1
|
Yu H, Wang K, Yang Z, Li X, Liu S, Wang L, Zhang H. A ferritin protein is involved in the development and reproduction of the whitefly, Bemisia tabaci. ENVIRONMENTAL ENTOMOLOGY 2023; 52:750-758. [PMID: 37318359 DOI: 10.1093/ee/nvad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
Ferritins are conserved iron-binding proteins that exist in most living organisms and play an essential role in the maintenance of cellular iron homeostasis. Although ferritin has been studied in many species, little is known about its role in the whitefly, Bemisia tabaci. In this study, we identified an iron-binding protein from B. tabaci and named it BtabFer1. The full-length cDNA of BtabFer1 is 1,043 bp and encodes a protein consisting of 224 amino acids with a deduced molecular weight of 25.26 kDa, and phylogenetic analysis shows that BtabFer1 is conserved among Hemiptera insects. The expression levels of BtabFer1 in different developmental stages and tissues were analyzed by real-time PCR, and results showed that BtabFer1 was ubiquitously expressed at all developmental stages and in all examined tissues. The RNAi-mediated knockdown of BtabFer1 caused a significant reduction in survival rate, egg production, and egg hatching rate of whiteflies. Knockdown of BtabFer1 also inhibited the transcription of genes in the juvenile hormone signal transduction pathway. Taken together, these results suggest that BtabFer1 plays a critical role in the development and reproduction of whiteflies. This study can broaden our understanding of ferritin in insect fecundity and development, as well as provide baseline data for future studies.
Collapse
Affiliation(s)
- Hao Yu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Kui Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Zhifang Yang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Xiang Li
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Shunxiao Liu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
- College of Agrarian Technology and Natural Resources, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Liuhao Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Hongwei Zhang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| |
Collapse
|
2
|
Attardo GM, Benoit JB, Michalkova V, Kondragunta A, Baumann AA, Weiss BL, Malacrida A, Scolari F, Aksoy S. Lipid metabolism dysfunction following symbiont elimination is linked to altered Kennedy pathway homeostasis. iScience 2023; 26:107108. [PMID: 37534171 PMCID: PMC10391724 DOI: 10.1016/j.isci.2023.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/27/2023] [Accepted: 06/08/2023] [Indexed: 08/04/2023] Open
Abstract
Lipid metabolism is critical for insect reproduction, especially for species that invest heavily in the early developmental stages of their offspring. The role of symbiotic bacteria during this process is understudied but likely essential. We examined the role of lipid metabolism during the interaction between the viviparous tsetse fly (Glossina morsitans morsitans) and its obligate endosymbiotic bacteria (Wigglesworthia glossinidia) during tsetse pregnancy. We observed increased CTP:phosphocholine cytidylyltransferase (cct1) expression during pregnancy, which is critical for phosphatidylcholine biosynthesis in the Kennedy pathway. Experimental removal of Wigglesworthia impaired lipid metabolism via disruption of the Kennedy pathway, yielding obese mothers whose developing progeny starve. Functional validation via experimental cct1 suppression revealed a phenotype similar to females lacking obligate Wigglesworthia symbionts. These results indicate that, in Glossina, symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity.
Collapse
Affiliation(s)
- Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Entomology and Nematology, Division of Agriculture and Natural Resources, University of California Davis, Davis, CA 95616, USA
| | - Joshua B. Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alekhya Kondragunta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Aaron A. Baumann
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anna Malacrida
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Institute of Molecular Genetics (IGM), Italian National Research Council (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
3
|
Shen Y, Chen YZ, Zhang CX. RNAi-mediated silencing of ferritin genes in the brown planthopper Nilaparvata lugens affects survival, growth and female fecundity. PEST MANAGEMENT SCIENCE 2021; 77:365-377. [PMID: 32741141 DOI: 10.1002/ps.6026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/24/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The brown planthopper (BPH), Nilaparvata lugens, is the most destructive rice insect pest. To exploit potential target genes for applications in transgenic rice to control this sap-sucking insect pest, three ferritin genes were functionally characterized in this study. RESULTS In this study, three ferritin genes, that is, ferritin 1 Heavy Chain (NlFer1), ferritin 2 Light Chain (NlFer2) and soma ferritin (Nlsoma-Fer), were identified from BPH. Tissue-specific analyses showed that all three genes were highly expressed in the gut. Although double-stranded RNA injection-mediated RNA inference (RNAi) of Nlsoma-Fer expression resulted in only < 14% mortality in BPH, knockdown of NlFer1 or NlFer2 led to retarded growth and 100% mortality in young nymphs, and downregulation of NlFer1 and NlFer2 in newly emerged female adults caused undeveloped ovaries and severely inhibited oocyte growth, resulting in extremely low fecundity and a zero hatching rate. Knockdown of NlFer1 and NlFer2 caused similar phenotypes in BPH, indicating that they function together, as in many other animals. The results demonstrated that NlFer1 and NlFer2 were essential for BPH development and reproduction. BPHs showed high sensitivity to both dsNlFer1 and dsNlFer2, and injection of only 0.625 ng dsNlFer1 per BPH resulted in 100% mortality. Additionally, the effectiveness of feeding dsNlFer1 and dsNlFer2 to BPH nymphs was further proven. CONCLUSION NlFer1 and NlFer2 are essential for BPH development and reproduction, and the insect is highly sensitive to their depletion, suggesting that the two gut-highly-expressed genes are promising candidates for application in RNAi-based control of this destructive pest.
Collapse
Affiliation(s)
- Yan Shen
- Institute of Insect Science, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuan-Zhi Chen
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Husnik F, Hypsa V, Darby A. Insect-Symbiont Gene Expression in the Midgut Bacteriocytes of a Blood-Sucking Parasite. Genome Biol Evol 2020; 12:429-442. [PMID: 32068830 PMCID: PMC7197495 DOI: 10.1093/gbe/evaa032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Animals interact with a diverse array of both beneficial and detrimental microorganisms. In insects, these symbioses in many cases allow feeding on nutritionally unbalanced diets. It is, however, still not clear how are obligate symbioses maintained at the cellular level for up to several hundred million years. Exact mechanisms driving host-symbiont interactions are only understood for a handful of model species and data on blood-feeding hosts with intracellular bacteria are particularly scarce. Here, we analyzed interactions between an obligately blood-sucking parasite of sheep, the louse fly Melophagus ovinus, and its obligate endosymbiont, Arsenophonus melophagi. We assembled a reference transcriptome for the insect host and used dual RNA-Seq with five biological replicates to compare expression in the midgut cells specialized for housing symbiotic bacteria (bacteriocytes) to the rest of the gut (foregut-hindgut). We found strong evidence for the importance of zinc in the system likely caused by symbionts using zinc-dependent proteases when acquiring amino acids, and for different immunity mechanisms controlling the symbionts than in closely related tsetse flies. Our results show that cellular and nutritional interactions between this blood-sucking insect and its symbionts are less intimate than what was previously found in most plant-sap sucking insects. This finding is likely interconnected to several features observed in symbionts in blood-sucking arthropods, particularly their midgut intracellular localization, intracytoplasmic presence, less severe genome reduction, and relatively recent associations caused by frequent evolutionary losses and replacements.
