1
|
Yu J, Kawasaki F, Izumi N, Kiuchi T, Katsuma S, Tomari Y, Shoji K. Autonomous shaping of the piRNA sequence repertoire by competition between adjacent ping-pong amplification sites. Mol Cell 2025; 85:1134-1146.e4. [PMID: 40118041 DOI: 10.1016/j.molcel.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/10/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements (TEs). In many species, piRNAs are generated via a complex process known as the ping-pong pathway, coupling TE cleavage with piRNA amplification. However, the biological significance of this complexity remains unclear. Here, we systematically compared piRNA profiles in two related silkworm cell lines and found significant changes in their sequence repertoire. Importantly, the changeability of this repertoire negatively correlated with the piRNA biogenesis efficiency, a trend also observed in Drosophila stocks and single silkworm eggs. This can be explained by competition between adjacent ping-pong sites, supported by our mathematical modeling. Moreover, this competition can rationalize how piRNAs autonomously avoid deleterious mismatches to target TEs in silkworms, flies, and mice. These findings unveil the intrinsic plasticity and adaptability of the piRNA system to combat diverse TE sequences and highlight the universal power of competition and self-amplification to drive autonomous optimization.
Collapse
Affiliation(s)
- Jie Yu
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Fumiko Kawasaki
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Natsuko Izumi
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Keisuke Shoji
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Graduate school of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
2
|
Zhao L, Yuan H, Liu X, Chang H, Jing X, Nie Y, Huang Y. Evolutionary dynamics of repetitive elements and their relationship with genome size in Acrididae. Genomics 2025; 117:110971. [PMID: 39643065 DOI: 10.1016/j.ygeno.2024.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
It is widely accepted that repetitive elements (REs) represent the primary mechanism driving genome size variation across eukaryotes. The observed genome sizes and REs of 59 species within the Acrididae were obtained and characterized. The genome sizes observed ranged from 6.60 pg to 19.35 pg, while the proportion of REs varied from 57.92 % to 83.58 %. The primary contributors were identified as LTR (2.34 % ∼ 20.98 %) and LINEs (6.70 % ∼ 16.33 %). The results of ancestral reconstruction indicated that the proportion of REs in ancestral nodes was 69.53 %, which suggests that they have undergone extensive genome expansion or contraction. A significant positive correlation was identified between the proportion of REs and genome size. Transposable elements were found to account for approximately 41 % of the observed variation in genome size. Moreover, the LTR was identified as the most significant RE type in relation to genome size expansion within the Acrididae.
Collapse
Affiliation(s)
- Lina Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hao Yuan
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xuanzeng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huihui Chang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Xuan Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yimeng Nie
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
3
|
Kiuchi T, Shoji K, Izumi N, Tomari Y, Katsuma S. Non-gonadal somatic piRNA pathways ensure sexual differentiation, larval growth, and wing development in silkworms. PLoS Genet 2023; 19:e1010912. [PMID: 37733654 PMCID: PMC10513339 DOI: 10.1371/journal.pgen.1010912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) guide PIWI proteins to target transposons in germline cells, thereby suppressing transposon activity to preserve genome integrity in metazoans' gonadal tissues. Piwi, one of three Drosophila PIWI proteins, is expressed in the nucleus and suppresses transposon activity by forming heterochromatin in an RNA cleavage-independent manner. Recently, Piwi was reported to control cell metabolism in Drosophila fat body, providing an example of piRNAs acting in non-gonadal somatic tissues. However, mutant flies of the other two PIWI proteins, Aubergine (Aub) and Argonaute3 (Ago3), show no apparent phenotype except for infertility, blurring the importance of the piRNA pathway in non-gonadal somatic tissues. The silkworm, Bombyx mori, possesses two PIWI proteins, Siwi (Aub homolog) and BmAgo3 (Ago3 homolog), whereas B. mori does not have a Piwi homolog. Siwi and BmAgo3 are mainly expressed in gonadal tissues and play a role in repressing transposon activity by cleaving transposon RNA in the cytoplasm. Here, we generated Siwi and BmAgo3 loss-of-function mutants of B. mori and found that they both showed delayed larval growth and failed to become adult moths. They also exhibited defects in wing development and sexual differentiation. Transcriptome analysis revealed that loss of somatic piRNA biogenesis pathways results in abnormal expression of not only transposons but also host genes, presumably causing severe growth defects. Our results highlight the roles of non-gonadal somatic piRNAs in B. mori development.
Collapse
Affiliation(s)
- Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Shoji
- Institute for Quantitative Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Natsuko Izumi
- Institute for Quantitative Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Yukihide Tomari
- Institute for Quantitative Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Fukui T, Shoji K, Kiuchi T, Suzuki Y, Katsuma S. Masculinizer is not post-transcriptionally regulated by female-specific piRNAs during sex determination in the Asian corn borer, Ostrinia furnacalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103946. [PMID: 37075905 DOI: 10.1016/j.ibmb.2023.103946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Lepidopteran insects are heterogametic in females, although most insect species are heterogametic in males. In a lepidopteran model species, the silkworm Bombyx mori (Bombycoidea), the uppermost sex determinant Feminizer (Fem) has been identified on the female-specific W chromosome. Fem is a precursor of PIWI-interacting small RNA (piRNA). Fem piRNA forms a complex with Siwi, one of the two B. mori PIWI-clade Argonaute proteins. In female embryos, Fem piRNA-Siwi complex cleaves the mRNA of the male-determining gene Masculinizer (Masc), directing the female-determining pathway. In male embryos, Masc activates the male-determining pathway in the absence of Fem piRNA. Recently, W chromosome-derived piRNAs complementary to Masc mRNA have also been identified in the diamondback moth Plutella xylostella (Yponomeutoidea), indicating the convergent evolution of piRNA-dependent sex determination in Lepidoptera. Here, we show that this is not the case in the Asian corn borer, Ostrinia furnacalis (Pyraloidea). Although our previous studies demonstrated that O. furnacalis Masc (OfMasc) has a masculinizing function in the embryonic stage, the expression level of OfMasc was indistinguishable between the sexes at the timing of sex determination. Deep sequencing analysis identified no female-specific small RNAs mapped onto OfMasc mRNA. Embryonic knockdown of two PIWI genes did not affect the expression level of OfMasc in either sex. These results demonstrated that piRNA-dependent reduction of Masc mRNA in female embryos is not a common strategy of sex determination, which suggests the possibility of divergent evolution of sex determinants across the order Lepidoptera.
Collapse
Affiliation(s)
- Takahiro Fukui
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keisuke Shoji
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
5
|
Chen K, Yang X, Yang D, Huang Y. Spindle-E is essential for gametogenesis in the silkworm, Bombyx mori. INSECT SCIENCE 2023; 30:293-304. [PMID: 35866721 DOI: 10.1111/1744-7917.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/06/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
As a defense mechanism against transposable elements, the PIWI-interacting RNA (piRNA) pathway maintains genomic integrity and ensures proper gametogenesis in gonads. Numerous factors are orchestrated to ensure normal operation of the piRNA pathway. Spindle-E (Spn-E) gene was one of the first genes shown to participate in the piRNA pathway. In this study, we performed functional analysis of Spn-E in the model lepidopteran insect, Bombyx mori. Unlike the germline-specific expression pattern observed in Drosophila and mouse, BmSpn-E was ubiquitously expressed in all tissues tested, and it was highly expressed in gonads. Immunofluorescent staining showed that BmSpn-E was localized in both germ cells and somatic cells in ovary and was expressed in spermatocytes in testis. We used a binary transgenic CRISPR/Cas9 system to construct BmSpn-E mutants. Loss of BmSpn-E expression caused derepression of transposons in gonads. We also found that mutant gonads were much smaller than wild-type gonads and that the number of germ cells was considerably lower in mutant gonads. Quantitative real-time PCR analysis and TUNEL staining revealed that apoptosis was greatly enhanced in mutant gonads. Further, we found that the BmSpn-E mutation impacted gonadal development and gametogenesis at the early larval stage. In summary, our data provided the first evidence that BmSpn-E plays vital roles in gonadal development and gametogenesis in B. mori.
Collapse
Affiliation(s)
- Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Pezenti LF, Dionisio JF, Sosa-Gómez DR, de Souza RF, da Rosa R. Transposable elements in the transcriptome of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae). Genome 2023. [DOI: 10.1139/gen-2022-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis ( Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.
Collapse
|
7
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
8
|
Bastide H, López-Villavicencio M, Ogereau D, Lledo J, Dutrillaux AM, Debat V, Llaurens V. Genome assembly of 3 Amazonian Morpho butterfly species reveals Z-chromosome rearrangements between closely related species living in sympatry. Gigascience 2022; 12:giad033. [PMID: 37216769 PMCID: PMC10202424 DOI: 10.1093/gigascience/giad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/13/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
The genomic processes enabling speciation and species coexistence in sympatry are still largely unknown. Here we describe the whole-genome sequencing and assembly of 3 closely related species from the butterfly genus Morpho: Morpho achilles (Linnaeus, 1758), Morpho helenor (Cramer, 1776), and Morpho deidamia (Höbner, 1819). These large blue butterflies are emblematic species of the Amazonian rainforest. They live in sympatry in a wide range of their geographical distribution and display parallel diversification of dorsal wing color pattern, suggesting local mimicry. By sequencing, assembling, and annotating their genomes, we aim at uncovering prezygotic barriers preventing gene flow between these sympatric species. We found a genome size of 480 Mb for the 3 species and a chromosomal number ranging from 2n = 54 for M. deidamia to 2n = 56 for M. achilles and M. helenor. We also detected inversions on the sex chromosome Z that were differentially fixed between species, suggesting that chromosomal rearrangements may contribute to their reproductive isolation. The annotation of their genomes allowed us to recover in each species at least 12,000 protein-coding genes and to discover duplications of genes potentially involved in prezygotic isolation like genes controlling color discrimination (L-opsin). Altogether, the assembly and the annotation of these 3 new reference genomes open new research avenues into the genomic architecture of speciation and reinforcement in sympatry, establishing Morpho butterflies as a new eco-evolutionary model.
