1
|
Farnesi LC, Alves GDSO, Araripe LO, Bruno RV. Aedes aegypti reproductive aspects: constant light significantly affects the embryonic development. Mem Inst Oswaldo Cruz 2025; 120:e240233. [PMID: 40172429 PMCID: PMC11964090 DOI: 10.1590/0074-02760240233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/29/2024] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND The importance of the mosquito Aedes aegypti as a vector of arboviruses like dengue, Zika, and chikungunya justifies the interest in investigating this species' physiology and reproductive biology. For the maintenance and expansion of Ae. aegypti populations, copulation, oogenesis, female oviposition capacity, embryo development and larval hatching are crucial processes regulated by biological clocks. Many of these parameters have currently been investigated under environmental and laboratory conditions. However, there are specific gaps regarding the effect of light on these critical reproductive aspects. In this study, the influence of light on some aspects of Ae. aegypti biology was evaluated. OBJECTIVES We investigated, in laboratory conditions, the effects of constant light on Ae. aegypti reproductive features: spermathecal content, embryo morphology, females' fecundity, and egg viability. METHODS Morphological and physiological assays were performed using Ae. aegypti females and eggs obtained from forced egg laying. The reproductive aspects were analysed under constant light (LL = light/light) and light/dark cycles (LD12:12 = 12 h of light and 12 h of dark). FINDINGS AND MAIN CONCLUSIONS Our results proved the negative effect of constant light on egg production (decreasing the fecundity) and embryonic development (causing a drop in egg viability and perceptive damage in the embryos). The results presented here bring new information on the impacts that a source of constant light may have on the reproductive biology of Ae. aegypti.
Collapse
Affiliation(s)
- Luana Cristina Farnesi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Insetos, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Doenças Parasitárias, Rio de Janeiro, RJ, Brasil
| | - Gabrielle da Silva Oliveira Alves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Insetos, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Bacteriologia Molecular e Marinha, Rio de Janeiro, RJ, Brasil
| | - Luciana Ordunha Araripe
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Insetos, Rio de Janeiro, RJ, Brasil
| | - Rafaela Vieira Bruno
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Insetos, Rio de Janeiro, RJ, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Peng L, Zheng JH, Liu LL, Huang MQ, Cao MH, Cui JD, Vasseur L, You MS, Zou MM. Identification of seminal fluid proteins and reproductive function of trypsin-1 in male Plutella xylostella. Int J Biol Macromol 2025; 306:141450. [PMID: 40015405 DOI: 10.1016/j.ijbiomac.2025.141450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Insect seminal fluid proteins (SFPs) are primary factors affecting physiology and behavior in both sexes, making them valuable targets for pest control. However, SFPs have not been fully characterized in the Plutella xylostella, a global pest that attacks cruciferous crops. Here, 75 putative SFPs were identified in P. xylostella, compared to 10 orthologs in Drosophila melanogaster, 10 in Nilaparvata lugens, 5 in Apis mellifera, and 43 in Heliconius melpomene. Analyses of Ka/Ks suggested that SFPs had high evolution rates. Proteases (22/75, 29.3 %) accounted for the highest proportion of P. xylostella SFPs, including 16 trypsins. The phylogenetic analysis showed that most trypsins from P. xylostella and H. melpomene belonged to the same cluster. SFP04 (trypsin-1) was orthologous to the SFP ADJ58550.1 in H. melpomene. PxTry1 was specifically expressed in adult males and their accessory glands but was also detected in females after mating. A CRISPR/Cas9-induced PxTry1 homozygous mutant strain with a 22-base pair nucleotides insertion was generated. PxTry1 deletion resulted in swollen testes, smaller spermatophores, and abnormal sperm, thus reducing the P. xylostella egg production and hatching. These results clarify the role of insect SFPs in evolution and reproduction and identify a promising target for pest control based on genetic regulation.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jun-Hao Zheng
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Li-Li Liu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Meng-Qi Huang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Min-Hui Cao
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jin-Dong Cui
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Liette Vasseur
- International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Min-Sheng You
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; International Joint Research Laboratory of Ecological Pest Control of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Ming-Min Zou
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Crops Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, PR China.
| |
Collapse
|
3
|
Beach SJ, Maselko M. Recombinant venom proteins in insect seminal fluid reduce female lifespan. Nat Commun 2025; 16:219. [PMID: 39774598 PMCID: PMC11707029 DOI: 10.1038/s41467-024-54863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The emergence of insecticide resistance has increased the need for alternative pest management tools. Numerous genetic biocontrol approaches, which involve the release of genetically modified organisms to control pest populations, are in various stages of development to provide highly targeted pest control. However, all current mating-based genetic biocontrol technologies function by releasing engineered males which skew sex-ratios or reduce offspring viability in subsequent generations which leaves mated females to continue to cause harm (e.g. transmit disease). Here, we demonstrate intragenerational genetic biocontrol, wherein mating with engineered males reduces female lifespan. The toxic male technique (TMT) involves the heterologous expression of insecticidal proteins within the male reproductive tract that are transferred to females via mating. In this study, we demonstrate TMT in Drosophila melanogaster males, which reduce the median lifespan of mated females by 37 - 64% compared to controls mated to wild type males. Agent-based models of Aedes aegypti predict that TMT could reduce rates of blood feeding by a further 40 - 60% during release periods compared to leading biocontrol technologies like fsRIDL. TMT is a promising approach for combatting outbreaks of disease vectors and agricultural pests.
Collapse
Affiliation(s)
- Samuel J Beach
- Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Maciej Maselko
- Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
4
|
Liu Y, Zhang F, Hassan A, Zhou X, Huang Q. Accessory gland protein regulates pairing process and oviposition in the subterranean termite Reticulitermes chinensis after swarming. INSECT SCIENCE 2024; 31:1889-1907. [PMID: 38576063 DOI: 10.1111/1744-7917.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/06/2024]
Abstract
Swarming and pairing behaviors are significant to population dispersal of termites. Tandem running is a key process in pairing behavior of dealates to find a mate. Succinylation can lead to significant changes in protein structure and function, which is widely involved in metabolism and behavior regulation in many organisms. However, whether succinylation modification regulates termites' tandem running is currently unknown. In this research, we performed quantitative modified proteomics of the subterranean termite Reticulitermes chinensis Snyder before and after alate swarming. The succinylation levels of accessory gland protein (ACP) were significantly altered after alate swarming. We found that ACP is enriched in male accessory gland and female oocytes of termites. The acetylation and succinylation sites of ACP affected tandem running of dealates. The transcriptome and metabolome analyses of alates injected with ACP and its mutant proteins showed that β-alanine metabolism pathway was the major downstream pathway of ACP. Silencing the significantly differentially expressed genes in the β-alanine metabolic pathway (acyl-CoA dehydrogenase, enoyl-CoA hydratase, 3-hydroxyisobutyrate dehydrogenase, methylmalonate-semialdehyde dehydrogenase) suppressed tandem running and altered oviposition of paired dealates. These findings demonstrate that protein translation modification is an important regulator of tandem running behavior of termites, which implies that the succinylation and acetylation modification sites of ACP could be potential targets for insecticide action. Our research offers a potential approach for developing novel dispersal inhibitors against social insect pests.
Collapse
Affiliation(s)
- Yutong Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Nanfack-Minkeu F, Poelstra JW, Sirot LK. Gene regulation by mating depends on time, diet, and body region in female Aedes aegypti. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104715. [PMID: 39419439 DOI: 10.1016/j.jinsphys.2024.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Aedes aegypti is a major vector of several arboviruses that cause human mortality and morbidity. One method for controlling the spread of these viruses is to control mosquito reproduction. During mating, seminal fluid molecules and sperm are transferred and these stimuli influence female post-mating physiology and behavior. Yet, little is known about the mechanisms underlying these post-mating responses. To fill this gap, short-read RNA sequencing was used to identify differentially expressed genes between unmated (control) and mated females in the head/thorax (HT), abdomen (Ab) and the lower reproductive tract (LRT), of mosquitoes reared with 3% and 12% sucrose. The results revealed that at 3% sucrose, four, 408 and 415 significantly differential expressed genes (DEGs) were identified in the HT, Ab and LRT, respectively, at six hours post mating (hpm). The number of DEGs dropped dramatically at 24 hpm with no DEGs in the HT, three in the Ab, and 112 in the LRT. In contrast, the number of DEGs was lower at 6 hpm than 24 hpm in the LRT at 12% sucrose. Comparing our results to a similar study which used 10% sucrose revealed evidence in support of condition-dependent regulation of gene expression by mating in this species. This study shows that mating-induced transcriptional changes depend on time point after mating, body region, and diet. Our results provide foundational knowledge for future functional analyses to identify genes and pathways involved in the post-mating behavioral and physiological changes of female mosquitoes.
Collapse
Affiliation(s)
| | - Jelmer W Poelstra
- Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH, USA
| | - Laura K Sirot
- Department of Biology, The College of Wooster, Wooster, OH, USA.
| |
Collapse
|
6
|
Wang Y, Thakur D, Duge E, Murphy C, Girling I, DeBeaubien NA, Chen J, Nguyen BH, Gurav AS, Montell C. Deafness due to loss of a TRPV channel eliminates mating behavior in Aedes aegypti males. Proc Natl Acad Sci U S A 2024; 121:e2404324121. [PMID: 39495942 PMCID: PMC11588044 DOI: 10.1073/pnas.2404324121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/19/2024] [Indexed: 11/06/2024] Open
Abstract
Attraction and mating between male and female animals depend on effective communication between conspecifics. However, in mosquitoes, we have only a rudimentary understanding of the sensory cues and receptors critical for the communication that is essential for reproductive behavior. While it is known that male Aedes aegypti use sound to help them identify females, it is not unclear whether sound detection is absolutely required since other cues such as vision may also participate in mating behavior. To determine the effect of eliminating hearing on mating success, we knocked out the Ae. aegypti TRPVa channel, which is a protein expressed in chordotonal neurons in the Johnston's organ (JO) that respond to sound-induced movements in the antenna. Loss of trpVa eradicated sound-induced responses from the JO, thereby abolishing hearing. Strikingly, mutation of trpVa eliminated mating behavior in males. In contrast, trpVa-null females mated, although this behavior was slightly delayed relative to wild-type females. Males and females produce sounds as they beat their wings at distinct frequencies during flight. Sound mimicking the female wingbeat induced flight, attraction, and copulatory-like behavior in wild-type males without females present, but not in trpVa-null males. Males are known to modulate their wingbeat frequencies before mating in the air, which is a phenomenon referred to as rapid frequency modulation (RFM). We found that RFM was absent in mosquitoes lacking TRPVa. We conclude that the requirement for trpVa and hearing for male reproductive behavior in Aedes is absolute, as mating in the deaf males is eliminated.
