DOI: 10.1007/s00262-023-03549-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Macrophages are important precursor cell types of the innate immune system and bridge adaptive immune responses through the antigen presentation system. Meanwhile, macrophages constitute substantial portion of the stromal cells in the tumor microenvironment (TME) (referred to as tumor-associated macrophages, or TAMs) and exhibit conflicting roles in the development, invasion, and metastasis of thyroid cancer (TC). Moreover, TAMs play a crucial role to the behavior of TC due to their high degree of infiltration and prognostic relevance. Generally, TAMs can be divided into two subgroups; M1-like TAMs are capable of directly kill tumor cells, and recruiting and activating other immune cells in the early stages of cancer. However, due to changes in the TME, M2-like TAMs gradually increase and promote tumor progression. This review aims to discuss the impact of TAMs on TC, including their role in tumor promotion, gene mutation, and other factors related to the polarization of TAMs. Finally, we will explore the M2-like TAM-centered therapeutic strategies, including chemotherapy, clinical trials, and combinatorial immunotherapy.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiu Juan Li
- Department of Radiology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shan-Dong Province, People's Republic of China
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiuli Jing
- Center for Life Sciences Research, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shan-Dong Province, 271000, People's Republic of China.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| |
Collapse
|
2
|
Xie W, Zeng Y, Hu L, Hao J, Chen Y, Yun X, Lin Q, Li H. Based on different immune responses under the glucose metabolizing type of papillary thyroid cancer and the response to anti-PD-1 therapy. Front Immunol 2022; 13:991656. [PMID: 36211409 PMCID: PMC9536150 DOI: 10.3389/fimmu.2022.991656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/19/2022] [Indexed: 12/28/2022] Open
Abstract
Glucose metabolism-related genes play an important role in the development and immunotherapy of many tumours, but their role in thyroid cancer is ambiguous. To investigate the role of glucose metabolism-related genes in the development of papillary thyroid cancer (PTC) and their correlation with the clinical outcome of PTC, we collected transcriptomic data from 501 PTC patients in the Cancer Genome Atlas (TCGA). We performed nonnegative matrix decomposition clustering of 2752 glucose metabolism-related genes from transcriptome data and classified PTC patients into three subgroups (C1 for high activation of glucose metabolism, C2 for low activation of glucose metabolism and C3 for moderate activation of glucose metabolism) based on the activation of different glucose metabolism-related genes in 10 glucose metabolism-related pathways. We found a positive correlation between the activation level of glucose metabolism and the tumour mutation burden (TMB), neoantigen number, mRNA stemness index (mRNAsi), age, and tumour stage in PTC patients. Next, we constructed a prognostic prediction model for PTC using six glucose metabolism-related genes (PGBD5, TPO, IGFBPL1, TMEM171, SOD3, TDRD9) and constructed a nomogram based on the risk score and clinical parameters of PTC patients. Both the prognostic risk prediction model and nomogram had high stability and accuracy for predicting the progression-free interval (PFI) in PTC patients. Patients were then divided into high-risk and low-risk groups by risk score. The high-risk group was sensitive to paclitaxel and anti-PD-1 treatment, and the low-risk group was sensitive to sorafenib treatment. We found that the high-risk group was enriched in inflammatory response pathways and associated with high level of immune cell infiltration. To verify the accuracy of the prognostic prediction model, we knocked down PGBD5 in PTC cells and found that the proliferation ability of PTC cells was significantly reduced. This suggests that PGBD5 may be a relatively important oncogene in PTC. Our study constructed a prognostic prediction model and classification of PTC by glucose metabolism-related genes, which provides a new perspective on the role of glucose metabolism in the development and immune microenvironment of PTC and in guiding chemotherapy, targeted therapy and immune checkpoint blockade therapy of PTC.
Collapse
Affiliation(s)
- Wenjun Xie
- Department of General Surgery, Shengli Clinical Medical College, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yu Zeng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Linfei Hu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jiaru Hao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yuzheng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xinwei Yun
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Xinwei Yun, ; Qiang Lin, ; Huashui Li,
| | - Qiang Lin
- Department of General Surgery, Shengli Clinical Medical College, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- *Correspondence: Xinwei Yun, ; Qiang Lin, ; Huashui Li,
| | - Huashui Li
- Department of General Surgery, Shengli Clinical Medical College, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- *Correspondence: Xinwei Yun, ; Qiang Lin, ; Huashui Li,
| |
Collapse
|
3
|
Lopes NMD, Lens HHM, da Silva Brito WA, Bianchi JK, Marinello PC, Cecchini R, Armani A, Cecchini AL. Role of papillary thyroid carcinoma patients with Hashimoto thyroiditis: evaluation of oxidative stress and inflammatory markers. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2366-2378. [PMID: 35902455 DOI: 10.1007/s12094-022-02891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Papillary thyroid carcinoma (PTC) is the most frequent subtype of thyroid cancer; Hashimoto's thyroiditis (HT), autoimmune disease, commonly affects the thyroid gland; there is possibly a correlation between both, but the exact mechanisms that involve this relationship are still under debate. Since oxidative stress (OS) and the inflammatory environment participate in the development of several types of cancer, the objective of the present study was to establish the microenvironment and systemic participation of OS and inflammatory markers in patients with PTC and HT. METHODS Blood and tissue samples were collected from 115 patients: BENIGN (n = 63); PTC (n = 27); HT (n = 15) and PTC + HT (n = 10), and sixty-three were samples from healthy individuals (control group). RESULTS Superoxide dismutase, Catalase, reduced Glutathione, markers of lipid peroxidation and inflammation were evaluated in blood. Immunohistochemistry was performed on 3-nitrotyrosine, 4-hydroxynonenal, Ki-67 and VEGF. The results indicate that antioxidant enzymes were more active in groups with thyroid disorders compared to control, while the concentration of Reduced glutathione was reduced in BENIGN and PTC groups. When PTC and PTC + HT groups were analyzed, no significant differences were found in relation to the antioxidant defense and inflammatory markers. The ability to contain the induced lipid peroxidation was lower and a high level of malondialdehyde was observed in the PTC group. All immunohistochemical markers had higher scores in the PTC group compared to PTC + HT. CONCLUSION There was a more pronounced presence of OS and a greater activity of cell proliferation and angiogenesis markers in PTC than in PTC + HT group.
Collapse
Affiliation(s)
- Natália Medeiros Dias Lopes
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil
| | - Hannah Hamada Mendonça Lens
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil
| | - Walison Augusto da Silva Brito
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil.,Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis "Plasma Redox Effects", Greifswald, Germany
| | - Julya Karen Bianchi
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil
| | - Poliana Camila Marinello
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rubens Cecchini
- Laboratory of Physiopathology and Free Radicals, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - André Armani
- Department of Surgery, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Alessandra Lourenço Cecchini
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil.
| |
Collapse
|
4
|
Lam AK, Lee KTW. Application of Immunohistochemistry in Papillary Thyroid Carcinoma. Methods Mol Biol 2022; 2534:175-195. [PMID: 35670976 DOI: 10.1007/978-1-0716-2505-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Immunohistochemistry (IHC) is an economic and precise method to localize the presence of specific protein at cellular level in tissue. Although many papillary thyroid carcinomas do not require IHC to render a diagnosis, there are certain scenarios in which IHC are important. The major diagnostic applications of IHC include confirmation of papillary thyroid carcinoma in sites other than the thyroid, distinguish papillary thyroid carcinoma from other primary thyroid neoplasms in thyroid, and identify papillary thyroid carcinoma from secondary tumors to the thyroid. At research level, IHC could help identify prognostic information, identify underlying genetic alterations, and predict response to treatment in papillary thyroid carcinoma. The understanding of principle and recent advances in IHC will improve the diagnosis and management of patients with thyroid lesions including papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Alfred K Lam
- Cancer Molecular Pathology of School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
- Pathology Queensland, Gold Coast University Hospital, Southport, QLD, Australia.
- Faculty of Medicine, University of Queensland, Herston, QLD, Australia.
| | - Katherine Ting-Wei Lee
- Cancer Molecular Pathology of School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
5
|
Garcia-Alvarez A, Hernando J, Carmona-Alonso A, Capdevila J. What is the status of immunotherapy in thyroid neoplasms? Front Endocrinol (Lausanne) 2022; 13:929091. [PMID: 35992118 PMCID: PMC9389039 DOI: 10.3389/fendo.2022.929091] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has changed the treatment of patients with advanced cancer, with different phase III trials showing durable responses across different histologies. This review focuses on the preclinical and clinical evidence of potential predictive biomarkers of response and efficacy of immunotherapy in thyroid neoplasms. Programmed death-ligand 1 (PD-L1) staining by immunohistochemistry has shown higher expression in anaplastic thyroid cancer (ATC) compared to other subtypes. The tumor mutational burden in thyroid neoplasms is low but seems to be higher in ATC. Immune infiltrates in the tumor microenvironment (TME) differ between the different thyroid neoplasm subtypes. In general, differentiated thyroid cancer (DTC) has a higher number of tumor-associated lymphocytes and regulatory T cells (Tregs), while ATC and medullary thyroid cancer (MTC) display a high density of tumor-associated macrophages (TAMs). Nevertheless, results from clinical trials with immunotherapy as monotherapy or combinations have shown limited efficacy. Further investigation into new strategies aside from anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4)/programmed death 1 (PD-1)/PD-L1 antibodies, validation of predictive biomarkers, and better population selection for clinical trials in thyroid neoplasms is more than needed in the near future.