Collapse
Affiliation(s)
| | - Manuela López-Villavicencio
- Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS/MNHN/SU/EPHE/UA), Muséum National d’Histoire Naturelle–CP50, 75005 Paris, France
| | | | - Joanna Lledo
- GeT-PlaGe, Bât G2, INRAe, 31326 Castanet-Tolosan Cedex, France
| | - Anne-Marie Dutrillaux
- Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS/MNHN/SU/EPHE/UA), Muséum National d’Histoire Naturelle–CP50, 75005 Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS/MNHN/SU/EPHE/UA), Muséum National d’Histoire Naturelle–CP50, 75005 Paris, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS/MNHN/SU/EPHE/UA), Muséum National d’Histoire Naturelle–CP50, 75005 Paris, France
| |
Collapse
|
9
|
Izumi N, Shoji K, Kiuchi T, Katsuma S, Tomari Y. The two Gtsf paralogs in silkworms orthogonally activate their partner PIWI proteins for target cleavage. RNA (NEW YORK, N.Y.) 2022; 29:rna.079380.122. [PMID: 36319089 PMCID: PMC9808576 DOI: 10.1261/rna.079380.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The PIWI-interacting RNA (piRNA) pathway is a protection mechanism against transposons in animal germ cells. Most PIWI proteins possess piRNA-guided endonuclease activity, which is critical for silencing transposons and producing new piRNAs. Gametocyte-specific factor 1 (Gtsf1), an evolutionarily conserved zinc finger protein, promotes catalysis by PIWI proteins. Many animals have multiple Gtsf1 paralogs; however, their respective roles in the piRNA pathway are not fully understood. Here, we dissected the roles of Gtsf1 and its paralog Gtsf1-like (Gtsf1L) in the silkworm piRNA pathway. We found that Gtsf1 and Gtsf1L preferentially bind the two silkworm PIWI paralogs, Siwi and BmAgo3, respectively, and facilitate the endonuclease activity of each PIWI protein. This orthogonal activation effect was further supported by specific reduction of BmAgo3-bound Masculinizer piRNA and Siwi-bound Feminizer piRNA, the unique piRNA pair required for silkworm feminization, upon depletion of Gtsf1 and Gtsf1L, respectively. Our results indicate that the two Gtsf paralogs in silkworms activate their respective PIWI partners, thereby facilitating the amplification of piRNAs.
Collapse
|
10
|
Kawamoto M, Kiuchi T, Katsuma S. SilkBase: an integrated transcriptomic and genomic database for Bombyx mori and related species. Database (Oxford) 2022; 2022:6603636. [PMID: 35670730 PMCID: PMC9216573 DOI: 10.1093/database/baac040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/21/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022]
Abstract
We introduce SilkBase as an integrated database for transcriptomic and genomic resources of the domesticated silkworm Bombyx mori and related species. SilkBase is the oldest B. mori database that was originally established as the expressed sequence tag database since 1999. Here, we upgraded the database by including the datasets of the newly assembled B. mori complete genome sequence, predicted gene models, bacterial artificial chromosome (BAC)-end and fosmid-end sequences, complementary DNA (cDNA) reads from 69 libraries, RNA-seq data from 10 libraries, PIWI-interacting RNAs (piRNAs) from 13 libraries, ChIP-seq data of 9 histone modifications and HP1 proteins and transcriptome and/or genome data of four B. mori-related species, i.e. Bombyx mandarina, Trilocha varians, Ernolatia moorei and Samia ricini. Our new integrated genome browser easily provides a snapshot of tissue- and stage-specific gene expression, alternative splicing, production of piRNAs and histone modifications at the gene locus of interest. Moreover, SilkBase is useful for performing comparative studies among five closely related lepidopteran insects. Database URL: https://silkbase.ab.a.u-tokyo.ac.jp
Collapse
Affiliation(s)
- Munetaka Kawamoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Infinity Matrix, Shiohama, Koto-ku, Tokyo 135-0043, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
11
|
Sicat JPA, Visendi P, Sewe SO, Bouvaine S, Seal SE. Characterization of transposable elements within the Bemisia tabaci species complex. Mob DNA 2022; 13:12. [PMID: 35440097 PMCID: PMC9017028 DOI: 10.1186/s13100-022-00270-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Whiteflies are agricultural pests that cause negative impacts globally to crop yields resulting at times in severe economic losses and food insecurity. The Bemisia tabaci whitefly species complex is the most damaging in terms of its broad crop host range and its ability to serve as vector for over 400 plant viruses. Genomes of whiteflies belonging to this species complex have provided valuable genomic data; however, transposable elements (TEs) within these genomes remain unexplored. This study provides the first accurate characterization of TE content within the B. tabaci species complex. Results This study identified that an average of 40.61% of the genomes of three whitefly species (MEAM1, MEDQ, and SSA-ECA) consists of TEs. The majority of the TEs identified were DNA transposons (22.85% average) while SINEs (0.14% average) were the least represented. This study also compared the TE content of the three whitefly genomes with three other hemipteran genomes and found significantly more DNA transposons and less LINEs in the whitefly genomes. A total of 63 TE superfamilies were identified to be present across the three whitefly species (39 DNA transposons, six LTR, 16 LINE, and two SINE). The sequences of the identified TEs were clustered which generated 5766 TE clusters. A total of 2707 clusters were identified as uniquely found within the whitefly genomes while none of the generated clusters were from both whitefly and non-whitefly TE sequences. This study is the first to characterize TEs found within different B. tabaci species and has created a standardized annotation workflow that could be used to analyze future whitefly genomes. Conclusion This study is the first to characterize the landscape of TEs within the B. tabaci whitefly species complex. The characterization of these elements within the three whitefly genomes shows that TEs occupy significant portions of B. tabaci genomes, with DNA transposons representing the vast majority. This study also identified TE superfamilies and clusters of TE sequences of potential interest, providing essential information, and a framework for future TE studies within this species complex. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00270-6.
Collapse
Affiliation(s)
- Juan Paolo A Sicat
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK.
| | - Paul Visendi
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Steven O Sewe
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| | - Sophie Bouvaine
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| |
Collapse
|
12
|
Lata D, Coates BS, Walden KKO, Robertson HM, Miller NJ. Genome size evolution in the beetle genus Diabrotica. G3 (BETHESDA, MD.) 2022; 12:jkac052. [PMID: 35234880 PMCID: PMC8982398 DOI: 10.1093/g3journal/jkac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 11/20/2022]
Abstract
Diabrocite corn rootworms are one of the most economically significant pests of maize in the United States and Europe and an emerging model for insect-plant interactions. Genome sizes of several species in the genus Diabrotica were estimated using flow cytometry along with that of Acalymma vittatum as an outgroup. Genome sizes ranged between 1.56 and 1.64 gigabase pairs and between 2.26 and 2.59 Gb, respectively, for the Diabrotica subgroups fucata and virgifera; the Acalymma vittatum genome size was around 1.65 Gb. This result indicated that a substantial increase in genome size occurred in the ancestor of the virgifera group. Further analysis of the fucata group and the virgifera group genome sequencing reads indicated that the genome size difference between the Diabrotica subgroups could be attributed to a higher content of transposable elements, mostly miniature inverted-transposable elements and gypsy-like long terminal repeat retroelements.
Collapse
Affiliation(s)
- Dimpal Lata
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Nicholas J Miller
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
13
|
Haq IU, Muhammad M, Yuan H, Ali S, Abbasi A, Asad M, Ashraf HJ, Khurshid A, Zhang K, Zhang Q, Liu C. Satellitome Analysis and Transposable Elements Comparison in Geographically Distant Populations of Spodoptera frugiperda. Life (Basel) 2022; 12:521. [PMID: 35455012 PMCID: PMC9026859 DOI: 10.3390/life12040521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Spodoptera frugiperda (fall armyworm) is a member of the superfamily Noctuoidea that accounts for more than a third of all Lepidoptera and includes a considerable number of agricultural and forest pest species. Spodoptera frugiperda is a polyphagous species that is a significant agricultural pest worldwide, emphasizing its economic importance. Spodoptera frugiperda's genome size, assembly, phylogenetic classification, and transcriptome analysis have all been previously described. However, the different studies reported different compositions of repeated DNA sequences that occupied the whole assembled genome, and the Spodoptera frugiperda genome also lacks the comprehensive study of dynamic satellite DNA. We conducted a comparative analysis of repetitive DNA across geographically distant populations of Spodoptera frugiperda, particularly satellite DNA, using publicly accessible raw genome data from eight different geographical regions. Our results showed that most transposable elements (TEs) were commonly shared across all geographically distant samples, except for the Maverick and PIF/Harbinger elements, which have divergent repeat copies. The TEs age analysis revealed that most TEs families consist of young copies 1-15 million years old; however, PIF/Harbinger has some older/degenerated copies of 30-35 million years old. A total of seven satellite DNA families were discovered, accounting for approximately 0.65% of the entire genome of the Spodoptera frugiperda fall armyworm. The repeat profiling analysis of satellite DNA families revealed differential read depth coverage or copy numbers. The satellite DNA families range in size from the lowest 108 bp SfrSat06-108 families to the largest (1824 bp) SfrSat07-1824 family. We did not observe a statistically significant correlation between monomer length and K2P divergence, copy number, or abundance of each satellite family. Our findings suggest that the satellite DNA families identified in Spodoptera frugiperda account for a considerable proportion of the genome's repetitive fraction. The satellite DNA families' repeat profiling revealed a point mutation along the reference sequences. Limited TEs differentiation exists among geographically distant populations of Spodoptera frugiperda.
Collapse
Affiliation(s)
- Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Majid Muhammad
- College of Life Sciences, Shaanxi Normal University, Xi’an 710100, China; (M.M.); (H.Y.)
| | - Huang Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710100, China; (M.M.); (H.Y.)
| | - Shahbaz Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan;
| | - Asim Abbasi
- Department of Zoology, Bahawalpur Campus, University of Central Punjab, Bahawalpur 63100, Pakistan;
| | - Muhammad Asad
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hafiza Javaria Ashraf
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Aroosa Khurshid
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Kexin Zhang
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Qiangyan Zhang
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| |
Collapse
|
14
|
Baril T, Hayward A. Migrators within migrators: exploring transposable element dynamics in the monarch butterfly, Danaus plexippus. Mob DNA 2022; 13:5. [PMID: 35172896 PMCID: PMC8848866 DOI: 10.1186/s13100-022-00263-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/06/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Lepidoptera (butterflies and moths) are an important model system in ecology and evolution. A high-quality chromosomal genome assembly is available for the monarch butterfly (Danaus plexippus), but it lacks an in-depth transposable element (TE) annotation, presenting an opportunity to explore monarch TE dynamics and the impact of TEs on shaping the monarch genome. RESULTS We find 6.21% of the monarch genome is comprised of TEs, a reduction of 6.85% compared to the original TE annotation performed on the draft genome assembly. Monarch TE content is low compared to two closely related species with available genomes, Danaus chrysippus (33.97% TE) and Danaus melanippus (11.87% TE). The biggest TE contributions to genome size in the monarch are LINEs and Penelope-like elements, and three newly identified families, r2-hero_dPle (LINE), penelope-1_dPle (Penelope-like), and hase2-1_dPle (SINE), collectively contribute 34.92% of total TE content. We find evidence of recent TE activity, with two novel Tc1 families rapidly expanding over recent timescales (tc1-1_dPle, tc1-2_dPle). LINE fragments show signatures of genomic deletions indicating a high rate of TE turnover. We investigate associations between TEs and wing colouration and immune genes and identify a three-fold increase in TE content around immune genes compared to other host genes. CONCLUSIONS We provide a detailed TE annotation and analysis for the monarch genome, revealing a considerably smaller TE contribution to genome content compared to two closely related Danaus species with available genome assemblies. We identify highly successful novel DNA TE families rapidly expanding over recent timescales, and ongoing signatures of both TE expansion and removal highlight the dynamic nature of repeat content in the monarch genome. Our findings also suggest that insect immune genes are promising candidates for future interrogation of TE-mediated host adaptation.
Collapse
Affiliation(s)
- Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK.