Collapse
Affiliation(s)
- Yijin Wang
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Dhananjay Thakur
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Emma Duge
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Caroline Murphy
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Ivan Girling
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Nicolas A. DeBeaubien
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Jieyan Chen
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Benjamin H. Nguyen
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Adishthi S. Gurav
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| |
Collapse
|
7
|
Hadpech S, Thongboonkerd V. Proteomic investigations of dengue virus infection: key discoveries over the last 10 years. Expert Rev Proteomics 2024; 21:281-295. [PMID: 39049185 DOI: 10.1080/14789450.2024.2383580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Dengue virus (DENV) infection remains one of the most significant infectious diseases in humans. Several efforts have been made to address its molecular mechanisms. Over the last 10 years, proteomics has been widely applied to investigate various aspects of DENV infection. AREAS COVERED In this review, we briefly introduce common proteomics approaches using various mass spectrometric modalities followed by summarizing all the discoveries obtained from proteomic investigations of DENV infection over the last 10 years. These include the data on DENV-vector interactions and host responses to address the DENV biology and disease mechanisms. Moreover, applications of proteomics to disease prevention, diagnosis, vaccine design, development of anti-DENV agents and other new treatment strategies are discussed. EXPERT OPINION Despite efforts on disease prevention, DENV infection is still a significant global healthcare burden that affects the general population. As summarized herein, proteomic technologies with high-throughput capabilities have provided more in-depth details of protein dynamics during DENV infection. More extensive applications of proteomics and other powerful research tools would provide a promise to better cope and prevent this mosquito-borne infectious disease.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
8
|
Han WK, Tang FX, Yan YY, Wang Y, Zhang YX, Yu N, Wang K, Liu ZW. An OBP gene highly expressed in non-chemosensory tissues affects the phototaxis and reproduction of Spodoptera frugiperda. INSECT MOLECULAR BIOLOGY 2024; 33:81-90. [PMID: 37815404 DOI: 10.1111/imb.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Insect odorant binding proteins (OBPs) were initially regarded as carriers of the odorants involved in chemosensation. However, it had been observed that a growing number of OBP genes exhibited broad expression patterns beyond chemosensory tissues. Here, an OBP gene (OBP31) was found to be highly expressed in the larval ventral nerve cord, adult brain and male reproductive organ of Spodoptera frugiperda. An OBP31 knockout strain (OBP31-/- ) was generated by CRISPR/Cas9 mutagenesis. For OBP31-/- , the larvae needed longer time to pupate, but there was no difference in the pupal weight between OBP31-/- and wild type (WT). OBP31-/- larvae showed stronger phototaxis than the WT larvae, indicating the importance of OBP31 in light perception. For mating rhythm of adults, OBP31-/- moths displayed an earlier second mating peak. In the cross-pairing of OBP31-/- and WT moths, the mating duration was longer, and hatchability was lower in OBP31-/- group and OBP31+/- ♂ group than that in the WT group. These results suggested that OBP31 played a vital role in larval light perception and male reproductive process and could provide valuable insights into understanding the biological functions of OBPs that were not specific in chemosensory tissues.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yang-Yang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yi-Xi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. eLife 2023; 12:e86409. [PMID: 38126735 PMCID: PMC10834028 DOI: 10.7554/elife.86409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility, though functional evidence in any species is lacking. Here, we used functional genetics to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes are dispensable. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage, likely due to its expression in the male ejaculatory bulb. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression in a subset of taxa, though conserved head expression across the phylogeny. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C Brown
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Geoffrey D Findlay
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
- Department of Biology, College of the Holy CrossWorcesterUnited States
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | |
Collapse
|
10
|
He Y, Cotten ML, Yin J, Yuan Q, Tjandra N. Expression and purification of Drosophila OBP44a with the aids of LC-MS and NMR. Protein Expr Purif 2023; 212:106354. [PMID: 37597794 PMCID: PMC10557525 DOI: 10.1016/j.pep.2023.106354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The production of highly purified native soluble proteins in large quantities is crucial for studying protein structure and function. Odorant binding proteins (OBPs) are small, soluble, extracellular proteins with multiple disulfide bonds, whose functions include, but are not limited to, binding hydrophobic molecules and delivering them to their corresponding receptors expressed on insect olfactory receptor neurons. Expression of proteins with multiple disulfide bonds like OBPs usually results in insolubility and low yield, which has been a significant barrier to understanding their biological roles and physiological functions. In the E. coli system, expression of OBPs often results in insoluble inclusion bodies or a limited amount of periplasmic soluble proteins. Although expression of OBPs in eukaryotic systems such as Sf9 insect cells or yeast Pichia pastoris can increase the solubility of the protein, the process remains insufficient. Additionally, monitoring the purity and native apo state of the protein is critical for establishing the correct conformation of the protein. In this study, we employed an E. coli host with an altered intracellular environment to produce cytosolic soluble OBP44a protein, which yielded over 100 mg/L. We monitored the integrity of disulfide bonds throughout the purification process using LC-MS and used NMR to ensure the final product adopted a single conformation. Our study presents an efficient method for obtaining large quantities of soluble proteins in a single conformation, which enables extensive in vitro studies of secreted proteins like OBPs.
Collapse
Affiliation(s)
- Yi He
- Fermentation Facility, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Myriam L Cotten
- Department of Applied Science, William & Mary, Williamsburg, VA, USA
| | - Jun Yin
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Quan Yuan
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Kulkarni A, Delgadillo FM, Gayathrinathan S, Grajeda BI, Roy S. Current Status of Omics Studies Elucidating the Features of Reproductive Biology in Blood-Feeding Insects. INSECTS 2023; 14:802. [PMID: 37887814 PMCID: PMC10607566 DOI: 10.3390/insects14100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Female insects belonging to the genera Anopheles, Aedes, Glossina, and Rhodnius account for the majority of global vector-borne disease mortality. In response to mating, these female insects undergo several molecular, physiological, and behavioral changes. Studying the dynamic post-mating molecular responses in these insects that transmit human diseases can lead to the identification of potential targets for the development of novel vector control methods. With the continued advancements in bioinformatics tools, we now have the capability to delve into various physiological processes in these insects. Here, we discuss the availability of multiple datasets describing the reproductive physiology of the common blood-feeding insects at the molecular level. Additionally, we compare the male-derived triggers transferred during mating to females, examining both shared and species-specific factors. These triggers initiate post-mating genetic responses in female vectors, affecting not only their reproductive success but also disease transmission.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Frida M. Delgadillo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Environmental Science and Engineering Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Brian I. Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Biosciences Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
12
|
Lin Z, Huang Y, Liu S, Huang Q, Zhang B, Wang T, Zhang Z, Zhu X, Liao C, Han Q. Gene coexpression network during ontogeny in the yellow fever mosquito, Aedes aegypti. BMC Genomics 2023; 24:301. [PMID: 37270481 DOI: 10.1186/s12864-023-09403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The behaviors and ontogeny of Aedes aegypti are closely related to the spread of diseases caused by dengue (DENV), chikungunya (CHIKV), Zika (ZIKV), and yellow fever (YFV) viruses. During the life cycle, Ae. aegypti undergoes drastic morphological, metabolic, and functional changes triggered by gene regulation and other molecular mechanisms. Some essential regulatory factors that regulate insect ontogeny have been revealed in other species, but their roles are still poorly investigated in the mosquito. RESULTS Our study identified 6 gene modules and their intramodular hub genes that were highly associated with the ontogeny of Ae. aegypti in the constructed network. Those modules were found to be enriched in functional roles related to cuticle development, ATP generation, digestion, immunity, pupation control, lectins, and spermatogenesis. Additionally, digestion-related pathways were activated in the larvae and adult females but suppressed in the pupae. The integrated protein‒protein network also identified cilium-related genes. In addition, we verified that the 6 intramodular hub genes encoding proteins such as EcKinase regulating larval molt were only expressed in the larval stage. Quantitative RT‒PCR of the intramodular hub genes gave similar results as the RNA-Seq expression profile, and most hub genes were ontogeny-specifically expressed. CONCLUSIONS The constructed gene coexpression network provides a useful resource for network-based data mining to identify candidate genes for functional studies. Ultimately, these findings will be key in identifying potential molecular targets for disease control.
Collapse
Affiliation(s)
- Zhinan Lin
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Department of Neuroscience, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 99907, Hong Kong SAR, China
| | - Yuqi Huang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
| | - Sihan Liu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
| | - Qiwen Huang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
| | - Biliang Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tianpeng Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaowei Zhu
- Department of Neuroscience, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 99907, Hong Kong SAR, China
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
13
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526941. [PMID: 36798169 PMCID: PMC9934574 DOI: 10.1101/2023.02.03.526941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology and behavior. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Previous work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility in the ejaculate, though functional evidence in any species is lacking. Here, we used RNAi and CRISPR/Cas9 generated mutants to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes had no effect on fertility when mutated individually. Obp56g is expressed in the male's ejaculatory bulb, an important tissue in the reproductive tract that synthesizes components of the mating plug. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression only in species of the melanogaster and obscura groups, though conserved head expression in all species tested. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C. Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Present address: Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, United States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Present address: University of Petroleum and Energy Studies, Dehradun, UK, India
| | - Geoffrey D. Findlay
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Department of Biology, College of the Holy Cross, Worcester, MA, United States
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Gunathilaka RAKM, Jayatunga DPW, Ganehiarachchi GASM. Effect of delayed mating on reproductive performance and life-history parameters of dengue vector Aedes aegypti. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:126-132. [PMID: 36065760 DOI: 10.1017/s0007485322000396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dengue is a fast-spreading mosquito-borne viral disease in the world. The primary vector of the disease is Aedes aegypti of the family Culicidae. It is a container breeder. Since a vaccine or a drug has not been developed against dengue, vector control appears to be the best method so far to control dengue. The current study was conducted to determine the effect of delayed mating on fecundity, fertility, life-history parameters, and longevity of Ae. aegypti, because such information can help formulate integrated vector control strategies involving the release of sub-fertile males into the environment. During this study, mating was delayed by 0, 2, 5, and 8 days after emergence. Males and females were separated by hand at the pupal stage using the apparent size difference of the sexes. The separated pupae were kept in separate cages until emergence. When mating was delayed for 8 days, the number of eggs laid by the female declined by 38%, and the percentage number of eggs that hatched reduced by 24%. However, the percentage of larval mortality, duration of the larval and pupal periods, and adult longevity were not significantly affected. The current results indicate that delayed mating has a negative effect on the reproductive performance of vector mosquitoes.
Collapse
Affiliation(s)
- R A K M Gunathilaka
- Department of Zoology and Environmental Management, University of Kelaniya, Kelaniya, Sri Lanka
| | - D P W Jayatunga
- Department of Zoology and Environmental Management, University of Kelaniya, Kelaniya, Sri Lanka
| | - G A S M Ganehiarachchi
- Department of Zoology and Environmental Management, University of Kelaniya, Kelaniya, Sri Lanka
| |
Collapse
|
15
|
Mamtha R, Kiran T, Chandramohan V, Gowrishankar BS, Manjulakumari D. Genome-wide identification and expression analysis of the mating-responsive genes in the male accessory glands of Spodoptera litura (Lepidoptera: Noctuidae). J Genet Eng Biotechnol 2023; 21:11. [PMID: 36723695 PMCID: PMC9892375 DOI: 10.1186/s43141-023-00466-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/14/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mating elicits significant changes in gene expression and leads to subsequent physiological and behavioural modifications in insects. The reproductive success of both sexes is contributed immensely by the male accessory gland (MAG) proteins that are transferred along with sperms to the female reproductive tract during mating where they facilitate several processes that modify the post-mating behaviour. The mating-responsive genes in the MAGs have been identified and reported in many insects but have not been well-characterized in the important agricultural pest Spodoptera litura. Here, we present RNA sequencing analysis to identify mating-responsive genes from the accessory glands of virgin males and males interrupted during mating. RESULTS Overall, 91,744 unigenes were generated after clustering the assembled transcript sequences of both samples, while the total number of transcripts annotated was 48,708 based on sequence homology against the non-redundant (NR) database. Comparative transcriptomics analysis revealed 16,969 genes that were differentially expressed between the two groups, including 9814 up-regulated and 7155 down-regulated genes. Among the top 80 genes that were selected for heat map analysis, several prominent genes including odorant binding protein, cytochrome P450, heat shock proteins, juvenile hormone binding protein, carboxypeptidases and serine protease were differentially expressed. CONCLUSIONS The identified genes are known or predicted to promote several processes that modify the female post-mating behaviour. Future studies with the individual MAG protein or in combination will be required to recognize the precise mechanisms by which these proteins alter female physiology and reproductive behaviour. Thus, our study provides essential data to address fundamental questions about reproduction within and among insects and also paves way for further exploration of the functions of these proteins in female insects.