Collapse
|
6
|
Niciporuka R, Nazarovs J, Ozolins A, Narbuts Z, Miklasevics E, Gardovskis J. Can We Predict Differentiated Thyroid Cancer Behavior? Role of Genetic and Molecular Markers. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1131. [PMID: 34684168 PMCID: PMC8540789 DOI: 10.3390/medicina57101131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022]
Abstract
Thyroid cancer is ranked in ninth place among all the newly diagnosed cancer cases in 2020. Differentiated thyroid cancer behavior can vary from indolent to extremely aggressive. Currently, predictions of cancer prognosis are mainly based on clinicopathological features, which are direct consequences of cell and tissue microenvironment alterations. These alterations include genetic changes, cell cycle disorders, estrogen receptor expression abnormalities, enhanced epithelial-mesenchymal transition, extracellular matrix degradation, increased hypoxia, and consecutive neovascularization. All these processes are represented by specific genetic and molecular markers, which can further predict thyroid cancer development, progression, and prognosis. In conclusion, evaluation of cancer genetic and molecular patterns, in addition to clinicopathological features, can contribute to the identification of patients with a potentially worse prognosis. It is essential since it plays a crucial role in decision-making regarding initial surgery, postoperative treatment, and follow-up. To date, there is a large diversity in methodologies used in different studies, frequently leading to contradictory results. To evaluate the true significance of predictive markers, more comparable studies should be conducted.
Collapse
Affiliation(s)
- Rita Niciporuka
- Department of Surgery, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia; (A.O.); (Z.N.); (J.G.)
- Department of Surgery, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia
| | - Jurijs Nazarovs
- Department of Pathology, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia;
| | - Arturs Ozolins
- Department of Surgery, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia; (A.O.); (Z.N.); (J.G.)
- Department of Surgery, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia
| | - Zenons Narbuts
- Department of Surgery, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia; (A.O.); (Z.N.); (J.G.)
- Department of Surgery, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia
| | - Edvins Miklasevics
- Institute of Oncology, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia;
| | - Janis Gardovskis
- Department of Surgery, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia; (A.O.); (Z.N.); (J.G.)
- Department of Surgery, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia
| |
Collapse
|
7
|
Abe I, Islam F, Lo CY, Liew V, Pillai S, Lam AK. VEGF-A/VEGF-B/VEGF-C expressions in non-hereditary, non-metastatic phaeochromocytoma. Histol Histopathol 2021; 36:645-652. [PMID: 33734425 DOI: 10.14670/hh-18-329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascular endothelial growth factor (VEGF) is important in pathogenesis of different cancers. The aim of this study is to investigate the relationships between different VEGFs and clinicopathological factors in patients with phaeochromocytomas. Twenty patients (10 men; 10 women) with non-hereditary, non-metastatic phaeochromocytomas were examined for VEGF mRNA expressions by polymerase chain reaction. The expressions were correlated with the clinical and pathological factors of the patients. In addition, mouse double minute 2 (MDM2) expression in these tumours were studied by immunohistochemistry. High expressions of VEGF-A, VEGF-B, and VEGF-C mRNA were detected in 11 (55%), 9 (45%), and 9 (45%) of the tumours respectively. High expression of VEGF-A in phaeochromocytomas was significantly correlated with the tumour size (p=0.025) but did not correlate with patients' age, gender, and tumour laterality. Besides, there was a trend of VEGF-A expression correlated with MDM2 expression (p=0.064). On the other hand, expressions of VEGF-B and VEGF-C were not significantly correlated with tumour size, patients' age, gender, tumour laterality, and MDM2 expression. In addition, high expressions of VEGF-B and VEGF-A were associated with increase of tumour size (p=0.042). Co-expression of different VEGFs did not correlate with MDM2 expression. To conclude, there is a role for VEGF-A/VEGF-B/VEGF-C in the pathogenesis of non-hereditary, non-metastatic phaeochromocytomas.
Collapse
Affiliation(s)
- Ichiro Abe
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Chung Yau Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Victor Liew
- Department of Surgery, Gold Coast Private Hospital, Gold Coast, Queensland, Australia
| | - Suja Pillai
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Alfred K Lam
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia.
| |
Collapse
|
8
|
Maroof H, Irani S, Arianna A, Vider J, Gopalan V, Lam AKY. Interactions of Vascular Endothelial Growth Factor and p53 with miR-195 in Thyroid Carcinoma: Possible Therapeutic Targets in Aggressive Thyroid Cancers. Curr Cancer Drug Targets 2020; 19:561-570. [PMID: 29956628 DOI: 10.2174/1568009618666180628154727] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/27/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The clinical pathological features, as well as the cellular mechanisms of miR-195, have not been investigated in thyroid carcinoma. OBJECTIVE The aim of this study is to identify the interactions of vascular endothelial growth factor (VEGF), p53 and miR-195 in thyroid carcinoma. The clinical and pathological features of miR-195 were also investigated. METHODS The expression levels of miR-195 were identified in 123 primary thyroid carcinomas, 40 lymph nodes with metastatic papillary thyroid carcinomas and seven non-neoplastic thyroid tissues (controls) as well as two thyroid carcinoma cell lines, B-CPAP (from metastasizing human papillary thyroid carcinoma) and MB-1 (from anaplastic thyroid carcinoma), by the real-time polymerase chain reaction. Using Western blot and immunofluorescence, the effects of exogenous miR-195 on VEGF-A and p53 protein expression levels were examined. Then, cell cycle and apoptosis assays were performed to evaluate the roles of miR-195 in cell cycle progression and apoptosis. RESULTS The expression of miR-195 was downregulated in majority of the papillary thyroid carcinoma tissue as well as in cells. Introduction of exogenous miR-195 resulted in downregulation of VEGF-A and upregulation of p53 protein expressions. Upregulation of miR-195 in thyroid carcinoma cells resulted in cell cycle arrest. Moreover, we demonstrated that miR-195 inhibits cell cycle progression by induction of apoptosis in the thyroid carcinoma cells. CONCLUSION Our findings showed for the first time that miR-195 acts as a tumour suppressor and regulates cell cycle progression and apoptosis by targeting VEGF-A and p53 in thyroid carcinoma. The current study exhibited that miR-195 might represent a potential therapeutic target for patients with thyroid carcinomas having aggressive clinical behaviour.
Collapse
Affiliation(s)
- Hamidreza Maroof
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Soussan Irani
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Dental Research Centre, Research Centre for Molecular Medicine, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Arianna
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Jelena Vider
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
9
|
Stuchi LP, Castanhole-Nunes MMU, Maniezzo-Stuchi N, Biselli-Chicote PM, Henrique T, Padovani Neto JA, de-Santi Neto D, Girol AP, Pavarino EC, Goloni-Bertollo EM. VEGFA and NFE2L2 Gene Expression and Regulation by MicroRNAs in Thyroid Papillary Cancer and Colloid Goiter. Genes (Basel) 2020; 11:E954. [PMID: 32824922 PMCID: PMC7563674 DOI: 10.3390/genes11090954] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022] Open
Abstract
Deregulation of VEGFA (Vascular Endothelial Growth Factor A) and NFE2L2 (Nuclear Factor (Erythroid-derived 2)-Like 2), involved in angiogenesis and oxidative stress, can lead to thyroid cancer progression. MiR-17-5p and miR-612 are possible regulators of these genes and may promote thyroid disorders. In order to evaluate the involvement of VEGFA, NFE2L2, hsa-miR-17-5p, and hsa-miR-612 in thyroid pathology, we examined tissue samples from colloid goiter, papillary thyroid cancer (PTC), and a normal thyroid. We found higher levels of VEGFA and NFE2L2 transcripts and the VEGFA protein in goiter and PTC samples than in normal tissue. In the goiter, miR-612 and miR-17-5p levels were lower than those in PTC. Tumors, despite showing lower VEGFA mRNA expression, presented higher VEGFA protein levels compared to goiter tissue. In addition, NRF2 (Nuclear Related Transcription Factor 2) protein levels in tumors were higher than those in goiter and normal tissues. Inhibition of miR-17-5p resulted in reduced NFE2L2 expression. Overall, both transcript and protein levels of NFE2L2 and VEGFA were elevated in PTC and colloid goiter. Hsa-miR-612 showed differential expression in PTC and colloid goiter, while hsa-miR-17-5p showed differential expression only in colloid goiter, suggesting that hsa-miR-17-5p may be a positive regulator of NFE2L2 expression in PTC.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Goiter, Nodular/genetics
- Goiter, Nodular/metabolism
- Goiter, Nodular/pathology
- Humans
- Male
- MicroRNAs/genetics
- Middle Aged
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Prognosis
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Leonardo P. Stuchi
- Research Unit in Genetics and Molecular Biology—UPGEM, Faculty of Medicine of São José do Rio Preto—FAMERP, São José do Rio Preto 15090-000, Brazil; (L.P.S.); (M.M.U.C.-N.); (P.M.B.-C.); (E.C.P.)
| | - Márcia Maria U. Castanhole-Nunes
- Research Unit in Genetics and Molecular Biology—UPGEM, Faculty of Medicine of São José do Rio Preto—FAMERP, São José do Rio Preto 15090-000, Brazil; (L.P.S.); (M.M.U.C.-N.); (P.M.B.-C.); (E.C.P.)
| | - Nathália Maniezzo-Stuchi
- Padre Albino University Center—UNIFIPA, Catanduva, São Paulo 15809-144, Brazil; (N.M.-S.); (A.P.G.)
| | - Patrícia M. Biselli-Chicote
- Research Unit in Genetics and Molecular Biology—UPGEM, Faculty of Medicine of São José do Rio Preto—FAMERP, São José do Rio Preto 15090-000, Brazil; (L.P.S.); (M.M.U.C.-N.); (P.M.B.-C.); (E.C.P.)