Collapse
Affiliation(s)
- Filip Husnik
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Vaclav Hypsa
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alistair Darby
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| |
Collapse
|
5
|
Lu ZJ, Xie YX, Yu HZ, Toufeeq S, Wang J, Huang YL, Li NY, Ouyang ZG. Identification and functional analysis of an iron-binding protein, ferritin heavy chain subunit, from the swallowtail butterfly, Papilio xuthus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21592. [PMID: 31276235 DOI: 10.1002/arch.21592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ferritin, which is ubiquitous among all living organisms, plays a crucial role in maintaining iron homeostasis, immune response, and detoxification. In the present research, we identified an iron-binding protein, ferritin heavy chain subunit, from Papilio xuthus and named PxFerHCH. The complete complementary DNA of PxFerHCH was 1,252 bp encoding a sequence of 211 amino acids, which includes an iron-responsive element. Phylogenetic analysis showed that PxFerHCH is clustered with Manduca sexta and Galleria mellonella ferritin heavy chain subunits. Expression levels of PxFerHCH in various tissues were analyzed by reverse transcription quantitative polymerase chain reaction, and the results exhibited that PxFerHCH was expressed in all tissues with the highest expression in the fat body. The relative expression level of PxFerHCH in response to bacterial (Escherichia coli and Staphylococcus aureus) challenges sharply increased by about 12 hr postinfection (hpi) and then decreased at 24 hpi. In addition, the iron-binding capacity and antioxidation activity of recombinant PxFerHCH protein were also investigated. These results reveal that PxFerHCH might play an important role in defense against bacterial infection.
Collapse
Affiliation(s)
- Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Yan-Xin Xie
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Shahzad Toufeeq
- College of Life Science, Anhui Agricultural University, Hefei, People's Republic of China
| | - Jie Wang
- College of Life Science, Anhui Agricultural University, Hefei, People's Republic of China
| | - Yu-Ling Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Ning-Yan Li
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Zhi-Gang Ouyang
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| |
Collapse
|
6
|
Ding TB, Li J, Chen EH, Niu JZ, Chu D. Transcriptome Profiling of the Whitefly Bemisia tabaci MED in Response to Single Infection of Tomato yellow leaf curl virus, Tomato chlorosis virus, and Their Co-infection. Front Physiol 2019; 10:302. [PMID: 31001125 PMCID: PMC6457337 DOI: 10.3389/fphys.2019.00302] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) and Tomato chlorosis virus (ToCV) are two of the most devastating cultivated tomato viruses, causing significant crop losses worldwide. As the vector of both TYLCV and ToCV, the whitefly Bemisia tabaci Mediterranean (MED) is mainly responsible for the rapid spread and mixed infection of TYLCV and ToCV in China. However, little is known concerning B. tabaci MED's molecular response to TYLCV and ToCV infection or their co-infection. We determined the transcriptional responses of the whitefly MED to TYLCV infection, ToCV infection, and TYLCV&ToCV co-infection using Illumina sequencing. In all, 78, 221, and 60 differentially expressed genes (DEGs) were identified in TYLCV-infected, ToCV-infected, and TYLCV&ToCV co-infected whiteflies, respectively, compared with non-viruliferous whiteflies. Differentially regulated genes were sorted according to their roles in detoxification, stress response, immune response, transport, primary metabolism, cell function, and total fitness in whiteflies after feeding on virus-infected tomato plants. Alterations in the transcription profiles of genes involved in transport and energy metabolism occurred between TYLCV&ToCV co-infection and single infection with TYLCV or ToCV; this may be associated with the adaptation of the insect vector upon co-infection of the two viruses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses demonstrated that the single infection with TYLCV or ToCV and the TYLCV&ToCV co-infection could perturb metabolic processes and metabolic pathways. Taken together, our results provide basis for further exploration of the molecular mechanisms of the response to TYLCV, ToCV single infection, and TYLCV&ToCV co-infection in B. tabaci MED, which will add to our knowledge of the interactions between plant viruses and insect vectors.
Collapse
Affiliation(s)
- Tian-Bo Ding
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Procházka E, Michalková V, Daubnerová I, Roller L, Klepsatel P, Žitňan D, Tsiamis G, Takáč P. Gene expression in reproductive organs of tsetse females - initial data in an approach to reduce fecundity. BMC Microbiol 2018; 18:144. [PMID: 30470199 PMCID: PMC6251150 DOI: 10.1186/s12866-018-1294-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Tsetse flies are vectors of African trypanosomes, and their vectorial capacity results in a major public health emergency and vast economic losses in sub-Saharan Africa. Given the limited ability of trypanosome prevention and eradication, tsetse vectors remain major targets of control efforts. Larvae of all three instars are developed in mothers' uteri, nourished through milk, and 'larviposited' shortly before pupation. The past few years have witnessed the emergence of approaches based on knockdown of genes involved in milk production, resulting in a significant reduction of fecundity. RESULTS In order to identify further genes applicable in the control of tsetse flies, we determined the expression of protein-coding genes in ovaries and uteri from both virgin and heavily pregnant Glossina morsitans morsitans females. Comparison of expression profiles allowed us to identify candidate genes with increased expression in pregnant individuals. Lists with the highest increases include genes involved in oocyte and embryonic development, or nourishment. Maximum ovarian fold change does not exceed 700, while the highest uterine fold change reaches to more than 4000. Relatively high fold changes of two neuropeptide receptors (for corazonin and myosuppressin) propose the corresponding genes alternative targets. CONCLUSIONS Given the higher fold changes in the uterus, targeting gene expression in this tissue may result in a more evident reduction of fecundity. However, ovaries should not be neglected, as manifested by several genes with top fold changes involved in early developmental stages. Apart from focusing on the highest fold changes, neuropeptide receptors with moderate increases in expression should be also verified as targets, given their roles in mediating the tissue control. However, this data needs to be considered initial, and the potential of these genes in affecting female fecundity needs to be verified experimentally.
