1
|
Zhang C, Zhu JX, Abou El-Ela AS, Wang N, Ali SA, Shi ZY, Zhou Y, Khan MM, Zhou WW, Zhu ZR. Role of AMP-activated protein kinase in regulating hatching of Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2025; 81:3186-3195. [PMID: 39902473 DOI: 10.1002/ps.8689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/16/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND RNA interference (RNAi) has been proposed as a promising strategy for sustainable and eco-friendly pest management. Nutrient and energy signals are vital for embryonic development and hatching in insects. A key player in cellular energy sensing is adenosine monophosphate (AMP)-activated protein kinase (AMPK), which functions in embryonic development and hatching, and remains poorly understood. RESULTS In this study, we identified the three subunits of the NlAMPK gene, NlAMPKα, NlAMPKβ, and NlAMPKγ, in the brown planthopper (BPH), Nilaparvata lugens. Quantitative real-time PCR analysis showed that all these three subunits were highly expressed in eggs and ovaries. RNAi of NlAMPKα, NlAMPKβ, and NlAMPKγ in newly emerged BPH females resulted in hatching failure of the eggs they laid. Transcriptomic analysis identified a significant down-regulation of a chitinase (NlChit) gene's transcription on the NlAMPK subunits' knockdown. Notably, NlChit knockdown led to up-regulation of the three NlAMPK subunits, and reduced hatchability and thicker serosal cuticle. CONCLUSION Our findings demonstrate that NlAMPK could serve as a potential RNAi target for BPH control, and its mechanism is probably by down-regulating the expression of NlChit. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Jin-Xian Zhu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Amr S Abou El-Ela
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ni Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Soomro Abid Ali
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Zhe-Yi Shi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Ying Zhou
- Zhejiang University, Hainan Institute, Sanya, China
| | | | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| |
Collapse
|
2
|
Shaked SA, Weil S, Manor R, Aflalo ED, Moscovitz S, Maman N, Maria R, Kruppke B, Hanke T, Eichler J, Ratzker B, Sokol M, Sagi A. Cuticular proteins (crusticuls) affect 3D chitin bundle nanostructure. NANOSCALE 2025. [PMID: 40405565 DOI: 10.1039/d5nr01455g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
The crustacean exoskeleton features a micrometric, three-dimensional chitin scaffold. The intricate organization of this structure makes it an ideal model for investigating scaffold proteins at the nanoscale. Periodic exoskeleton replacement during a rapid and punctual molt cycle involves proteins that govern exoskeleton formation. Relying on binary expression pattern analysis of a molt-related transcriptomic library generated from the cuticle-forming epithelium of the crayfish Cherax quadricarinatus, a family of crustacean cuticle structural proteins termed 'crusticuls' was discovered and shown to present an exoskeleton formation-related expression pattern. All nine crusticuls include a chitin-binding domain bordered by two acidic residue-rich regions, putative functional domains related to exoskeletal formation and biomineralization. Crusticuls knock-down via RNAi resulted in over 95% reduced relative expression in treated versus control crayfish, with phenotypic effects ranging from prolonged molt cycles to lethality. Crusticuls were largely absent from newly formed cuticles following knockdown, resulting in exoskeletal deformities in the three-dimensional organization of chitinous bundles at the micro- and nanometric scales. These structural alterations were phenotypically translated into changes in cuticular hardness and elasticity. The identification of crusticuls as being key for proper nanometric three-dimensional organization of cuticular chitinous scaffolds opens new avenues for synthetic scaffold bio-mimetic applications.
Collapse
Affiliation(s)
- Shai A Shaked
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Simy Weil
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Achva Academic College, Israel
| | - Sharon Moscovitz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Nitzan Maman
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hanke
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Barak Ratzker
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Israel
| | - Maxim Sokol
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
3
|
Huang YH, Escalona HE, Sun YF, Zhang PF, Du XY, Gong SR, Tang XF, Liang YS, Yang D, Chen PT, Yang HY, Chen ML, Hüttel B, Hlinka O, Wang X, Meusemann K, Ślipiński A, Zwick A, Waterhouse RM, Misof B, Niehuis O, Li HS, Pang H. Molecular evolution of dietary shifts in ladybird beetles (Coleoptera: Coccinellidae): from fungivory to carnivory and herbivory. BMC Biol 2025; 23:67. [PMID: 40022128 PMCID: PMC11871716 DOI: 10.1186/s12915-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Dietary shifts are major evolutionary steps that shape ecological niches and biodiversity. The beetle family Coccinellidae, commonly known as ladybirds, first transitioned from a fungivorous to an insectivorous and subsequently a plant diet. However, the molecular basis of this dietary diversification remained unexplored. RESULTS We investigated the molecular evolution of dietary shifts in ladybirds, focusing on the transitions from fungivory to carnivory (Coccinellidae) and from carnivory to herbivory (Epilachnini), by comparing 25 genomes and 62 transcriptomes of beetles. Our analysis shows that chemosensory gene families have undergone significant expansions at both nodes of diet change and were differentially expressed in feeding experiments, suggesting that they may be related to foraging. We found expansions of digestive and detoxifying gene families and losses of chitin-related digestive genes in the herbivorous ladybirds, and absence of most plant cell wall-degrading enzymes in the ladybirds dating from the transition to carnivory, likely indicating the effect of different digestion requirements on the gene repertoire. Immunity effector genes tend to emerge or have specific amino acid sequence compositions in carnivorous ladybirds and are downregulated under suboptimal dietary treatments, suggesting a potential function of these genes related to microbial symbionts in the sternorrhynchan prey. CONCLUSIONS Our study provides a comprehensive comparative genomic analysis to address evolution of chemosensory, digestive, detoxifying, and immune genes associated with dietary shifts in ladybirds. Ladybirds can be considered a ubiquitous example of dietary shifts in insects, and thus a promising model system for evolutionary and applied biology.