| | - Tiago Henrique
- Laboratory of Molecular Markers and Bioinformatics, Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto —FAMERP, São José do Rio Preto 15090-000, Brazil;
| | - João Armando Padovani Neto
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine of São José do Rio Preto —FAMERP, São José do Rio Preto 15090-000, Brazil;
| | - Dalisio de-Santi Neto
- Pathological Anatomy Service, Hospital de Base, Foundation Regional Faculty of Medicine of São José do Rio Preto—FUNFARME, São José do Rio Preto 15090-000, Brazil;
| | - Ana Paula Girol
- Padre Albino University Center—UNIFIPA, Catanduva, São Paulo 15809-144, Brazil; (N.M.-S.); (A.P.G.)
| | - Erika C. Pavarino
- Research Unit in Genetics and Molecular Biology—UPGEM, Faculty of Medicine of São José do Rio Preto—FAMERP, São José do Rio Preto 15090-000, Brazil; (L.P.S.); (M.M.U.C.-N.); (P.M.B.-C.); (E.C.P.)
| | - Eny Maria Goloni-Bertollo
- Research Unit in Genetics and Molecular Biology—UPGEM, Faculty of Medicine of São José do Rio Preto—FAMERP, São José do Rio Preto 15090-000, Brazil; (L.P.S.); (M.M.U.C.-N.); (P.M.B.-C.); (E.C.P.)
| |
Collapse
|
10
|
San Román Gil M, Pozas J, Molina-Cerrillo J, Gómez J, Pian H, Pozas M, Carrato A, Grande E, Alonso-Gordoa T. Current and Future Role of Tyrosine Kinases Inhibition in Thyroid Cancer: From Biology to Therapy. Int J Mol Sci 2020; 21:E4951. [PMID: 32668761 PMCID: PMC7403957 DOI: 10.3390/ijms21144951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Thyroid cancer represents a heterogenous disease whose incidence has increased in the last decades. Although three main different subtypes have been described, molecular characterization is progressively being included in the diagnostic and therapeutic algorithm of these patients. In fact, thyroid cancer is a landmark in the oncological approach to solid tumors as it harbors key genetic alterations driving tumor progression that have been demonstrated to be potential actionable targets. Within this promising and rapid changing scenario, current efforts are directed to improve tumor characterization for an accurate guidance in the therapeutic management. In this sense, it is strongly recommended to perform tissue genotyping to patients that are going to be considered for systemic therapy in order to select the adequate treatment, according to recent clinical trials data. Overall, the aim of this article is to provide a comprehensive review on the molecular biology of thyroid cancer focusing on the key role of tyrosine kinases. Additionally, from a clinical point of view, we provide a thorough perspective, current and future, in the treatment landscape of this tumor.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/enzymology
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/therapy
- Adenoma, Oxyphilic/enzymology
- Adenoma, Oxyphilic/genetics
- Adenoma, Oxyphilic/therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinoma, Medullary/enzymology
- Carcinoma, Medullary/genetics
- Carcinoma, Medullary/therapy
- Carcinoma, Papillary/enzymology
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/therapy
- Clinical Trials as Topic
- Combined Modality Therapy
- Disease Management
- Forecasting
- Genes, Neoplasm
- Humans
- Immune Checkpoint Inhibitors/therapeutic use
- Immunoconjugates/therapeutic use
- Immunotherapy
- Iodine Radioisotopes/therapeutic use
- Molecular Targeted Therapy
- Multicenter Studies as Topic
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Randomized Controlled Trials as Topic
- Thyroid Neoplasms/enzymology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/therapy
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- María San Román Gil
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
| | - Javier Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
| | - Joaquín Gómez
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
- General Surgery Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Héctor Pian
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
- Pathology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miguel Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
| | - Alfredo Carrato
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
| | - Enrique Grande
- Medical Oncology Department, MD Anderson Cancer Center, 28033 Madrid, Spain;
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.S.R.G.); (J.P.); (M.P.); (A.C.); (T.A.-G.)
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain; (J.G.); (H.P.)
| |
Collapse
|
11
|
Xue Y, Liu Y, Bian X, Zhang Y, Li Y, Zhang Q, Yin M. miR-205-5p inhibits psoriasis-associated proliferation and angiogenesis: Wnt/β-catenin and mitogen-activated protein kinase signaling pathway are involved. J Dermatol 2020; 47:882-892. [PMID: 32525225 DOI: 10.1111/1346-8138.15370] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease, and the mechanism remains unknown. The present study found that the level of miR-205-5p was downregulated in psoriatic skin tissues. miR-205-5p inhibited proliferation in HaCaT cells. miR-205-5p impaired proliferation, migration and tube formation in human umbilical vein endothelial cells. Angiopoietin (Ang)-2, vascular endothelial growth factor (VEGFA) and bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) were confirmed as the targets of miR-205-5p. Moreover, miR-205-5p suppressed the phosphorylation of p38 and extracellular regulated protein kinase, and inhibited expression level of β-catenin. In vivo, miR-205-5p significantly alleviated imiquimod (IMQ)-induced psoriasis in mice, and deactivated mitogen-activated protein kinase (MAPK) and Wnt/β-catenin pathways. In summary, we demonstrated that miR-205-5p alleviated IMQ-induced psoriasis in mice by restraining epidermal hyperproliferation and excessive neovascularization. miR-205-5p may play its roles by targeting Ang-2, VEGFA and BAMBI, and deactivating the Wnt/β-catenin and MAPK signaling pathways. These findings may provide a potential therapeutic target for clinical treatment of psoriasis.
Collapse
Affiliation(s)
- Yadong Xue
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingying Liu
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xiaohui Bian
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South University, Changsha, China
| | - Yu Zhang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qitao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingzhu Yin
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
12
|
Ceric S, Ceric T, Pojskic N, Bilalovic N, Musanovic J, Kucukalic-Selimovic E. Immunohistochemical expression and prognostic significance of VEGF-C in well-differentiated thyroid cancer. ACTA ENDOCRINOLOGICA-BUCHAREST 2020; 16:409-416. [PMID: 34084231 DOI: 10.4183/aeb.2020.409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Context Neoangiogenesis and lymphangio-genesis are essential for the growth of tumor and progression of malignancy. Objective The study examined the significance of VEGF-C expression in comparison to classical prognostic factors in differentiated thyroid carcinoma (DTC), as well as an independent prognostic marker in DTC. Design The study included 81 patients with DTC allocated in two groups according to the type of cancer (follicular versus papillary) and then compared to expression of VEGF-C and clinicopathological features. Methods Expression of VEGF-C was identified with anti-VEGF-C antibody using tris-EDTA buffer Antigen Retrieval Protocol. Each specimen was scored with a semi-quantitative score system (H-score). Results The analysis of T staging system showed a linear correlation between the size of a tumor, expression of VEGF-C and recurrence of a disease, with a statistical significance (p < 0.0001). There was a clear and significant correlation between VEGF-C expression and T stage in patients with papillary carcinoma (p = 0.0294). Analysis of invasion of a surgical margin demonstrated significant positivity in patients with papillary thyroid cancers who expressed VEGF-C (p = 0.0207) indicating the worse prognosis of a disease. Also a statistically significant correlation was between VEGF-C and extrathyroid extension, indicating the worse prognosis (p = 0.0133) in papillary cancers. The level of VEGF-C expression was statistically significant in patients with papillary thyroid cancer (p = 0.039). Conclusions This study undoubtedly demonstrates that VEGF-C expression is an evident negative prognostic factor in patients with papillary thyroid carcinoma, along with the classic prognostic factors, such as a larger tumor size, tumor margin involvement, extrathyroid extension, i.e. local aggressiveness.
Collapse
Affiliation(s)
- S Ceric
- University Clinical Center Sarajevo. Bosnia and Herzegovina - Department of Nuclear Medicine and Endocrinology - Sarajevo, Bosnia and Herzegovina
| | - T Ceric
- University Clinical Center Sarajevo. Bosnia and Herzegovina - Department of Oncology - Sarajevo, Bosnia and Herzegovina
| | - N Pojskic
- University of Sarajevo, Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| | - N Bilalovic
- University Clinical Center Sarajevo. Department of Pathology and Cytology, Sarajevo, Bosnia and Herzegovina
| | - J Musanovic
- University of Sarajevo, School of Medicine, Department of Biology and Human Genetics, Sarajevo, Bosnia and Herzegovina
| | - E Kucukalic-Selimovic
- University Clinical Center Sarajevo. Bosnia and Herzegovina - Department of Nuclear Medicine and Endocrinology - Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
13
|
Genetic and epigenetic differences of benign and malignant pheochromocytomas and paragangliomas (PPGLs). Endocr Regul 2019; 52:41-54. [PMID: 29453919 DOI: 10.2478/enr-2018-0006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are tumors arising from the adrenal medulla and sympathetic/parasympathetic paraganglia, respectively. According to Th e Cancer Genome Atlas (TCGA), approximately 40% of PPGLs are due to germ line mutations in one of 16 susceptibility genes, and a further 30% are due to somatic alterations in at least seven main genes (VHL, EPAS1, CSDE1, MAX, HRAS, NF1, RET, and possibly KIF1B). Th e diagnosis of malignant PPGL was straight forward in most cases as it was defined as presence of PPGL in non-chromaffin tissues. Accordingly, there is an extreme need for new diagnostic marker(s) to identify tumors with malignant prospective. Th e aim of this study was to review all suggested genetic and epigenetic alterations that are remarkably different between benign and malignant PPGLs. It seems that more than two genetic mutation clusters in PPGLs and other genetic and methylation biomarkers could be targeted for malignancy discrimination in different studies.