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK.
| |
Collapse
|
15
|
Dai Z, Ren J, Tong X, Hu H, Lu K, Dai F, Han MJ. The Landscapes of Full-Length Transcripts and Splice Isoforms as Well as Transposons Exonization in the Lepidopteran Model System, Bombyx mori. Front Genet 2021; 12:704162. [PMID: 34594358 PMCID: PMC8476886 DOI: 10.3389/fgene.2021.704162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
The domesticated silkworm, Bombyx mori, is an important model system for the order Lepidoptera. Currently, based on third-generation sequencing, the chromosome-level genome of Bombyx mori has been released. However, its transcripts were mainly assembled by using short reads of second-generation sequencing and expressed sequence tags which cannot explain the transcript profile accurately. Here, we used PacBio Iso-Seq technology to investigate the transcripts from 45 developmental stages of Bombyx mori. We obtained 25,970 non-redundant high-quality consensus isoforms capturing ∼60% of previous reported RNAs, 15,431 (∼47%) novel transcripts, and identified 7,253 long non-coding RNA (lncRNA) with a large proportion of novel lncRNA (∼56%). In addition, we found that transposable elements (TEs) exonization account for 11,671 (∼45%) transcripts including 5,980 protein-coding transcripts (∼32%) and 5,691 lncRNAs (∼79%). Overall, our results expand the silkworm transcripts and have general implications to understand the interaction between TEs and their host genes. These transcripts resource will promote functional studies of genes and lncRNAs as well as TEs in the silkworm.
Collapse
Affiliation(s)
- Zongrui Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China.,WESTA College, Southwest University, Chongqing, China
| | - Jianyu Ren
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Kunpeng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Min-Jin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Shigematsu M, Kawamura T, Morichika K, Izumi N, Kiuchi T, Honda S, Pliatsika V, Matsubara R, Rigoutsos I, Katsuma S, Tomari Y, Kirino Y. RNase κ promotes robust piRNA production by generating 2',3'-cyclic phosphate-containing precursors. Nat Commun 2021; 12:4498. [PMID: 34301931 PMCID: PMC8302750 DOI: 10.1038/s41467-021-24681-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
In animal germlines, PIWI proteins and the associated PIWI-interacting RNAs (piRNAs) protect genome integrity by silencing transposons. Here we report the extensive sequence and quantitative correlations between 2',3'-cyclic phosphate-containing RNAs (cP-RNAs), identified using cP-RNA-seq, and piRNAs in the Bombyx germ cell line and mouse testes. The cP-RNAs containing 5'-phosphate (P-cP-RNAs) identified by P-cP-RNA-seq harbor highly consistent 5'-end positions as the piRNAs and are loaded onto PIWI protein, suggesting their direct utilization as piRNA precursors. We identified Bombyx RNase Kappa (BmRNase κ) as a mitochondria-associated endoribonuclease which produces cP-RNAs during piRNA biogenesis. BmRNase κ-depletion elevated transposon levels and disrupted a piRNA-mediated sex determination in Bombyx embryos, indicating the crucial roles of BmRNase κ in piRNA biogenesis and embryonic development. Our results reveal a BmRNase κ-engaged piRNA biogenesis pathway, in which the generation of cP-RNAs promotes robust piRNA production.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Keisuke Morichika
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Natsuko Izumi
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Shozo Honda
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Venetia Pliatsika
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryuma Matsubara
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Yukihide Tomari
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Kattupalli D, Barbadikar KM, Balija V, Ballichatla S, R A, Padmakumari AP, Saxena S, Gaikwad K, Yerram S, Kokku P, Madhav MS. The Draft Genome of Yellow Stem Borer, an Agriculturally Important Pest, Provides Molecular Insights into Its Biology, Development and Specificity Towards Rice for Infestation. INSECTS 2021; 12:insects12060563. [PMID: 34205299 PMCID: PMC8234988 DOI: 10.3390/insects12060563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Yellow stem borer (YSB), is the most destructive and widely occurring pest that attacks rice throughout the growing season. Rice (Oryza sativa L.) is a major staple cereal worldwide, providing essential caloric requirements for more than half of the world’s population. Annual losses to rice borers are approximately 5–10%, but losses in individual fields may reach up to 50–60%. The use of traditional pest management strategies in controlling YSB is somewhat challenging due to its unique internal feeding habit. Genome sequence information of economically important crop pests is important for designing or developing pest-resistant rice varieties. In an approach to achieve this, we present our first-ever study on the draft genome sequence of YSB. The information provided from our current study might be useful in developing genome-based approaches for the management of pest species. Abstract Yellow stem borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), a major monophagous insect pest of rice, causes significant yield losses. The rice–YSB interaction is very dynamic, making it difficult for management. The development of resistant lines has been unsuccessful as there are no effective resistant sources in the germplasm. Genome information is necessary for a better understanding of interaction with rice in terms of its recognition, response, and infestation mechanism. The draft genome of YSB is predicted to have 46,057 genes with an estimated size of 308 Mb, being correlated with the flow cytometry analysis. The existence of complex metabolic mechanisms and genes related to specific behavior was identified, being conditioned by a higher level of regulation. We deciphered the possible visual, olfactory, and gustatory mechanisms responsible for its evolution as a monophagous pest. Comparative genomic analysis revealed that YSB is unique in the way it has evolved. The obvious presence of high-immunity-related genes, well-developed RNAi machinery, and diverse effectors provides a means for developing genomic tools for its management. The identified 21,696 SSR markers can be utilized for diversity analysis of populations across the rice-growing regions. We present the first draft genome of YSB. The information emanated paves a way for biologists to design novel pest management strategies as well as for the industry to design new classes of safer and specific insecticide molecules.
Collapse
Affiliation(s)
- Divya Kattupalli
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Kalyani M. Barbadikar
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Vishalakshi Balija
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Suneel Ballichatla
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Athulya R
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Ayyagari Phani Padmakumari
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Swati Saxena
- Genomics Lab, ICAR-National Institute of Plant Biotechnology, New Delhi 110012, India; (S.S.); (K.G.)
| | - Kishor Gaikwad
- Genomics Lab, ICAR-National Institute of Plant Biotechnology, New Delhi 110012, India; (S.S.); (K.G.)
| | - Sridhar Yerram
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Premalatha Kokku
- Department of Chemistry, Osmania University, Hyderabad 500007, India;
| | - Maganti Sheshu Madhav
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
- Correspondence:
| |
Collapse
|
18
|
Chung PY, Shoji K, Izumi N, Tomari Y. Dynamic subcellular compartmentalization ensures fidelity of piRNA biogenesis in silkworms. EMBO Rep 2021; 22:e51342. [PMID: 33973704 DOI: 10.15252/embr.202051342] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) guide PIWI proteins to silence transposable elements and safeguard fertility in germ cells. Many protein factors required for piRNA biogenesis localize to perinuclear ribonucleoprotein (RNP) condensates named nuage, where target silencing and piRNA amplification are thought to occur. In mice, some of the piRNA factors are found in discrete cytoplasmic foci called processing bodies (P-bodies). However, the dynamics and biological significance of such compartmentalization of the piRNA pathway remain unclear. Here, by analyzing the subcellular localization of functional mutants of piRNA factors, we show that piRNA factors are actively compartmentalized into nuage and P-bodies in silkworm cells. Proper demixing of nuage and P-bodies requires target cleavage by the PIWI protein Siwi and ATP hydrolysis by the DEAD-box helicase BmVasa, disruption of which leads to promiscuous overproduction of piRNAs deriving from non-transposable elements. Our study highlights a role of dynamic subcellular compartmentalization in ensuring the fidelity of piRNA biogenesis.
Collapse
Affiliation(s)
- Pui Yuen Chung
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Keisuke Shoji
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Natsuko Izumi
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
19
|
Katsuma S, Shoji K, Suzuki Y, Iwanaga M. Potential for small RNA production against Bombyx mori latent virus in Bombyx mori ovaries. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21761. [PMID: 33225529 DOI: 10.1002/arch.21761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Bombyx mori latent virus (BmLV) is a positive, single-stranded insect RNA virus closely related to plant maculaviruses. BmLV was first isolated from Bombyx mori ovary-derived cell line BmN-4, and this virus has already infected most B. mori-derived cultured cell lines. We previously reported that small interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) pathways function cooperatively to maintain the amount of BmLV RNA for normal BmN-4 cell growth. On the other hand, BmLV does not propagate in B. mori larvae. Here we conducted BmLV injection into the larval body cavities of B. mori, and examined BmLV accumulation in larval ovaries where siRNA and piRNA pathways are both active, to investigate whether this in vivo resistance is governed by small RNA pathways. Expression levels of RNA-dependent RNA polymerase, coat protein, and p15 genes in BmLV-injected larval ovaries were extremely low compared with those in B. mori cultured cells, indicating that B. mori larval ovaries are more resistant to BmLV than B. mori cultured cells. We also sequenced small RNAs prepared from BmLV-injected larval ovaries and mapped them onto the BmLV genome. Although their amounts were very small, we were able to detect BmLV-derived small RNAs in the ovaries. According to their length distribution and nucleotide bias, they were likely to be siRNAs and piRNAs. These results suggest that B. mori ovaries can potentially produce small RNAs against BmLV, but the resistance of larval ovaries against BmLV is not dependent on RNA silencing pathways.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Shoji
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masashi Iwanaga
- Department of Agrobiology and Bioresources, Utsunomiya University, Utsunomiya-shi, Tochigi, Japan
| |
Collapse
|
20
|
Gilbert C, Peccoud J, Cordaux R. Transposable Elements and the Evolution of Insects. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:355-372. [PMID: 32931312 DOI: 10.1146/annurev-ento-070720-074650] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects are major contributors to our understanding of the interaction between transposable elements (TEs) and their hosts, owing to seminal discoveries, as well as to the growing number of sequenced insect genomes and population genomics and functional studies. Insect TE landscapes are highly variable both within and across insect orders, although phylogenetic relatedness appears to correlate with similarity in insect TE content. This correlation is unlikely to be solely due to inheritance of TEs from shared ancestors and may partly reflect preferential horizontal transfer of TEs between closely related species. The influence of insect traits on TE landscapes, however, remains unclear. Recent findings indicate that, in addition to being involved in insect adaptations and aging, TEs are seemingly at the cornerstone of insect antiviral immunity. Thus, TEs are emerging as essential insect symbionts that may have deleterious or beneficial consequences on their hosts, depending on context.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France;
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| |
Collapse
|
21
|
CRISPR/Cas9-mediated mutagenesis of Ago2 and Siwi in silkworm cultured cells. Gene 2020; 768:145314. [PMID: 33220342 DOI: 10.1016/j.gene.2020.145314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 11/22/2022]
Abstract
The BmN-4 cell line, originated from the silkworm Bombyx mori ovary, possesses endogenous small interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) pathways. We performed CRISPR/Cas9-mediated genome editing of Ago2 and Siwi, which are the core factors for siRNA and piRNA pathways, respectively, to understand the importance of the two distinct small RNA pathways in this cell line. We found that approximately half of the alleles contained loss-of-function mutations in both Ago2- and Siwi-mutated cells. The mutated cells grew at a slower rate compared to the control cells, strongly suggesting that the siRNA and piRNA pathways are both crucial for the normal growth of BmN-4 cells. The amounts of piRNAs decreased markedly in the Siwi-mutated cells, but global de-repression of transposable elements was not observed. Although the RNA amount of latently infected RNA virus, Bombyx mori macula-like virus (BmLV), increased in both Ago2- and Siwi-mutated cells, the siRNA and piRNA pathways showed a bias toward targeting BmLV genomic and subgenomic RNA, respectively. These results indicate the common, specific, and crucial roles of the two small RNA pathways in B. mori cultured cells.