Collapse
Affiliation(s)
- Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hermes E Escalona
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Yi-Fei Sun
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Pei-Fang Zhang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xue-Yong Du
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Sen-Rui Gong
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xue-Fei Tang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuan-Sen Liang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dan Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Pei-Tao Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Huan-Ying Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mei-Lan Chen
- School of Environmental and Life Sciences, Nanning Normal University, Nanning, 530001, China
| | - Bruno Hüttel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ondrej Hlinka
- CSIRO Information, Management and Technology, Pullenvale, QLD, Australia
| | - Xingmin Wang
- College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Karen Meusemann
- Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, Bonn, 53113, Germany
| | - Adam Ślipiński
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Bernhard Misof
- Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, Bonn, 53113, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, Freiburg, 79104, Germany
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Luo SS, Chen XL, Wang AJ, Liu QY, Peng M, Yang CL, Zeng DG, Zhao YZ, Wang HL. Identification, functional analysis of chitin-binding proteins and the association of its single nucleotide polymorphisms with Vibrio parahaemolyticus resistance in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109966. [PMID: 39414097 DOI: 10.1016/j.fsi.2024.109966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Chitin-binding proteins (CBPs) play pivotal roles in numerous biological processes in arthropods, including growth, molting, reproduction, and immune defense. However, their function in the antibacterial immune defense of crustaceans remains relatively underexplored. In this study, twenty CBPs were identified and characterized in Penaeus vannamei. Expression profiling highlighted that the majority of CBPs were highly expressed in the intestine and hepatopancreas and responded to challenge by Vibrio parahaemolyticus. To explore the role of these CBPs in innate immunity, six CBPs (PvPrg4, PvKrtap16, PvPT-1a, PvPT-1b, PvExtensin and PvCP-AM1159) were selected for RNAi experiments. Silencing of only PvPrg4 and PvKrtap16 significantly decreased the cumulative mortality of V. parahaemolyticus-infected shrimp. Further studies demonstrated that inhibition of PvPrg4 and PvKrtap16 resulted in a marked upregulation of genes associated with the NF-κB and JAK-STAT signaling pathways, as well as antimicrobial peptides (AMPs), in both the intestine and hepatopancreas. These results collectively suggested that PvPrg4 and PvKrtap16 potentially promote V. parahaemolyticus invasion by negatively regulating the JAK-STAT and NF-κB pathways, thereby inhibiting the expression of AMPs. In addition, SNP analysis identified three SNPs in the exons of PvPrg4 that were significantly associated with tolerance to V. parahaemolyticus. Taken together, these findings are expected to assist in the molecular marker-assisted breeding of P. vannamei associated with anti-V. parahaemolyticus traits, as well as expand our understanding of CBP functions within the immune regulatory system of crustaceans.
Collapse
Affiliation(s)
- Shuang-Shuang Luo
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
| | - Xiu-Li Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquactic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Ai-Jin Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Yun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Chun-Ling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Di-Gang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yong-Zhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquactic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Khan MF, Parveen S, Sultana M, Zhu P, Xu Y, Safdar A, Shafique L. Evolution and Comparative Genomics of the Transforming Growth Factor-β-Related Proteins in Nile Tilapia. Mol Biotechnol 2024:10.1007/s12033-024-01263-x. [PMID: 39240458 DOI: 10.1007/s12033-024-01263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
The members of the transforming growth factor β (TGF-β) family of cell signaling polypeptides have garnered a great deal of interest due to its capacity from nematodes to mammals to regulate cell-based activities which control the growth of embryos and sustain tissue homeostasis. The current study designed a computational analysis of the TGF-β protein family for understanding these proteins at the molecular level. This study determined the genomic structure of TGF-β gene family in Nile tilapia for the first time. We chose 33 TGF-β genes for identification and divided them into two subgroups, TGF-like and BMP-like. Moreover, the subcellular localization of the Nile tilapia TGF-β proteins have showed that majority of the members of TGF-β proteins family are present into extracellular matrix and plasma except BMP6, BMP7, and INHAC. All TGF-β proteins were thermostable excluding BMP1. Each protein exhibited basic nature, excluding of BMP1, BMP2, BMP7, BMP10, GDF2, GDF8, GDF11, AMH, INHA, INHBB, and NODAL M. All proteins gave impression of being unstable depending on the instability index, having values exceeding 40 excluding BMP1 and BMP2. Each TGF-β protein was found to be hydrophobic with lowered values of GRAVY. Moreover, every single one of the discovered TGF-β genes had a consistent evolutionary pattern. The TGF-β gene family had eight segmental duplications, and the Ka/Ks ratio demonstrated that purifying selection had an impact on the duplicated gene pairs which have experienced selection pressure. This study highlights important functionality of TGF-β and depicts the demand for further investigation to better understand the role and mechanism of transforming growth factor β in fishes and other species.
Collapse
Affiliation(s)
- Muhammad Farhan Khan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, 535011, People's Republic of China
- Department of Chemistry, Gomal University, Dera Ismail Khan, 29050, Pakistan
| | - Shakeela Parveen
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Punjab, Pakistan
| | - Mehwish Sultana
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Punjab, Pakistan
| | - Peng Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, 535011, People's Republic of China
| | - Youhou Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, 535011, People's Republic of China
| | - Areeba Safdar
- Department of Zoology, Bahauddin Zakariya University, Multan, Pakistan
| | - Laiba Shafique
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, 535011, People's Republic of China.
| |
Collapse
|
6
|
Liu W, Zhao K, Zhou A, Wang X, Ge X, Qiao H, Sun X, Yan C, Wang Y. Genome-wide annotation and comparative analysis revealed conserved cuticular protein evolution among non-biting midges with varied environmental adaptability. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101248. [PMID: 38797005 DOI: 10.1016/j.cbd.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Chironomidae, non-biting midges, a diverse and abundant insect group in global aquatic ecosystems, represent an exceptional model for investigating genetic adaptability mechanisms in aquatic insects due to their extensive species diversity and resilience to various environmental conditions. The cuticle in insects acts as the primary defense against ecological pressures. Cuticular Proteins (CPs) determine cuticle characteristics, facilitating adaptation to diverse challenges. However, systematic annotation of CP genes has only been conducted for one Chironomidae species, Propsilocerus akamusi, by our team. In this study, we expanded this annotation by identifying CP genes in eight additional Chironomidae species, covering all Chironomidae species with available genome data. We identified a total of 889 CP genes, neatly categorized into nine CP families: 215 CPR RR1 genes, 272 CPR RR2 genes, 23 CPR RR3 genes, 21 CPF genes, 16 CPLCA genes, 19 CPLCG genes, 28 CPLCP genes, 77 CPAP genes, and 37 Tweedle genes. Subsequently, we conducted a comprehensive phylogenetic analysis of CPs within the Chironomidae family. This expanded annotation of CP genes across diverse Chironomidae species significantly contributes to our understanding of their remarkable adaptability.