Collapse
Affiliation(s)
- Emanuel Procházka
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Veronika Michalková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, 2 Georgiou Seferi St, Agrinio, Greece
| | - Peter Takáč
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia. .,Scientica, Ltd., Hybešova 33, 831 06, Bratislava, Slovakia.
| |
Collapse
|
8
|
Benoit JB, Michalkova V, Didion EM, Xiao Y, Baumann AA, Attardo GM, Aksoy S. Rapid autophagic regression of the milk gland during involution is critical for maximizing tsetse viviparous reproductive output. PLoS Negl Trop Dis 2018; 12:e0006204. [PMID: 29385123 PMCID: PMC5809099 DOI: 10.1371/journal.pntd.0006204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/12/2018] [Accepted: 01/02/2018] [Indexed: 12/03/2022] Open
Abstract
Tsetse flies are important vectors of human and animal trypanosomiasis. Ability to reduce tsetse populations is an effective means of disease control. Lactation is an essential component of tsetse’s viviparous reproductive physiology and requires a dramatic increase in the expression and synthesis of milk proteins by the milk gland organ in order to nurture larval growth. In between each gonotrophic cycle, tsetse ceases milk production and milk gland tubules undergo a nearly two-fold reduction in width (involution). In this study, we examined the role autophagy plays during tsetse fly milk gland involution and reproductive output. Autophagy genes show elevated expression in tissues associated with lactation, immediately before or within two hours post-parturition, and decline at 24-48h post-parturition. This expression pattern is inversely correlated with that of the milk gland proteins (lactation-specific protein coding genes) and the autophagy inhibitor fk506-bp1. Increased expression of Drosophila inhibitor of apoptosis 1, diap1, was also observed in the milk gland during involution, when it likely prevents apoptosis of milk gland cells. RNAi-mediated knockdown of autophagy related gene 8a (atg8a) prevented rapid milk gland autophagy during involution, prolonging gestation, and reducing fecundity in the subsequent gonotrophic cycle. The resultant inhibition of autophagy reduced the recovery of stored lipids during the dry (non-lactating) periods by 15–20%. Ecdysone application, similar to levels that occur immediately before birth, induced autophagy, and increased milk gland involution even before abortion. This suggests that the ecdysteroid peak immediately preceding parturition likely triggers milk gland autophagy. Population modeling reveals that a delay in involution would yield a negative population growth rate. This study indicates that milk gland autophagy during involution is critical to restore nutrient reserves and allow efficient transition between pregnancy cycles. Targeting post-birth phases of reproduction could be utilized as a novel mechanism to suppress tsetse populations and reduce trypanosomiasis. Tsetse flies are vectors for trypanosomes that cause both African sleeping sickness in humans and Nagana in animals. The reduction of tsetse populations is the most efficient way to reduce the prevalence of this economically important disease with current control methods including pesticide application, traps, and sterile insect techniques. Tsetse pregnancy and milk production represent a species-specific target for population control and milk gland transition during each larval growth cycle could represent a novel target for tsetse control. Within one day after birth, the milk gland organ, essential for provisioning nutrients to the intrauterine larva, undergoes involution marked by an ecdysone driven increase in autophagy that allows breakdown of this gland. Inhibiting the process of autophagy prevents the timely transition from the lactation phase to the dry phase, triggering a delay in subsequent pregnancy cycle. This misregulation of milk gland involution leads to an overall decrease in the number of offspring that each female can produce per lifetime. This study has determined the molecular components of this process, and reveals new targets of interference for vector control.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States.,Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States.,Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Biological Sciences, Florida International University, Miami, Florida, United States
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States
| | - Yanyu Xiao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, United States
| | - Aaron A Baumann
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States
| | - Geoffrey M Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States.,Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States
| |
Collapse
|
9
|
Abry MF, Kimenyi KM, Masiga D, Kulohoma BW. Comparative genomics identifies male accessory gland proteins in five Glossina species. Wellcome Open Res 2017; 2:73. [PMID: 29260004 PMCID: PMC5721568 DOI: 10.12688/wellcomeopenres.12445.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 01/07/2023] Open
Abstract
Accessory gland proteins (ACPs) are important reproductive proteins produced by the male accessory glands (MAGs) of most insect species. These proteins are essential for male insect fertility, and are transferred alongside semen to females during copulation. ACPs are poorly characterized in
Glossina species (tsetse fly), the principal vector of the parasite that causes life-threatening Human African Trypanosomiasis and Animal trypanosomiasis in endemic regions in Africa. The tsetse fly has a peculiar reproductive cycle because of the absence of oviposition. Females mate once and store sperm in a spermathecal, and produce a single fully developed larva at a time that pupates within minutes of exiting their uterus. This slow reproductive cycle, compared to other insects, significantly restricts reproduction to only 3 to 6 larvae per female lifespan. This unique reproductive cycle is an attractive vector control strategy entry point. We exploit comparative genomics approaches to explore the diversity of ACPs in the recently available whole genome sequence data from five tsetse fly species (
Glossina morsitans, G. austeni, G. brevipalpis, G. pallidipes and
G. fuscipes). We used previously described ACPs in
Drosophila melanogaster and
Anopheles gambiae as reference sequences. We identified 36, 27, 31, 29 and 33 diverse ACP orthologous genes in
G. austeni, G. brevipalpis, G. fuscipes, G. pallidipes and
G. morsitans genomes respectively, which we classified into 21 functional classes. Our findings provide genetic evidence of MAG proteins in five recently sequenced
Glossina genomes. It highlights new avenues for molecular studies that evaluate potential field control strategies of these important vectors of human and animal disease.