Collapse
Affiliation(s)
- R. Mamtha
- grid.37728.390000 0001 0730 3862Department of Microbiology & Biotechnology, Bangalore University, Bengaluru, Karnataka 560056 India
| | - Tannavi Kiran
- grid.37728.390000 0001 0730 3862Department of Microbiology & Biotechnology, Bangalore University, Bengaluru, Karnataka 560056 India
| | - Vivek Chandramohan
- grid.444321.40000 0004 0501 2828Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka 572103 India
| | - B. S. Gowrishankar
- grid.444321.40000 0004 0501 2828Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka 572103 India
| | - D. Manjulakumari
- grid.37728.390000 0001 0730 3862Department of Microbiology & Biotechnology, Bangalore University, Bengaluru, Karnataka 560056 India
| |
Collapse
|
16
|
Wu LJ, Li F, Song Y, Zhang ZF, Fan YL, Liu TX. Proteome Analysis of Male Accessory Gland Secretions in the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). INSECTS 2023; 14:132. [PMID: 36835702 PMCID: PMC9960318 DOI: 10.3390/insects14020132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In insects, male accessory gland proteins (ACPs) are important reproductive proteins secreted by male accessory glands (MAGs) of the internal male reproductive system. During mating, ACPs are transferred along with sperms inside female bodies and have a significant impact on the post-mating physiology changes of the females. Under sexual selection pressures, the ACPs exhibit remarkably rapid and divergent evolution and vary from species to species. The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a major insect pest of cruciferous vegetables worldwide. Mating has a profound impact on the females' behavior and physiology in this species. It is still unclear what the ACPs are in this species. In this study, two different proteomic methods were used to identify ACPs in P. xylostella. The proteins of MAGs were compared immediately before and after mating by using a tandem mass tags (TMT) quantitative proteomic analysis. The proteomes of copulatory bursas (CB) in mated females shortly after mating were also analyzed by the shotgun LC-MS/MS technique. In total, we identified 123 putative secreted ACPs. Comparing P. xylostella with other four insect ACPs, trypsins were the only ACPs detected in all insect species. We also identified some new insect ACPs, including proteins with chitin binding Peritrophin-A domain, PMP-22/ EMP/ MP20/ Claudin tight junction domain-containing protein, netrin-1, type II inositol 1,4,5-trisphosphate 5-phosphatase, two spaetzles, allatostatin-CC, and cuticular protein. This is the first time that ACPs have been identified and analyzed in P. xylostella. Our results have provided an important list of putative secreted ACPs, and have set the stage for further exploration of the functions of these putative proteins in P. xylostella reproduction.
Collapse
Affiliation(s)
- Li-Juan Wu
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Fan Li
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Institute of Agricultural Sciences of Suqian, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Yue Song
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Zhan-Feng Zhang
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yong-Liang Fan
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Tong-Xian Liu
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Institute of Entomology, Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Alam MM, Mavian C, Okech BA, White SK, Stephenson CJ, Elbadry MA, Blohm GM, Loeb JC, Louis R, Saleem C, Madsen Beau de Rochars VE, Salemi M, Lednicky JA, Morris JG. Analysis of Zika Virus Sequence Data Associated with a School Cohort in Haiti. Am J Trop Med Hyg 2022; 107:873-880. [PMID: 36096408 PMCID: PMC9651511 DOI: 10.4269/ajtmh.22-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 11/07/2022] Open
Abstract
Zika virus (ZIKV) infections occurred in epidemic form in the Americas in 2014-2016, with some of the earliest isolates in the region coming from Haiti. We isolated ZIKV from 20 children with acute undifferentiated febrile illness who were part of a cohort of children seen at a school clinic in the Gressier region of Haiti. The virus was also isolated from three pools of Aedes aegypti mosquitoes collected at the same location. On phylogenetic analysis, three distinct ZIKV clades were identified. Strains from all three clades were present in Haiti in 2014, making them among the earliest isolates identified in the Western Hemisphere. Strains from all three clades were also isolated in 2016, indicative of their persistence across the time period of the epidemic. Mosquito isolates were collected in 2016 and included representatives from two of the three clades; in one instance, ZIKV was isolated from a pool of male mosquitoes, suggestive of vertical transmission of the virus. The identification of multiple ZIKV clades in Haiti at the beginning of the epidemic suggests that Haiti served as a nidus for transmission within the Caribbean.
Collapse
Affiliation(s)
- Md. Mahbubul Alam
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Bernard A. Okech
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Sarah K. White
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Caroline J. Stephenson
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Maha A. Elbadry
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Gabriela M. Blohm
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Julia C. Loeb
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Rigan Louis
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- State University of Haiti Faculty of Medicine and Pharmacy, Port-au-Prince, Haiti
| | - Cyrus Saleem
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Valery E. Madsen Beau de Rochars
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Health Services Research, Management and Policy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
18
|
Parsana D, Nanfack-Minkeu F, Sirot LK. Insemination in Aedes aegypti and Aedes albopictus. Cold Spring Harb Protoc 2022; 2022:pdb.top107668. [PMID: 35902240 PMCID: PMC9883592 DOI: 10.1101/pdb.top107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aedes mosquitoes are the vectors of several arboviruses that cause human disease. A better understanding of their reproduction helps to improve their management and contributes insights into the fundamental biology of mosquitoes. During mating, inseminated mosquito females receive seminal fluids and sperm from males that they then store in the spermathecae. In Aedes aegypti and Aedes albopictus, most mated females become resistant to further insemination within 2 h of initial insemination. Although the male seminal fluids are known to be involved in initiating the resistance of inseminated females to further insemination, the mechanism underlying this resistance is not well-understood. The determination of insemination status is a key step in investigating the behavioral and molecular interactions between males and females and for exploring the proximate influences and evolutionary implications of interspecific copulations. Several methods exist for determining insemination status, as discussed here. The choice of method depends on the research question and the availability of resources.
Collapse
Affiliation(s)
- Dhwani Parsana
- Department of Biology, The College of Wooster, Wooster, Ohio 44691, USA
| | | | - Laura K. Sirot
- Department of Biology, The College of Wooster, Wooster, Ohio 44691, USA
| |
Collapse
|
19
|
Díaz S, Camargo C, Avila FW. Characterization of the reproductive tract bacterial microbiota of virgin, mated, and blood-fed Aedes aegypti and Aedes albopictus females. Parasit Vectors 2021; 14:592. [PMID: 34852835 PMCID: PMC8638121 DOI: 10.1186/s13071-021-05093-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Aedes aegypti and Ae. albopictus are vectors of numerous arboviruses that adversely affect human health. In mosquito vectors of disease, the bacterial microbiota influence several physiological processes, including fertility and vector competence, making manipulation of the bacterial community a promising method to control mosquito vectors. In this study, we describe the reproductive tract tissue microbiota of lab-reared virgin Ae. aegypti and Ae. albopictus males, and virgin, mated, and mated + blood-fed females of each species, comparing the bacterial composition found there to the well-described gut microbiota. Methods We performed metabarcoding of the 16S rRNA isolated from the gut, upper reproductive tract (URT; testes or ovaries), and lower reproductive tract (LRT; males: seminal vesicles and accessory glands; females: oviduct, spermathecae, and bursa) for each species, and evaluated the influence of host species, tissue, nutritional status, and reproductive status on microbiota composition. Finally, based on the identified taxonomic profiles of the tissues assessed, bacterial metabolic pathway abundance was predicted. Results The community structure of the reproductive tract is unique compared to the gut. Asaia is the most prevalent OTU in the LRTs of both Ae. aegypti and Ae. albopictus. In the URT, we observed differences between species, with Wolbachia OTUs being dominant in the Ae. albopictus URT, while Enterobacter and Serratia were dominant in Ae. aegypti URT. Host species and tissue were the best predictors of the community composition compared to reproductive status (i.e., virgin or mated) and nutritional status (i.e., sugar or blood-fed). The predicted functional profile shows changes in the abundance of specific microbial pathways that are associated with mating and blood-feeding, like energy production in mated tissues and siderophore synthesis in blood-fed female tissues. Conclusions Aedes aegypti and Ae. albopictus have distinct differences in the composition of microbiota found in the reproductive tract. The distribution of the bacterial taxonomic groups indicates that some bacteria have tissue-specific tropism for reproductive tract tissue, such as Asaia and Wolbachia. No significant differences in the taxonomic composition were observed in the reproductive tract between virgin, mated, and mated + blood-fed females, but changes in the abundance of specific metabolic pathways were found in the predicted microbial functional profiles in mated and blood-fed females. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05093-7.
Collapse
Affiliation(s)
- Sebastián Díaz
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia
| | - Carolina Camargo
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia.
| |
Collapse
|
20
|
Abstract
Insect odorant-binding proteins (OBPs) are small soluble proteins that have been assigned roles in olfaction, but their other potential functions have not been extensively explored. Using CRISPR/Cas9-mediated disruption of Aedes aegyptiObp10 and Obp22, we demonstrate the pleiotropic contribution of these proteins to multiple processes that are essential for vectorial capacity. Mutant mosquitoes have impaired host-seeking and oviposition behavior, reproduction, and arbovirus transmission. Here, we show that Obp22 is linked to the male-determining sex locus (M) on chromosome 1 and is involved in male reproduction, likely by mediating the development of spermatozoa. Although OBP10 and OBP22 are not involved in flavivirus replication, abolition of these proteins significantly reduces transmission of dengue and Zika viruses through a mechanism affecting secretion of viral particles into the saliva. These results extend our current understanding of the role of insect OBPs in insect reproduction and transmission of human pathogens, making them essential determinants of vectorial capacity.
Collapse
|
21
|
Xiao HY, Li GC, Wang ZQ, Guo YR, Liu NY. Combined transcriptomic, proteomic and genomic analysis identifies reproductive-related proteins and potential modulators of female behaviors in Spodoptera litura. Genomics 2021; 113:1876-1894. [PMID: 33839272 DOI: 10.1016/j.ygeno.2021.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 04/05/2021] [Indexed: 11/30/2022]
Abstract
The common cutworm, Spodoptera litura, is a polyandrous moth with high reproductive ability. Sexual reproduction is a unique strategy for survival and reproduction of population in this species. However, to date available information about its reproductive genes is rare. Here, we combined transcriptomics, genomics and proteomics approaches to characterize reproductive-related proteins in S. litura. Illumina sequencing in parallel with the reference genome led to the yields of 12,161 reproductive genes, representing 47.83% of genes annotated in the genome. Further, 524 genes of 19 specific gene families annotated in the genome were detected in reproductive tissues of both sexes, some of which exhibited sex-biased and/or tissue-enriched expression. Of these, manual efforts together with the transcriptome analyses re-annotated 54 odorant binding proteins (OBPs) and 23 chemosensory proteins (CSPs) with an increase of 18 OBPs and one CSP compared to those previously annotated in the genome. Interestingly, at least 35 OBPs and 22 CSPs were transcribed in at least one reproductive tissue, suggestive of their involvement in reproduction. Further proteomic analysis revealed 2381 common proteins between virgin and mated female reproductive systems, 79 of which were differentially expressed. More importantly, 74 proteins exclusive to mated females were identified as transferred relatives, coupled with their specific or high expression in male reproductive systems. Of the transferred proteins, several conserved protein classes across insects were observed including OBPs, serpins, trypsins and juvenile hormone-binding proteins. Our current study has extensively surveyed reproductive genes in S. litura with an emphasis on the roles of OBPs and CSPs in reproduction, and identifies potentially transferred proteins serving as modulators of female post-mating behaviors.