Collapse
Affiliation(s)
- Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Kangzhu Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Anmo Zhou
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Xinyu Wang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Xinyu Ge
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Xiaoya Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China.
| | - Yiwen Wang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, 237016 Shanxi, China; School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China.
| |
Collapse
|
7
|
Fan J, Jiang S, Zhang T, Gao H, Chang BH, Qiao X, Han P. Sgabd-2 plays specific role in immune response against biopesticide Metarhizium anisopliae in Aphis citricola. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106003. [PMID: 39084799 DOI: 10.1016/j.pestbp.2024.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Metarhizium anisopliae is an effective biopesticide for controlling Aphis citricola, which has developed resistance to many chemical pesticides. However, the powerful immune system of A. citricola has limited the insecticidal efficacy of M. anisopliae. The co-evolution between insects and entomogenous fungi has led to emergence of new antifungal immune genes, which remain incompletely understood. In this study, an important immune gene Sgabd-2 was identified from A. citricola through transcriptome analysis. Sgabd-2 gene showed high expression in the 4th instar nymph and adult stages, and was mainly distributed in the abdominal region of A. citricola. The recombinant protein (rSgabd-2) exhibited no antifungal activity but demonstrated clear agglutination activity towards the conidia of M. anisopliae. RNA interference of Sgabd-2 by dsRNA feeding resulted in decreased phenoloxidase (PO) activity and weakened defense for A. citricola against M. anisopliae. Simultaneous silence of GNBP-1 and Sgabd-2 effectively reduced the immunity of A. citricola against M. anisopliae more than the individual RNAi of GNBP-1 or Sgabd-2. Furthermore, a genetically engineered M. anisopliae expressing double-stranded RNA (dsSgabd-2) targeting Sgabd-2 in A. citricola successfully suppressed the expression of Sgabd-2 and demonstrated increased virulence against A. citricola. Our findings elucidated Sgabd-2 as a critical new antifungal immune gene and proposed a genetic engineering strategy to enhance the insecticidal virulence of entomogenous fungi through RNAi-mediated inhibition of pest immune genes.
Collapse
Affiliation(s)
- Jiqiao Fan
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Shirong Jiang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Tao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Huiyan Gao
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Babar Hussain Chang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Xiongwu Qiao
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, China.
| | - Pengfei Han
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China.
| |
Collapse
|
8
|
Becchimanzi A, Cacace A, Parziale M, De Leva G, Iacopino S, Jesu G, Di Lelio I, Stillittano V, Caprio E, Pennacchio F. The salivary gland transcriptome of Varroa destructor reveals suitable targets for RNAi-based mite control. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39039817 DOI: 10.1111/imb.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The mite Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae) has a dramatic impact on beekeeping and is one of the main causes of honey bee colony losses. This ectoparasite feeds on honey bees' liquid tissues, through a wound created on the host integument, determining weight loss and a reduction of lifespan, as well as the transmission of viral pathogens. However, despite its importance, the mite feeding strategy and the host regulation role by the salivary secretions have been poorly explored. Here, we contribute to fill this gap by identifying the salivary components of V. destructor, to study their functional importance for mite feeding and survival. The differential expression analysis identified 30 salivary gland genes encoding putatively secreted proteins, among which only 15 were found to be functionally annotated. These latter include proteins with putative anti-bacterial, anti-fungal, cytolytic, digestive and immunosuppressive function. The three most highly transcribed genes, coding for a chitin-binding domain protein, a Kazal domain serine protease inhibitor and a papain-like cysteine protease were selected to study their functional importance by reverse genetics. Knockdown (90%-99%) by RNA interference (RNAi) of the transcript of a chitin-binding domain protein, likely interfering with the immune reaction to facilitate mite feeding, was associated with a 40%-50% decrease of mite survival. This work expands our knowledge of the host regulation and nutritional exploitation strategies adopted by ectoparasites of arthropods and allows the identification of potential targets for RNAi, paving the way towards the development of new strategies for Varroa mite control.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples 'Federico II', Naples, Italy
| | - Alfonso Cacace
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
| | - Martina Parziale
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
- Arterra Bioscience, Naples, Italy
| | - Giovanna De Leva
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
| | | | - Giovanni Jesu
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples 'Federico II', Naples, Italy
| | - Virgilio Stillittano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Rome, Italy
- School of Specialization in Food Science, University of Rome Tor Vergata, Rome, Italy
| | - Emilio Caprio
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
9
|
Otte KA, Fredericksen M, Fields P, Fröhlich T, Laforsch C, Ebert D. The cuticle proteome of a planktonic crustacean. Proteomics 2024; 24:e2300292. [PMID: 38676470 DOI: 10.1002/pmic.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
The cuticles of arthropods provide an interface between the organism and its environment. Thus, the cuticle's structure influences how the organism responds to and interacts with its surroundings. Here, we used label-free quantification proteomics to provide a proteome of the moulted cuticle of the aquatic crustacean Daphnia magna, which has long been a prominent subject of studies on ecology, evolution, and developmental biology. We detected a total of 278 high-confidence proteins. Using protein sequence domain and functional enrichment analyses, we identified chitin-binding structural proteins and chitin-modifying enzymes as the most abundant protein groups in the cuticle proteome. Structural cuticular protein families showed a similar distribution to those found in other arthropods and indicated proteins responsible for the soft and flexible structure of the Daphnia cuticle. Finally, cuticle protein genes were also clustered as tandem gene arrays in the D. magna genome. The cuticle proteome presented here will be a valuable resource to the Daphnia research community, informing genome annotations and investigations on diverse topics such as the genetic basis of interactions with predators and parasites.