Collapse
Affiliation(s)
- Muna F Abry
- Center for Biotechnology and Bioinformatics, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,International Centre for Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya
| | - Kelvin M Kimenyi
- Center for Biotechnology and Bioinformatics, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,International Centre for Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya
| | - Daniel Masiga
- International Centre for Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya
| | - Benard W Kulohoma
- Center for Biotechnology and Bioinformatics, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,International Centre for Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya
| |
Collapse
|
10
|
Yu HZ, Zhang SZ, Ma Y, Fei DQ, Li B, Yang LA, Wang J, Li Z, Muhammad A, Xu JP. Molecular Characterization and Functional Analysis of a Ferritin Heavy Chain Subunit from the Eri-Silkworm, Samia cynthia ricini. Int J Mol Sci 2017; 18:ijms18102126. [PMID: 29036914 PMCID: PMC5666808 DOI: 10.3390/ijms18102126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Ferritins are conserved iron-binding proteins that are primarily involved in iron storage, detoxification and the immune response. Despite the importance of ferritin in organisms, little is known about their roles in the eri-silkworm (Samia cynthia ricini). We previously identified a ferritin heavy chain subunit named ScFerHCH in the S. c. ricini transcriptome database. The full-length S. c. ricini ferritin heavy chain subunit (ScFerHCH) was 1863 bp and encoded a protein of 231 amino acids with a deduced molecular weight of 25.89 kDa. Phylogenetic analysis revealed that ScFerHCH shared a high amino acid identity with the Bombyx mori and Danaus plexippus heavy chain subunits. Higher ScFerHCH expression levels were found in the silk gland, fat body and midgut of S. c. ricini by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Injection of Staphylococcus aureus and Pseudomonas aeruginosa was associated with an upregulation of ScFerHCH in the midgut, fat body and hemolymph, indicating that ScFerHCH may contribute to the host’s defense against invading pathogens. In addition, the anti-oxidation activity and iron-binding capacity of recombinant ScFerHCH protein were examined. Taken together, our results suggest that the ferritin heavy chain subunit from eri-silkworm may play critical roles not only in innate immune defense, but also in organismic iron homeostasis.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Dong-Qiong Fei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Li-Ang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Zhen Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Azharuddin Muhammad
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
11
|
Abry MF, Kimenyi KM, Masiga DK, Kulohoma BW. Comparative genomics identifies male accessory gland proteins in five Glossina species. Wellcome Open Res 2017; 2:73. [DOI: 10.12688/wellcomeopenres.12445.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2017] [Indexed: 11/20/2022] Open
Abstract
Accessory gland proteins (ACPs) are important reproductive proteins produced by the male accessory glands (MAGs) of most insect species. These proteins are essential for male insect fertility, and are transferred alongside semen to females during copulation. ACPs are poorly characterized in Glossina species (tsetse fly), the principal vector of the parasite that causes life-threatening Human African Trypanosomiasis and Animal trypanosomiasis in endemic regions in Africa. The tsetse fly has a peculiar reproductive cycle because of the absence of oviposition. Females mate once and store sperm in a spermathecal, and produce a single fully developed larva at a time that pupates within minutes of exiting their uterus. This slow reproductive cycle, compared to other insects, significantly restricts reproduction to only 3 to 6 larvae per female lifespan. This unique reproductive cycle is an attractive vector control strategy entry point. We exploit comparative genomics approaches to explore the diversity of ACPs in the recently available whole genome sequence data from five tsetse fly species (Glossina morsitans, G. austeni, G. brevipalpis, G. pallidipes and G. fuscipes). We used previously described ACPs in Drosophila melanogaster and Anopheles gambiae as reference sequences. We identified 36, 27, 31, 29 and 33 diverse ACP orthologous genes in G. austeni, G. brevipalpis, G. fuscipes, G. pallidipes and G. morsitans genomes respectively, which we classified into 21 functional classes. Our findings provide genetic evidence of MAG proteins in five recently sequenced Glossina genomes. It provides new avenues for molecular studies that evaluate potential field control strategies of these important vectors of human and animal disease.
Collapse
|
12
|
Chen J, Wu FH, Shang YT, Wang WH, Hu WJ, Simon M, Liu X, Shangguan ZP, Zheng HL. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6605-22. [PMID: 26208645 PMCID: PMC4623679 DOI: 10.1093/jxb/erv368] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China. Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Fei-Hua Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China. College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, P.R. China
| | - Yu-Ting Shang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Wen-Hua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Wen-Jun Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Martin Simon
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Xiang Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Zhou-Ping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China.
| |
Collapse
|
13
|
Kola VSR, Renuka P, Madhav MS, Mangrauthia SK. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Front Physiol 2015; 6:119. [PMID: 25954206 PMCID: PMC4406143 DOI: 10.3389/fphys.2015.00119] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) is a mechanism of homology dependent gene silencing present in plants and animals. It operates through 21-24 nucleotides small RNAs which are processed through a set of core enzymatic machinery that involves Dicer and Argonaute proteins. In recent past, the technology has been well appreciated toward the control of plant pathogens and insects through suppression of key genes/proteins of infecting organisms. The genes encoding key enzymes/proteins with the great potential for developing an effective insect control by RNAi approach are actylcholinesterase, cytochrome P450 enzymes, amino peptidase N, allatostatin, allatotropin, tryptophan oxygenase, arginine kinase, vacuolar ATPase, chitin synthase, glutathione-S-transferase, catalase, trehalose phosphate synthase, vitellogenin, hydroxy-3-methylglutaryl coenzyme A reductase, and hormone receptor genes. Through various studies, it is demonstrated that RNAi is a reliable molecular tool which offers great promises in meeting the challenges imposed by crop insects with careful selection of key enzymes/proteins. Utilization of RNAi tool to target some of these key proteins of crop insects through various approaches is described here. The major challenges of RNAi based insect control such as identifying potential targets, delivery methods of silencing trigger, off target effects, and complexity of insect biology are very well illustrated. Further, required efforts to address these challenges are also discussed.
Collapse
Affiliation(s)
| | | | - Maganti Sheshu Madhav
- Department of Biotechnology, Directorate of Rice Research, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - Satendra K. Mangrauthia
- Department of Biotechnology, Directorate of Rice Research, ICAR-Indian Institute of Rice ResearchHyderabad, India
| |
Collapse
|
14
|
Browne N, Surlis C, Maher A, Gallagher C, Carolan JC, Clynes M, Kavanagh K. Prolonged pre-incubation increases the susceptibility of Galleria mellonella larvae to bacterial and fungal infection. Virulence 2015; 6:458-65. [PMID: 25785635 DOI: 10.1080/21505594.2015.1021540] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Galleria mellonella larvae are widely used for assessing the virulence of microbial pathogens and for measuring the in vivo activity of antimicrobial agents and produce results comparable to those that can be obtained using mammals. The aim of the work described here was to ascertain the effect of pre-incubation at 15°C for 1, 3, 6 or 10 weeks on the susceptibility of larvae to infection with Candida albicans and Staphylococcus aureus. Larvae infected with C. albicans after 1 week pre-incubation at 15°C showed 73.3 ± 3.3% survival at 24 hours post-infection while those infected after 10 weeks pre-incubation showed 30 ± 3.3% survival (P < 0.01). Larvae infected with S. aureus after 1 week pre-incubation showed 65.5 ± 3.3% survival after 24 hours while those infected after 10 weeks pre-incubation showed 13.3 ± 3.3% (P < 0.001). Analysis of the haemocyte density in larvae pre-incubated for 3-10 weeks showed a reduction in haemocytes over time but a proportionate increase in the density of granular haemocytes in the population as determined by FACS analysis. Proteomic analysis revealed decreased abundance of proteins associated with metabolic pathways (e.g. malate dehydrogenase, fructose-1,6-bisphosphatase, glyceraldehyde-3-phosphate dehydrogenase) and prophenoloxidase. G. mellonella larvae are a useful in vivo model system but the duration of the pre-incubation stage significantly affects their susceptibility to microbial pathogens possibly as a result of altered metabolism.