Collapse
|
14
|
Wang M, Xu Y, Wen GZ, Wang Q, Yuan SM. Rapamycin suppresses angiogenesis and lymphangiogenesis in melanoma by downregulating VEGF-A/VEGFR-2 and VEGF-C/VEGFR-3 expression. Onco Targets Ther 2019; 12:4643-4654. [PMID: 31354297 PMCID: PMC6580124 DOI: 10.2147/ott.s205160] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Cutaneous melanoma is a highly malignant tumor which tends to metastasize in the early stage and leads to poor prognosis. Hematogenous and lymphatic metastasis are common in the dissemination of melanoma. Rapamycin, an mTOR inhibitor, was reported to have anti-angiogenic and anti-lymphangiogenic properties. Aim: The aim of this study was to investigate if rapamycin can inhibit the formation of blood vessels and lymphatic vessels in melanoma. Methods: A melanoma xenograft model was generated by subcutaneously transplanting A375 human melanoma cells into the back of immunodeficient mice. Two weeks after cell transplantation, rapamycin was injected intraperitoneally every other day seven times. Then, tumors were harvested.
Hematoxylin-eosin (H-E)
staining, immunohistochemical staining, Western blot, and quantitative PCR were performed to observe the pathological structure of the tumor, the distribution of blood vessels and lymphatic vessels, and the expression of mTOR signal pathway, VEGF-A/VEGFR-2, and VEGF-C/VEGFR-3. Results: The results showed that CD34(+) blood vessels and LYVE-1(+) lymphatic vessels decreased in the peritumor and intratumor region in rapamycin-treated tumors. Expression of p-4EBP1 and p-S6K1 proteins was downregulated. Expression of both proteins and mRNAs of VEGF-A/VEGFR-2 and VEGF-C/VEGFR-3 was downregulated. Conclusion: In conclusion, rapamycin suppresses angiogenesis and lymphangiogenesis in melanoma by blocking the mTOR signal pathway and subsequently downregulating the expression of VEGF-A/VEGFR-2 and VEGF-C/VEGFR-3. Therefore, targeted therapy via mTOR signal pathway may control the hematogenous and lymphatic metastasis of melanoma, and even prolong patients’ survival time. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/Q1fo3NUeLpY
Collapse
Affiliation(s)
- Min Wang
- Department of Plastic Surgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, People's Republic of China
| | - Yuan Xu
- Department of Plastic Surgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, People's Republic of China
| | - Guo-Zhong Wen
- Department of Plastic Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, People's Republic of China
| | - Qian Wang
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210002, People's Republic of China
| | - Si-Ming Yuan
- Department of Plastic Surgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, People's Republic of China.,Department of Plastic Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, People's Republic of China.,Department of Plastic Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210002, People's Republic of China
| |
Collapse
|
15
|
Jang JY, Kim DS, Park HY, Shin SC, Cha W, Lee JC, Wang SG, Lee BJ. Preoperative serum VEGF-C but not VEGF-A level is correlated with lateral neck metastasis in papillary thyroid carcinoma. Head Neck 2019; 41:2602-2609. [PMID: 30843635 DOI: 10.1002/hed.25729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study aimed to investigate the relationships between serum vascular endothelial growth factor (VEGF)-A or VEGF-C levels and lymph node metastasis (LNM) status in patients with papillary thyroid carcinoma (PTC). METHODS The study enrolled 150 patients with pathologically proven PTC who underwent surgery: PTC without LNM, PTC with central neck metastasis, and PTC with lateral neck metastasis. RESULTS Preoperative serum VEGF-A levels were 300.12 ± 80.80 pg/mL overall and were not correlated with the presence of LNM. Preoperative serum VEGF-C levels were 132.41 ± 48.48 pg/mL overall and were significantly correlated with the presence of LNM. Serum VEGF-C levels were further increased in patients with lateral neck metastasis and positively correlated with the number of metastatic LNs (rho = 0.252, P = 0.002). Serum VEGF-C, but not VEGF-A, was identified as a significant predictor of lateral neck metastasis. CONCLUSION Serum VEGF-C might be a clinically relevant biomarker of lateral neck metastasis in patients with PTC.
Collapse
Affiliation(s)
- Jeon Yeob Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Deok-Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Hee-Young Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Sung-Chan Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Wonjae Cha
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Jin-Choon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Soo-Geun Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| |
Collapse
|
16
|
Liposomal Delivery of miR-34b-5p Induced Cancer Cell Death in Thyroid Carcinoma. Cells 2018; 7:cells7120265. [PMID: 30544959 PMCID: PMC6315437 DOI: 10.3390/cells7120265] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 01/03/2023] Open
Abstract
This study aims to determine the functional roles of microRNA-34b-5p (miR-34b) in the suppression of anaplastic thyroid carcinoma. We used hydration-of-freeze-dried-matrix (HFDM) formulated liposomes (liposome-loaded miR-34b) for effective delivery of miR-34b to anaplastic thyroid carcinoma in vitro and in vivo. Real time polymerase chain was used to determine the level of miR-34b. Immunocytochemistry, Western blot and ELISA were carried out to determine the effect of this manipulation on VEGF-A expression. In addition, an in vivo xenotransplantation mouse model was used to investigate the functional roles of overexpression of miR-34b in the carcinoma. In anaplastic thyroid carcinoma cells, miR-34b expression was low and significant overexpression (p < 0.05) was noted following transfection with liposome-loaded miR-34b. The miR-34b overexpressed thyroid carcinoma cell lines showed reduction in VEGF-A protein expression, decreased cell proliferation, decreased wound healing, reduced cell cycle progression and increased apoptosis (p < 0.05). In in vivo experiments, when compared to control groups, smaller tumours formed upon intravenous administration of liposome-loaded miR-34b. To conclude, the current study confirmed the tumour suppressor properties of miR-34b via VEGF-A regulation in anaplastic thyroid carcinoma. In addition, delivery of miR-34b using cationic liposome could be a useful therapeutic strategy for targeting therapy in the carcinoma.
Collapse
|
17
|
Tasoulas J, Tsourouflis G, Theocharis S. Neovascularization: an attractive but tricky target in thyroid cancer. Expert Opin Ther Targets 2018; 22:799-810. [DOI: 10.1080/14728222.2018.1513494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jason Tasoulas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Tsourouflis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Rouigari M, Dehbashi M, Ghaedi K, Pourhossein M. Targetome Analysis Revealed Involvement of MiR-126 in Neurotrophin Signaling Pathway: A Possible Role in Prevention of Glioma Development. CELL JOURNAL 2018; 20:150-156. [PMID: 29633591 PMCID: PMC5893285 DOI: 10.22074/cellj.2018.4901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/14/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVES For the first time, we used molecular signaling pathway enrichment analysis to determine possible involvement of miR-126 and IRS-1 in neurotrophin pathway. MATERIALS AND METHODS In this prospective study, Validated and predicted targets (targetome) of miR-126 were collected following searching miRtarbase (http://mirtarbase.mbc.nctu.edu.tw/) and miRWalk 2.0 databases, respectively. Then, approximate expression of miR-126 targeting in Glioma tissue was examined using UniGene database (http://www.ncbi. nlm.nih.gov/unigene). In silico molecular pathway enrichment analysis was carried out by DAVID 6.7 database (http://david. abcc.ncifcrf.gov/) to explore which signaling pathway is related to miR-126 targeting and how miR-126 attributes to glioma development. RESULTS MiR-126 exerts a variety of functions in cancer pathogenesis via suppression of expression of target gene including PI3K, KRAS, EGFL7, IRS-1 and VEGF. Our bioinformatic studies implementing DAVID database, showed the involvement of miR-126 target genes in several signaling pathways including cancer pathogenesis, neurotrophin functions, Glioma formation, insulin function, focal adhesion production, chemokine synthesis and secretion and regulation of the actin cytoskeleton. CONCLUSIONS Taken together, we concluded that miR-126 enhances the formation of glioma cancer stem cell probably via down regulation of IRS-1 in neurotrophin signaling pathway.
Collapse
Affiliation(s)
- Maedeh Rouigari
- Isfahan Neuroscience Research Center (INRC), Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moein Dehbashi
- Isfahan Neuroscience Research Center (INRC), Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Genetics Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Cell and Molecular Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Meraj Pourhossein
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences Isfahan, Iran
- Department of Food Science and Technology, Food Security Research Center, School of Nutrition and Food Science, Isfahan, Iran.
| |
Collapse
|
19
|
Steroid receptor coactivator-1 interacts with NF-κB to increase VEGFC levels in human thyroid cancer. Biosci Rep 2018; 38:BSR20180394. [PMID: 29717026 PMCID: PMC5997793 DOI: 10.1042/bsr20180394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 11/17/2022] Open
Abstract
Thyroid cancer is the most common endocrine cancer, and has a high incidence of lymphatic metastasis. Vascular endothelial growth factor C (VEGFC) is essential for development of lymphatic vessels and lymphatic metastases during carcinogenesis. Steroid receptor coactivator-1 (SRC-1) interacts with nuclear receptors and transcription factors to promote tumor proliferation and metastasis. However, the correlation between SRC-1 and VEGFC levels in the lymphatic metastases of thyroid cancer remains unclear. We analyzed 20-paired specimens of thyroid cancer tissue and normal thyroid tissue and found increased levels of SRC-1 and VEGFC proteins in 13/20 and 15/20 thyroid cancer specimens, respectively, when compared with those levels in specimens of normal thyroid tissue. A high level of SRC-1 expression was positively correlated with VEGFC and lymphatic endothelial cell marker LYVE-1 expression. Papillary thyroid carcinoma cell line TPC-1 displayed high levels of SRC-1 and VEGFC expression and was selected for stable knockdown of SRC-1 in vitro Inhibition of SRC-1 significantly reduced the VEGFC levels in TPC-1 cells. We found that SRC-1 binds to transcription factor NF-kB (p50/p65), and that this coactivation complex directly promoted VEGFC transcription, which could be abrogated by SRC-1 knockdown. Up-regulated NF-kB signaling was also confirmed in thyroid cancer tissues. In vivo studies showed that SRC-1 knockdown restricted tumor growth, reduced the numbers of LYVE-1-positive lymphatic vessels, and decreased the levels of VEGFC in tumor tissues. These results suggest a tumorigenic role for SRC-1 in thyroid cancer via its ability to regulate VEGFC expression.