Collapse
Affiliation(s)
- Kathrin A Otte
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Maridel Fredericksen
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Peter Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | | | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Wu N, Lin Q, Shao F, Chen L, Zhang H, Chen K, Wu J, Wang G, Wang H, Yang Q. Insect cuticle-inspired design of sustainably sourced composite bioplastics with enhanced strength, toughness and stretch-strengthening behavior. Carbohydr Polym 2024; 333:121970. [PMID: 38494224 DOI: 10.1016/j.carbpol.2024.121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 03/19/2024]
Abstract
Insect cuticles that are mainly made of chitin, chitosan and proteins provide insects with rigid, stretchable and robust skins to defend harsh external environment. The insect cuticle therefore provides inspiration for engineering biomaterials with outstanding mechanical properties but also sustainability and biocompatibility. We herein propose a design of high-performance and sustainable bioplastics via introducing CPAP3-A1, a major structural protein in insect cuticles, to specifically bind to chitosan. Simply mixing 10w/w% bioengineered CPAP3-A1 protein with chitosan enables the formation of plastics-like, sustainably sourced chitosan/CPAP3-A1 composites with significantly enhanced strength (∼90 MPa) and toughness (∼20 MJ m -3), outperforming previous chitosan-based composites and most synthetic petroleum-based plastics. Remarkably, these bioplastics exhibit a stretch-strengthening behavior similar to the training living muscles. Mechanistic investigation reveals that the introduction of CPAP3-A1 induce chitosan chains to assemble into a more coarsened fibrous network with increased crystallinity and reinforcement effect, but also enable energy dissipation via reversible chitosan-protein interactions. Further uniaxial stretch facilitates network re-orientation and increases chitosan crystallinity and mechanical anisotropy, thereby resulting in stretch-strengthening behavior. In general, this study provides an insect-cuticle inspired design of high-performance bioplastics that may serve as sustainable and bio-friendly materials for a wide range of engineering and biomedical application potentials.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qiaoxia Lin
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fei Shao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Haoyue Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Kaiwen Chen
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Huanan Wang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
11
|
Asano T. Multicopper oxidase-2 mediated cuticle formation: Its contribution to evolution and success of insects as terrestrial organisms. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104111. [PMID: 38508343 DOI: 10.1016/j.ibmb.2024.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The insect cuticle is a non-cellular matrix composed of polysaccharide chitins and proteins. The cuticle covers most of the body surface, including the trachea, foregut, and hindgut, and it is the body structure that separates the intraluminal environment from the external environment. The cuticle is essential to sustain their lives, both as a physical barrier to maintain homeostasis and as an exoskeleton that mechanically supports body shape and movement. Previously, we proposed a theory about the possibility that the cuticle-forming system contributes to the "evolution and success of insects." The main points of our theory are that 1) insects evolved an insect-specific system of cuticle formation and 2) the presence of this system may have provided insects with a competitive advantage in the early land ecosystems. The key to this theory is that insects utilize molecular oxygen abundant in the atmosphere, which differs from closely related crustaceans that form their cuticles with calcium ions. With newly obtained knowledge, this review revisits the significance of the insect-specific system for insects to adapt to terrestrial environments and also discusses the long-standing question in entomology as to why, despite their great success in terrestrial environments, they poorly adapt to marine environments.
Collapse
Affiliation(s)
- Tsunaki Asano
- Department of Biological Sciences, Tokyo Metropolitan, Minami-osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
12
|
Rabadiya D, Behr M. The biology of insect chitinases and their roles at chitinous cuticles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104071. [PMID: 38184175 DOI: 10.1016/j.ibmb.2024.104071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Chitin is one of the most prevalent biomaterials in the natural world. The chitin matrix formation and turnover involve several enzymes for chitin synthesis, maturation, and degradation. Sequencing of the Drosophila genome more than twenty years ago revealed that insect genomes contain a number of chitinases, but why insects need so many different chitinases was unclear. Here, we focus on insect GH18 family chitinases and discuss their participation in chitin matrix formation and degradation. We describe their variations in terms of temporal and spatial expression patterns, molecular function, and physiological consequences at chitinous cuticles. We further provide insight into the catalytic mechanisms by discussing chitinase protein domain structures, substrate binding, and enzymatic activities with respect to structural analysis of the enzymatic GH18 domain, substrate-binding cleft, and characteristic TIM-barrel structure.
Collapse
Affiliation(s)
- Dhyeykumar Rabadiya
- Cell & Developmental Biology, Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany
| | - Matthias Behr
- Cell & Developmental Biology, Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany.
| |
Collapse
|
13
|
Li Z, Ouyang L, Wu Q, Peng Q, Zhang B, Qian W, Liu B, Wan F. Cuticular proteins in codling moth (Cydia pomonella) respond to insecticide and temperature stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115852. [PMID: 38141334 DOI: 10.1016/j.ecoenv.2023.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
The insect cuticle consists of chitin and cuticular proteins (CPs), which stabilize the body shape and provide an effective physical barrier against the external environment. They are also potential target sites for developing environmentally friendly insect management through the utilization of physiology-based methods. The codling moth, Cydia pomonella, is a pest afflicting fruit orchards worldwide. This study used a comparative genomic approach, whole-genome resequencing, and transcriptome data to understand the role that CPs played in the environmental adaptation of the codling moth. A total of 182 putative CPs were identified in the codling moth genome, which were classified into 12 CP families. 119 CPR genes, including 54 RR-1, 60 RR-2, and 5 RR-3 genes were identified and accounted for 65.4% of the total CPs. Eight and seven gene clusters are formed in RR1 and RR2 subfamily and the ancestor-descendant relationship was explained. Five CPAP genes were highly expressed during the egg stage and exposed to high temperature, which indicated their potential role in aiding codling moth eggs in acclimating to varying external heat conditions. Moreover, six CPs belonging to the CPR and CPLCP families were identified in association with insecticide resistance by population resequencing. Their expression levels increased after exposure to insecticides, suggesting they might be involved in codling moth resistance to the insecticides azinphos-methyl or deltamethrin. Our results provide insight into the evolution of codling moth CPs and their association with high temperature adaptation and insecticide resistance, and provide an additional information required for further analysis of CPs in environmental adaptation.
Collapse
Affiliation(s)
- Zaiyuan Li
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lan Ouyang
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qi Peng
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bin Zhang
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Bo Liu
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Fanghao Wan
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
14
|
Ibrahim SP, Dias RO, Ferreira C, Silva CP, Terra WR. Histochemistry and transcriptomics of mucins and peritrophic membrane (PM) proteins along the midgut of a beetle with incomplete PM and their complementary function. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104027. [PMID: 37832798 DOI: 10.1016/j.ibmb.2023.104027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The midgut of Zabrotes subfasciatus (Coleoptera) and other insects may have regions lacking a peritrophic membrane (matrix, PM) and covered with a jelly-like material known as peritrophic gel. This work was undertaken to test the hypothesis that the peritrophic gel is a vertebrate-like mucus. By histochemistry we identified mucins along the whole midgut, which contrasts with the known occurrence of PM only at the posterior midgut. We also analyzed the expression of the genes coding for mucus-forming mucins (Mf-mucins), peritrophins, chitin synthases and chitin deacetylases along the midgut and carcass (insect without midgut) by RNA-seq. Mf-mucins were identified as proteins with high O-glycosylation and multiple tandem repeats of Pro/Thr/Ser residues. Peritrophins were separated into PM proteins, cuticular proteins analogous to peritrophins (CPAPs) and ubiquitous-chitin-binding domain-(CBD)-containing proteins (UCBPs). PM proteins have at least 3, CPAP one or 3, and UCBPs have a varied number of CBDs. PM proteins are more expressed at midgut, CPAP at the carcass, and UCBP at both. The results showed that most PM proteins are mainly expressed at the posterior midgut, together with midgut chitin synthase and chitin deacetylase, and in agreement with the presence of PM only at the posterior midgut by visual inspection. The excretion of most midgut chitinase is avoided, suggesting that the shortened PM is functional. Mf-mucins are expressed along the whole midgut, probably forming the extracellular mucus layer observed by histochemistry. Thus, the lack of PM at anterior and middle midgut causes the exposure of a mucus, which may correspond to the previously described peritrophic gel. The putative functional interplay of mucus and PM is discussed. The major role of mucus is proposed to be tissue protection and of PM to enhancing digestive efficiency by allowing enzyme recycling.