Collapse
Affiliation(s)
- Hai-Yan Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Gen-Ceng Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Zheng-Quan Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yu-Ruo Guo
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
22
|
Bartley K, Chen W, Lloyd Mills RI, Nunn F, Price DRG, Rombauts S, Van de Peer Y, Roy L, Nisbet AJ, Burgess STG. Transcriptomic analysis of the poultry red mite, Dermanyssus gallinae, across all stages of the lifecycle. BMC Genomics 2021; 22:248. [PMID: 33827430 PMCID: PMC8028124 DOI: 10.1186/s12864-021-07547-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The blood feeding poultry red mite (PRM), Dermanyssus gallinae, causes substantial economic damage to the egg laying industry worldwide, and is a serious welfare concern for laying hens and poultry house workers. In this study we have investigated the temporal gene expression across the 6 stages/sexes (egg, larvae, protonymph and deutonymph, adult male and adult female) of this neglected parasite in order to understand the temporal expression associated with development, parasitic lifestyle, reproduction and allergen expression. RESULTS RNA-seq transcript data for the 6 stages were mapped to the PRM genome creating a publicly available gene expression atlas (on the OrcAE platform in conjunction with the PRM genome). Network analysis and clustering of stage-enriched gene expression in PRM resulted in 17 superclusters with stage-specific or multi-stage expression profiles. The 6 stage specific superclusters were clearly demarked from each other and the adult female supercluster contained the most stage specific transcripts (2725), whilst the protonymph supercluster the fewest (165). Fifteen pairwise comparisons performed between the different stages resulted in a total of 6025 Differentially Expressed Genes (DEGs) (P > 0.99). These data were evaluated alongside a Venn/Euler analysis of the top 100 most abundant genes in each stage. An expanded set of cuticle proteins and enzymes (chitinase and metallocarboxypeptidases) were identified in larvae and underpin cuticle formation and ecdysis to the protonymph stage. Two mucin/peritrophic-A salivary proteins (DEGAL6771g00070, DEGAL6824g00220) were highly expressed in the blood-feeding stages, indicating peritrophic membrane formation during feeding. Reproduction-associated vitellogenins were the most abundant transcripts in adult females whilst, in adult males, an expanded set of serine and cysteine proteinases and an epididymal protein (DEGAL6668g00010) were highly abundant. Assessment of the expression patterns of putative homologues of 32 allergen groups from house dust mites indicated a bias in their expression towards the non-feeding larval stage of PRM. CONCLUSIONS This study is the first evaluation of temporal gene expression across all stages of PRM and has provided insight into developmental, feeding, reproduction and survival strategies employed by this mite. The publicly available PRM resource on OrcAE offers a valuable tool for researchers investigating the biology and novel interventions of this parasite.
Collapse
Affiliation(s)
- Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK.
| | - Wan Chen
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | | | - Francesca Nunn
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Lise Roy
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Stewart T G Burgess
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| |
Collapse
|
23
|
The 40-Year Mystery of Insect Odorant-Binding Proteins. Biomolecules 2021; 11:biom11040509. [PMID: 33808208 PMCID: PMC8067015 DOI: 10.3390/biom11040509] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
The survival of insects depends on their ability to detect molecules present in their environment. Odorant-binding proteins (OBPs) form a family of proteins involved in chemoreception. While OBPs were initially found in olfactory appendages, recently these proteins were discovered in other chemosensory and non-chemosensory organs. OBPs can bind, solubilize and transport hydrophobic stimuli to chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted "transporter role", OBPs can also buffer sudden changes in odorant levels and are involved in hygro-reception. The physiological roles of OBPs expressed in other body tissues, such as mouthparts, pheromone glands, reproductive organs, digestive tract and venom glands, remain to be investigated. This review provides an updated panorama on the varied structural aspects, binding properties, tissue expression and functional roles of insect OBPs.
Collapse
|
24
|
Guo B, Hao E, Qiao H, Wang J, Wu W, Zhou J, Lu P. Antennal transcriptome analysis of olfactory genes and characterizations of odorant binding proteins in two woodwasps, Sirex noctilio and Sirex nitobei (Hymenoptera: Siricidae). BMC Genomics 2021; 22:172. [PMID: 33691636 PMCID: PMC7945326 DOI: 10.1186/s12864-021-07452-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/19/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The woodwasp Sirex noctilio Fabricius is a major quarantine pest worldwide that was first discovered in China in 2013 and mainly harms Pinus sylvestris var. mongolica Litv.. S. nitobei Matsumura is a native species in China and is closely related to S. noctilio. Recently, the two woodwasps species were found attacking the P. sylvestris var. mongolica Litv in succession. The olfactory system is the foundation of insect behavior. Olfactory genes were identified through antennal transcriptome analysis. The expression profiles odorant binding proteins (OBPs) were analyzed with RT-qPCR. RESULTS From our transcriptome analysis, 16 OBPs, 7 chemosensory proteins (CSPs), 41 odorant receptors (ORs), 8 gustatory receptors (GRs), 13 ionotropic receptors (IRs), and one sensory neuron membrane protein (SNMP) were identified in S. noctilio, while 15 OBPs, 6 CSPs, 43 ORs, 10 GRs, 16 IRs, and 1 SNMP were identified in S. nitobei. Most of the olfactory genes identified in two species were homologous. However, some species-specific olfactory genes were identified from the antennal transcriptomes, including SnocOBP13, SnocCSP6, SnocOR26, SnocGR2, SnocIR7 in S. noctilio and SnitGR9, SnitGR11, SnitIR17 in S. nitobei. In total, 14 OBPs were expressed primarily in the antennae. SnocOBP9 and SnitOBP9, identified as PBP homologues, were sex-biased expression in two siricid, but with different pattern. SnocOBP11 and SnitOBP11 were highly expressed in antennae and clearly expressed in external genitalia. SnocOBP7 and SnitOBP7 were highly expressed in male genitalia. SnocOBP3 and SnocOBP10 were highly expressed in female genitalia and male heads, while SnitOBP3 and SnitOBP10 did not show obvious tissue bias. CONCLUSION We analyzed 86 and 91 olfactory genes from S. noctilio and S. nitobei, respectively. Most of the olfactory genes identified were homologous, but also some species-specific olfactory genes were identified, which indicated the similarities and differences of the molecular mechanisms between the two closely-related species. Different expression in the antennae, external genitals or heads, exhibiting an obvious sex bias, suggested their different role in recognizing sex pheromones or plant volatiles. Species-specific expression for several OBPs genes may suggest that they strengthened or lost their original function during species differentiation, resulting in olfactory differences between the two species.
Collapse
Affiliation(s)
- Bing Guo
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Enhua Hao
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Jingzhen Wang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Weiwei Wu
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jingjiang Zhou
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Pengfei Lu
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
25
|
Gregoriou ME, Reczko M, Kakani EG, Tsoumani KT, Mathiopoulos KD. Decoding the Reproductive System of the Olive Fruit Fly, Bactrocera oleae. Genes (Basel) 2021; 12:355. [PMID: 33670896 PMCID: PMC7997189 DOI: 10.3390/genes12030355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
In most diploid organisms, mating is a prerequisite for reproduction and, thus, critical to the maintenance of their population and the perpetuation of the species. Besides the importance of understanding the fundamentals of reproduction, targeting the reproductive success of a pest insect is also a promising method for its control, as a possible manipulation of the reproductive system could affect its destructive activity. Here, we used an integrated approach for the elucidation of the reproductive system and mating procedures of the olive fruit fly, Bactrocera oleae. Initially, we performed a RNAseq analysis in reproductive tissues of virgin and mated insects. A comparison of the transcriptomes resulted in the identification of genes that are differentially expressed after mating. Functional annotation of the genes showed an alteration in the metabolic, catalytic, and cellular processes after mating. Moreover, a functional analysis through RNAi silencing of two differentially expressed genes, yellow-g and troponin C, resulted in a significantly reduced oviposition rate. This study provided a foundation for future investigations into the olive fruit fly's reproductive biology to the development of new exploitable tools for its control.
Collapse
Affiliation(s)
- Maria-Eleni Gregoriou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.-E.G.); (K.T.T.)
| | - Martin Reczko
- Institute for Fundamental Biomedical Science, Biomedical Sciences Research Centre “Alexander Fleming”, 16672 Vari, Greece;
| | - Evdoxia G. Kakani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA 02115, USA;
- Verily Life Sciences, South San Francisco, CA 94080, USA
| | - Konstantina T. Tsoumani
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.-E.G.); (K.T.T.)
| | - Kostas D. Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.-E.G.); (K.T.T.)
| |
Collapse
|
26
|
Chen C, Zhu H, Li SY, Han YY, Chen L, Fan BQ, Zhang YF, Wang Y, Hao DJ. Insights into chemosensory genes of Pagiophloeus tsushimanus adults using transcriptome and qRT-PCR analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 37:100785. [PMID: 33548831 DOI: 10.1016/j.cbd.2020.100785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022]
Abstract
Pagiophloeus tsushimanus is a new, destructive, and monophagous weevil pest that thrives on Cinnamomum camphora, found in Shanghai. The functions of chemosensory genes involved in the host location and intraspecific communication of P. tsushimanus remain unknown. The male-female transcriptomes of P. tsushimanus adults were assembled using Illumina sequencing, and we focused on all chemosensory genes in transcriptomes. In general, 58,088 unigenes with a mean length of 1018.19 bp were obtained. In total, 39 odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 22 olfactory receptors (ORs), 16 gustatory receptors (GRs), eight ionotropic receptors (IRs), and five sensory neuron membrane proteins (SNMPs) were identified. PtsuOBPs comprised four subfamilies (20 Minus-C, one Plus-C, two Dimer, and 15 Classic). Both PtsuOBPs and PtsuCSPs contained a highly conserved sequence motif of cysteine residues. PtsuORs including one olfactory receptor co-receptors (Ptsu/Orco) comprised seven predicted transmembrane domains. Phylogenetic analysis revealed that PtsuOBPs, PtsuCSPs, and PtsuORs in P. tsushimanus exhibited low homology compared to other insect species. The results of tissue- and sex-specific expression patterns indicated that PtsuOBPs and PtsuORs were highly abundant in the antennae; whereas, PtsuCSPs were not only highly abundant in antennae, but also abdominal apexes, wings, and legs. In conclusion, these results enrich the gene database of P. tsushimanus, which may serve as a basis for identifying novel targets to disrupt olfactory key genes and may provide a reverse validation method to identify attractants for formulating potential eco-friendly control strategies for this pest.
Collapse
Affiliation(s)
- Cong Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Han Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shou-Yin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Liang Chen
- Shanghai Kaisheng Landscape Engineering Co., Ltd, Shanghai, China
| | - Bin-Qi Fan
- Forest Station of Shanghai, Shanghai, China
| | | | - Yan Wang
- Forest Station of Shanghai, Shanghai, China
| | - De-Jun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China.
| |
Collapse
|
27
|
Isolation, Identification, and Bioinformatic Analysis of Antibacterial Proteins and Peptides from Immunized Hemolymph of Red Palm Weevil Rhynchophorus ferrugineus. Biomolecules 2021; 11:biom11010083. [PMID: 33440876 PMCID: PMC7826645 DOI: 10.3390/biom11010083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/09/2023] Open
Abstract
Red palm weevil (Rhynchophorus ferrugineus Olivier, 1791, Coleoptera: Curculionidae) is a destructive pest of palms, rapidly extending its native geographical range and causing large economic losses worldwide. The present work describes isolation, identification, and bioinformatic analysis of antibacterial proteins and peptides from the immunized hemolymph of this beetle. In total, 17 different bactericidal or bacteriostatic compounds were isolated via a series of high-pressure liquid chromatography steps, and their partial amino acid sequences were determined by N-terminal sequencing or by mass spectrometry. The bioinformatic analysis of the results facilitated identification and description of corresponding nucleotide coding sequences for each peptide and protein, based on the recently published R. ferrugineus transcriptome database. The identified compounds are represented by several well-known bactericidal factors: two peptides similar to defensins, one cecropin-A1-like peptide, and one attacin-B-like protein. Interestingly, we have also identified some unexpected compounds comprising five isoforms of pheromone-binding proteins as well as seven isoforms of odorant-binding proteins. The particular role of these factors in insect response to bacterial infection needs further investigation.