Collapse
|
22
|
Chen K, Yu Y, Yang D, Yang X, Tang L, Liu Y, Luo X, R. Walter J, Liu Z, Xu J, Huang Y. Gtsf1 is essential for proper female sex determination and transposon silencing in the silkworm, Bombyx mori. PLoS Genet 2020; 16:e1009194. [PMID: 33137136 PMCID: PMC7660909 DOI: 10.1371/journal.pgen.1009194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/12/2020] [Accepted: 10/14/2020] [Indexed: 01/15/2023] Open
Abstract
Sex determination pathways are astoundingly diverse in insects. For instance, the silk moth Bombyx mori uniquely use various components of the piRNA pathway to produce the Fem signal for specification of the female fate. In this study, we identified BmGTSF1 as a novel piRNA factor which participates in B. mori sex determination. We found that BmGtsf1 has a distinct expression pattern compared to Drosophila and mouse. CRISPR/Cas9 induced mutation in BmGtsf1 resulted in partial sex reversal in genotypically female animals by shifting expression of the downstream targets BmMasc and Bmdsx to the male pattern. As levels of Fem piRNAs were substantially reduced in female mutants, we concluded that BmGtsf1 plays a critical role in the biogenesis of the feminizing signal. We also demonstrated that BmGTSF1 physically interacted with BmSIWI, a protein previously reported to be involved in female sex determination, indicating BmGTSF1 function as the cofactor of BmSIWI. BmGtsf1 mutation resulted in piRNA pathway dysregulation, including piRNA biogenesis defects and transposon derepression, suggesting BmGtsf1 is also a piRNA factor in the silkworm. Furthermore, we found that BmGtsf1 mutation leads to gametogenesis defects in both male and female. Our data suggested that BmGtsf1 is a new component involved in the sex determination pathway in B. mori. Sex determination is a fundamentally important process in most sexually reproducing metazoan. Nevertheless, the underlying mechanisms of sex determination are highly diverse. In B. mori, piRNAs derived from the W-chromosome-linked Fem precursor serve as the primary female determining signal. However, we still know little about the initiation of B. mori sex determination and its relationship with piRNA pathway. Here, we provided evidence that BmGTSF1 is a novel piRNA factor which is indispensable for B.mori female sex determination. Mutations in BmGtsf1 resulted in dysregulation of the piRNA pathway and caused partial female-male sex reversal. We also detected dramatic diminution of Fem piRNA in female mutant, indicating BmGTSF1 regulates B. mori sex determination via piRNA pathway. More importantly, we showed that BmGTSF1 interacted with BmSIWI, which protein had been reported to be involved in piRNA pathway and sex determination in B. mori, supporting the conclusion that BmGTSF1 is a novel factor for piRNA pathway and sex determination.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Linmeng Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yujia Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xingyu Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - James R. Walter
- Department of Ecology and Evolutionary Biology, University of Kansas, NV, United States of America
| | - Zulian Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (JX); (YH)
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (JX); (YH)
| |
Collapse
|
23
|
Chen A, Li Q, Liao P, Zhao Q, Tang S, Wang P, Meng G, Dong Z. Semaphorin-1a-like gene plays an important role in the embryonic development of silkworm, Bombyx mori. PLoS One 2020; 15:e0240193. [PMID: 33007004 PMCID: PMC7531805 DOI: 10.1371/journal.pone.0240193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
Fuyin-lethal red egg (Fuyin-lre) is a red egg mutant discovered from the germplasm resource Fuyin of Bombyx mori. The embryo of Fuyin-lre stops developing at the late stage of gastrulation due to chromosome structural variation. In this work, precise mutation sites at both ends of the mutated region were determined, and two inserted sequences with lengths of 1232 bp and 1845 bp were obtained at both ends of the mutation region. Interestingly, a bmmar1 transposon was detected in the inserted 1845 bp sequence. Bmmar1 possesses features of the Tcl/mariner superfamily of transposable elements (TEs), which belongs to class II TEs that use a DNA-mediated "cut and paste" mechanism to transpose. This finding suggests that Fuyin-lre mutation might be related to the "cut and paste" action of bmmar1. The mutation resulted in the deletion of 9 genes in the mutation region, of which the red egg gene re (BMSK0002766) did not affect embryonic development of B. mori, and the BMSK0002765 gene was unexpressed during the early stage of embryonic development. The RNA interference results of the remaining 7 genes suggest that the semaphorin-1a-like gene (BMSK0002764) had a major contribution to the embryonic lethality of Fuyin-lre.
Collapse
Affiliation(s)
- Anli Chen
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
- The Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang Shaanxi, China
| | - Qiongyan Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
| | - Pengfei Liao
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
| | - Qiaoling Zhao
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Shunming Tang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Pingyang Wang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Gang Meng
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zhanpeng Dong
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
- * E-mail:
| |
Collapse
|
24
|
Rodriguez-Caro L, Fenner J, Benson C, Van Belleghem SM, Counterman BA. Genome Assembly of the Dogface Butterfly Zerene cesonia. Genome Biol Evol 2020; 12:3580-3585. [PMID: 31755926 PMCID: PMC6944212 DOI: 10.1093/gbe/evz254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 02/04/2023] Open
Abstract
Comparisons of high-quality, reference butterfly, and moth genomes have been instrumental to advancing our understanding of how hybridization, and natural selection drive genomic change during the origin of new species and novel traits. Here, we present a genome assembly of the Southern Dogface butterfly, Zerene cesonia (Pieridae) whose brilliant wing colorations have been implicated in developmental plasticity, hybridization, sexual selection, and speciation. We assembled 266,407,278 bp of the Z. cesonia genome, which accounts for 98.3% of the estimated 271 Mb genome size. Using a hybrid approach involving Chicago libraries with Hi-Rise assembly and a diploid Meraculous assembly, the final haploid genome was assembled. In the final assembly, nearly all autosomes and the Z chromosome were assembled into single scaffolds. The largest 29 scaffolds accounted for 91.4% of the genome assembly, with the remaining ∼8% distributed among another 247 scaffolds and overall N50 of 9.2 Mb. Tissue-specific RNA-seq informed annotations identified 16,442 protein-coding genes, which included 93.2% of the arthropod Benchmarking Universal Single-Copy Orthologs (BUSCO). The Z. cesonia genome assembly had ∼9% identified as repetitive elements, with a transposable element landscape rich in helitrons. Similar to other Lepidoptera genomes, Z. cesonia showed a high conservation of chromosomal synteny. The Z. cesonia assembly provides a high-quality reference for studies of chromosomal arrangements in the Pierid family, as well as for population, phylo, and functional genomic studies of adaptation and speciation.
Collapse
Affiliation(s)
- Luis Rodriguez-Caro
- Department of Biological Sciences, Mississippi State University.,Division of Biological Sciences, University of Montana, Missoula, MT
| | - Jennifer Fenner
- Department of Biological Sciences, Mississippi State University
| | - Caleb Benson
- Department of Biological Sciences, Mississippi State University
| | | | | |
Collapse
|
25
|
Zhu Z, Guan Z, Liu G, Wang Y, Zhang Z. SGID: a comprehensive and interactive database of the silkworm. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5677404. [PMID: 31836898 PMCID: PMC6911161 DOI: 10.1093/database/baz134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 11/12/2022]
Abstract
Although the domestic silkworm (Bombyx mori) is an important model and economic animal, there is a lack of comprehensive database for this organism. Here, we developed the silkworm genome informatics database (SGID). It aims to bring together all silkworm-related biological data and provide an interactive platform for gene inquiry and analysis. The function annotation in SGID is thorough and covers 98% of the silkworm genes. The annotation details include function description, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, subcellular location, transmembrane topology, protein secondary/tertiary structure, homologous group and transcription factor. SGID provides genome-scale visualization of population genetics test results based on high-depth resequencing data of 158 silkworm samples. It also provides interactive analysis tools of transcriptomic and epigenomic data from 79 NCBI BioProjects. SGID will be extremely useful to silkworm research in the future.
Collapse
Affiliation(s)
- Zhenglin Zhu
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Zhufen Guan
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Gexin Liu
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Yawang Wang
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China.,Khoury College of Computer Sciences, Northeastern University, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Ze Zhang
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| |
Collapse
|
26
|
Homology-Free Detection of Transposable Elements Unveils Their Dynamics in Three Ecologically Distinct Rhodnius Species. Genes (Basel) 2020; 11:genes11020170. [PMID: 32041215 PMCID: PMC7073582 DOI: 10.3390/genes11020170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are widely distributed repetitive sequences in the genomes across the tree of life, and represent an important source of genetic variability. Their distribution among genomes is specific to each lineage. A phenomenon associated with this feature is the sudden expansion of one or several TE families, called bursts of transposition. We previously proposed that bursts of the Mariner family (DNA transposons) contributed to the speciation of Rhodnius prolixus Stål, 1859. This hypothesis motivated us to study two additional species of the R. prolixus complex: Rhodnius montenegrensis da Rosa et al., 2012 and Rhodnius marabaensis Souza et al., 2016, together with a new, de novo annotation of the R. prolixus repeatome using unassembled short reads. Our analysis reveals that the total amount of TEs present in Rhodnius genomes (19% to 23.5%) is three to four times higher than that expected based on the original quantifications performed for the original genome description of R. prolixus. We confirm here that the repeatome of the three species is dominated by Class II elements of the superfamily Tc1-Mariner, as well as members of the LINE order (Class I). In addition to R. prolixus, we also identified a recent burst of transposition of the Mariner family in R. montenegrensis and R. marabaensis, suggesting that this phenomenon may not be exclusive to R. prolixus. Rather, we hypothesize that whilst the expansion of Mariner elements may have contributed to the diversification of the R. prolixus-R. robustus species complex, the distinct ecological characteristics of these new species did not drive the general evolutionary trajectories of these TEs.
Collapse
|
27
|
Trochez-Solarte JD, Ruiz-Erazo X, Almanza-Pinzon M, Zambrano-Gonzalez G. Role of microsatellites in genetic analysis of Bombyx mori silkworm: a review. F1000Res 2019; 8:1424. [PMID: 32148760 PMCID: PMC7043130 DOI: 10.12688/f1000research.20052.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 11/23/2022] Open
Abstract
In the genome of
Bombyx mori Linnaeus (1758), the microsatellites, or simple sequence repeats (SSR), feature among their particular characteristics a high adenine and thymine (A/T) content, low number of repeats, low frequency, and a grouping in "families" with similar flanking regions. Such characteristics may be the result of a complex interaction between factors that limit the size and dispersion of SSR loci—such as their high association with transposons—and mean that microsatellites within this taxon suitable as molecular markers are relatively rare. The determination of genetic profiles in populations and cell lines has not been affected owing to the high level of polymorphism, nor has the analysis of diversity, structure and genetic relationships. However, the scarcity of suitable microsatellites has restricted their application in genetic mapping, limiting them to preliminary identification of gene location of genes or quantitative trait loci (QTLs) related to thermotolerance, resistance to viruses, pigmentation patterns, body development and the weight of the cocoon, the cortex, the pupa and the filament. The review confirms that, as markers, microsatellites are versatile and perform well. They could thus be useful both to advance research in emerging countries with few resources seeking to promote sericulture in their territories, and to advance in the genetic and molecular knowledge of characteristics of productive and biological interest, given the latest technological developments in terms of the sequencing, identification, isolation and genotyping of SSR loci.