Collapse
Affiliation(s)
- Samira P Ibrahim
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis, 88040-900, Brazil
| | - Renata O Dias
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade, Federal de Goiás, Av. Esperança s/n, 74690-900, Goiânia, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São, Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil
| | - Carlos P Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis, 88040-900, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São, Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São, Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| |
Collapse
|
15
|
Tang PA, Hu HY, Du WW, Jian FJ, Chen EH. Identification of cuticular protein genes and analysis of their roles in phosphine resistance of the rusty grain beetle Cryptolestes ferrugineus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105491. [PMID: 37532352 DOI: 10.1016/j.pestbp.2023.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 08/04/2023]
Abstract
The rusty grain beetle, Cryptolestes ferrugineus (Stephens) is one of the most economically important stored grain pests, and it has evolved the high resistance to phosphine. Cuticular proteins (CPs) are the major structural components of insect cuticle, and previous studies have confirmed that CPs were involved in insecticide resistance. However, the CPs of C. ferrugineus are still poorly characterized, and thus we conducted transcriptome-wide identification of CP genes and analyze their possible relationships with phosphine resistance in this pest. In this study, a total of 122 putative CPs were annotated in the C. ferrugineus transcriptome data by blasting with the known CPs of Tribolium castaneum. The analysis of conserved motifs revealed these CPs of C. ferrugineus belonging to 9 different families, including 87 CPR, 13 CPAP1, 7 CPAP3, 3 Tweedle, 1 CPLCA, 1 CPLCG, 5 CPLCP, 2 CPCFC, and 3 CPFL proteins. The further phylogenetic analysis showed the different evolutionary patterns of CPs. Namely, we found some CPs (CPR family) formed species-specific protein clusters, indicating these CPs might occur independently among insect taxa, and while some other CPs (CPAP1 and CPAP3 family) shared a closer correlation based on the architecture of protein domains. Subsequently, the previous RNA-seq data were applied to establish the expression profiles of CPs in a phosphine susceptible and resistant populations of C. ferrugineus, and a large amount of CP genes were found to be over-expressed in resistant insects. Lastly, an up-regulated CP gene (CPR family) was selected for the further functional analysis, and after this gene was silenced via RNA interference (RNAi), the sensitivity to phosphine was significantly enhanced in C. ferrugineus. In conclusion, the present results provided us an overview of C. ferrugineus CPs, and which suggested that the CPs might play the critical roles in phosphine resistance.
Collapse
Affiliation(s)
- Pei-An Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| | - Huai-Yue Hu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Wen-Wei Du
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Fu-Ji Jian
- Department of Biosystems Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
16
|
Carroll E, Kunte N, McGraw E, Gautam S, Range R, Noveron-Nunez JA, Held DW, Avila LA. Gene silencing in adult Popillia japonica through feeding of double-stranded RNA (dsRNA) complexed with branched amphiphilic peptide capsules (BAPCs). FRONTIERS IN INSECT SCIENCE 2023; 3:1151789. [PMID: 38469482 PMCID: PMC10926504 DOI: 10.3389/finsc.2023.1151789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 03/13/2024]
Abstract
Gene silencing by feeding double-stranded (dsRNA) holds promise as a novel pest management strategy. Nonetheless, degradation of dsRNA in the environment and within the insect gut, as well as inefficient systemic delivery are major limitations to applying this strategy. Branched amphiphilic peptide capsules (BAPCs) complexed with dsRNA have been used to successfully target genes outside and inside the gut epithelium upon ingestion. This suggests that BAPCs can protect dsRNA from degradation in the gut environment and successfully shuttle it across gut epithelium. In this study, our objectives were to 1) Determine whether feeding on BAPC-dsRNA complexes targeting a putative peritrophin gene of P. japonica would result in the suppression of gut peritrophin synthesis, and 2) gain insight into the cellular uptake mechanisms and transport of BAPC-dsRNA complexes across the larval midgut of P. japonica. Our results suggest that BAPC-dsRNA complexes are readily taken up by the midgut epithelium, and treatment of the tissue with endocytosis inhibitors effectively suppresses intracellular transport. Further, assessment of gene expression in BAPC- peritrophin dsRNA fed beetles demonstrated significant downregulation in mRNA levels relative to control and/or dsRNA alone. Our results demonstrated that BAPCs increase the efficacy of gene knockdown relative to dsRNA alone in P. japonica adults. To our knowledge, this is the first report on nanoparticle-mediated dsRNA delivery through feeding in P. japonica.
Collapse
Affiliation(s)
- Elijah Carroll
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Nitish Kunte
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Erin McGraw
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Sujan Gautam
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Ryan Range
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | | | - David W. Held
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
17
|
He C, Liang J, Yang J, Xue H, Huang M, Fu B, Wei X, Liu S, Du T, Ji Y, Yin C, Gong P, Hu J, Du H, Zhang R, Xie W, Wang S, Wu Q, Zhou X, Yang X, Zhang Y. Over-expression of CP9 and CP83 increases whitefly cell cuticle thickness leading to imidacloprid resistance. Int J Biol Macromol 2023; 233:123647. [PMID: 36780959 DOI: 10.1016/j.ijbiomac.2023.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023]
Abstract
Cuticular proteins (CPs) play an important role in protecting insects from adverse environmental conditions, like neonicotinoid insecticides, which are heavily used for numerous pests and caused environmental problems and public health concerns worldwide. However, the relationship between CPs and insecticides resistance in Bemisia tabaci, a serious and developed high insecticide resistance, is lacking. In this study, 125 CPs genes were identified in B. tabaci. Further phylogenetic tree showed the RR-2-type genes formed large gene groups in B. tabaci. Transcriptional expression levels of CPs genes at different developmental stages revealed that some CPs genes may play a specific role in insect development. The TEM results indicated that the cuticle thickness of susceptible strain was thinner than imidacloprid-resistance strain. Furthermore, 16 CPs genes (5 in RR-1 subfamily, 7 in RR-2 subfamily, 3 in CPAP3 subfamily and 1 in CPCFC subfamily) were activated in response to imidacloprid. And RNAi results indicated that CP9 and CP83 involved in imidacloprid resistance. In conclusion, this study was the first time to establish a basic information framework and evolutionary relationship between CPs and imidacloprid resistance in B. tabaci, which provides a basis for proposing integrated pest management strategies.