Collapse
Affiliation(s)
- Niall Browne
- a Department of Biology; Maynooth University ; Maynooth , Kildare , Ireland
| | | | | | | | | | | | | |
Collapse
|
15
|
Benoit JB, Attardo GM, Baumann AA, Michalkova V, Aksoy S. Adenotrophic viviparity in tsetse flies: potential for population control and as an insect model for lactation. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:351-71. [PMID: 25341093 PMCID: PMC4453834 DOI: 10.1146/annurev-ento-010814-020834] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tsetse flies (Glossina spp.), vectors of African trypanosomes, are distinguished by their specialized reproductive biology, defined by adenotrophic viviparity (maternal nourishment of progeny by glandular secretions followed by live birth). This trait has evolved infrequently among insects and requires unique reproductive mechanisms. A key event in Glossina reproduction involves the transition between periods of lactation and nonlactation (dry periods). Increased lipolysis, nutrient transfer to the milk gland, and milk-specific protein production characterize lactation, which terminates at the birth of the progeny and is followed by a period of involution. The dry stage coincides with embryogenesis of the progeny, during which lipid reserves accumulate in preparation for the next round of lactation. The obligate bacterial symbiont Wigglesworthia glossinidia is critical to tsetse reproduction and likely provides B vitamins required for metabolic processes underlying lactation and/or progeny development. Here we describe findings that utilized transcriptomics, physiological assays, and RNA interference-based functional analysis to understand different components of adenotrophic viviparity in tsetse flies.
Collapse
Affiliation(s)
- Joshua B. Benoit
- Department of Biological Sciences, McMicken School of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio 45221
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
| | - Aaron A. Baumann
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava 845 06 SR, Slovakia
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
16
|
A novel highly divergent protein family identified from a viviparous insect by RNA-seq analysis: a potential target for tsetse fly-specific abortifacients. PLoS Genet 2014; 10:e1003874. [PMID: 24763277 PMCID: PMC3998918 DOI: 10.1371/journal.pgen.1003874] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
In tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mother's milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation. Differential analysis of RNA-seq data from lactating and dry (non-lactating) females revealed enrichment of transcripts coding for protein synthesis machinery, lipid metabolism and secretory proteins during lactation. Among the genes induced during lactation were those encoding the previously identified milk proteins (milk gland proteins 1-3, transferrin and acid sphingomyelinase 1) and seven new genes (mgp4-10). The genes encoding mgp2-10 are organized on a 40 kb syntenic block in the tsetse genome, have similar exon-intron arrangements, and share regions of amino acid sequence similarity. Expression of mgp2-10 is female-specific and high during milk secretion. While knockdown of a single mgp failed to reduce fecundity, simultaneous knockdown of multiple variants reduced milk protein levels and lowered fecundity. The genomic localization, gene structure similarities, and functional redundancy of MGP2-10 suggest that they constitute a novel highly divergent protein family. Our data indicates that MGP2-10 function both as the primary amino acid resource for the developing larva and in the maintenance of milk homeostasis, similar to the function of the mammalian casein family of milk proteins. This study underscores the dynamic nature of the lactation cycle and identifies a novel family of lactation-specific proteins, unique to Glossina sp., that are essential to larval development. The specificity of MGP2-10 to tsetse and their critical role during lactation suggests that these proteins may be an excellent target for tsetse-specific population control approaches.
Collapse
|
17
|
Michalkova V, Benoit JB, Attardo GM, Medlock J, Aksoy S. Amelioration of reproduction-associated oxidative stress in a viviparous insect is critical to prevent reproductive senescence. PLoS One 2014; 9:e87554. [PMID: 24763119 PMCID: PMC3998933 DOI: 10.1371/journal.pone.0087554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
Impact of reproductive processes upon female health has yielded conflicting results; particularly in relation to the role of reproduction-associated stress. We used the viviparous tsetse fly to determine if lactation, birth and involution lead to damage from oxidative stress (OS) that impairs subsequent reproductive cycles. Tsetse females carry an intrauterine larva to full term at each pregnancy cycle, and lactate to nourish them with milk secretions produced by the accessory gland ( = milk gland) organ. Unlike most K-strategists, tsetse females lack an apparent period of reproductive senescence allowing the production of 8-10 progeny over their entire life span. In a lactating female, over 47% of the maternal transcriptome is associated with the generation of milk proteins. The resulting single larval offspring weighs as much as the mother at birth. In studying this process we noted an increase in specific antioxidant enzyme (AOE) transcripts and enzymatic activity at critical times during lactation, birth and involution in the milk gland/fat body organ and the uterus. Suppression of superoxide dismutase (sod) decreased fecundity in subsequent reproductive cycles in young mothers and nearly abolished fecundity in geriatric females. Loss of fecundity was in part due to the inability of the mother to produce adequate milk to support larval growth. Longevity was also impaired after sod knockdown. Generation of OS in virgin females through exogenous treatment with hydrogen peroxide at times corresponding to pregnancy intervals reduced survival, which was exacerbated by sod knockdown. AOE expression may prevent oxidative damage associated with the generation of nutrients by the milk gland, parturition and milk gland breakdown. Our results indicate that prevention of OS is essential for females to meet the growing nutritional demands of juveniles during pregnancy and to repair the damage that occurs at birth. This process is particularly important for females to remain fecund during the latter portion of their lifetime.