Collapse
Affiliation(s)
- Julian David Trochez-Solarte
- Agropecuary Sciences Department, Production Integrated Systems Research Group (SISINPRO), Faculty of Agricultural Sciences, University of Cauca, Popayán, Cauca, 190017, Colombia
| | - Ximena Ruiz-Erazo
- Agropecuary Sciences Department, Production Integrated Systems Research Group (SISINPRO), Faculty of Agricultural Sciences, University of Cauca, Popayán, Cauca, 190017, Colombia
| | - Martha Almanza-Pinzon
- Agropecuary Sciences Department, Production Integrated Systems Research Group (SISINPRO), Faculty of Agricultural Sciences, University of Cauca, Popayán, Cauca, 190017, Colombia
| | - Giselle Zambrano-Gonzalez
- Biology Department, Geology, Ecology and Conservation Research Group (GECO), Faculty of Natural Sciences and Education, University of Cauca, Popayán, Cauca, 190002, Colombia
| |
Collapse
|
28
|
Suzuki TK, Koshikawa S, Kobayashi I, Uchino K, Sezutsu H. Modular cis-regulatory logic of yellow gene expression in silkmoth larvae. INSECT MOLECULAR BIOLOGY 2019; 28:568-577. [PMID: 30737958 PMCID: PMC6849593 DOI: 10.1111/imb.12574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colour patterns in butterflies and moths are crucial traits for adaptation. Previous investigations have highlighted genes responsible for pigmentation (ie yellow and ebony). However, the mechanisms by which these genes are regulated in lepidopteran insects remain poorly understood. To elucidate this, molecular studies involving dipterans have largely analysed the cis-regulatory regions of pigmentation genes and have revealed cis-regulatory modularity. Here, we used well-developed transgenic techniques in Bombyx mori and demonstrated that cis-regulatory modularity controls tissue-specific expression of the yellow gene. We first identified which body parts are regulated by the yellow gene via black pigmentation. We then isolated three discrete regulatory elements driving tissue-specific gene expression in three regions of B. mori larvae. Finally, we found that there is no apparent sequence conservation of cis-regulatory regions between B. mori and Drosophila melanogaster, and no expression driven by the regulatory regions of one species when introduced into the other species. Therefore, the trans-regulatory landscapes of the yellow gene differ significantly between the two taxa. The results of this study confirm that lepidopteran species use cis-regulatory modules to control gene expression related to pigmentation, and represent a powerful cadre of transgenic tools for studying evolutionary developmental mechanisms.
Collapse
Affiliation(s)
- T. K. Suzuki
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - S. Koshikawa
- Faculty of Environmental Earth ScienceHokkaido UniversitySapporo060‐0810Japan
| | - I. Kobayashi
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - K. Uchino
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - H. Sezutsu
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| |
Collapse
|
29
|
Kawamoto M, Jouraku A, Toyoda A, Yokoi K, Minakuchi Y, Katsuma S, Fujiyama A, Kiuchi T, Yamamoto K, Shimada T. High-quality genome assembly of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 107:53-62. [PMID: 30802494 DOI: 10.1016/j.ibmb.2019.02.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
In 2008, the genome assembly and gene models for the domestic silkworm, Bombyx mori, were published by a Japanese and Chinese collaboration group. However, the genome assembly contains a non-negligible number of misassembled and gap regions due to the presence of many repetitive sequences within the silkworm genome. The erroneous genome assembly occasionally causes incorrect gene prediction. Here we performed hybrid assembly based on 140 × deep sequencing of long (PacBio) and short (Illumina) reads. The remaining gaps in the initial genome assembly were closed using BAC and Fosmid sequences, giving a new total length of 460.3 Mb, with 30 gap regions and an N50 comprising 16.8 Mb in scaffolds and 12.2 Mb in contigs. More RNA-seq and piRNA-seq reads were mapped on the new genome assembly compared with the previous version, indicating that the new genome assembly covers more transcribed regions, including repetitive elements. We performed gene prediction based on the new genome assembly using available mRNA and protein sequence data. The number of gene models was 16,880 with an N50 of 2154 bp. The new gene models reflected more accurate coding sequences and gene sets than old ones. The proportion of repetitive elements was also reestimated using the new genome assembly, and was calculated to be 46.8% in the silkworm genome. The new genome assembly and gene models are provided in SilkBase (http://silkbase.ab.a.u-tokyo.ac.jp).
Collapse
Affiliation(s)
- Munetaka Kawamoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Kakeru Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Kimiko Yamamoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
30
|
Guio L, González J. New Insights on the Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans. Methods Mol Biol 2019; 1910:505-530. [PMID: 31278675 DOI: 10.1007/978-1-4939-9074-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the abundance, diversity, and distribution of TEs in genomes is crucial to understand genome structure, function, and evolution. Advances in whole-genome sequencing techniques, as well as in bioinformatics tools, have increased our ability to detect and analyze the transposable element content in genomes. In addition to reference genomes, we now have access to population datasets in which multiple individuals within a species are sequenced. In this chapter, we highlight the recent advances in the study of TE population dynamics focusing on fruit flies and humans, which represent two extremes in terms of TE abundance, diversity, and activity. We review the most recent methodological approaches applied to the study of TE dynamics as well as the new knowledge on host factors involved in the regulation of TE activity. In addition to transposition rates, we also focus on TE deletion rates and on the selective forces that affect the dynamics of TEs in genomes.
Collapse
Affiliation(s)
- Lain Guio
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| |
Collapse
|
31
|
Feng M, Wang X, Ren F, Zhang N, Zhou Y, Sun J. Genome-Wide Characterization of Endogenous Retroviruses in Bombyx mori Reveals the Relatives and Activity of env Genes. Front Microbiol 2018; 9:1732. [PMID: 30123193 PMCID: PMC6085415 DOI: 10.3389/fmicb.2018.01732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/11/2018] [Indexed: 01/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are retroviral sequences that remain fixed in the host genome, where they could play an important role. Some ERVs have been identified in insects and proven to have infectious properties. However, no information is available regarding Bombyx mori ERVs (BmERVs) to date. Here, we systematically identified 256 potential BmERVs in the silkworm genome via a whole-genome approach. BmERVs were relatively evenly distributed across each of the chromosomes and accounted for about 25% of the silkworm genome. All BmERVs were classified as young ERVs, with insertion times estimated to be less than 10 million years. Seven BmERVs possessing the env genes were identified. With the exception of the Orf133 Helicoverpa armigera nuclear polyhedrosis virus, the env sequences of BmERVs were distantly related to genes encoding F (Fa and Fb) and GP64 proteins from Group I and Group II NPVs. In addition, only the amino acid sequence of the BmERV-21 envelope protein shared a similar putative furin-like cleavage site and fusion peptide with Group II baculoviruses. All of the env genes in the seven BmERVs were verified to exist in the genome and be expressed in the midgut and fat bodies, which suggest that BmERVs might play an important role in the host biology.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiong Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Nan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaohong Zhou
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Han MJ, Xu HE, Xiong XM, Zhang HH. Evolutionary dynamics of transposable elements during silkworm domestication. Genes Genomics 2018; 40:1041-1051. [DOI: 10.1007/s13258-018-0713-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/31/2018] [Indexed: 11/24/2022]
|
33
|
Xie LQ, Wang PL, Jiang SH, Zhang Z, Zhang HH. Genome-wide identification and evolution of TC1/Mariner in the silkworm (Bombyx mori) genome. Genes Genomics 2018; 40:485-495. [PMID: 29892960 DOI: 10.1007/s13258-018-0648-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
TC1/Mariner transposons belong to class II transposable elements (TEs) that use DNA-mediated "cut and paste" mechanism to transpose, and they have been identified in almost all organisms. Although silkworm (Bombyx mori) has a large amount of TC1/Mariner elements, the genome wide information of this superfamily in the silkworm is unknown. In this study, we have identified 2670 TC1/Mariner (Bmmar) elements in the silkworm genome. All the TEs were classified into 22 families by means of fgclust, a tool of repetitive sequence classification, seven of which was first reported in this study. Phylogenetic and structure analyses based on the catalytic domain (DDxD/E) of transposase sequences indicated that all members of TC1/Mariner were grouped into five subgroups: Mariner, Tc1, maT, DD40D and DD41D/E. Of these five subgroups, maT rather than Mariner possessed most members of TC1/Mariner (51.23%) in the silkworm genome. In particular, phylogenetic analysis and structure analysis revealed that Bmmar15 (DD40D) formed a new basal subgroup of TC1/Mariner element in insects, which was referred to as bmori. Furthermore, we concluded that DD40D appeared to intermediate between mariner and Tc1. Finally, we estimated the insertion time for each copy of TC1/Mariner in the silkworm and found that most of members were dramatically amplified during a period from 0 to 1 mya. Moreover, the detailed functional data analysis showed that Bmmar1, Bmmar6 and Bmmar9 had EST evidence and intact transposases. These implied that TC1/Mariner might have potential transpositional activity. In conclusion, this study provides some new insights into the landscape, origin and evolution of TC1/Mariner in the insect genomes.