Collapse
Affiliation(s)
- Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - JinYu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546-0091, USA.
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
18
|
Liu W, Chang T, Zhao K, Sun X, Qiao H, Yan C, Wang Y. Genome-wide annotation of cuticular protein genes in non-biting midge Propsilocerus akamusi and transcriptome analysis of their response to heavy metal pollution. Int J Biol Macromol 2022; 223:555-566. [PMID: 36356871 DOI: 10.1016/j.ijbiomac.2022.10.279] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
The insect cuticle is a sophisticated chitin-protein extracellular structure for mutable functions. The cuticles varied their structures and properties in different species, and the same species but in different regions or at different stages, to fill the requirements of different functions. The alteration of cuticle structures may also be induced due to challenges by some environmental crises, such as pollution exposures. The physical properties of the cuticle were determined by the cuticle proteins (CPs) they contain. The cuticle proteins are large protein groups in all insects, which are commonly divided into different families according to their conserved protein sequence motifs. Although Chironomidae is an abundant and universal insect in global aquatic ecosystems and a popular model for aquatic toxicology, no systematic annotation of CPs was done for any species in Chironomidae before. In this work, we annotated the CP genes of Propsilocerus akamusi, the most abundant Chironomidae species in Asia. A total of 160 CP genes were identified, and 97 of them could be well classified into eight CP families: 76 CPR genes can be subdivided into three groups (further divided into three subgroups: 36 RR1 genes, 37 RR2 genes, and 3 RR3 genes), 2 CPF genes, 3 CPLCA genes, 1 CPLCG gene, 8 CPAP genes, and 3 Tweedle genes. Additionally, we analyzed the response of P. akamusi CP genes at expression level to Cu exposure, which is related to the high heavy metal tolerance and the earlier onset of pupariation in heavy metal polluted water.
Collapse
Affiliation(s)
- Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Tong Chang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Kangzhu Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Xiaoya Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China.
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China.
| |
Collapse
|
19
|
Tan D, Hu H, Tong X, Han M, Gai T, Lou J, Yan Z, Xiong G, Lu C, Dai F. Mutation of a lepidopteran-specific PMP-like protein, BmLSPMP-like, induces a stick body shape in silkworm, Bombyx mori. PEST MANAGEMENT SCIENCE 2022; 78:5334-5346. [PMID: 36039742 DOI: 10.1002/ps.7156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lepidoptera is one of the largest orders of insects, some of which are major pests of crops and forests. The cuticles of lepidopteran pests play important roles in defense against insecticides and pathogens, and are indispensable for constructing and maintaining extracellular structures and locomotion during their life cycle. Lepidopteran-specific cuticular proteins could be potential targets for lepidopteran pest control. But information on this is limited. Our research aimed to screen the lepidopteran-specific cuticular proteins using the lepidopteran model, the silkworm, to explore the molecular mechanism underlying the involvement of cuticular proteins in body shape construction. RESULTS Positional cloning showed that BmLSPMP-like, a gene encoding a lepidopteran-specific peritrophic matrix protein (PMP) like protein which includes a peritrophin A-type chitin-binding domain (CBM_14), is responsible for the stick (sk) mutation. BmLSPMP-like is an evolutionarily conserved gene that exhibits synteny in Lepidoptera and underwent purifying selection during evolution. Expression profiles demonstrated that BmLSPMP-like is expressed in chitin-forming tissues, testis and ovary, and accumulates in the cuticle. BmLSPMP-like knockout, generated with CRISPR/Cas9, resulted in a stick-like larval body shape phenotype. Over-expression of BmLSPMP-like in the sk mutant rescued its abnormal body shape. The results showed that BmLSPMP-like may be involved in assemblage in the larval cuticle. CONCLUSION Our results suggested that the dysfunction of BmLSPMP-like may result in a stick body shape phenotype in silkworm, through the regulation of the arrangement of the chitinous laminae and cuticle thickness. Our study provides new evidence of the effects of LSPMP-likes on lepidopteran body shape formation, metamorphosis and mortality, which could be an eco-friendly target for lepidopteran pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Tingting Gai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jinghou Lou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhengwen Yan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Gao Xiong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Peritrophin-like Genes Are Associated with Delousing Drug Response and Sensitivity in the Sea Louse Caligus rogercresseyi. Int J Mol Sci 2022; 23:ijms232113341. [DOI: 10.3390/ijms232113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Caligus rogercresseyi is the main ectoparasite that affects the salmon industry in Chile. The mechanisms used by the parasite to support its life strategy are of great interest for developing control strategies. Due to the critical role of insect peritrophins in host–parasite interactions and response to pest control drugs, this study aimed to identify and characterize the peritrophin-like genes present in C. rogercresseyi. Moreover, the expression of peritrophin-like genes was evaluated on parasites exposed to delousing drugs such as pyrethroids and azamethiphos. Peritrophin genes were identified by homology analysis among the sea louse transcriptome database and arthropods peritrophin-protein database obtained from GenBank and UniProt. Moreover, the gene loci in the parasite genome were located. Furthermore, peritrophin gene expression levels were evaluated by RNA-Seq analysis in sea louse developmental stages and sea lice exposed to delousing drugs deltamethrin, cypermethrin, and azamethiphos. Seven putative peritrophin-like genes were identified in C. rogercresseyi with high homology with other crustacean peritrophins. Differences in the presence of signal peptides, the number of chitin-binding domains, and the position of conserved cysteines were found. In addition, seven peritrophin-like gene sequences were identified in the C. rogercresseyi genome. Gene expression analysis revealed a stage-dependent expression profile. Notably, differential regulation of peritrophin genes in resistant and susceptible populations to delousing drugs was found. These data are the first report and characterization of peritrophin genes in the sea louse C. rogercresseyi, representing valuable knowledge to understand sea louse biology. Moreover, this study provides evidence for a deeper understanding of the molecular basis of C. rogercresseyi response to delousing drugs.