Collapse
|
28
|
Muzzi M, Di Giulio A, Mancini E, Fratini E, Cervelli M, Gasperi T, Mariottini P, Persichini T, Bologna MA. The male reproductive accessory glands of the blister beetle Meloe proscarabaeus Linnaeus, 1758 (Coleoptera: Meloidae): Anatomy and ultrastructure of the cantharidin-storing organs. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 59:100980. [PMID: 32829176 DOI: 10.1016/j.asd.2020.100980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Blister beetles owe their name to their ability to release cantharidin, a blistering terpene, the highest concentration of which is retained in male accessory glands. The anatomy and ultrastructure of the three pairs of male reproductive accessory glands and the glandular region of the two vasa deferentia of Meloe proscarabaeus were investigated using light, electron and ion beam microscopy. All of the mesodermal glands here analysed share a common structural organization with an outer muscular layer and an inner glandular epithelium facing a broad lumen in which the secretory products are released. Developed rough endoplasmic reticulum, Golgi systems, abundant mitochondria, numerous secretory vesicles and a microvillated apical membrane are commonly found in the cells of different glandular epithelia, suggesting that all accessory gland pairs as well as the vasa deferentia are involved in an active synthesis. Nevertheless, each pair of glands appears specialized in the production of a specific set of substances, as suggested by the peculiarities in cellular ultrastructure and by the different aspect of the secretions stored in their glandular lumen. The above cited features of male accessory glands of M. proscarabaeus are compared with those of other beetles and some hints on their potential role in producing and/or concentrating cantharidin are provided.
Collapse
Affiliation(s)
- Maurizio Muzzi
- Department of Science, University Roma Tre, Rome, Italy; Laboratorio Interdipartimentale di Microscopia Elettronica (LIME), University Roma Tre, Rome, Italy
| | - Andrea Di Giulio
- Department of Science, University Roma Tre, Rome, Italy; Laboratorio Interdipartimentale di Microscopia Elettronica (LIME), University Roma Tre, Rome, Italy.
| | - Emiliano Mancini
- Department of Biology and Biotechnology "C. Darwin", "Sapienza" University of Rome, Rome, Italy
| | | | | | - Tecla Gasperi
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | | |
Collapse
|
29
|
Cridland JM, Majane AC, Sheehy HK, Begun DJ. Polymorphism and Divergence of Novel Gene Expression Patterns in Drosophila melanogaster. Genetics 2020; 216:79-93. [PMID: 32737121 PMCID: PMC7463294 DOI: 10.1534/genetics.120.303515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Transcriptomes may evolve by multiple mechanisms, including the evolution of novel genes, the evolution of transcript abundance, and the evolution of cell, tissue, or organ expression patterns. Here, we focus on the last of these mechanisms in an investigation of tissue and organ shifts in gene expression in Drosophila melanogaster. In contrast to most investigations of expression evolution, we seek to provide a framework for understanding the mechanisms of novel expression patterns on a short population genetic timescale. To do so, we generated population samples of D. melanogaster transcriptomes from five tissues: accessory gland, testis, larval salivary gland, female head, and first-instar larva. We combined these data with comparable data from two outgroups to characterize gains and losses of expression, both polymorphic and fixed, in D. melanogaster We observed a large number of gain- or loss-of-expression phenotypes, most of which were polymorphic within D. melanogaster Several polymorphic, novel expression phenotypes were strongly influenced by segregating cis-acting variants. In support of previous literature on the evolution of novelties functioning in male reproduction, we observed many more novel expression phenotypes in the testis and accessory gland than in other tissues. Additionally, genes showing novel expression phenotypes tend to exhibit greater tissue-specific expression. Finally, in addition to qualitatively novel expression phenotypes, we identified genes exhibiting major quantitative expression divergence in the D. melanogaster lineage.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Alex C Majane
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Hayley K Sheehy
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
30
|
Saraswathi S, Chaitra BS, Tannavi K, Mamtha R, Sowrabha R, Rao KV, Doddamane M. Proteome analysis of male accessory gland secretions in Leucinodes orbonalis Guenee (Lepidoptera: Crambidae), a Solanum melongena L. pest. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21672. [PMID: 32232934 DOI: 10.1002/arch.21672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Male accessory gland (MAG) proteins are transferred along with the sperm to females at the time of mating and have diverse effects on female reproductive physiology in a wide range of insects. In this study, we sought to identify the MAG proteins in Leucinodes orbonalis Guenee, a Solanum melongena L. pest, by analyzing the MAG proteins of virgin and mated male moths by nano-LC-ESI-MS/MS techniques. A total of 142 and 131 proteins in virgin and mated males were identified, respectively, among which 17 (12.0%) and 10 (7.6%) proteins were found to show secretory signals in virgin and mated males, respectively. These secretory proteins were shown to be involved in several biological processes in insects, including egg development, sperm-related functions/capacitation, defense, metabolism, and protein chaperoning. To the best of our knowledge, this is the first study to perform a proteome analysis of the MAG proteins of L. orbonalis, and offers an opportunity for further investigation of the functions of these proteins. In insects, certain MAG proteins are known to inhibit mating whereas others accelerate egg-laying. Therefore, the identification of these proteins in L. orbonalis may be useful for pest control.
Collapse
Affiliation(s)
| | - B S Chaitra
- Department of Microbiology, Bangalore University, Bengaluru, Karnataka, India
| | - Kiran Tannavi
- Department of Microbiology, Bangalore University, Bengaluru, Karnataka, India
| | - R Mamtha
- Department of Microbiology, Bangalore University, Bengaluru, Karnataka, India
| | - R Sowrabha
- Department of Microbiology, Bangalore University, Bengaluru, Karnataka, India
| | - Karthik V Rao
- Department of Microbiology, Bangalore University, Bengaluru, Karnataka, India
| | | |
Collapse
|
31
|
Gao X, Tian Z, Zhang Y, Chen G, Ma C, Tian Z, Cui S, Lu Y, Zhou Z. Transcriptome Analysis of Ophraella communa Male Reproductive Tract in Indirect Response to Elevated CO 2 and Heat Wave. Front Physiol 2020; 11:417. [PMID: 32431624 PMCID: PMC7215069 DOI: 10.3389/fphys.2020.00417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Increase in atmospheric CO2 directly affects the insect physiology and behavior, and indirectly affects the herbivorous insects by affecting their hosts. The increase in atmospheric CO2 is accompanied by an increase in temperature and heat waves. Ophraella communa LeSage is a natural enemy of Ambrosia artemisiifolia (common ragweed). The development and reproduction of this beetle is weakened upon eating common ragweed grown under stress conditions. As female behavior and physiology alter after mating, the reproductive tract of males is likely to modulate reproduction and development in this species. Herein, the transcriptional profiles of testes and accessory glands from male O. communa individuals feeding on common ragweed under conditions of high CO2 concentration and heat waves and that grown under ambient CO2 concentration were compared. Differentially expressed genes (DEGs) were identified between the same tissues from beetles fed on common ragweed grown under different stress conditions. There were 3, 2, 3, 1and 5 genes related to decomposition and transport of macromolecular substances, host location, stress response, reproduction, and poisonous food-utilization. No expected response was observed in the male reproductive tract, but some of the identified DEGs might control the development of the population. The results presented here should be helpful in guiding future studies on deciphering the indirect response of other organs to high CO2 concentration and heat waves, as well as the functions of seminal fluid proteins in O. communa.
Collapse
Affiliation(s)
- Xuyuan Gao
- College of Agriculture, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhenya Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangmei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenqi Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaowei Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongyue Lu
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Wang J, Murphy EJ, Nix JC, Jones DNM. Aedes aegypti Odorant Binding Protein 22 selectively binds fatty acids through a conformational change in its C-terminal tail. Sci Rep 2020; 10:3300. [PMID: 32094450 PMCID: PMC7039890 DOI: 10.1038/s41598-020-60242-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Aedes aegypti is the primary vector for transmission of Dengue, Zika and chikungunya viruses. Previously it was shown that Dengue virus infection of the mosquito led to an in increased expression of the odorant binding protein 22 (AeOBP22) within the mosquito salivary gland and that siRNA mediated knockdown of AeOBP22 led to reduced mosquito feeding behaviors. Insect OBPs are implicated in the perception, storage and transport of chemosensory signaling molecules including air-borne odorants and pheromones. AeOBP22 is unusual as it is additionally expressed in multiple tissues, including the antenna, the male reproductive glands and is transferred to females during reproduction, indicating multiple roles in the mosquito life cycle. However, it is unclear what role it plays in these tissues and what ligands it interacts with. Here we present solution and X-ray crystallographic studies that indicate a potential role of AeOBP22 binding to fatty acids, and that the specificity for longer chain fatty acids is regulated by a conformational change in the C-terminal tail that leads to creation of an enlarged binding cavity that enhances binding affinity. This study sheds light onto the native ligands for AeOBP22 and provides insight into its potential functions in different tissues.
Collapse
Affiliation(s)
- Jing Wang
- Dept. of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Ave, Aurora, CO, 80045, USA
| | - Emma J Murphy
- Dept. of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Ave, Aurora, CO, 80045, USA
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, University of Oxford Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, USA
| | - Jay C Nix
- Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - David N M Jones
- Dept. of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Ave, Aurora, CO, 80045, USA.
- Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Ave, Aurora, CO, 80045, USA.
| |
Collapse
|
33
|
Xu X, Wang Y, Bi H, Xu J, Liu Z, Niu C, He L, James AA, Li K, Huang Y. Mutation of the seminal protease gene, serine protease 2, results in male sterility in diverse lepidopterans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103243. [PMID: 31541694 DOI: 10.1016/j.ibmb.2019.103243] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/04/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Sterile insect technology (SIT) is an environmentally friendly method for pest control. As part of our efforts to develop a strategy that results in engineered male-sterile strains with minimum effects on viability and mating competition, we used CRISPR/Cas9 technology to disrupt Ser2, which encodes a seminal fluid protein, in the model lepidopteran insect, Bombyx mori, and an important agricultural pest, Plutella xylostella. Disruption of Ser2 resulted in dominant heritable male sterility. Wild-type females mated with Ser2-deficient males laid eggs normally, but the eggs did not hatch. We detected no differences in other reproductive behaviors in the mutant males. These results support the conclusion that Ser2 gene is necessary for male reproductive success in diverse lepidopterans. Targeting Ser2 gene has the potential to form the basis for a new strategy for pest control.
Collapse
Affiliation(s)
- Xia Xu
- School of Life Science, East China Normal University, 200241, Shanghai, China; Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China; Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Honglun Bi
- School of Life Science, East China Normal University, 200241, Shanghai, China; Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zulian Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lin He
- School of Life Science, East China Normal University, 200241, Shanghai, China.
| | - Anthony A James
- Department of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Kai Li
- School of Life Science, East China Normal University, 200241, Shanghai, China.