Collapse
Affiliation(s)
- Li-Qin Xie
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Ping-Lan Wang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Shen-Hua Jiang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
34
|
Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, Brevik K, Cappelle K, Chen MJM, Childers AK, Childers C, Christiaens O, Clements J, Didion EM, Elpidina EN, Engsontia P, Friedrich M, García-Robles I, Gibbs RA, Goswami C, Grapputo A, Gruden K, Grynberg M, Henrissat B, Jennings EC, Jones JW, Kalsi M, Khan SA, Kumar A, Li F, Lombard V, Ma X, Martynov A, Miller NJ, Mitchell RF, Munoz-Torres M, Muszewska A, Oppert B, Palli SR, Panfilio KA, Pauchet Y, Perkin LC, Petek M, Poelchau MF, Record É, Rinehart JP, Robertson HM, Rosendale AJ, Ruiz-Arroyo VM, Smagghe G, Szendrei Z, Thomas GWC, Torson AS, Vargas Jentzsch IM, Weirauch MT, Yates AD, Yocum GD, Yoon JS, Richards S. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep 2018; 8:1931. [PMID: 29386578 PMCID: PMC5792627 DOI: 10.1038/s41598-018-20154-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/13/2018] [Indexed: 01/04/2023] Open
Abstract
The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, USA.
| | - Yolanda H Chen
- Department of Plant and Soil Sciences, University of Vermont, Burlington, USA
| | | | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Anita Bhandari
- Department of Molecular Physiology, Christian-Albrechts-University at Kiel, Kiel, Germany
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, USA
| | - Kristian Brevik
- Department of Plant and Soil Sciences, University of Vermont, Burlington, USA
| | - Kaat Cappelle
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Mei-Ju M Chen
- USDA-ARS National Agricultural Library, Beltsville, MD, USA
| | - Anna K Childers
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | | | | | - Justin Clements
- Department of Entomology, University of Wisconsin-Madison, Madison, USA
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moskva, Russia
| | - Patamarerk Engsontia
- Department of Biology, Faculty of Science, Prince of Songkla University, Amphoe Hat Yai, Thailand
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, USA
| | | | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Chandan Goswami
- National Institute of Science Education and Research, Bhubaneswar, India
| | | | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288, Marseille, France
- INRA, USC 1408 AFMB, F-13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, King Abdulaziz, Saudi Arabia
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, USA
| | - Megha Kalsi
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Sher A Khan
- Department of Entomology, Texas A&M University, College Station, USA
| | - Abhishek Kumar
- Department of Genetics & Molecular Biology in Botany, Christian-Albrechts-University at Kiel, Kiel, Germany
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Fei Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288, Marseille, France
- INRA, USC 1408 AFMB, F-13288, Marseille, France
| | - Xingzhou Ma
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Alexander Martynov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nicholas J Miller
- Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Robert F Mitchell
- Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, USA
| | - Monica Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Brenda Oppert
- USDA-ARS Center for Grain and Animal Health Research, New York, USA
| | | | - Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne, Köln, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, England, UK
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lindsey C Perkin
- USDA-ARS Center for Grain and Animal Health Research, New York, USA
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Éric Record
- INRA, Aix-Marseille Université, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Joseph P Rinehart
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | | | - Guy Smagghe
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, USA
| | - Gregg W C Thomas
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, USA
| | - Alex S Torson
- Department of Biological Sciences, North Dakota State University, Fargo, USA
| | | | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Ashley D Yates
- Department of Entomology, The Ohio State University, Columbus, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, USA
| | - George D Yocum
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - June-Sun Yoon
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Stephen Richards
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
35
|
Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury JM, Duvic B, Hilliou F, Durand N, Montagné N, Darboux I, Kuwar S, Chertemps T, Siaussat D, Bretschneider A, Moné Y, Ahn SJ, Hänniger S, Grenet ASG, Neunemann D, Maumus F, Luyten I, Labadie K, Xu W, Koutroumpa F, Escoubas JM, Llopis A, Maïbèche-Coisne M, Salasc F, Tomar A, Anderson AR, Khan SA, Dumas P, Orsucci M, Guy J, Belser C, Alberti A, Noel B, Couloux A, Mercier J, Nidelet S, Dubois E, Liu NY, Boulogne I, Mirabeau O, Le Goff G, Gordon K, Oakeshott J, Consoli FL, Volkoff AN, Fescemyer HW, Marden JH, Luthe DS, Herrero S, Heckel DG, Wincker P, Kergoat GJ, Amselem J, Quesneville H, Groot AT, Jacquin-Joly E, Nègre N, Lemaitre C, Legeai F, d'Alençon E, Fournier P. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci Rep 2017; 7:11816. [PMID: 28947760 PMCID: PMC5613006 DOI: 10.1038/s41598-017-10461-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/19/2017] [Indexed: 12/30/2022] Open
Abstract
Emergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world’s worst agricultural pests. This insect is polyphagous while the majority of other lepidopteran herbivores are specialist. It consists of two morphologically indistinguishable strains (“C” and “R”) that have different host plant ranges. To describe the evolutionary mechanisms that both enable the emergence of polyphagous herbivory and lead to the shift in the host preference, we analyzed whole genome sequences from laboratory and natural populations of both strains. We observed huge expansions of genes associated with chemosensation and detoxification compared with specialist Lepidoptera. These expansions are largely due to tandem duplication, a possible adaptation mechanism enabling polyphagy. Individuals from natural C and R populations show significant genomic differentiation. We found signatures of positive selection in genes involved in chemoreception, detoxification and digestion, and copy number variation in the two latter gene families, suggesting an adaptive role for structural variation.
Collapse
Affiliation(s)
- Anaïs Gouin
- INRIA, IRISA, GenScale, Campus de Beaulieu, Rennes, 35042, France
| | - Anthony Bretaudeau
- INRA, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, Rennes, 35042, France.,INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, 35042, France
| | - Kiwoong Nam
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France
| | - Sylvie Gimenez
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France
| | - Jean-Marc Aury
- CEA, Genoscope, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Bernard Duvic
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France
| | - Frédérique Hilliou
- Université Côte d'Azur, INRA, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Nicolas Durand
- Sorbonne Universités, UPMC University Paris 06, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - Nicolas Montagné
- Sorbonne Universités, UPMC University Paris 06, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | | | - Suyog Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Thomas Chertemps
- Sorbonne Universités, UPMC University Paris 06, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - David Siaussat
- Sorbonne Universités, UPMC University Paris 06, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - Anne Bretschneider
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Yves Moné
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Sabine Hänniger
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | | | - David Neunemann
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Isabelle Luyten
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Karine Labadie
- CEA, Genoscope, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Wei Xu
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, 6150, Australia
| | - Fotini Koutroumpa
- INRA, Institute of Ecology and Environmental Sciences, 78000, Versailles, France.,Laboratory of Mammalian Genetics, Center for DNA Fingerprinting and Diagnostics (CDFD), Lab block: Tuljaguda (Opp. MJ Market), Nampally, Hyderabad, 500 001, India
| | | | - Angel Llopis
- Department of Genetics, Universitat de València, 46100, Burjassot, Valencia, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, 46100, Burjassot, Valencia, Spain
| | - Martine Maïbèche-Coisne
- Sorbonne Universités, UPMC University Paris 06, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - Fanny Salasc
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France.,EPHE, PSL Research University, UMR1333 - DGIMI, Pathologie comparée des Invertébrés CC101, F-34095, Montpellier cedex 5, France
| | - Archana Tomar
- Laboratory of Mammalian Genetics, Center for DNA Fingerprinting and Diagnostics (CDFD), Lab block: Tuljaguda (Opp. MJ Market), Nampally, Hyderabad, 500 001, India
| | - Alisha R Anderson
- CSIRO Ecosystem Sciences, Black Mountain, Canberra, ACT 2600, Australia
| | - Sher Afzal Khan
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Pascaline Dumas
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, The Netherlands
| | - Marion Orsucci
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France
| | - Julie Guy
- CEA, Genoscope, 2 rue Gaston Crémieux, 91000, Evry, France
| | | | | | - Benjamin Noel
- CEA, Genoscope, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Arnaud Couloux
- CEA, Genoscope, 2 rue Gaston Crémieux, 91000, Evry, France
| | | | - Sabine Nidelet
- Plateforme MGX, C/o institut de Génomique Fonctionnelle, 141, rue de la Cardonille, 34094, Montpellier cedex 05, France
| | - Emeric Dubois
- Plateforme MGX, C/o institut de Génomique Fonctionnelle, 141, rue de la Cardonille, 34094, Montpellier cedex 05, France
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Isabelle Boulogne
- Sorbonne Universités, UPMC University Paris 06, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - Olivier Mirabeau
- INRA, Institute of Ecology and Environmental Sciences, 78000, Versailles, France
| | - Gaelle Le Goff
- Université Côte d'Azur, INRA, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Karl Gordon
- CSIRO, Clunies Ross St, (GPO Box 1700), Acton, ACT 2601, Australia
| | - John Oakeshott
- CSIRO, Clunies Ross St, (GPO Box 1700), Acton, ACT 2601, Australia
| | - Fernando L Consoli
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, Brazil
| | | | - Howard W Fescemyer
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, 16802, Pennsylvania, USA
| | - James H Marden
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, 16802, Pennsylvania, USA
| | - Dawn S Luthe
- Department of Plant Science, 102 Tyson Building, The Pennsylvania State University, University Park, 16802, Pennsylvania, USA
| | - Salvador Herrero
- Department of Genetics, Universitat de València, 46100, Burjassot, Valencia, Spain
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Patrick Wincker
- CEA, Genoscope, 2 rue Gaston Crémieux, 91000, Evry, France.,CNRS UMR 8030, 2 rue Gaston Crémieux, 91000, Evry, France.,Université d'Evry Val D'Essonne, 91000, Evry, France
| | - Gael J Kergoat
- INRA, UMR1062 CBGP, IRD, CIRAD, Montpellier SupAgro, 755 Avenue du campus Agropolis, 34988, Montferrier/Lez, France
| | - Joelle Amselem
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | | | - Astrid T Groot
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany.,Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, The Netherlands
| | | | - Nicolas Nègre
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France.
| | - Claire Lemaitre
- INRIA, IRISA, GenScale, Campus de Beaulieu, Rennes, 35042, France.
| | - Fabrice Legeai
- INRIA, IRISA, GenScale, Campus de Beaulieu, Rennes, 35042, France
| | | | | |
Collapse
|
36
|
Segmental duplications: evolution and impact among the current Lepidoptera genomes. BMC Evol Biol 2017; 17:161. [PMID: 28683762 PMCID: PMC5499213 DOI: 10.1186/s12862-017-1007-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background Structural variation among genomes is now viewed to be as important as single nucleoid polymorphisms in influencing the phenotype and evolution of a species. Segmental duplication (SD) is defined as segments of DNA with homologous sequence. Results Here, we performed a systematic analysis of segmental duplications (SDs) among five lepidopteran reference genomes (Plutella xylostella, Danaus plexippus, Bombyx mori, Manduca sexta and Heliconius melpomene) to understand their potential impact on the evolution of these species. We find that the SDs content differed substantially among species, ranging from 1.2% of the genome in B. mori to 15.2% in H. melpomene. Most SDs formed very high identity (similarity higher than 90%) blocks but had very few large blocks. Comparative analysis showed that most of the SDs arose after the divergence of each linage and we found that P. xylostella and H. melpomene showed more duplications than other species, suggesting they might be able to tolerate extensive levels of variation in their genomes. Conserved ancestral and species specific SD events were assessed, revealing multiple examples of the gain, loss or maintenance of SDs over time. SDs content analysis showed that most of the genes embedded in SDs regions belonged to species-specific SDs (“Unique” SDs). Functional analysis of these genes suggested their potential roles in the lineage-specific evolution. SDs and flanking regions often contained transposable elements (TEs) and this association suggested some involvement in SDs formation. Further studies on comparison of gene expression level between SDs and non-SDs showed that the expression level of genes embedded in SDs was significantly lower, suggesting that structure changes in the genomes are involved in gene expression differences in species. Conclusions The results showed that most of the SDs were “unique SDs”, which originated after species formation. Functional analysis suggested that SDs might play different roles in different species. Our results provide a valuable resource beyond the genetic mutation to explore the genome structure for future Lepidoptera research. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1007-y) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Abstract
Piwi proteins and their bound Piwi-interacting RNAs (piRNAs) are predominantly expressed in the germline and play crucial roles in germline development by silencing transposons and other targets. Bombyx mori BmN4 cells are culturable germ cells that equip the piRNA pathway. Because of the scarcity of piRNA-expressing culturable cells, BmN4 cells are being utilized for the analyses of piRNA biogenesis. We here report that the piRNA biogenesis in BmN4 cells is regulated by cell density. As cell density increased, the abundance of Piwi proteins and piRNA biogenesis factors was commonly upregulated, resulting in an increased number of perinuclear nuage-like granules where Piwi proteins localize. Along with these phenomena, the abundance of mature piRNAs also globally increased, whereas levels of long piRNA precursor and transposons decreased, suggesting that increasing cell density promotes piRNA biogenesis pathway and that the resultant accumulation of mature piRNAs is functionally significant for transposon silencing. Our study reveals a previously uncharacterized link between cell density and piRNA biogenesis, designates cell density as a critical variable in piRNA studies using BmN4 cell system, and suggests the alteration of cell density as a useful tool to monitor piRNA biogenesis and function.