Collapse
|
21
|
Huang Y, Li L, Rong YS. JiangShi(僵尸): a widely distributed Mucin-like protein essential for Drosophila development. G3 GENES|GENOMES|GENETICS 2022; 12:6589892. [PMID: 35595239 PMCID: PMC9339309 DOI: 10.1093/g3journal/jkac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Epithelia exposed to elements of the environment are protected by a mucus barrier in mammals. This barrier also serves to lubricate during organ movements and to mediate substance exchanges between the environmental milieu and internal organs. A major component of the mucus barrier is a class of glycosylated proteins called Mucin. Mucin and mucin-related proteins are widely present in the animal kingdom. Mucin mis-regulation has been reported in many diseases such as cancers and ones involving the digestive and respiratory tracts. Although the biophysical properties of isolated Mucins have been extensively studied, in vivo models remain scarce for the study of their functions and regulations. Here, we characterize the Mucin-like JiangShi protein and its mutations in the fruit fly Drosophila. JiangShi is an extracellular glycoprotein with domain features reminiscent of mammalian nonmembranous Mucins, and one of the most widely distributed Mucin-like proteins studied in Drosophila. Both loss and over-production of JiangShi lead to terminal defects in adult structures and organismal death. Although the physiological function of JiangShi remains poorly defined, we present a genetically tractable model system for the in vivo studies of Mucin-like molecules.
Collapse
Affiliation(s)
- Yueping Huang
- School of Life Sciences, Sun Yat-sen University , Guangzhou 510275, China
- Hengyang College of Medicine, University of South China , Hengyang 421009, China
| | - LingLing Li
- School of Life Sciences, Sun Yat-sen University , Guangzhou 510275, China
| | - Yikang S Rong
- Hengyang College of Medicine, University of South China , Hengyang 421009, China
| |
Collapse
|
22
|
Chen YL, Kumar R, Liu CH, Wang HC. Litopenaeus vannamei peritrophin interacts with WSSV and AHPND-causing V. parahaemolyticus to regulate disease pathogenesis. FISH & SHELLFISH IMMUNOLOGY 2022; 126:271-282. [PMID: 35609762 DOI: 10.1016/j.fsi.2022.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Peritrophins are peritrophic membrane (PM) proteins that can interact with chitin fibers via chitin-binding domains. Peritrophins have essential roles in providing porosity and strength to the PM that lines the shrimp midgut. Acute hepatopancreatic necrosis disease (AHPND), caused by strains of V. parahaemolyticus, is known to initially colonize the shrimp stomach and simultaneously disrupt its structural barriers (e.g., cuticle or epithelial tissues) to reach the hepatopancreas. Although stomach and hepatopancreas were identified as target tissues involved in AHPND pathogenesis, our results indicated that peritrophin in peritrophic membrane has a crucial role in determining not only colonization of AHPND-causing bacteria but also their tissue distribution. As the interaction between LvPeritrophin (LvPT) and WSSV (white spot syndrome virus) is not well understood, we noted that LvPT expression was upregulated in shrimp stomach challenged with either WSSV or AHPND. In an in vitro pathogen binding assay, there was strong binding of recombinant LvPT WSSV and AHPND-causing V. parahaemolyticus, and various bacteria. Furthermore, dsRNA-mediated LvPT silencing inhibited WSSV gene expression and viral genome replication. However, downregulation of LvPT gene expression increased copies of AHPND-causing bacteria in shrimp digestive tract, and facilitated bacterial colonization in stomach. In conclusion, we speculated that LvPT might regulate bacterial colonization during AHPND, whereas in WSSV infection, LvPT silencing favored the host. Although recombinant LvPT had strong binding with WSSV, the precise role of LvPT in WSSV infection needs further investigation. These findings increased our understanding of host-pathogen interactions in AHPND and WSSV infection that can be applied in shrimp aquaculture for developing effective antibacterial and antiviral strategies.
Collapse
Affiliation(s)
- Yi-Lun Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
23
|
Yu RR, Zhang R, Liu WM, Zhao XM, Zhu KY, Moussian B, Zhang JZ. The DOMON domain protein LmKnk contributes to correct chitin content, pore canal formation and lipid deposition in the cuticle of Locusta migratoria during moulting. INSECT MOLECULAR BIOLOGY 2022; 31:127-138. [PMID: 34738680 DOI: 10.1111/imb.12745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Insects prevent uncontrolled penetration of water and xenobiotics by producing an impermeable cuticle. The major component of the cuticle is chitin that adopts a crystalline structure thereby contributing to cuticle stability. Our understanding of the contribution of chitin to the cuticle barrier function is limited. Here, we studied the role of the DOMON domain protein Knickkopf (LmKnk) that is involved in chitin organization and cuticle permeability in the migratory locust Locusta migratoria. We show that LmKnk localizes to the chitin layer in the newly produced cuticle. Injection of double-stranded RNA targeting LmKnk (dsLmKnk) in locust nymphs caused failure of moulting to the next stage. Histological experiments revealed that apolysis, i.e., the detachment of the old cuticle from the body surface, was normal; however, the newly synthesized cuticle was thinner than the cuticle of the control insects. Indeed, chitin content dropped after suppression of LmKnk expression. As seen by transmission electron microscopy, crystalline chitin organization was lost in dsLmKnk-treated insects. In addition, the structure of pore canals, which are lipid transporting routes in the cuticle, was abnormal. Consistently, their content was reduced and, probably by consequence, lipid deposition on the cuticle was decreased after injection of dsLmKnk. Suppression of LmKnk transcript levels rendered L. migratoria more susceptible to each of four selected insecticides including malathion, chlorpyrifos, carbaryl and deltamethrin. Overall, our data show that LmKnk is needed for correct chitin amounts and organization, and their changes ultimately affect cuticular permeability in L. migratoria.
Collapse
Affiliation(s)
- R R Yu
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Department of Biology, Taiyuan Normal University, Jinzhong, China
| | - R Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- College of Life Science, Datong University, Datong, China
| | - W M Liu
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| | - X M Zhao
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| | - K Y Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - B Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, Nice, France
| | - J Z Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
24
|
Improving Polysaccharide-Based Chitin/Chitosan-Aerogel Materials by Learning from Genetics and Molecular Biology. MATERIALS 2022; 15:ma15031041. [PMID: 35160985 PMCID: PMC8839503 DOI: 10.3390/ma15031041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/26/2022]
Abstract
Improved wound healing of burnt skin and skin lesions, as well as medical implants and replacement products, requires the support of synthetical matrices. Yet, producing synthetic biocompatible matrices that exhibit specialized flexibility, stability, and biodegradability is challenging. Synthetic chitin/chitosan matrices may provide the desired advantages for producing specialized grafts but must be modified to improve their properties. Synthetic chitin/chitosan hydrogel and aerogel techniques provide the advantages for improvement with a bioinspired view adapted from the natural molecular toolbox. To this end, animal genetics provide deep knowledge into which molecular key factors decisively influence the properties of natural chitin matrices. The genetically identified proteins and enzymes control chitin matrix assembly, architecture, and degradation. Combining synthetic chitin matrices with critical biological factors may point to the future direction with engineering materials of specific properties for biomedical applications such as burned skin or skin blistering and extensive lesions due to genetic diseases.