Collapse
Affiliation(s)
- Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United State of America
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Joshua B. Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United State of America
- * E-mail:
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United State of America
| | - Jan Medlock
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United State of America
| |
Collapse
|
18
|
Hull R, Alaouna M, Khanyile L, Byrne M, Ntwasa M. Lifestyle and host defense mechanisms of the dung beetle, Euoniticellus intermedius: the toll signaling pathway. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:108. [PMID: 24735102 PMCID: PMC4011371 DOI: 10.1673/031.013.10801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/20/2013] [Indexed: 06/03/2023]
Abstract
The dung beetle, Euoniticellus intermedius (Reiche) (Coleoptera: Scarabaeidae) is an important ecological and agricultural agent. Their main activity, the burying of dung, improves quality of the soil and reduces pests that could cause illness in animals. E. intermedius are therefore important for agriculture and for good maintenance of the environment, and are regarded as effective biological control agents for parasites of the gastrointestinal tract in livestock. The ability of E. intermedius to co-exist comfortably with many microorganisms, some of which are important human pathogens, stimulated our interest in its host defense strategies. The aim of this study was to investigate the Toll signaling pathway, which is strongly activated by fungi. Gene expression associated with fungal infection was analyzed by using 2-D gel electrophoresis and mass spectroscopy. Furthermore, the partial adult transcriptome was investigated for the presence of known immune response genes by using high-throughput sequencing and bioinformatics. The results presented here suggest that E. intermedius responds to fungal challenge via the Toll signaling pathway.
Collapse
Affiliation(s)
- Rodney Hull
- School of Molecular & Cell Biology. University of the Witwatersrand, Johannesburg. Private Bag X3, Wits. 2050, South Africa
| | - Mohamed Alaouna
- School of Molecular & Cell Biology. University of the Witwatersrand, Johannesburg. Private Bag X3, Wits. 2050, South Africa
| | - Lucky Khanyile
- School of Molecular & Cell Biology. University of the Witwatersrand, Johannesburg. Private Bag X3, Wits. 2050, South Africa
| | - Marcus Byrne
- School of Animal and Plant Sciences. University of the Witwatersrand, Johannesburg. Private Bag X3, Wits. 2050, South Africa
| | - Monde Ntwasa
- School of Molecular & Cell Biology. University of the Witwatersrand, Johannesburg. Private Bag X3, Wits. 2050, South Africa
| |
Collapse
|
19
|
Guz N, Kilincer N, Aksoy S. Molecular characterization of Ephestia kuehniella (Lepidoptera: Pyralidae) transferrin and its response to parasitoid Venturia canescens (Hymenoptera: Ichneumonidae Gravenhorst). INSECT MOLECULAR BIOLOGY 2012; 21:139-147. [PMID: 22229520 DOI: 10.1111/j.1365-2583.2011.01129.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the present study, we characterized a full-length cDNA encoding a putative iron-binding protein transferrin from the lepidopteran Mediterranean flour moth (EkTrf, 2397 bp). The putative EkTrf is 683 amino acids with a molecular mass of approximately 76 kDa. The deduced amino acid sequence showed significant homology with other insect transferrins from Chilo suppressalis (76%), Galleria mellonella (75%), Plutella xylostella (72%), Manduca sexta (74%), Bombyx mori (73%), Spodoptera litura and (72%), Choristoneura fumiferana (71%). Northern blot analysis indicated that Ephestia transferrin mRNA was expressed in the last larval instars of both males and females and in the pupal developmental stages. EkTrf is expressed predominantly in the fat body and ovary tissues. Analysis of parasitized larva by the endoparasitoid Venturia canescens suggests that transferrin expression is induced following parasitoid challenge. Expression of EkTrf levels also increased upon bacterial infection at 6 h post treatment and remained high until 24 h. Similarly to other insect transferrins, EkTrf may play a role in immunity through its iron-binding capacity.
Collapse
Affiliation(s)
- Nurper Guz
- Department of Plant Protection, Ankara University, Dıskapi, Ankara, Turkey.
| | | | | |
Collapse
|
20
|
Geiser DL, Winzerling JJ. Insect transferrins: multifunctional proteins. Biochim Biophys Acta Gen Subj 2011; 1820:437-51. [PMID: 21810453 DOI: 10.1016/j.bbagen.2011.07.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 07/13/2011] [Accepted: 07/17/2011] [Indexed: 01/07/2023]
Abstract
BACKGROUND Many studies have been done evaluating transferrin in insects. Genomic analyses indicate that insects could have more than one transferrin. However, the most commonly studied insect transferrin, Tsf1, shows greatest homology to mammalian blood transferrin. SCOPE OF REVIEW Aspects of insect transferrin structure compared to mammalian transferrin and the roles transferrin serves in insects are discussed in this review. MAJOR CONCLUSIONS Insect transferrin can have one or two lobes, and can bind iron in one or both. The iron binding ligands identified for the lobes of mammalian blood transferrin are generally conserved in the lobes of insect transferrins that have an iron binding site. Available information supports that the form of dietary iron consumed influences the regulation of insect transferrin. Although message is expressed in several tissues in many insects, fat body is the likely source of hemolymph transferrin. Insect transferrin is a vitellogenic protein that is down-regulated by Juvenile Hormone. It serves a role in transporting iron to eggs in some insects, and transferrin found in eggs appears to be endowed from the female. In addition to the roles of transferrin in iron delivery, this protein also functions to reduce oxidative stress and to enhance survival of infection. GENERAL SIGNIFICANCE Future studies in Tsf1 as well as the other insect transferrins that bind iron are warranted because of the roles of transferrin in preventing oxidative stress, enhancing survival to infections and delivering iron to eggs for development. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
21
|
Pham DQD, Winzerling JJ. Insect ferritins: Typical or atypical? Biochim Biophys Acta Gen Subj 2010; 1800:824-33. [PMID: 20230873 DOI: 10.1016/j.bbagen.2010.03.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 02/22/2010] [Accepted: 03/07/2010] [Indexed: 02/07/2023]
Abstract
Insects transmit millions of cases of disease each year, and cost millions of dollars in agricultural losses. The control of insect-borne diseases is vital for numerous developing countries, and the management of agricultural insect pests is a very serious business for developed countries. Control methods should target insect-specific traits in order to avoid non-target effects, especially in mammals. Since insect cells have had a billion years of evolutionary divergence from those of vertebrates, they differ in many ways that might be promising for the insect control field-especially, in iron metabolism because current studies have indicated that significant differences exist between insect and mammalian systems. Insect iron metabolism differs from that of vertebrates in the following respects. Insect ferritins have a heavier mass than mammalian ferritins. Unlike their mammalian counterparts, the insect ferritin subunits are often glycosylated and are synthesized with a signal peptide. The crystal structure of insect ferritin also shows a tetrahedral symmetry consisting of 12 heavy chain and 12 light chain subunits in contrast to that of mammalian ferritin that exhibits an octahedral symmetry made of 24 heavy chain and 24 light chain subunits. Insect ferritins associate primarily with the vacuolar system and serve as iron transporters-quite the opposite of the mammalian ferritins, which are mainly cytoplasmic and serve as iron storage proteins. This review will discuss these differences.