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
34
|
Li GW, Chen XL, Chen LH, Wang WQ, Wu JX. Functional Analysis of the Chemosensory Protein GmolCSP8 From the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Front Physiol 2019; 10:552. [PMID: 31133881 PMCID: PMC6516043 DOI: 10.3389/fphys.2019.00552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Chemosensory proteins (CSPs) belong to a family of small water-soluble proteins that can selectively bind and transport odorant molecules for olfactory communication in insects. To date, their definite physiological functions in olfaction remain controversial when compared with odorant binding proteins (OBPs). To investigate the functions of CSPs in the oriental fruit moth Grapholita molesta, we determined the tissue expression patterns and binding properties of the CSP, GmolCSP8. The key binding sites of GmolCSP8 with a representative ligand were evaluated using molecular flexible docking, site-directed mutagenesis and ligand-binding experiments. Multiple sequence alignment and phylogenetic analysis showed that GmolCSP8 possesses a typical conserved four cysteines motif and shares high sequence identity with some CSP members of other Lepidopteran insects. GmolCSP8 was predominantly expressed in the wings and antennae of both male and female adults and may be involve in contact chemoreception. Recombinant GmolCSP8 (rGmolCSP8) exhibited specific-binding affinities to small aliphatic alcohols (C4–12) and had the strongest binding affinity to 1-hexanol. The three-dimensional structure of GmolCSP8 was constructed using the structure of sgCSP4 as a template. Site-directed mutagenesis and ligand-binding experiments confirmed that Thr27 is the key binding site in GmolCSP8 for 1-hexanol binding, because this residue can form hydrogen bond with the oxygen atom of the hydroxyl group in 1-hexanol, and Leu30 may play an important role in binding to 1-hexanol. We found that pH significantly affected the binding affinities of rGmolCSP8 to ligand, revealing that ligand-binding and -release by this protein is related to a pH-dependent conformational transition. Based on these results, we infer that GmolCSP8 may participate in the recognition and transportation of 1-hexanol and other small aliphatic alcohols.
Collapse
Affiliation(s)
- Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Li-Hui Chen
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| | - Wen-Qiang Wang
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| |
Collapse
|
35
|
Degner EC, Ahmed-Braimah YH, Borziak K, Wolfner MF, Harrington LC, Dorus S. Proteins, Transcripts, and Genetic Architecture of Seminal Fluid and Sperm in the Mosquito Aedes aegypti. Mol Cell Proteomics 2019; 18:S6-S22. [PMID: 30552291 PMCID: PMC6427228 DOI: 10.1074/mcp.ra118.001067] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Indexed: 11/06/2022] Open
Abstract
The yellow fever mosquito, Aedes aegypti,, transmits several viruses causative of serious diseases, including dengue, Zika, and chikungunya. Some proposed efforts to control this vector involve manipulating reproduction to suppress wild populations or to replace them with disease-resistant mosquitoes. The design of such strategies requires an intimate knowledge of reproductive processes, yet our basic understanding of reproductive genetics in this vector remains largely incomplete. To accelerate future investigations, we have comprehensively catalogued sperm and seminal fluid proteins (SFPs) transferred to females in the ejaculate using tandem mass spectrometry. By excluding female-derived proteins using an isotopic labeling approach, we identified 870 sperm proteins and 280 SFPs. Functional composition analysis revealed parallels with known aspects of sperm biology and SFP function in other insects. To corroborate our proteome characterization, we also generated transcriptomes for testes and the male accessory glands-the primary contributors to Ae. aegypti, sperm and seminal fluid, respectively. Differential gene expression of accessory glands from virgin and mated males suggests that transcripts encoding proteins involved in protein translation are upregulated post-mating. Several SFP transcripts were also modulated after mating, but >90% remained unchanged. Finally, a significant enrichment of SFPs was observed on chromosome 1, which harbors the male sex determining locus in this species. Our study provides a comprehensive proteomic and transcriptomic characterization of ejaculate production and composition and thus provides a foundation for future investigations of Ae. aegypti, reproductive biology, from functional analysis of individual proteins to broader examination of reproductive processes.
Collapse
Affiliation(s)
- Ethan C Degner
- From the ‡Department of Entomology, Cornell University, Ithaca, New York
| | | | - Kirill Borziak
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York;.
| | - Laura C Harrington
- From the ‡Department of Entomology, Cornell University, Ithaca, New York;.
| | - Steve Dorus
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York.
| |
Collapse
|
36
|
Meuti ME, Short SM. Physiological and Environmental Factors Affecting the Composition of the Ejaculate in Mosquitoes and Other Insects. INSECTS 2019; 10:E74. [PMID: 30875967 PMCID: PMC6468485 DOI: 10.3390/insects10030074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 01/02/2023]
Abstract
In addition to transferring sperm, male mosquitoes deliver several proteins, hormones and other factors to females in their seminal fluid that inhibit remating, alter host-seeking behaviors and stimulate oviposition. Recently, bioinformatics, transcriptomics and proteomics have been used to characterize the genes transcribed in male reproductive tissues and the individual proteins that are delivered to females. Thanks to these foundational studies, we now understand the complexity of the ejaculate in several mosquito species. Building on this work, researchers have begun to identify the functions of various proteins and hormones in the male ejaculate, and how they mediate their effects on female mosquitoes. Here, we present an overview of these studies, followed by a discussion of an under-studied aspect of male reproductive physiology: the effects of biotic and abiotic factors on the composition of the ejaculate. We argue that future research in this area would improve our understanding of male reproductive biology from a physiological and ecological perspective, and that researchers may be able to leverage this information to study key components of the ejaculate. Furthermore, this work has the potential to improve mosquito control by allowing us to account for relevant factors when implementing vector control strategies involving male reproductive biology.
Collapse
Affiliation(s)
- Megan E Meuti
- Department of Entomology, The Ohio State University, 2001 Fyffe Rd., Room 232 Howlett Hall, Columbus, OH 43210, USA.
| | - Sarah M Short
- Department of Entomology, The Ohio State University, 2001 Fyffe Rd., Room 232 Howlett Hall, Columbus, OH 43210, USA.
| |
Collapse
|
37
|
Sepil I, Hopkins BR, Dean R, Thézénas ML, Charles PD, Konietzny R, Fischer R, Kessler BM, Wigby S. Quantitative Proteomics Identification of Seminal Fluid Proteins in Male Drosophila melanogaster. Mol Cell Proteomics 2019; 18:S46-S58. [PMID: 30287546 PMCID: PMC6427238 DOI: 10.1074/mcp.ra118.000831] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
Seminal fluid contains some of the fastest evolving proteins currently known. These seminal fluid proteins (Sfps) play crucial roles in reproduction, such as supporting sperm function, and particularly in insects, modifying female physiology and behavior. Identification of Sfps in small animals is challenging, and often relies on samples taken from the female reproductive tract after mating. A key pitfall of this method is that it might miss Sfps that are of low abundance because of dilution in the female-derived sample or rapid processing in females. Here we present a new and complementary method, which provides added sensitivity to Sfp identification. We applied label-free quantitative proteomics to Drosophila melanogaster, male reproductive tissue - where Sfps are unprocessed, and highly abundant - and quantified Sfps before and immediately after mating, to infer those transferred during copulation. We also analyzed female reproductive tracts immediately before and after copulation to confirm the presence and abundance of known and candidate Sfps, where possible. Results were cross-referenced with transcriptomic and sequence databases to improve confidence in Sfp detection. Our data were consistent with 125 previously reported Sfps. We found nine high-confidence novel candidate Sfps, which were both depleted in mated versus, unmated males and identified within the reproductive tract of mated but not virgin females. We also identified 42 more candidates that are likely Sfps based on their abundance, known expression and predicted characteristics, and revealed that four proteins previously identified as Sfps are at best minor contributors to the ejaculate. The estimated copy numbers for our candidate Sfps were lower than for previously identified Sfps, supporting the idea that our technique provides a deeper analysis of the Sfp proteome than previous studies. Our results demonstrate a novel, high-sensitivity approach to the analysis of seminal fluid proteomes, whose application will further our understanding of reproductive biology.
Collapse
Affiliation(s)
- Irem Sepil
- From the ‡Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK;.
| | - Ben R Hopkins
- From the ‡Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Rebecca Dean
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Marie-Laëtitia Thézénas
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip D Charles
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rebecca Konietzny
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stuart Wigby
- From the ‡Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Scolari F, Attardo GM, Aksoy E, Weiss B, Savini G, Takac P, Abd-Alla A, Parker AG, Aksoy S, Malacrida AR. Symbiotic microbes affect the expression of male reproductive genes in Glossina m. morsitans. BMC Microbiol 2018; 18:169. [PMID: 30470198 PMCID: PMC6251095 DOI: 10.1186/s12866-018-1289-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Tsetse flies (Diptera, Glossinidae) display unique reproductive biology traits. Females reproduce through adenotrophic viviparity, nourishing the growing larva into their modified uterus until parturition. Males transfer their sperm and seminal fluid, produced by both testes and male accessory glands, in a spermatophore capsule transiently formed within the female reproductive tract upon mating. Both sexes are obligate blood feeders and have evolved tight relationships with endosymbionts, already shown to provide essential nutrients lacking in their diet. However, the partnership between tsetse and its symbionts has so far been investigated, at the molecular, genomic and metabolomics level, only in females, whereas the roles of microbiota in male reproduction are still unexplored. Results Here we begin unravelling the impact of microbiota on Glossina m. morsitans (G. morsitans) male reproductive biology by generating transcriptomes from the reproductive tissues of males deprived of their endosymbionts (aposymbiotic) via maternal antibiotic treatment and dietary supplementation. We then compared the transcriptional profiles of genes expressed in the male reproductive tract of normal and these aposymbiotic flies. We showed that microbiota removal impacts several male reproductive genes by depressing the activity of genes in the male accessory glands (MAGs), including sequences encoding seminal fluid proteins, and increasing expression of genes in the testes. In the MAGs, in particular, the expression of genes related to mating, immunity and seminal fluid components’ synthesis is reduced. In the testes, the absence of symbionts activates genes involved in the metabolic apparatus at the basis of male reproduction, including sperm production, motility and function. Conclusions Our findings mirrored the complementary roles male accessory glands and testes play in supporting male reproduction and open new avenues for disentangling the interplay between male insects and endosymbionts. From an applied perspective, unravelling the metabolic and functional relationships between tsetse symbionts and male reproductive physiology will provide fundamental information useful to understanding the biology underlying improved male reproductive success in tsetse. This information is of particular importance in the context of tsetse population control via Sterile Insect Technique (SIT) and its impact on trypanosomiasis transmission. Electronic supplementary material The online version of this article (10.1186/s12866-018-1289-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Geoffrey Michael Attardo
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA.,Present Address: Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Emre Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | - Brian Weiss
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Peter Takac
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 845 06, Bratislava, SR, Slovakia
| | - Adly Abd-Alla
- International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IPC Laboratory, A-1400, Vienna, Austria
| | - Andrew Gordon Parker
- International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IPC Laboratory, A-1400, Vienna, Austria
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | | |
Collapse
|
39
|
Singh A, Buehner NA, Lin H, Baranowski KJ, Findlay GD, Wolfner MF. Long-term interaction between Drosophila sperm and sex peptide is mediated by other seminal proteins that bind only transiently to sperm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 102:43-51. [PMID: 30217614 PMCID: PMC6249070 DOI: 10.1016/j.ibmb.2018.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 05/23/2023]
Abstract
Seminal fluid proteins elicit several post-mating physiological changes in mated Drosophila melanogaster females. Some of these changes persist for over a week after mating because the seminal protein that causes these changes, the Sex Peptide (SP), binds to sperm that are stored in the female reproductive tract. SP's sperm binding is mediated by a network of at least eight seminal proteins. We show here that some of these network proteins (CG1656, CG1652, CG9997 and Antares) bind to sperm within 2 h of mating, like SP. However, while SP remains bound to sperm at 4 days post-mating, none of the other network proteins are detectable at this time. We also observed that the same network proteins are detectable at 2 h post-mating in seminal receptacle tissue from which sperm have been removed, but are no longer detectable there by 4 days post-mating, suggesting short-term retention of these proteins in this female sperm storage organ. Our results suggest that these network proteins act transiently to facilitate the conditions for SP's binding to sperm, perhaps by modifying SP or the sperm surface, but are not part of a long-acting complex that stably attaches SP to sperm.