Collapse
|
20
|
Vosgha H, Ariana A, Smith RA, Lam AKY. miR-205 targets angiogenesis and EMT concurrently in anaplastic thyroid carcinoma. Endocr Relat Cancer 2018; 25:323-337. [PMID: 29317480 DOI: 10.1530/erc-17-0497] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023]
Abstract
The current study aims to evaluate for the first time the inhibitory roles of miR-205 in the pathogenesis of anaplastic thyroid carcinoma. In addition, we investigated the mechanisms by which miR-205 regulates angiogenesis and epithelial-to-mesenchymal transition (EMT) in cancer. Two anaplastic thyroid carcinoma cell lines were transfected with the expression vector pCMV-MIR-205 Selected markers of angiogenesis and EMT including vascular endothelial growth factor A (VEGF-A) and zinc finger E-box-binding homeobox 1 (ZEB1) were investigated by Western blot. The interaction of miR-205 expression with EMT and angiogenesis were also investigated by assessment of matrix metalloproteinases 2 and 9 (MMP2 and MMP 9), SNAI1 (Snai1 family zinc finger 1), vimentin, E-cadherin and N-cadherin. The function of miR-205 was further tested with VEGF enzyme-linked immunosorbent assay (ELISA), wound healing, invasion and tube formation assays. Using an animal model, we studied the association of miR-205 with angiogenesis, proliferation and invasion. The following results were obtained. Permanent overexpression of miR-205 significantly suppressed angiogenesis and EMT by simultaneously targeting VEGF-A, ZEB1 and downstream products. Ectopic expression of miR-205 in cancer cells led to decreased migration, invasion and tube formation of endothelial cells. In addition, inhibition of tumour growth, vascularisation and invasion were noted in the mouse tumour xenografts. Our findings provide insights into simultaneous regulatory role of miR-205 in the pathogenesis of anaplastic thyroid carcinoma by suppressing both angiogenesis and EMT. This may open avenues to exploit miR-205 as an alternative cancer therapeutic strategy in the future.
Collapse
Affiliation(s)
- Haleh Vosgha
- Cancer Molecular PathologySchool of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Armin Ariana
- Cancer Molecular PathologySchool of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Robert Anthony Smith
- Cancer Molecular PathologySchool of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Genomics Research CentreInstitute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular PathologySchool of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
21
|
Dong W, Li J, Li J, Zhang P, Wang Z, Sun W, Zhang H. Reduced expression of oestrogen receptor-β is associated with tumour invasion and metastasis in oestrogen receptor-α-negative human papillary thyroid carcinoma. Int J Exp Pathol 2018; 99:15-21. [PMID: 29655286 PMCID: PMC5917391 DOI: 10.1111/iep.12266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Oestrogens play an important role in the development and progression of papillary thyroid carcinoma (PTC) through oestrogen receptor (ER)-α and -β, which may exert different or even opposing actions in PTC. The roles of ERβ in ERα-negative PTC are still not clear. This study investigated the expression dynamics of ERβ1 (wild-type ERβ) and its clinical significance in female ERα-negative PTC patients. ERβ1 expression was detected in thyroid tissues of 136 female patients diagnosed with PTC. The relationships between ERβ1 expression and clinicopathological/biological factors were also analysed in female ERα-negative PTC patients. The total score for ERβ1 was significantly lower in female ERα-negative PTC patients with LNM or ETE when compared to those without LNM or ETE (Z = -2.923, P = 0.003 and Z = -3.441, P = 0.001). Accordingly, the total score for ERβ1 was significantly higher in ERα-negative PTC patients expressing E-cadherin compared to patients negative for E-cadherin expression (Z = -2.636, P = 0.008). The total score was lower in ERα-negative PTC patients positive for VEGF expression compared to those negative for VEGF expression (Z = -1.914, P = 0.056). This preliminary study indicates that reduced expression of ERβ1 in female ERα-negative PTC patients is associated with greater progression of the disease. This may provide insights into the underlying molecular mechanisms of ERβ1 and could help design targeted approaches for treating or even preventing this disease.
Collapse
Affiliation(s)
- Wen‐Wu Dong
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Jian Li
- Department of SurgeryJinqiu Hospital of LiaoningShenyangChina
| | - Jing Li
- Department of Endocrinology and MetabolismInstitute of EndocrinologyLiaoning Provincial Key Laboratory of Endocrine DiseasesThe First Hospital of China Medical UniversityShenyangChina
| | - Ping Zhang
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Zhi‐Hong Wang
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Wei Sun
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Hao Zhang
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
22
|
Chruścik A, Gopalan V, Lam AKY. The clinical and biological roles of transforming growth factor beta in colon cancer stem cells: A systematic review. Eur J Cell Biol 2018; 97:15-22. [PMID: 29128131 DOI: 10.1016/j.ejcb.2017.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Transforming growth factor beta (TGF-β) is a multipurpose cytokine, which plays a role in many cellular functions such as proliferation, differentiation, migration, apoptosis, cell adhesion and regulation of epithelial to mesenchymal transition. Despite many studies having observed the effect that TGF-β plays in colorectal cancer, its role in the colorectal stem cell population has not been widely observed. METHOD This systematic review will analyse the role of TGF-β in the stem cell population of colorectal cancer. RESULTS The effects on the stem cell phenotype are through the downstream proteins involved in activation of the TGF-β pathway. Its involvement in the initiation of the epithelial to mesenchymal transition (EMT), the effect of colorectal invasion and metastasis regulated through the Smad protein involvement in the EMT, initiation of angiogenesis, promotion of metastasis of colorectal cancer to the liver and its ability to cross-talk with other pathways. CONCLUSION TGF-β is a key player in angiogenesis, tumour growth and metastasis in colon cancer.
Collapse
Affiliation(s)
- Anna Chruścik
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
23
|
Maroof H, Islam F, Ariana A, Gopalan V, Lam AK. The roles of microRNA-34b-5p in angiogenesis of thyroid carcinoma. Endocrine 2017; 58:153-166. [PMID: 28840508 DOI: 10.1007/s12020-017-1393-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/09/2017] [Indexed: 11/27/2022]
Abstract
PURPOSE This study aims to determine the expression of miR-34b-5p in thyroid carcinomas and to investigate the role of miR34b-5p in the modulation of proteins involved in angiogenesis of thyroid carcinoma cells. METHODS The expressions of miR-34b-5p levels in five cell lines and 65 tissue samples from thyroid carcinomas were examined by real-time polymerase chain reaction. An exogenous miR-34b-5p (mimic) transiently overexpress miR-34b-5p in theses thyroid carcinoma cells. The effects of miR-34b-5p overexpression on the proteins involved in angiogenesis and cell cycle regulations (VEGF-A, Bcl-2 and Notch1) were investigated by Western blot, immunofluorescence, enzyme-linked immunosorbent assay followed by cell cycle analysis and apoptosis assays. RESULTS miR-34b-5p is markedly downregulated in all thyroid carcinoma cell lines and tissues samples when compared with non-neoplastic immortalised thyroid cell line and non-neoplastic thyroid tissues, respectively. The expression levels of miR-34b were significantly associated with T-stages of thyroid carcinomas (p = 0.042). Downregulation of VEGF-A, Bcl-2 and Notch1 proteins in thyroid carcinoma cells were noted in cells that transiently transfected with miR-34b-5p mimic. In addition, enzyme-linked immunosorbent assay confirmed the decreased expression of VEGF in thyroid carcinoma cells after transfection with miR-34b-5p mimic. Furthermore, miR-34b-5p mimic transfection induces significant accumulation of cells in G0-G1 of the cell cycle by blocking of their entry into the S transitional phase as well as increasing the total apoptosis. CONCLUSIONS miR-34b-5p functions as a potent regulator of angiogenesis, apoptosis and cell proliferation via modulation of VEGF-A, Bcl-2 and Notch1 proteins. It could be a target for developing treatment strategies of thyroid carcinoma with aggressive clinical behaviour.
Collapse
Affiliation(s)
- Hamidreza Maroof
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Farhadul Islam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Armin Ariana
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
24
|
Rahman MA, Salajegheh A, Smith RA, Lam AKY. Inhibition of BRAF kinase suppresses cellular proliferation, but not enough for complete growth arrest in BRAF V600E mutated papillary and undifferentiated thyroid carcinomas. Endocrine 2016; 54:129-138. [PMID: 27179656 DOI: 10.1007/s12020-016-0985-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
The aim of our study was to inhibit BRAF kinase expression and investigate its effect on cellular functions in thyroid carcinomas. 8505C (BRAF V600E/V600E) undifferentiated thyroid carcinoma cell line and B-CPAP (BRAF V600E/V600E) papillary thyroid carcinoma cell line were used to develop doxycycline-inducible anti-BRAF shRNA stable cell lines. The inhibitions of BRAF expression in these cells were confirmed with qPCR and Western blot. Impacts of BRAF protein inhibition on cellular functions and signalling pathways were observed through Western blot, proliferation and colony formation assays. BRAF kinase expression was inhibited 83 % in undifferentiated thyroid carcinoma and 82 % in papillary thyroid carcinoma (p < 0.05). As a result of BRAF kinase inhibition, reduction in MEK kinase activity was seen (p < 0.05) in both thyroid cancer cell lines (72 and 75 %, respectively). Initially, big drop in proliferation (p < 0.05) was observed (52 and 54 %, respectively), but later an increasing proliferation trend was noticed in BRAF kinase-inhibited cell lines. In addition, reduction in colony formation (p < 0.05) was seen in BRAF kinase-inhibited carcinoma cells (13 and 15 %, respectively). On the other hand, increase in AKT kinase activity (63 and 70 %, respectively; p < 0.05) was discovered in both BRAF kinase-inhibited carcinoma cells. Increased activation of alternative proliferation pathways (as determined by the increase of AKT kinase activity) counteracts the effect of BRAF kinase inhibition in thyroid carcinomas. Thus, alternative proliferation pathways should be inhibited for therapeutic suppression of BRAF-induced proliferation in thyroid carcinomas.