Collapse
|
38
|
W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae). Chromosome Res 2017; 25:241-252. [PMID: 28500471 DOI: 10.1007/s10577-017-9558-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
Abstract
The W chromosome of most lepidopteran species represents the largest heterochromatin entity in the female genome. Although satellite DNA is a typical component of constitutive heterochromatin, there are only a few known satellite DNAs (satDNAs) located on the W chromosome in moths and butterflies. In this study, we isolated and characterized new satDNA (PiSAT1) from microdissected W chromosomes of the Indian meal moth, Plodia interpunctella. Even though the PiSAT1 is mainly localized near the female-specific segment of the W chromosome, short arrays of this satDNA also occur on autosomes and/or the Z chromosome. Probably due to the predominant location in the non-recombining part of the genome, PiSAT1 exhibits a relatively large nucleotide variability in its monomers. However, at least a part of all predicted functional motifs is located in conserved regions. Moreover, we detected polyadenylated transcripts of PiSAT1 in all developmental stages and in both sexes (female and male larvae, pupae and adults). Our results suggest a potential structural and functional role of PiSAT1 in the P. interpunctella genome, which is consistent with accumulating evidence for the important role of satDNAs in eukaryotic genomes.
Collapse
|
39
|
Ahola V, Wahlberg N, Frilander MJ. Butterfly Genomics: Insights from the Genome ofMelitaea cinxia. ANN ZOOL FENN 2017. [DOI: 10.5735/086.054.0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Virpi Ahola
- Department of Biosciences, P.O. Box 65, FI-00014 University of Helsinki, Finland
| | - Niklas Wahlberg
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Mikko J. Frilander
- Institute of Biotechnology, P.O. Box 56, FI-00014 University of Helsinki, Finland
| |
Collapse
|
40
|
Si H, Cao Y, Zhu H, Li D, Lv Z, Sheng Q, Nie Z. Transposable Element Bm1645 is a Source of BmAGO2-associated Small RNAs that affect its expression in Bombyx mori. BMC Genomics 2017; 18:201. [PMID: 28231766 PMCID: PMC5324241 DOI: 10.1186/s12864-017-3598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 02/21/2017] [Indexed: 12/04/2022] Open
Abstract
Background A transposable element (TE) is a DNA fragment that can change its position within a genome. Transposable elements play important roles in maintaining the stability and diversity of organisms by transposition. Recent studies have shown that approximately half of the genes in Bombyx mori are TEs. Results We systematically identified and analyzed the BmAGO2-associated TEs, which exceed 100 in the B. mori genome. Additionally, we also mapped the small RNAs associated with BmAGO2 in B.mori. The transposon Bm1645 is the most abundant TE associated with BmAGO2, and Bm1645-derived small RNAs represent a small RNA pool. We determined the expression patterns of several Bm1645-derived small RNAs by northern blotting, and the results showed there was differential expression of multiple small RNAs in normal and BmNPV-infected BmN cells and silkworms from various developmental stages. We confirmed that four TE-siRNAs could bind to BmAGO2 using EMSA and also validated the recognition sites of these four TE-siRNAs in Bm1645 by dual-luciferase reporter assays. Furthermore, qRT-PCR analysis revealed the overexpression of the four TE-siRNAs could downregulate the expression of Bm1645 in BmN cells, and the transcription of Bm1645 was upregulated by the downregulation of BmAGO2. Conclusions Our results suggest Bm1645 functions as a source of small RNAs pool and this pool can produce many BmAGO2-associated small RNAs that regulate TE’s expression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3598-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongqiang Si
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Yunjie Cao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Honglin Zhu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Dan Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Zhengbing Lv
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Qing Sheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Zuoming Nie
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
41
|
Shoji K, Suzuki Y, Sugano S, Shimada T, Katsuma S. Artificial "ping-pong" cascade of PIWI-interacting RNA in silkworm cells. RNA (NEW YORK, N.Y.) 2017; 23:86-97. [PMID: 27777367 PMCID: PMC5159652 DOI: 10.1261/rna.058875.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/15/2016] [Indexed: 05/19/2023]
Abstract
PIWI-interacting RNAs (piRNAs) play essential roles in the defense system against selfish elements in animal germline cells by cooperating with PIWI proteins. A subset of piRNAs is predicted to be generated via the "ping-pong" cascade, which is mainly controlled by two different PIWI proteins. Here we established a cell-based artificial piRNA production system using a silkworm ovarian cultured cell line that is believed to possess a complete piRNA pathway. In addition, we took advantage of a unique silkworm sex-determining one-to-one ping-pong piRNA pair, which enabled us to precisely monitor the behavior of individual artificial piRNAs. With this novel strategy, we successfully generated artificial piRNAs against endogenous protein-coding genes via the expected back-and-forth traveling mechanism. Furthermore, we detected "primary" piRNAs from the upstream region of the artificial "ping-pong" site in the endogenous gene. This artificial piRNA production system experimentally confirms the existence of the "ping-pong" cascade of piRNAs. Also, this system will enable us to identify the factors involved in both, or each, of the "ping" and "pong" cascades and the sequence features that are required for efficient piRNA production.
Collapse
Affiliation(s)
- Keisuke Shoji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
42
|
Coates BS, Abel CA, Perera OP. Estimation of long terminal repeat element content in the Helicoverpa zea genome from high-throughput sequencing of bacterial artificial chromosome pools. Genome 2016; 60:310-324. [PMID: 28177843 DOI: 10.1139/gen-2016-0067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The lepidopteran pest insect Helicoverpa zea feeds on cultivated corn and cotton across the Americas where control remains challenging owing to the evolution of resistance to chemical and transgenic insecticidal toxins, yet genomic resources remain scarce for this species. A bacterial artificial chromosome (BAC) library having a mean genomic insert size of 145 ± 20 kbp was created from a laboratory strain of H. zea, which provides ∼12.9-fold coverage of a 362.8 ± 8.8 Mbp (0.37 ± 0.09 pg) flow cytometry estimated haploid genome size. Assembly of Illumina HiSeq 2000 reads generated from 14 pools that encompassed all BAC clones resulted in 165 485 genomic contigs (N50 = 3262 bp; 324.6 Mbp total). Long terminal repeat (LTR) protein coding regions annotated from 181 contigs included 30 Ty1/copia, 78 Ty3/gypsy, and 73 BEL/Pao elements, of which 60 (33.1%) encoded all five functional polyprotein (pol) domains. Approximately 14% of LTR elements are distributed non-randomly across pools of BAC clones.
Collapse
Affiliation(s)
- Brad S Coates
- a USDA-ARS, Corn Insects & Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50011, USA.,b Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Craig A Abel
- a USDA-ARS, Corn Insects & Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Omaththage P Perera
- c USDA-ARS, Southern Insect Management Research Unit, 141 Experiment Station Road, P.O. Box 346, Stoneville, MS 38776, USA
| |
Collapse
|
43
|
Kanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, et alKanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, Rozas J, Schwartz LM, Smith W, Southgate A, Vilcinskas A, Vogt R, Wang P, Werren J, Yu XQ, Zhou JJ, Brown SJ, Scherer SE, Richards S, Blissard GW. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:118-147. [PMID: 27522922 PMCID: PMC5010457 DOI: 10.1016/j.ibmb.2016.07.005] [Show More Authors] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 05/19/2023]
Abstract
Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.
Collapse
Affiliation(s)
- Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Sanjay Chellapilla
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, RI, 02881, USA
| | - Ewald Grosse-Wilde
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Nicolae Herndon
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - James Walters
- Department of Ecology and Evolutionary Biology, Univ. Kansas, Lawrence, KS, 66045, USA
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211, Geneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA; The Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, MA, 02142, USA
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Francisca C Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing, China
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Anne Bretschneider
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - William B Bryant
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sascha Bucks
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Jayne M Christen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David F Clarke
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Spyridoula Garavelou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Karl H J Gordon
- CSIRO Health and Biosecurity, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ariana Hirsh
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Christian Klinner
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christopher König
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christie Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ashley R Kroll
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Suyog S Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Sandy L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Rüdiger Lehman
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhaofei Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanquan Liang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Shanna Lovelace
- Department of Biological Sciences, University of Southern Maine, Portland, ME, 04104, USA
| | - Zhiqiang Lu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Tittu Mathew
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Brian Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - David Neunemann
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Fiona Ongeri
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ioannis Pyrousis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Amanda Redding
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Charles Roesel
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alejandro Sanchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Aditi Shukla
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Walther Traut
- Institut fuer Biologie, Universitaet Luebeck, D-23538, Luebeck, Germany
| | - Tom K Walsh
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Di Wu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Wenbi Wu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yuan-Qing Wu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hannah Zucker
- Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | | | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - René Feyereisen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Lars S Jermiin
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, USA
| | - Herman K Lehman
- Biology Department and Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Marce Lorenzen
- Dept. Entomology, North Carolina State Univ., Raleigh, NC, 27695, USA
| | - Hans Merzendorfer
- University of Siegen, School of Natural Sciences and Engineering, Institute of Biology - Molecular Biology, Adolf-Reichwein-Strasse. 2, AR-C3010, 57076 Siegen, Germany
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - David B Morton
- Department of Integrative Biosciences, School of Dentistry, BRB421, L595, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - John G Oakeshott
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Will Palmer
- Department of Genetics, University of Cambridge, Downing St, Cambridge, CB2 3EH, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Wendy Smith
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Agnes Southgate
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Richard Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29205, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - John Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Xiao-Qiang Yu
- University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Susan J Brown
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
44
|
Izumi N, Shoji K, Sakaguchi Y, Honda S, Kirino Y, Suzuki T, Katsuma S, Tomari Y. Identification and Functional Analysis of the Pre-piRNA 3' Trimmer in Silkworms. Cell 2016; 164:962-73. [PMID: 26919431 DOI: 10.1016/j.cell.2016.01.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/11/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
PIWI-interacting RNAs (piRNAs) play a crucial role in transposon silencing in animal germ cells. In piRNA biogenesis, single-stranded piRNA intermediates are loaded into PIWI-clade proteins and cleaved by Zucchini/MitoPLD, yielding precursor piRNAs (pre-piRNAs). Pre-piRNAs that are longer than the mature piRNA length are then trimmed at their 3' ends. Although recent studies implicated the Tudor domain protein Papi/Tdrkh in pre-piRNA trimming, the identity of Trimmer and its relationship with Papi/Tdrkh remain unknown. Here, we identified PNLDC1, an uncharacterized 3'-5' exonuclease, as Trimmer in silkworms. Trimmer is enriched in the mitochondrial fraction and binds to Papi/Tdrkh. Depletion of Trimmer and Papi/Tdrkh additively inhibits trimming, causing accumulation of ∼35-40-nt pre-piRNAs that are impaired for target cleavage and prone to degradation. Our results highlight the cooperative action of Trimmer and Papi/Tdrkh in piRNA maturation.