Collapse
Affiliation(s)
- Akanksha Singh
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Norene A Buehner
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - He Lin
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA; East China Normal University, Shanghai, China
| | | | - Geoffrey D Findlay
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA; Dept. of Biology, College of the Holy Cross, Worcester, MA, 01610, USA
| | - Mariana F Wolfner
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
40
|
Villarreal SM, Pitcher S, Helinski MEH, Johnson L, Wolfner MF, Harrington LC. Male contributions during mating increase female survival in the disease vector mosquito Aedes aegypti. JOURNAL OF INSECT PHYSIOLOGY 2018; 108:1-9. [PMID: 29729859 PMCID: PMC5988987 DOI: 10.1016/j.jinsphys.2018.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Aedes aegypti is a vector of medically important viruses including those causing Zika, dengue, and chikungunya. During mating, males transfer a number of proteins and other molecules to the female and these components of the male ejaculate are essential in shifting female post-mating behaviors in a number of insect species. Because these molecules are highly variable by species, and female post-mating behavior by species is also varied, behavioral assays testing the function of the ejaculate are necessary before we can develop control strategies targeting the mating system to reduce mosquito populations. Because increased survival in mosquitoes strongly increases vectorial capacity and can influence population sizes and potential risk we tested the effect of mating on female survival. The ejaculate can either promote or reduce female survival, as both have been shown in multiple insect species, yet this effect has not been directly assessed in mosquitoes. We compared survival of females in four treatment groups: mated females, virgin females, and virgin females injected with either an extract from the male reproductive glands or a saline control. Survival, blood feeding frequency, fecundity and cumulative net reproductive rate (R0) were determined after multiple feedings from a human host. Our results confirm that male reproductive gland substances increase female fecundity and blood feeding frequency, resulting in dramatic increases in fitness (R0). We also demonstrate, for the first time, an effect of male reproductive gland extracts alone on female survival, regardless of whether or not the female ingested a vertebrate blood meal. Thus, the effects of MAG extract on survival are not secondary effects from altered blood feeding. Collectively, we demonstrate a direct role for Ae. aegypti male-derived molecules on increasing female fitness, reproductive success and, ultimately, transmission potential for vector borne pathogens.
Collapse
Affiliation(s)
- Susan M Villarreal
- Department of Entomology, Cornell University, 3131 Comstock Hall, Ithaca, NY 14853, USA
| | - Sylvie Pitcher
- Department of Entomology, Cornell University, 3131 Comstock Hall, Ithaca, NY 14853, USA
| | - Michelle E H Helinski
- Department of Entomology, Cornell University, 3131 Comstock Hall, Ithaca, NY 14853, USA
| | - Lynn Johnson
- Cornell Statistical Consulting Unit, Cornell University, B-11 Savage Hall, Ithaca, NY 14853, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, 423 Biotechnology Building, Ithaca, NY 14853, USA
| | - Laura C Harrington
- Department of Entomology, Cornell University, 3131 Comstock Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
41
|
Bruno D, Grossi G, Salvia R, Scala A, Farina D, Grimaldi A, Zhou JJ, Bufo SA, Vogel H, Grosse-Wilde E, Hansson BS, Falabella P. Sensilla Morphology and Complex Expression Pattern of Odorant Binding Proteins in the Vetch Aphid Megoura viciae (Hemiptera: Aphididae). Front Physiol 2018; 9:777. [PMID: 29988577 PMCID: PMC6027062 DOI: 10.3389/fphys.2018.00777] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/04/2018] [Indexed: 12/02/2022] Open
Abstract
Chemoreception in insects is mediated by several components interacting at different levels and including odorant-binding proteins (OBPs). Although recent studies demonstrate that the function of OBPs cannot be restricted to an exclusively olfactory role, and that OBPs have been found also in organs generally not related to chemoreception, their feature of binding molecules remains undisputed. Studying the vetch aphid Megoura viciae (Buckton), we used a transcriptomic approach to identify ten OBPs in the antennae and we examined the ultrastructural morphology of sensilla and their distribution on the antennae, legs, mouthparts and cauda of wingless and winged adults by scanning electron microscopy (SEM). Three types of sensilla, trichoid, coeloconic and placoid, differently localized and distributed on antennae, mouthparts, legs and cauda, were described. The expression analysis of the ten OBPs was performed by RT-qPCR in the antennae and other body parts of the wingless adults and at different developmental stages and morphs. Five of the ten OBPs (MvicOBP1, MvicOBP3, MvicOBP6, MvicOBP7, and MvicOBP8), whose antibodies were already available, were selected for experiments of whole-mount immunolocalization on antennae, mouthparts, cornicles and cauda of adult aphids. Most of the ten OBPs were more expressed in antennae than in other body parts; MvicOBP1, MvicOBP3, MvicOBP6, MvicOBP7 were also immunolocalized in the sensilla on the antennae, suggesting a possible involvement of these proteins in chemoreception. MvicOBP6, MvicOBP7, MvicOBP8, MvicOBP9 were highly expressed in the heads and three of them (MvicOBP6, MvicOBP7, MvicOBP8) were immunolocalized in the sensilla on the mouthparts, supporting the hypothesis that also mouthparts may be involved in chemoreception. MvicOBP2, MvicOBP3, MvicOBP5, MvicOBP8 were highly expressed in the cornicles-cauda and two of them (MvicOBP3, MvicOBP8) were immunolocalized in cornicles and in cauda, suggesting a possible new function not related to chemoreception. Moreover, the response of M. viciae to different components of the alarm pheromone was assessed by behavioral assays on wingless adult morph; (-)-α-pinene and (+)-limonene were found to be the components mainly eliciting an alarm response. Taken together, our results represent a road map for subsequent in-depth analyses of the OBPs involved in several physiological functions in M. viciae, including chemoreception.
Collapse
Affiliation(s)
- Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gerarda Grossi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Andrea Scala
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Donatella Farina
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
42
|
Weber M, Wunderer J, Lengerer B, Pjeta R, Rodrigues M, Schärer L, Ladurner P, Ramm SA. A targeted in situ hybridization screen identifies putative seminal fluid proteins in a simultaneously hermaphroditic flatworm. BMC Evol Biol 2018; 18:81. [PMID: 29848299 PMCID: PMC5977470 DOI: 10.1186/s12862-018-1187-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Along with sperm, in many taxa ejaculates also contain large numbers of seminal fluid proteins (SFPs). SFPs and sperm are transferred to the mating partner, where they are thought to play key roles in mediating post-mating sexual selection. They modulate the partner's behavior and physiology in ways that influence the reproductive success of both partners, thus potentially leading to sexual conflict. Despite the presumed general functional and evolutionary significance of SFPs, their identification and characterization has to date focused on just a few animal groups, predominantly insects and mammals. Moreover, until now seminal fluid profiling has mainly focused on species with separate sexes. Here we report a comprehensive screen for putative SFPs in the simultaneously hermaphroditic flatworm Macrostomum lignano. RESULTS Based on existing transcriptomic data, we selected 150 transcripts known to be (a) predominantly expressed in the tail region of the worms, where the seminal fluid-producing prostate gland cells are located, and (b) differentially expressed in social environments differing in sperm competition level, strongly implying that they represent a phenotypically plastic aspect of male reproductive allocation in this species. For these SFP candidates, we then performed whole-mount in situ hybridization (ISH) experiments to characterize tissue-specific expression. In total, we identified 98 transcripts that exhibited prostate-specific expression, 76 of which we found to be expressed exclusively in the prostate gland cells; additional sites of expression for the remaining 22 included the testis or other gland cells. Bioinformatics analyses of the prostate-limited candidates revealed that at least 64 are predicted to be secretory proteins, making these especially strong candidates to be SFPs that are transferred during copulation. CONCLUSIONS Our study represents a first comprehensive analysis using a combination of transcriptomic and ISH screen data to identify SFPs based on transcript expression in seminal fluid-producing tissues. We thereby extend the range of taxa for which seminal fluid has been characterized to a flatworm species with a sequenced genome and for which several methods such as antibody staining, transgenesis and RNA interference have been established. Our data provide a basis for testing the functional and evolutionary significance of SFPs.
Collapse
Affiliation(s)
- Michael Weber
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Marcelo Rodrigues
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Current address: School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne, England NE1 7RU UK
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Steven A. Ramm
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
43
|
Cui X, Liu D, Sun K, He Y, Shi X. Expression Profiles and Functional Characterization of Two Odorant-Binding Proteins From the Apple Buprestid Beetle Agrilus mali (Coleoptera: Buprestidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1420-1432. [PMID: 29590372 DOI: 10.1093/jee/toy066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 06/08/2023]
Abstract
The apple buprestid beetle, Agrilus mali Matsumura (Coleoptera: Buprestidae), can respond to various volatiles, but the underlying mechanism of odorant perception for this insect is poorly understood. Here, we cloned A. mali's odorant-binding proteins 3 (AmalOBP3) and 8 (AmalOBP8) and characterized their expression patterns and binding profiles. Sequence and phylogenetic analyses showed that AmalOBP3 and AmalOBP8 were distributed in the classic and minus-C OBP subfamily, respectively. AmalOBP3 was specifically and abundantly expressed in antennae of both sexes. AmalOBP8 displayed high transcript levels in antennae of both sexes, abdomens of males, and wings of both sexes. Both AmalOBPs exhibited much higher expression in male antennae than in female antennae, suggesting that they could be important in perception of male-specific olfactory cues (e.g., some sex pheromones). Out of the 40 odorant ligands tested, AmalOBP3 and AmalOBP8 bound to 15 and 21 different odorants, respectively, indicating a distinct and selective binding profile for them. Both AmalOBPs seemed to have very strong binding affinity to aliphatic alcohols and aldehydes with 12 to 15 carbon atoms. Alcohols, esters, and terpenoids were more likely to be good ligands for both AmalOBPs than aldehydes and alkanes. Together with its broad expression in different tissues, strong binding with higher numbers of putative ligands for AmalOPB8 means that this protein can have more extensive functional roles in chemosensation of A. mali. Our results provide insights into the molecular basis of chemosensation in A. mali, as well as a basis for developing detection, monitoring, and management tools for this serious pest.