Collapse
Affiliation(s)
- Md Atiqur Rahman
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Robert Anthony Smith
- Faculty of Health, Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
- Pathology Queensland and Gold Coast University Hospital, Gold Coast, QLD, Australia.
- Head of Pathology, Griffith Medical School, Gold Coast Campus, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
25
|
Tu DG, Chang WW, Jan MS, Tu CW, Lu YC, Tai CK. Promotion of metastasis of thyroid cancer cells via NRP-2-mediated induction. Oncol Lett 2016; 12:4224-4230. [PMID: 27895796 DOI: 10.3892/ol.2016.5153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/08/2016] [Indexed: 01/06/2023] Open
Abstract
Tumor-node-metastasis is one of the leading causes of morbidity and mortality in thyroid cancer patients. Upregulation of vascular endothelial growth factor-C (VEGF-C) increases the migratory ability of thyroid cancer cells to lymph nodes. Expression of neuropilin-2 (NRP-2), the co-receptor of VEGF-C, has been reported to be correlated with lymph node metastasis in human thyroid cancer. The present study investigated the role of VEGF-C/NRP-2 signaling in the regulation of metastasis of two different types of human thyroid cancer cells. The results indicated that the VEGF-C/NRP-2 axis significantly promoted the metastatic activities of papillary thyroid carcinoma cells through the activation of the mitogen-activated protein kinase (MAPK) kinase (MEK)/extracellular signal-regulated kinase and p38 MAPK signaling cascades. However, neither MEK or p38 MAPK inhibitors produced significant inhibition of the migratory activity and invasiveness regulated by the VEGF-C/NRP-2 axis in follicular thyroid carcinoma cells. Finally, VEGF-C/NRP-2-mediated invasion and migration of thyroid cancer cells required the expression of NRP-2. The present results demonstrate that the promotion of metastasis by VEGF-C is mainly due to the upregulation of NRP-2 in thyroid cancer cells, and this metastatic activity regulated by the VEGF-C/NRP-2 axis provides further insight into the process of tumor metastasis.
Collapse
Affiliation(s)
- Dom-Gene Tu
- Department of Nuclear Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan, R.O.C.; Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan, R.O.C.; College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan, R.O.C
| | - Wen-Wei Chang
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Ming-Shiou Jan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C.; Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C.; Division of Allergy, Immunology and Rheumatology, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan, R.O.C
| | - Chi-Wen Tu
- Department of Surgery, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan, R.O.C
| | - Yin-Che Lu
- Department of Hematology-Oncology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan, R.O.C
| | - Chien-Kuo Tai
- Department of Life Science, Institutes of Molecular Biology and Biomedical Science, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan, R.O.C
| |
Collapse
|
26
|
Salajegheh A, Vosgha H, Rahman MA, Amin M, Smith RA, Lam AKY. Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma. Hum Pathol 2016; 51:75-85. [DOI: 10.1016/j.humpath.2015.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022]
|
27
|
Pillai S, Gopalan V, Smith RA, Lam AKY. Updates on the genetics and the clinical impacts on phaeochromocytoma and paraganglioma in the new era. Crit Rev Oncol Hematol 2016; 100:190-208. [DOI: 10.1016/j.critrevonc.2016.01.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/13/2015] [Accepted: 01/20/2016] [Indexed: 12/18/2022] Open
|
28
|
Woliński K, Stangierski A, Szczepanek-Parulska E, Gurgul E, Budny B, Wrotkowska E, Biczysko M, Ruchala M. VEGF-C Is a Thyroid Marker of Malignancy Superior to VEGF-A in the Differential Diagnostics of Thyroid Lesions. PLoS One 2016; 11:e0150124. [PMID: 26900960 PMCID: PMC4762679 DOI: 10.1371/journal.pone.0150124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/09/2016] [Indexed: 12/26/2022] Open
Abstract
Introduction Thyroid nodular goiter is one of the most common medical conditions affecting even over a half of adult population. The risk of malignancy is rather small but noticeable–estimated by numerous studies to be about 3–10%. The definite differentiation between benign and malignant ones is a vital issue in endocrine practice. The aim of the current study was to assess the expression of vascular endothelial growth factor A (VEGF-A) and VEGF-C on the mRNA level in FNAB washouts in case of benign and malignant thyroid nodules and to evaluate the diagnostic value of these markers of malignancy. Materials and Methods Patients undergoing fine-needle aspiration biopsy (FNAB) in our department between January 2013 and May 2014 were included. In case of all patients who gave the written consent, after ultrasonography (US) and fine-needle aspiration biopsy (FNAB) performed as routine medical procedure the needle was flushed with RNA Later solution, the washouts were frozen in -80 Celsius degrees. Expression of VEGF-A and VEGF-C and GADPH (reference gene) was assessed in washouts on the mRNA level using the real-time PCR technique. Probes of patients who underwent subsequent thyroidectomy and were diagnosed with differentiated thyroid cancer (DTC; proved by post-surgical histopathology) were analyzed. Similar number of patients with benign cytology were randomly selected to be a control group. Results Thirty one DTCs and 28 benign thyroid lesions were analyzed. Expression of VEGF-A was insignificantly higher in patients with DTCs (p = 0.13). Expression of VEGF-C was significantly higher in patients with DTC. The relative expression of VEGF-C (in comparison with GAPDH) was 0.0049 for DTCs and 0.00070 for benign lesions, medians – 0.0036 and 0.000024 respectively (p<0.0001). Conclusions Measurement of expression VEGF-C on the mRNA level in washouts from FNAB is more useful than more commonly investigated VEGF-A. Measurement of VEGF-C in FNAB washouts do not allow for fully reliable differentiation of benign and malignant thyroid nodules and should be interpreted carefully. Further studies on larger groups are indicated. However, measurement of VEGF-C on mRNA level can bring important information without exposing patient for additional risk and invasive procedures.
Collapse
Affiliation(s)
- Kosma Woliński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
- * E-mail:
| | - Adam Stangierski
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Edyta Gurgul
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Elzbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Biczysko
- Department of General, Gastroenterological and Endocrine Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
29
|
Rahman MA, Salajegheh A, Smith RA, Lam AKY. MicroRNA-126 suppresses proliferation of undifferentiated (BRAF(V600E) and BRAF(WT)) thyroid carcinoma through targeting PIK3R2 gene and repressing PI3K-AKT proliferation-survival signalling pathway. Exp Cell Res 2015; 339:342-350. [PMID: 26384552 DOI: 10.1016/j.yexcr.2015.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/04/2015] [Accepted: 09/13/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND The objectives of this study are to investigate the expression of miR-126 and evaluate its effect on proliferation in undifferentiated thyroid carcinoma. METHODS miR-126 expression of undifferentiated thyroid carcinoma cell lines 8505C (BRAF(V600E/V600E)), BHT-101 (BRAF(V600E/WT)) and MB-1 (BRAF(WT/WT)) were quantified with q-PCR. These cell lines were transiently transfected with exogenous miR-126 (mimic). Following transfection, proliferation effects were observed through MTS proliferation assay and colony formation abilities. Immunofluorescence imaging and Western blot assay were also done to check target proteins expression. RESULTS Under-expression (p<0.05) of miR-126 was noted in BRAF(V600E) mutated undifferentiated thyroid carcinoma cells (8505C and BHT-101), but no change in expression was noted in non BRAF(V600E) mutated undifferentiated thyroid carcinoma cells (MB-1). In addition, a 30-50% drop in proliferation ability and a 35-45% reduction in colony formation capability were noticed in miR-126 mimic transfected group when compared to control group. Furthermore, immunofluorescence images showed reduced expression of p85β and p-AKT protein in miR-126 mimic transfected cells when compared to un-transfected cells. Also, Western blot analysis revealed a 34-40% suppression of p85β protein and a 21-53% drop in active AKT kinase (p-AKT) protein in miR-126 mimic transfected group when compared to control group. CONCLUSIONS Expression of miR-126 was down-regulated in BRAF(V600E) mutated undifferentiated thyroid carcinoma. In addition, miR-126 was found to act as proliferation suppressor targeting PIK3R2 gene and reducing p85β (a regulatory subunit of PI3K kinase) protein translation and lower AKT kinase activity. Therefore, miR-126 could be a potential therapeutic tool in the treatment of undifferentiated thyroid carcinoma.