Collapse
Affiliation(s)
- Natsuko Izumi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Keisuke Shoji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shozo Honda
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
45
|
Singh D, Chetia H, Kabiraj D, Sharma S, Kumar A, Sharma P, Deka M, Bora U. A comprehensive view of the web-resources related to sericulture. Database (Oxford) 2016; 2016:baw086. [PMID: 27307138 PMCID: PMC4909305 DOI: 10.1093/database/baw086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 12/03/2022]
Abstract
Recent progress in the field of sequencing and analysis has led to a tremendous spike in data and the development of data science tools. One of the outcomes of this scientific progress is development of numerous databases which are gaining popularity in all disciplines of biology including sericulture. As economically important organism, silkworms are studied extensively for their numerous applications in the field of textiles, biomaterials, biomimetics, etc. Similarly, host plants, pests, pathogens, etc. are also being probed to understand the seri-resources more efficiently. These studies have led to the generation of numerous seri-related databases which are extremely helpful for the scientific community. In this article, we have reviewed all the available online resources on silkworm and its related organisms, including databases as well as informative websites. We have studied their basic features and impact on research through citation count analysis, finally discussing the role of emerging sequencing and analysis technologies in the field of seri-data science. As an outcome of this review, a web portal named SeriPort, has been created which will act as an index for the various sericulture-related databases and web resources available in cyberspace.Database URL: http://www.seriport.in/.
Collapse
Affiliation(s)
- Deepika Singh
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Hasnahana Chetia
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Debajyoti Kabiraj
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Swagata Sharma
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anil Kumar
- Centre for Biological Sciences (Bioinformatics), Central University of South Bihar (CUSB), Patna 800014, India
| | - Pragya Sharma
- Department of Bioengineering & Technology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Manab Deka
- Department of Bioengineering & Technology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Utpal Bora
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India Mugagen Laboratories Pvt. Ltd, Technology Incubation Centre, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
46
|
Abstract
Although most of non-long terminal repeat (non-LTR) retrotransposons are incorporated in the host genome almost randomly, some non-LTR retrotransposons are incorporated into specific sequences within a target site. On the basis of structural and phylogenetic features, non-LTR retrotransposons are classified into two large groups, restriction enzyme-like endonuclease (RLE)-encoding elements and apurinic/apyrimidinic endonuclease (APE)-encoding elements. All clades of RLE-encoding non-LTR retrotransposons include site-specific elements. However, only two of more than 20 APE-encoding clades, Tx1 and R1, contain site-specific non-LTR elements. Site-specific non-LTR retrotransposons usually target within multi-copy RNA genes, such as rRNA gene (rDNA) clusters, or repetitive genomic sequences, such as telomeric repeats; this behavior may be a symbiotic strategy to reduce the damage to the host genome. Site- and sequence-specificity are variable even among closely related non-LTR elements and appeared to have changed during evolution. In the APE-encoding elements, the primary determinant of the sequence- specific integration is APE itself, which nicks one strand of the target DNA during the initiation of target primed reverse transcription (TPRT). However, other factors, such as interaction between mRNA and the target DNA, and access to the target region in the nuclei also affect the sequence-specificity. In contrast, in the RLE-encoding elements, DNA-binding motifs appear to affect their sequence-specificity, rather than the RLE domain itself. Highly specific integration properties of these site-specific non-LTR elements make them ideal alternative tools for sequence-specific gene delivery, particularly for therapeutic purposes in human diseases.
Collapse
|
47
|
Sun W, Zhao XW, Zhang Z. Identification and evolution of the orphan genes in the domestic silkworm, Bombyx mori. FEBS Lett 2015; 589:2731-8. [PMID: 26296317 DOI: 10.1016/j.febslet.2015.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/24/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
Orphan genes (OGs) which have no recognizable homology to any sequences in other species could contribute to the species specific adaptations. In this study, we identified 738 OGs in the silkworm genome. About 31% of the silkworm OGs is derived from transposable elements, and 5.1% of the silkworm OGs emerged from gene duplication followed by divergence of paralogs. Five de novo silkworm OGs originated from non-coding regions. Microarray data suggested that most of the silkworm OGs were expressed in limited tissues. RNA interference experiments suggested that five de novo OGs are not essential to the silkworm, implying that they may contribute to genetic redundancy or species-specific adaptation. Our results provide some new insights into the evolutionary significance of the silkworm OGs.
Collapse
Affiliation(s)
- Wei Sun
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Xin-Wei Zhao
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
48
|
A FISH-based chromosome map for the European corn borer yields insights into ancient chromosomal fusions in the silkworm. Heredity (Edinb) 2015; 116:75-83. [PMID: 26264548 DOI: 10.1038/hdy.2015.72] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 11/08/2022] Open
Abstract
A significant feature of the genomes of Lepidoptera, butterflies and moths, is the high conservation of chromosome organization. Recent remarkable progress in genome sequencing of Lepidoptera has revealed that syntenic gene order is extensively conserved across phylogenetically distant species. The ancestral karyotype of Lepidoptera is thought to be n=31; however, that of the most well-studied moth, Bombyx mori, is n=28, and diverse studies suggest that three chromosomal fusion events occurred in this lineage. To identify the boundaries between predicted ancient fusions involving B. mori chromosomes 11, 23 and 24, we constructed fluorescence in situ hybridization (FISH)-based chromosome maps of the European corn borer, Ostrinia nubilalis (n=31). We first determined a 511 Mb genomic sequence of the Asian corn borer, O. furnacalis, a congener of O. nubilalis, and isolated bacterial artificial chromosomes and fosmid clones that were expected to localize in candidate regions for the boundaries using these sequences. Combined with FISH and genetic analysis, we narrowed down the candidate regions to 40 kb-1.5 Mb, in strong agreement with a previous estimate based on the genome of a butterfly, Melitaea cinxia. The significant difference in the lengths of the candidate regions where no functional genes were observed may reflect the evolutionary time after fusion events.
Collapse
|
49
|
Derks MFL, Smit S, Salis L, Schijlen E, Bossers A, Mateman C, Pijl AS, de Ridder D, Groenen MAM, Visser ME, Megens HJ. The Genome of Winter Moth (Operophtera brumata) Provides a Genomic Perspective on Sexual Dimorphism and Phenology. Genome Biol Evol 2015; 7:2321-32. [PMID: 26227816 PMCID: PMC4558862 DOI: 10.1093/gbe/evv145] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The winter moth (Operophtera brumata) belongs to one of the most species-rich families in Lepidoptera, the Geometridae (approximately 23,000 species). This family is of great economic importance as most species are herbivorous and capable of defoliating trees. Genome assembly of the winter moth allows the study of genes and gene families, such as the cytochrome P450 gene family, which is known to be vital in plant secondary metabolite detoxification and host-plant selection. It also enables exploration of the genomic basis for female brachyptery (wing reduction), a feature of sexual dimorphism in winter moth, and for seasonal timing, a trait extensively studied in this species. Here we present a reference genome for the winter moth, the first geometrid and largest sequenced Lepidopteran genome to date (638 Mb) including a set of 16,912 predicted protein-coding genes. This allowed us to assess the dynamics of evolution on a genome-wide scale using the P450 gene family. We also identified an expanded gene family potentially linked to female brachyptery, and annotated the genes involved in the circadian clock mechanism as main candidates for involvement in seasonal timing. The genome will contribute to Lepidopteran genomic resources and comparative genomics. In addition, the genome enhances our ability to understand the genetic and molecular basis of insect seasonal timing and thereby provides a reference for future evolutionary and population studies on the winter moth.
Collapse
Affiliation(s)
- Martijn F L Derks
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Sandra Smit
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Lucia Salis
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands Research Unit Chronobiology, University of Groningen, Groningen, The Netherlands
| | - Elio Schijlen
- PRI Bioscience, Plant Research International, Wageningen UR, Wageningen, The Netherlands
| | - Alex Bossers
- Department of Infection Biology, Central Veterinary Institute, Wageningen UR, Lelystad, The Netherlands
| | - Christa Mateman
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Agata S Pijl
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
50
|
Nicholson SJ, Nickerson ML, Dean M, Song Y, Hoyt PR, Rhee H, Kim C, Puterka GJ. The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genomics 2015; 16:429. [PMID: 26044338 PMCID: PMC4561433 DOI: 10.1186/s12864-015-1525-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The Russian wheat aphid, Diuraphis noxia Kurdjumov, is one of the most important pests of small grains throughout the temperate regions of the world. This phytotoxic aphid causes severe systemic damage symptoms in wheat, barley, and other small grains as a direct result of the salivary proteins it injects into the plant while feeding. RESULTS We sequenced and de novo assembled the genome of D. noxia Biotype 2, the strain most virulent to resistance genes in wheat. The assembled genomic scaffolds span 393 MB, equivalent to 93% of its 421 MB genome, and contains 19,097 genes. D. noxia has the most AT-rich insect genome sequenced to date (70.9%), with a bimodal CpG(O/E) distribution and a complete set of methylation related genes. The D. noxia genome displays a widespread, extensive reduction in the number of genes per ortholog group, including defensive, detoxification, chemosensory, and sugar transporter groups in comparison to the Acyrthosiphon pisum genome, including a 65% reduction in chemoreceptor genes. Thirty of 34 known D. noxia salivary genes were found in this assembly. These genes exhibited less homology with those salivary genes commonly expressed in insect saliva, such as glucose dehydrogenase and trehalase, yet greater conservation among genes that are expressed in D. noxia saliva but not detected in the saliva of other insects. Genes involved in insecticide activity and endosymbiont-derived genes were also found, as well as genes involved in virus transmission, although D. noxia is not a viral vector. CONCLUSIONS This genome is the second sequenced aphid genome, and the first of a phytotoxic insect. D. noxia's reduced gene content of may reflect the influence of phytotoxic feeding in shaping the D. noxia genome, and in turn in broadening its host range. The presence of methylation-related genes, including cytosine methylation, is consistent with other parthenogenetic and polyphenic insects. The D. noxia genome will provide an important contrast to the A. pisum genome and advance functional and comparative genomics of insects and other organisms.
Collapse
Affiliation(s)
- Scott J Nicholson
- USDA Agricultural Research Service, Stillwater, OK, 74075, USA.
- Department of Molecular Biology and Biochemistry, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Michael L Nickerson
- National Institutes of Health, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Michael Dean
- National Institutes of Health, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Yan Song
- Department of Molecular Biology and Biochemistry, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Peter R Hoyt
- Department of Molecular Biology and Biochemistry, Oklahoma State University, Stillwater, OK, 74078, USA.
| | | | | | - Gary J Puterka
- USDA Agricultural Research Service, Stillwater, OK, 74075, USA.
| |
Collapse
|