Collapse
Affiliation(s)
- Xiaoning Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi Province, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi Province, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Keke Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi Province, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yang He
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi Province, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xiaoqin Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi Province, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
44
|
White SK, Mavian C, Salemi M, Morris JG, Elbadry MA, Okech BA, Lednicky JA, Dunford JC. A new "American" subgroup of African-lineage Chikungunya virus detected in and isolated from mosquitoes collected in Haiti, 2016. PLoS One 2018; 13:e0196857. [PMID: 29746539 PMCID: PMC5944945 DOI: 10.1371/journal.pone.0196857] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/20/2018] [Indexed: 01/06/2023] Open
Abstract
As part of on-going arboviral surveillance activity in a semi-rural region in Haiti, Chikungunya virus (CHIKV)-positive mosquito pools were identified in 2014 (the peak of the Caribbean Asian-clade epidemic), and again in 2016 by RT-PCR. In 2014, CHIKV was only identified in Aedes aegypti (11 positive pools/124 screened). In contrast, in sampling in 2016, CHIKV was not identified in Ae. aegypti, but, rather, in (a) a female Aedes albopictus pool, and (b) a female Culex quinquefasciatus pool. Genomic sequence analyses indicated that the CHIKV viruses in the 2016 mosquito pools were from the East-Central-South African (ECSA) lineage, rather than the Asian lineage. In phylogenetic studies, these ECSA lineage strains form a new ECSA subgroup (subgroup IIa) together with Brazilian ECSA lineage strains from an isolated human outbreak in 2014, and a mosquito pool in 2016. Additional analyses date the most recent common ancestor of the ECSA IIa subgroup around May 2007, and the 2016 Haitian CHIKV genomes around December 2015. Known CHIKV mutations associated with improved Ae. albopictus vector competence were not identified. Isolation of this newly identified lineage from Ae. albopictus is of concern, as this vector has a broader geographic range than Ae. aegypti, especially in temperate areas of North America, and stresses the importance for continued vector surveillance.
Collapse
Affiliation(s)
- Sarah Keller White
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - John Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Maha A. Elbadry
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
| | - Bernard A. Okech
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
| | - James C. Dunford
- US Navy and Marine Corps Public Health Center, Portsmouth, Virginia, United States of America
| |
Collapse
|
45
|
Druart X, de Graaf S. Seminal plasma proteomes and sperm fertility. Anim Reprod Sci 2018; 194:33-40. [PMID: 29657075 DOI: 10.1016/j.anireprosci.2018.04.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/19/2018] [Accepted: 04/08/2018] [Indexed: 02/07/2023]
Abstract
During ejaculation, the spermatozoa are transported by the seminal plasma, a fluid resulting from secretions originating mainly from the prostate and the seminal vesicles in mammals. The interaction of the seminal plasma with spermatozoa induces binding of seminal proteins onto the sperm surface and membrane remodeling potentially impacting the sperm transport, survival and fertilizing ability in the female genital tract. The seminal plasma also contains peptides and proteins involved in the inflammatory and immune response of the female tract. Therefore the seminal plasma proteome has been investigated in a large range of taxa, including mammals, birds, fishes and insect species. The association of the seminal plasma with semen preservation or fertility identified proteic markers of seminal plasma function in domestic species. This review summarizes the current knowledge in seminal plasma proteomes and proteic markers of sperm preservation in animal species.
Collapse
Affiliation(s)
- Xavier Druart
- Physiologie de la Reproduction et du Comportement, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France.
| | - Simon de Graaf
- RMC Gunn Building (B19), Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
46
|
Twort VG, Dennis AB, Park D, Lomas KF, Newcomb RD, Buckley TR. Positive selection and comparative molecular evolution of reproductive proteins from New Zealand tree weta (Orthoptera, Hemideina). PLoS One 2017; 12:e0188147. [PMID: 29131842 PMCID: PMC5683631 DOI: 10.1371/journal.pone.0188147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/01/2017] [Indexed: 11/18/2022] Open
Abstract
Animal reproductive proteins, especially those in the seminal fluid, have been shown to have higher levels of divergence than non-reproductive proteins and are often evolving adaptively. Seminal fluid proteins have been implicated in the formation of reproductive barriers between diverging lineages, and hence represent interesting candidates underlying speciation. RNA-seq was used to generate the first male reproductive transcriptome for the New Zealand tree weta species Hemideina thoracica and H. crassidens. We identified 865 putative reproductive associated proteins across both species, encompassing a diverse range of functional classes. Candidate gene sequencing of nine genes across three Hemideina, and two Deinacrida species suggests that H. thoracica has the highest levels of intraspecific genetic diversity. Non-monophyly was observed in the majority of sequenced genes indicating that either gene flow may be occurring between the species, or that reciprocal monophyly at these loci has yet to be attained. Evidence for positive selection was found for one lectin-related reproductive protein, with an overall omega of 7.65 and one site in particular being under strong positive selection. This candidate gene represents the first step in the identification of proteins underlying the evolutionary basis of weta reproduction and speciation.
Collapse
Affiliation(s)
- Victoria G. Twort
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Landcare Research, Auckland, New Zealand
- * E-mail:
| | | | | | | | - Richard D. Newcomb
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Thomas R. Buckley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Landcare Research, Auckland, New Zealand
| |
Collapse
|
47
|
Walker SJ, Goldschmidt D, Ribeiro C. Craving for the future: the brain as a nutritional prediction system. CURRENT OPINION IN INSECT SCIENCE 2017; 23:96-103. [PMID: 29129289 DOI: 10.1016/j.cois.2017.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
In the last decades, predictive coding has emerged as an important framework for understanding how the brain processes information. It states that the brain is constantly inferring and predicting sensory data from statistical regularities in its environment. While this framework has been largely applied to sensory processing and motor control, we argue here that it could also serve as framework for a better understanding of how animals regulate nutrient homeostasis. Mechanisms that underlie nutrient homeostasis are commonly described in terms of negative feedback control, which compares current states with a reference point, called setpoint, and counteracts any mismatches. Using concepts from control theory, we explain shortcomings of negative feedback as a purely reactive controller, and how feed-forward mechanisms could be incorporated into feedback control to improve the performance of the control system. We then provide numerous examples to show that many insects, as well as mammals, make use of feed-forward, anticipatory mechanisms that go beyond the prevailing view of homeostasis being achieved through reactive negative feedback. The emerging picture is that the brain incorporates predictive signals as well as negative feedback to regulate nutrient homeostasis.
Collapse
Affiliation(s)
- Samuel J Walker
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Dennis Goldschmidt
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Carlos Ribeiro
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal.
| |
Collapse
|
48
|
Kim IH, Pham V, Jablonka W, Goodman WG, Ribeiro JMC, Andersen JF. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone. J Biol Chem 2017; 292:15329-15339. [PMID: 28751377 DOI: 10.1074/jbc.m117.802009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/20/2017] [Indexed: 11/06/2022] Open
Abstract
Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes, Culex, and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary "long" D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.
Collapse
Affiliation(s)
- Il Hwan Kim
- From the Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852 and
| | - Van Pham
- From the Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852 and
| | - Willy Jablonka
- From the Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852 and
| | - Walter G Goodman
- the Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - José M C Ribeiro
- From the Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852 and
| | - John F Andersen
- From the Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852 and .,the Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
49
|
Gotoh A, Shigenobu S, Yamaguchi K, Kobayashi S, Ito F, Tsuji K. Transcriptome profiling of the spermatheca identifies genes potentially involved in the long-term sperm storage of ant queens. Sci Rep 2017; 7:5972. [PMID: 28729606 PMCID: PMC5519678 DOI: 10.1038/s41598-017-05818-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022] Open
Abstract
Females of social Hymenoptera only mate at the beginning of their adult lives and produce offspring until their death. In most ant species, queens live for over a decade, indicating that ant queens can store large numbers of spermatozoa throughout their long lives. To reveal the prolonged sperm storage mechanisms, we identified enriched genes in the sperm-storage organ (spermatheca) relative to those in body samples in Crematogaster osakensis queens using the RNA-sequencing method. The genes encoding antioxidant enzymes, proteases, and extracellular matrix-related genes, and novel genes that have no similar sequences in the public databases were identified. We also performed differential expression analyses between the virgin and mated spermathecae or between the spermathecae at 1-week and 1-year after mating, to identify genes altered by the mating status or by the sperm storage period, respectively. Gene Ontology enrichment analyses suggested that antioxidant function is enhanced in the spermatheca at 1-week after mating compared with the virgin spermatheca and the spermatheca at 1-year after mating. In situ hybridization analyses of 128 selected contigs revealed that 12 contigs were particular to the spermatheca. These genes have never been reported in the reproductive organs of insect females, suggesting specialized roles in ant spermatheca.
Collapse
Affiliation(s)
- Ayako Gotoh
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, 658-8501, Japan.
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Satoru Kobayashi
- Life Science Center of Tsukuba Advanced Research Alliance (TARA Center), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Fuminori Ito
- Faculty of Agriculture, Kagawa University, Ikenobe, Miki, 761-0795, Japan
| | - Kazuki Tsuji
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
50
|
Sharma V, Pandey AK, Kumar A, Misra S, Gupta HPK, Gupta S, Singh A, Buehner NA, Ravi Ram K. Functional male accessory glands and fertility in Drosophila require novel ecdysone receptor. PLoS Genet 2017; 13:e1006788. [PMID: 28493870 PMCID: PMC5444863 DOI: 10.1371/journal.pgen.1006788] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 05/25/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022] Open
Abstract
In many insects, the accessory gland, a secretory tissue of the male reproductive system, is essential for male fertility. Male accessory gland is the major source of proteinaceous secretions, collectively called as seminal proteins (or accessory gland proteins), which upon transfer, manipulate the physiology and behavior of mated females. Insect hormones such as ecdysteroids and juvenoids play a key role in accessory gland development and protein synthesis but little is known about underlying molecular players and their mechanism of action. Therefore, in the present study, we examined the roles of hormone-dependent transcription factors (Nuclear Receptors), in accessory gland development, function and male fertility of a genetically tractable insect model, Drosophila melanogaster. First, we carried out an RNAi screen involving 19 hormone receptors, individually and specifically, in a male reproductive tissue (accessory gland) for their requirement in Drosophila male fertility. Subsequently, by using independent RNAi/ dominant negative forms, we show that Ecdysone Receptor (EcR) is essential for male fertility due to its requirement in the normal development of accessory glands in Drosophila: EcR depleted glands fail to make seminal proteins and have dying cells. Further, our data point to a novel ecdysone receptor that does not include Ultraspiracle but is probably comprised of EcR isoforms in Drosophila male accessory glands. Our data suggest that this novel ecdysone receptor might act downstream of homeodomain transcription factor paired (prd) in the male accessory gland. Overall, the study suggests novel ecdysone receptor as an important player in the hormonal regulation of seminal protein production and insect male fertility. Insects are the major contributors to biodiversity and have economic, agricultural and health importance. This unparalleled abundance of insects, in part, can be attributed to their high reproductive potential. In many insects, proteins derived from the accessory gland, the secretory tissue of male reproductive system, are critical for fertility. The production of these accessory gland proteins is regulated by insect hormones but the underlying mechanisms/molecular players remain poorly understood. Elucidation of the same has potential applications in designing pest control management strategies and to understand the effect of environmental chemicals on reproduction. In view of this, we analyzed the role, if any, of various insect hormone receptors in development and function of the male accessory gland in a genetically tractable insect model, Drosophila melanogaster. Here, we report the involvement of Ecdysone receptor (EcR with novel composition) in Drosophila male fertility. We show that the depletion of this receptor causes cell death in male accessory glands, which fail to produce seminal fluid proteins leading to sterility/sub-fertility of Drosophila males. These findings will find potential applications in designing insect pest control strategies.
Collapse
Affiliation(s)
- Vandana Sharma
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow. Uttar Pradesh, India
| | - Anuj K. Pandey
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow. Uttar Pradesh, India
| | - Snigdha Misra
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow. Uttar Pradesh, India
| | - Himanshu P. K. Gupta
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow. Uttar Pradesh, India
| | - Snigdha Gupta
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow. Uttar Pradesh, India
| | - Anshuman Singh
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
| | - Norene A. Buehner
- Dept. of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Kristipati Ravi Ram
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow. Uttar Pradesh, India
- * E-mail:
| |
Collapse
|