Collapse
Affiliation(s)
- Md Atiqur Rahman
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; Genomics Research Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Alfred King-yin Lam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; Pathology Queensland and Gold Coast University Hospital, Gold Coast, Queensland, Australia.
| |
Collapse
|
30
|
Salajegheh A, Vosgha H, Md Rahman A, Amin M, Smith RA, Lam AKY. Modulatory role of miR-205 in angiogenesis and progression of thyroid cancer. J Mol Endocrinol 2015; 55:183-196. [PMID: 26342107 DOI: 10.1530/jme-15-0182] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2015] [Indexed: 01/05/2023]
Abstract
miR-205 plays a crucial role in angiogenesis and has been found in association with several types of cancers. The aims of this study were to investigate the clinical and functional roles of miR-205 on as the major initiator and modulator of angiogenesis in thyroid cancer. 101 thyroid carcinomas, including 51 conventional and 37 follicular variants of papillary thyroid carcinomas, and 13 undifferentiated thyroid carcinomas in addition to 13 lymph nodes with metastatic thyroid carcinoma were recruited to be compared with 14 nodular goitre and seven normal thyroid tissues. Five thyroid carcinoma cell lines, of papillary and undifferentiated origin with and without history of metastasis, were also used. Expression of vascular endothelial growth factor A (VEGFA) and miR-205 were measured and exogenous miR-205 were transfected to observe the changes of VEGFA (by immunofluorescence and western blot techniques). Proliferation assay, cell cycle analysis and apoptosis assays were also used to evaluate the role of miR-205 in these events. Significant under-expression of miR-205 and over-expression of VEGFA mRNA and protein were noticed in thyroid cancer tissues and cell lines compared to normal thyroid control. Transfection of miR-205 into the cancer cell lines caused significant reduction of VEGFA protein and significant inhibition in cell proliferation, arrest in G0-G1 of the cell cycle and promotion of total apoptosis (P<0.05). The angiogenic and tumour-suppressive roles of miRNA-205 were demonstrated for the first time in thyroid cancer. The current experiments provided specific information on the functional consequences of VEGF manipulation via miRNA on cancer.
Collapse
Affiliation(s)
- Ali Salajegheh
- Cancer Molecular PathologySchool of Medicine, Griffith Medical School, Menzies Health Institute Queensland, Gold Coast Campus, Gold Coast, Queensland 4222, AustraliaFaculty of HealthInstitute of Health and Biomedical Innovation, Genomics Research Centre, Queensland University of Technology, Brisbane, Queensland, AustraliaPathology Queensland and Gold Coast University HospitalGold Coast, Queensland, Australia
| | - Haleh Vosgha
- Cancer Molecular PathologySchool of Medicine, Griffith Medical School, Menzies Health Institute Queensland, Gold Coast Campus, Gold Coast, Queensland 4222, AustraliaFaculty of HealthInstitute of Health and Biomedical Innovation, Genomics Research Centre, Queensland University of Technology, Brisbane, Queensland, AustraliaPathology Queensland and Gold Coast University HospitalGold Coast, Queensland, Australia
| | - Atiqur Md Rahman
- Cancer Molecular PathologySchool of Medicine, Griffith Medical School, Menzies Health Institute Queensland, Gold Coast Campus, Gold Coast, Queensland 4222, AustraliaFaculty of HealthInstitute of Health and Biomedical Innovation, Genomics Research Centre, Queensland University of Technology, Brisbane, Queensland, AustraliaPathology Queensland and Gold Coast University HospitalGold Coast, Queensland, Australia
| | - Moein Amin
- Cancer Molecular PathologySchool of Medicine, Griffith Medical School, Menzies Health Institute Queensland, Gold Coast Campus, Gold Coast, Queensland 4222, AustraliaFaculty of HealthInstitute of Health and Biomedical Innovation, Genomics Research Centre, Queensland University of Technology, Brisbane, Queensland, AustraliaPathology Queensland and Gold Coast University HospitalGold Coast, Queensland, Australia
| | - Robert Anthony Smith
- Cancer Molecular PathologySchool of Medicine, Griffith Medical School, Menzies Health Institute Queensland, Gold Coast Campus, Gold Coast, Queensland 4222, AustraliaFaculty of HealthInstitute of Health and Biomedical Innovation, Genomics Research Centre, Queensland University of Technology, Brisbane, Queensland, AustraliaPathology Queensland and Gold Coast University HospitalGold Coast, Queensland, Australia Cancer Molecular PathologySchool of Medicine, Griffith Medical School, Menzies Health Institute Queensland, Gold Coast Campus, Gold Coast, Queensland 4222, AustraliaFaculty of HealthInstitute of Health and Biomedical Innovation, Genomics Research Centre, Queensland University of Technology, Brisbane, Queensland, AustraliaPathology Queensland and Gold Coast University HospitalGold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular PathologySchool of Medicine, Griffith Medical School, Menzies Health Institute Queensland, Gold Coast Campus, Gold Coast, Queensland 4222, AustraliaFaculty of HealthInstitute of Health and Biomedical Innovation, Genomics Research Centre, Queensland University of Technology, Brisbane, Queensland, AustraliaPathology Queensland and Gold Coast University HospitalGold Coast, Queensland, Australia Cancer Molecular PathologySchool of Medicine, Griffith Medical School, Menzies Health Institute Queensland, Gold Coast Campus, Gold Coast, Queensland 4222, AustraliaFaculty of HealthInstitute of Health and Biomedical Innovation, Genomics Research Centre, Queensland University of Technology, Brisbane, Queensland, AustraliaPathology Queensland and Gold Coast University HospitalGold Coast, Queensland, Australia
| |
Collapse
|
31
|
Xu WW, Li B, Lam AKY, Tsao SW, Law SYK, Chan KW, Yuan QJ, Cheung ALM. Targeting VEGFR1- and VEGFR2-expressing non-tumor cells is essential for esophageal cancer therapy. Oncotarget 2015; 6:1790-805. [PMID: 25595897 PMCID: PMC4359332 DOI: 10.18632/oncotarget.2781] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/19/2014] [Indexed: 11/25/2022] Open
Abstract
Increasing appreciation of tumor heterogeneity and the tumor-host interaction has stimulated interest in developing novel therapies that target both tumor cells and tumor microenvironment. Bone marrow derived cells (BMDCs) constitute important components of the tumor microenvironment. In this study, we aim to investigate the significance of VEGFR1- and VEGFR2-expressing non-tumor cells, including BMDCs, in esophageal cancer (EC) progression and in VEGFR1/VEGFR2-targeted therapies. Here we report that VEGFR1 or VEGFR2 blockade can significantly attenuate VEGF-induced Src and Erk signaling, as well as the proliferation and migration of VEGFR1⁺ and VEGFR2⁺ bone marrow cells and their pro-invasive effect on cancer cells. Importantly, our in vivo data show for the first time that systemic blockade of VEGFR1⁺ or VEGFR2⁺ non-tumor cells with neutralizing antibodies is sufficient to significantly suppress esophageal tumor growth, angiogenesis and metastasis in mice. Moreover, our tissue microarray study of human EC clinical specimens showed the clinicopathological significance of VEGFR1 and VEGFR2 in EC, which suggest that anti-VEGFR1/VEGFR2 therapies may be particularly beneficial for patients with aggressive EC. In conclusion, this study demonstrates the important contributions of VEGFR1⁺ and VEGFR2⁺ non-tumor cells in esophageal cancer progression, and substantiates the validity of these receptors as therapeutic targets for this deadly disease.
Collapse
Affiliation(s)
- Wen Wen Xu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Bin Li
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China.,Centre for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alfred K Y Lam
- Department of Pathology, Griffith Medical School and Griffith Health Institute, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Sai Wah Tsao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Centre for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Simon Y K Law
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwok Wah Chan
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China.,Centre for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qiu Ju Yuan
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Annie L M Cheung
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China.,Centre for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
32
|
Husain A, Hu N, Sadow PM, Nucera C. Expression of angiogenic switch, cachexia and inflammation factors at the crossroad in undifferentiated thyroid carcinoma with BRAF(V600E). Cancer Lett 2015; 380:577-585. [PMID: 26189429 DOI: 10.1016/j.canlet.2015.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 02/07/2023]
Abstract
Cachexia is the result of complex metabolic alterations which cause morbidity and mortality in patients with advanced cancers including undifferentiated (anaplastic) thyroid carcinoma (ATC). ATC is a lethal disease with limited therapeutic options and unclear etiology for cachexia. We hypothesize that the BRAF(V600E) oncoprotein triggers microvascular endothelial cell tubule formation (in vitro angiogenesis) by means of factors which play a crucial role in angiogenic switch, inflammation/immune response and cachexia. We use human ATC cells and applied multiplex ELISA assay to screen for and measure angiogenic/cachectic and pro-inflammatory factors in the ATC-derived secretome. We find that vemurafenib anti-BRAF(V600E) therapy significantly reduces secreted VEGFA, VEGFC and IL6 protein levels compared to vehicle-treated ATC cells. As a result, the secretome from vemurafenib-treated ATC cells inhibits microvascular endothelial cell-related in vitro angiogenesis. Furthermore, ATC clinical samples express VEGFA, VEGFC and IL6 proteins. Our results suggest that angiogenic/cachectic and pro-inflammatory/immune response factors could play a crucial role in BRAF(V600E)-positive human ATC aggressiveness. Understanding the extent to which microenvironment-associated angiogenic factors participate in cachexia and cancer metabolism in advanced thyroid cancers will reveal new biomarkers and foster novel therapeutic approaches.