Collapse
Affiliation(s)
- Daphne Q D Pham
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 531412000, USA
| | | |
Collapse
|
22
|
Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog 2009; 5:e1000630. [PMID: 19851452 PMCID: PMC2759286 DOI: 10.1371/journal.ppat.1000630] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/24/2009] [Indexed: 11/19/2022] Open
Abstract
Wolbachia is an intracellular bacterium generally described as being a facultative reproductive parasite. However, Wolbachia is necessary for oogenesis completion in the wasp Asobara tabida. This dependence has evolved recently as a result of interference with apoptosis during oogenesis. Through comparative transcriptomics between symbiotic and aposymbiotic individuals, we observed a differential expression of ferritin, which forms a complex involved in iron storage. Iron is an essential element that is in limited supply in the cell. However, it is also a highly toxic precursor of Reactive Oxygen Species (ROS). Ferritin has also been shown to play a key role in host-pathogen interactions. Measuring ferritin by quantitative RT-PCR, we confirmed that ferritin was upregulated in aposymbiotic compared to symbiotic individuals. Manipulating the iron content in the diet, we showed that iron overload markedly affected wasp development and induced apoptotic processes during oogenesis in A. tabida, suggesting that the regulation of iron homeostasis may also be related to the obligate dependence of the wasp. Finally, we demonstrated that iron metabolism is influenced by the presence of Wolbachia not only in the obligate mutualism with A. tabida, but also in facultative parasitism involving Drosophila simulans and in Aedes aegypti cells. In these latter cases, the expression of Wolbachia bacterioferritin was also increased in the presence of iron, showing that Wolbachia responds to the concentration of iron. Our results indicate that Wolbachia may generally interfere with iron metabolism. The high affinity of Wolbachia for iron might be due to physiological requirement of the bacterium, but it could also be what allows the symbiont to persist in the organism by reducing the labile iron concentration, thus protecting the cell from oxidative stress and apoptosis. These findings also reinforce the idea that pathogenic, parasitic and mutualistic intracellular bacteria all use the same molecular mechanisms to survive and replicate within host cells. By impacting the general physiology of the host, the presence of a symbiont may select for host compensatory mechanisms, which extends the possible consequences of persistent endosymbiont on the evolution of their hosts.
Collapse
|
23
|
Geiser DL, Shen MC, Mayo JJ, Winzerling JJ. Iron loaded ferritin secretion and inhibition by CI-976 in Aedes aegypti larval cells. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:352-63. [PMID: 19168145 PMCID: PMC2649984 DOI: 10.1016/j.cbpb.2009.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 01/01/2009] [Accepted: 01/03/2009] [Indexed: 12/26/2022]
Abstract
Ferritin is a multimer of 24 subunits of heavy and light chains. In mammals, iron taken into cells is stored in ferritin or incorporated into iron-containing proteins. Very little ferritin is found circulating in mammalian serum; most is retained in the cytoplasm. Female mosquitoes, such as Aedes aegypti (yellow fever mosquito, Diptera), require a blood meal for oogenesis. Mosquitoes receive a potentially toxic level of iron in the blood meal which must be processed and stored. We demonstrate by (59)Fe pulse-chase experiments that cultured A. aegypti larval CCL-125 cells take up iron from culture media and store it in ferritin found mainly in the membrane fraction and secrete iron-loaded ferritin. We observe that in these larval cells ferritin co-localizes with ceramide-containing membranes in the absence of iron. With iron treatment, ferritin is found associated with ceramide-containing membranes as well as in cytoplasmic non-ceramide vesicles. Treatment of CCL-125 cells with iron and CI-976, an inhibitor of lysophospholipid acyl transferases, disrupts ferritin secretion with a concomitant decrease in cell viability. Interfering with ferritin secretion may limit the ability of mosquitoes to adjust to the high iron load of the blood meal and decrease iron delivery to the ovaries reducing egg numbers.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, The University of Arizona, Tucson, 85721, USA.
| | | | | | | |
Collapse
|
24
|
Kim BY, Lee KS, Yoon HJ, Kim I, Li J, Sohn HD, Jin BR. Expression profile of the iron-binding proteins transferrin and ferritin heavy chain subunit in the bumblebee Bombus ignitus. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:165-70. [PMID: 19268558 DOI: 10.1016/j.cbpb.2009.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
The iron-binding proteins, transferrin and ferritin, are involved in the processes of transport and storage in iron metabolism. Their expression is induced in response to iron overload. Here, we show the expression profile of transferrin (Bi-Tf) and the ferritin heavy chain subunit (Bi-FerHCH) of the bumblebee Bombus ignitus in response to iron overload. Bi-Tf exhibits fat body-specific expression, whereas Bi-FerHCH is ubiquitously expressed and upregulated in various tissues, though in a similar manner, by iron overload. We also demonstrate their expression regulation via reduction of Bi-Tf or Bi-FerHCH levels in the fat body via RNA interference (RNAi). Under uniform conditions in which FeCl(3) was overloaded, the RNAi-induced Bi-Tf knock-down B. ignitus worker bees showed upregulated expression of Bi-FerHCH, and reciprocally, Bi-FerHCH RNAi knockdowns showed upregulated Bi-Tf expression in the fat body. This result indicates that, in case of the loss of Bi-Tf or Bi-FerHCH, the expression of Bi-FerHCH or Bi-Tf, respectively, is upregulated in response to iron overload.