Collapse
Affiliation(s)
- Amjad Husain
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Nina Hu
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Cancer Biology and Angiogenesis, Cancer Research Institute (CRI), Cancer Center, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carmelo Nucera
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA; Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Cancer Biology and Angiogenesis, Cancer Research Institute (CRI), Cancer Center, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Abdel-Rahman O. Targeting vascular endothelial growth factor (VEGF) pathway in iodine-refractory differentiated thyroid carcinoma (DTC): from bench to bedside. Crit Rev Oncol Hematol 2014; 94:45-54. [PMID: 25560732 DOI: 10.1016/j.critrevonc.2014.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/21/2014] [Accepted: 11/18/2014] [Indexed: 01/08/2023] Open
Abstract
Thyroid cancer is the most common endocrine malignancy, representing 1% of all human malignancies; its incidence has been escalating worldwide during the last decades. In recent years important molecular pathways contributing to tumor progression and worse survival rates have been identified in iodine-refractory differentiated thyroid carcinoma (DTC) with the consequent development of molecular therapeutics to target these specific oncogenic pathways. For example, a positive correlation has been found between expression of vascular endothelial growth factor (VEGF) and a more aggressive phenotype of DTC. This has led to the widespread adoption of VEGF-targeted therapeutics in the preclinical and clinical settings. In this review we will provide an overview of the different aspects of the use of VEGF-pathway-oriented treatments in iodine-refractory DTC with particular focus on future prospects.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Clinical oncology department, Faculty of medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
34
|
Maroof H, Salajegheh A, Smith RA, Lam AKY. Role of microRNA-34 family in cancer with particular reference to cancer angiogenesis. Exp Mol Pathol 2014; 97:298-304. [PMID: 25102298 DOI: 10.1016/j.yexmp.2014.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023]
Abstract
MicroRNA-34 is involved in pathogenesis in cancer by targeting different tumor-related genes. It could be a biomarker for predicting the prognosis of patients with cancer. In addition, miR-34 is involved in the tumor angiogenesis. Understanding the mechanism of the miR-34 in cancer and tumor angiogenesis will open horizons for development of anti-cancer and anti-angiogenesis drugs.
Collapse
Affiliation(s)
- Hamidreza Maroof
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
35
|
Rahman M, Salajegheh A, Smith R, Lam AY. BRAF inhibitors: From the laboratory to clinical trials. Crit Rev Oncol Hematol 2014; 90:220-232. [DOI: 10.1016/j.critrevonc.2013.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 12/11/2022] Open
|
36
|
Huang Y, Dong W, Li J, Zhang H, Shan Z, Teng W. Differential expression patterns and clinical significance of estrogen receptor-α and β in papillary thyroid carcinoma. BMC Cancer 2014; 14:383. [PMID: 24884830 PMCID: PMC4049482 DOI: 10.1186/1471-2407-14-383] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/26/2014] [Indexed: 02/08/2023] Open
Abstract
Background The incidence of papillary thyroid cancer (PTC) is markedly higher in women than men during the reproductive years. In vitro studies have suggested that estrogen may play an important role in the development and progression of PTC through estrogen receptors (ERs). This study aimed to investigate the expression patterns of the two main ER subtypes, α and β1 (wild-type ERβ), in PTC tissue and their clinical significance. Methods Immunohistochemical staining of thyroid tissue sections was performed to detect ER expression in female patients with PTC (n = 89) and nodular thyroid goiter (NTG; n = 30) using the Elivision™ plus two-step system. The relationships between ER subtype expression and clinicopathological/biological factors were further analyzed. Results The positive percentage and expression levels of ERα were significantly higher in female PTC patients of reproductive age (18–45 years old; n = 50) than age-matched female NTG patients (n = 30), while ERβ1 exhibited the opposite pattern. There was no difference in ERα or ERβ1 expression between female PTC patients of reproductive age and those of advanced reproductive age (>45 years old; n = 39). In the female PTC patients of reproductive age, ERα expression level was positively correlated with that of Ki-67, while ERβ1 was negatively correlated with mutant P53. Furthermore, more patients with exclusively nuclear ERα expression had extrathyroidal extension (ETE) as compared with those with extranuclear ERα localization. VEGF expression was significantly decreased in female PTC patients of reproductive age with only nuclear ERβ1 expression when compared with those with extranuclear ERβ1 localization. In PTC patients of advanced reproductive age, neither ERα nor ERβ1 expression showed any correlation with that of Ki-67, mutant P53, VEGF, tumor size, TNM stage, ETE, or lymph node metastases. Conclusions The differential expression patterns of the two ER subtypes between PTC and NTG indicate that ERα may be a useful immunohistochemical marker for differential diagnosis of PTC. The associations of ER subtype expression with Ki-67, mutant P53, VEGF expression and ETE in female PTC patients of reproductive age suggest that estrogen-activated ERα may mediate stimulatory effects on PTC growth and progression whereas ERβ1 has some inhibitory actions.
Collapse
Affiliation(s)
| | | | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P, R, China.
| | | | | | | |
Collapse
|
37
|
Irani S, Salajegheh A, Gopalan V, Smith RA, Lam AKY. Expression profile of endothelin 1 and its receptor endothelin receptor A in papillary thyroid carcinoma and their correlations with clinicopathologic characteristics. Ann Diagn Pathol 2014; 18:43-48. [PMID: 24332749 DOI: 10.1016/j.anndiagpath.2013.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/08/2013] [Indexed: 01/24/2023]
Abstract
The endothelin axis is a group of signaling molecules and their receptors that have been implicated in vascularization of cancers, with their expression being observed to change in different cancer types. In this research, we examined the expression of endothelin 1 and endothelin receptor A at the protein and messenger RNA (mRNA) levels in 123 papillary thyroid carcinomas and 40 matched lymph nodes with metastatic papillary thyroid carcinomas. We found altered endothelin axis mRNA expression in several clinicopathologic parameters with increased endothelin 1 expression in thyroid papillary carcinoma showing stromal calcification, cancers in men, and primary cancers with lymph node metastases. Increased endothelin receptor A mRNA expression was noted in the larger cancers. There is a significant correlation between expression of endothelin receptor A and endothelin 1 in papillary thyroid carcinoma. Both endothelin receptor A and endothelin 1 mRNA expressions were significantly higher in metastatic carcinoma in the lymph node than in primary thyroid cancer. The metastatic carcinoma in the lymph node had increased expression compared with matched primary thyroid carcinoma. Expressions of endothelin 1 and endothelin receptor A were also documented as being high at the protein level. Our results indicate that in thyroid cancer, endothelin 1 and endothelin receptor A are associated with growth in advanced stages and lymph node metastases, likely through known angiogenic linkages. Targeting the endothelin axis may be useful in planning angiogenesis therapy for thyroid cancer.
Collapse
Affiliation(s)
- Soussan Irani
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
38
|
Chang DF, Xu ZQ, Sun B. Relationship between VEGF protein expression and lymph node metastasis in papillary thyroid carcinoma among Asians: a meta-analysis. Tumour Biol 2014; 35:5511-8. [PMID: 24557543 DOI: 10.1007/s13277-014-1725-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/03/2014] [Indexed: 01/04/2023] Open
Abstract
We carried out the current meta-analysis of relevant cohort studies in an attempt to investigate the relationships between vascular endothelial growth factor (VEGF) protein expression and lymph node (LN) metastasis in papillary thyroid carcinoma (PTC) among Asians. A range of electronic databases were searched, including Web of Science (1945∼2013), the Cochrane Library Database (Issue 12, 2013), MEDLINE (1966∼2013), EMBASE (1980∼2013), CINAHL (1982∼2013), and Chinese Biomedical Database (CBM) (1982~2013) with cross-referencing without language restrictions. Meta-analysis was conducted using the STATA 12.0 software. Crude odds ratio (OR) with their 95 % confidence interval (95 %CI) was calculated. Twelve clinical cohort studies with a total of 1,045 PTC patients were included in our meta-analysis, The results of our meta-analysis revealed that patients with VEGF-positive tumors had a 3.02-fold higher risk of LN metastasis than that of patients with VEGF-negative tumors (OR=3.02, 95 %CI=2.05~4.43, P<0.001). Furthermore, subgroup analysis by country suggested that VEGF-positive expression was associated with an increased risk of LN metastasis in PTC patients among Chinese populations (OR=3.33, 95 %CI=2.30~4.83, P<0.001), but not among Korean, Turkish, and Japanese populations (all P>0.05). Our findings support the view that VEGF protein expression may be correlated with LN metastasis in PTC patients, especially among Chinese populations.
Collapse
Affiliation(s)
- De-Feng Chang
- Department of General Surgery, Heilongjiang Hospital, Zhongshan Road No. 82, Xiangfang District, Harbin, 150000, People's Republic of China,
| | | | | |
Collapse
|
39
|
Irani S, Salajegheh A, Smith RA, Lam AKY. A review of the profile of endothelin axis in cancer and its management. Crit Rev Oncol Hematol 2014; 89:314-321. [PMID: 24035584 DOI: 10.1016/j.critrevonc.2013.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/18/2013] [Accepted: 08/22/2013] [Indexed: 12/25/2022] Open
Abstract
The endothelins and their associated receptors are important controllers of vascular growth, inflammation and vascular tone. In cancer, they have roles in the control of numerous factors in cancer development and progression, including angiogenesis, stromal reaction, epithelial mesenchymal transitions, apoptosis, invasion, metastases and drug resistance. Also, we consider current information on the role of this signalling system in cancer and examine the state of the current cell, animal and clinical trials utilizing endothelin targeted drugs for cancer management. Although targeting the endothelin axis in cell lines and xenografts show some promise in retarding cellular growth, results from limited clinical trials in prostatic cancer are less encouraging and did not offer significant survival benefit. The ability to target both cancer cells and vasculature via endothelin is an important consideration that necessitates the further refining of therapeutic strategies as we continue to explore the possibilities of the endothelin axis in cancer treatment.
Collapse
Affiliation(s)
- Soussan Irani
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
40
|
Ebrahimi F, Gopalan V, Smith RA, Lam AKY. miR-126 in human cancers: Clinical roles and current perspectives. Exp Mol Pathol 2014; 96:98-107. [DOI: 10.1016/j.yexmp.2013.12.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/03/2013] [Indexed: 12/16/2022]
|
41
|
Rahman M, Salajegheh A, Smith R, Lam AY. B-Raf mutation: A key player in molecular biology of cancer. Exp Mol Pathol 2013; 95:336-42. [DOI: 10.1016/j.yexmp.2013.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 12/21/2022]
|