Collapse
Affiliation(s)
- Bo Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang D, Kim BY, Lee KS, Yoon HJ, Cui Z, Lu W, Jia JM, Kim DH, Sohn HD, Jin BR. Molecular characterization of iron binding proteins, transferrin and ferritin heavy chain subunit, from the bumblebee Bombus ignitus. Comp Biochem Physiol B Biochem Mol Biol 2008; 152:20-7. [PMID: 18824242 DOI: 10.1016/j.cbpb.2008.09.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
Transferrin and ferritin are iron-binding proteins involved in transport and storage of iron as part of iron metabolism. Here, we describe the cDNA cloning and characterization of transferrin (Bi-Tf) and the ferritin heavy chain subunit (Bi-FerHCH), from the bumblebee Bombus ignitus. Bi-Tf cDNA spans 2340 bp and encodes a protein of 706 amino acids and Bi-FerHCH cDNA spans 1393 bp and encodes a protein of 217 amino acids. Comparative analysis revealed that Bi-Tf appears to have residues comprising iron-binding sites in the N-terminal lobe, and Bi-FerHCH contains a 5'UTR iron-responsive element and seven conserved amino acid residues associated with a ferroxidase center. The Bi-Tf and Bi-FerHCH cDNAs were expressed as 79 kDa and 27 kDa polypeptides, respectively, in baculovirus-infected insect Sf9 cells. Northern blot analysis revealed that Bi-Tf exhibits fat body-specific expression and Bi-FerHCH shows ubiquitous expression. The expression profiles of the Bi-Tf and Bi-FerHCH in the fat body of B. ignitus worker bees revealed that Bi-Tf and Bi-FerHCH are differentially induced in a time-dependent manner in a single insect by wounding, bacterial challenge, and iron overload.
Collapse
Affiliation(s)
- Dong Wang
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sirot LK, Poulson RL, McKenna MC, Girnary H, Wolfner MF, Harrington LC. Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:176-89. [PMID: 18207079 PMCID: PMC2758040 DOI: 10.1016/j.ibmb.2007.10.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/13/2007] [Accepted: 10/16/2007] [Indexed: 05/14/2023]
Abstract
Male reproductive gland proteins (mRGPs) impact the physiology and/or behavior of mated females in a broad range of organisms. We sought to identify mRGPs of the yellow fever mosquito, Aedes aegypti, the primary vector of dengue and yellow fever viruses. Earlier studies with Ae. aegypti demonstrated that "matrone" (a partially purified male reproductive accessory gland substance) or male accessory gland fluid injected into virgin female Ae. aegypti affect female sexual refractoriness, blood feeding and digestion, flight, ovarian development, and oviposition. Using bioinformatic comparisons to Drosophila melanogaster accessory gland proteins and mass spectrometry of proteins from Ae. aegypti male accessory glands and ejaculatory ducts (AG/ED) and female reproductive tracts, we identified 63 new putative Ae. aegypti mRGPs. Twenty-one of these proteins were found in the reproductive tract of mated females but not of virgin females suggesting that they are transferred from males to females during mating. Most of the putative mRGPs fall into the same protein classes as mRGPs in other organisms, although some appear to be evolving rapidly and lack identifiable homologs in Culex pipiens, Anopheles gambiae, and D. melanogaster. Our results identify candidate male-derived molecules that may have an important influence on behavior, survival, and reproduction of female mosquitoes.
Collapse
Affiliation(s)
- Laura K. Sirot
- Department of Molecular Biology and Genetics, Cornell University,
Ithaca, NY, 14853, USA
| | | | | | - Hussein Girnary
- Department of Entomology, Cornell University, Ithaca, NY, 14853,
USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University,
Ithaca, NY, 14853, USA
| | | |
Collapse
|
27
|
Lehane MJ, Gibson W, Lehane SM. Differential expression of fat body genes in Glossina morsitans morsitans following infection with Trypanosoma brucei brucei. Int J Parasitol 2008; 38:93-101. [PMID: 17697681 DOI: 10.1016/j.ijpara.2007.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/16/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
To determine which fat body genes were differentially expressed following infection of Glossina morsitans morsitans with Trypanosoma brucei brucei we generated four suppression subtractive hybridisation (SSH) libraries. We obtained 52 unique gene fragments (SSH clones) of which 30 had a known orthologue at E-05 or less. Overall the characteristics of the orthologues suggest: (i) that trypanosome infection has a considerable effect on metabolism in the tsetse fly; (ii) that self-cured flies are mounting an oxidative stress response; and (iii) that self-cured flies are displaying increased energy usage. The three most consistently differentially expressed genes were further analysed by gene knockdown (RNAi). Knockdown of Glossina transferrin transcripts, which are upregulated in self-cured flies compared with flies infected with trypanosomes, results in a significant increase in the number of trypanosome infections establishing in the fly midgut, suggesting transferrin plays a role in the protection of tsetse flies from trypanosome infection.
Collapse
Affiliation(s)
- M J Lehane
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | |
Collapse
|
28
|
Guz N, Attardo GM, Wu Y, Aksoy S. Molecular aspects of transferrin expression in the tsetse fly (Glossina morsitans morsitans). JOURNAL OF INSECT PHYSIOLOGY 2007; 53:715-23. [PMID: 17498733 PMCID: PMC2065764 DOI: 10.1016/j.jinsphys.2007.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/15/2007] [Accepted: 03/16/2007] [Indexed: 05/09/2023]
Abstract
Iron is an essential element for metabolic processes intrinsic to life, and yet the properties that make iron a necessity also make it potentially deleterious. To avoid harm, iron homeostasis is achieved via proteins involved in transport and storage of iron, one of which is transferrin. We describe the temporal and spatial aspects of transferrin (GmmTsf) expression and its transcriptional regulation in tsetse where both the male and female are strictly hematophagous. Using Northern, Western and immunohistochemical analysis, we show that GmmTsf is abundant in the hemolymph and is expressed in the adult developmental stages of male and female insects. It is preferentially expressed in the female milk gland tubules and its expression appears to be cyclical and possibly regulated in synchrony with the oogenic and/or larvigenic cycle. Although no mRNA is detected, GmmTsf protein is present in the immature stages of development, apparently being transported into the intrauterine larva from the mother via the milk gland ducts. Transferrin is also detected in the vitellogenic ovary and the adult male testes, further supporting its classification as a vitellogenic protein. Similar to reports in other insects, transferrin mRNA levels increase upon bacterial challenge in tsetse suggesting that transferrin may play an additional role in immunity. Although transferrin expression is induced following bacterial challenge, it is significantly reduced in tsetse carrying midgut trypanosome infections. Analysis of tsetse that have cured the parasite challenge shows normal levels of GmmTsf. This observation suggests that the parasite in competing for the availability of limited dietary iron may manipulate host gene expression.
Collapse
Affiliation(s)
| | | | | | - Serap Aksoy
- *Corresponding author Tel #: (203) 737-2180, Fax #: (203) 785-4782, e-mail:
| |
Collapse
|