Collapse
|
25
|
Parisot N, Vargas-Chávez C, Goubert C, Baa-Puyoulet P, Balmand S, Beranger L, Blanc C, Bonnamour A, Boulesteix M, Burlet N, Calevro F, Callaerts P, Chancy T, Charles H, Colella S, Da Silva Barbosa A, Dell'Aglio E, Di Genova A, Febvay G, Gabaldón T, Galvão Ferrarini M, Gerber A, Gillet B, Hubley R, Hughes S, Jacquin-Joly E, Maire J, Marcet-Houben M, Masson F, Meslin C, Montagné N, Moya A, Ribeiro de Vasconcelos AT, Richard G, Rosen J, Sagot MF, Smit AFA, Storer JM, Vincent-Monegat C, Vallier A, Vigneron A, Zaidman-Rémy A, Zamoum W, Vieira C, Rebollo R, Latorre A, Heddi A. The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biol 2021; 19:241. [PMID: 34749730 PMCID: PMC8576890 DOI: 10.1186/s12915-021-01158-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.
Collapse
Affiliation(s)
- Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Carlos Vargas-Chávez
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Present Address: Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Clément Goubert
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, New York, 14853, USA
- Present Address: Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Séverine Balmand
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Louis Beranger
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Caroline Blanc
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aymeric Bonnamour
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Matthieu Boulesteix
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, University of Leuven, B-3000, Leuven, Belgium
| | - Théo Chancy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Hubert Charles
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | - Stefano Colella
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, INRAE, SupAgro, Univ Montpellier, Montpellier, France
| | - André Da Silva Barbosa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Alex Di Genova
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Gérard Febvay
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Toni Gabaldón
- Life Sciences, Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Mechanisms of Disease, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institut Catalan de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Alexandra Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Justin Maire
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Florent Masson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain
| | | | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653, Le Rheu, France
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | | | | | | | - Agnès Vallier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aurélien Vigneron
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Waël Zamoum
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France.
- ERABLE European Team, INRIA, Rhône-Alpes, France.
| | - Rita Rebollo
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain.
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| |
Collapse
|
26
|
Hou QL, Chen EH, Dou W, Wang JJ. Knockdown of specific cuticular proteins analogous to peritrophin 3 genes disrupt larval and ovarian development in Bactrocera dorsalis (Diptera: Tephritidae). INSECT SCIENCE 2021; 28:1326-1337. [PMID: 32856386 DOI: 10.1111/1744-7917.12869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/12/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Cuticular proteins (CPs) are critical components of the insect cuticle and play important roles in maintaining normal insect development and defense against various environmental stresses. The oriental fruit fly (Bactrocera dorsalis) is one of the most destructive pests worldwide, and its eight CPs analogous to peritrophin 3 (BdCPAP3) family genes have been identified in our previous study. In the present study, we further explored the possible roles of CPAP3 genes in B. dorsalis development. Each sequence of BdCPAP3 genes contained three conserved ChtBD2 (chitin-binding) domains. Spatial and temporal expression patterns revealed that the four BdCPAP3 genes (BdCPAP3-A1, B, E, and E2) might play important roles in larval pupariation of B. dorsalis. Moreover, treatment with a juvenile hormone analog (methoprene) significantly restricted expression of these four CPAP3 genes, whereas treatment with 20-hydroxy-ecdysone induced expression. The RNA interference (RNAi) results revealed that down-regulated CPAP3 genes led to significant delay of pupariation, and injection of dsBdCPAP3-E into 5-d-old B. dorsalis larvae caused approximately 40% mortality. Interestingly, we also confirmed that BdCPAP3-D2 was involved in B. dorsalis ovarian development. This study showed that some specific CPAP3 genes had crucial roles in B. dorsalis development, and these CP genes could be used as potential targets to control this pest via RNAi.
Collapse
Affiliation(s)
- Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| |
Collapse
|
27
|
Hou Y, Yang L, Xu S, Zhang Y, Cheng Y, Li Y, Gong J, Xia Q. Trypsin-type serine protease p37k hydrolyzes CPAP3-type cuticle proteins in the molting fluid of the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 137:103610. [PMID: 34182106 DOI: 10.1016/j.ibmb.2021.103610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Cuticular proteins analogous to peritrophin 3 (CPAP3)-type cuticle proteins constitute a family of proteins with three chitin-binding domains (CBDs) that play an important role in cuticle formation by associating with chitin. In our previous study, we identified CPAP3-type cuticle proteins in the silkworm genome, of which we characterized CPAP3-A2 (BmCBP1), a protein highly expressed in the epidermis. In this study, to elucidate the digestion mechanism of CPAP3-type cuticle proteins, we incubated CPAP3-A2 with molting fluid in vitro and found that its hydrolysis, which was inhibited by serine and cysteine protease inhibitors, produced two major bands with a molecular weight of approximately 22 kD and 11 kD. A trypsin-type serine protease, p37k, was presumed to be responsible for hydrolyzing CPAP3-A2 based on liquid chromatography-tandem mass spectrometry analysis of naturally purified molting fluid. To verify this, p37k was subsequently expressed in Sf9 cells using the Bac-to-Bac baculovirus expression system. In its active form, the recombinant protease could successfully hydrolyze CPAP3-A2. Finally, we analyzed the CPAP3-A2 molting fluid digestion site. When arginine 169 of CPAP3-A2 was mutated to alanine, a weaker hydrolysis of mutant CPAP3-A2 was observed compared to that of normal CPAP3-A2. Collectively, we identified a trypsin-type serine protease that is involved in the degradation of CPAP3-type cuticle proteins, including CPAP3-A2, suggesting that this protease plays an important role during molting in Bombyx mori. These findings provide the basis for further elucidation of the mechanisms underlying insect molting and metamorphosis.
Collapse
Affiliation(s)
- Yong Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Lingzhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Shuping Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yuhao Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yuejing Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Jing Gong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
28
|
Chen EH, Hou QL. Identification and expression analysis of cuticular protein genes in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104943. [PMID: 34446209 DOI: 10.1016/j.pestbp.2021.104943] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Structural cuticular proteins (CPs) are major components of the insect cuticle, and they play critical roles in insect development and insecticide resistance. Here, a total of 196 CP genes were successfully annotated in the Plutella xylostella genome. On the basis of motif analysis, these CPs were classified into 10 different families, including 122 CPR, 12 CPAP1, 8 CPAP3, 9 CPLCP, 2 Tweedle, 1 CPF, 1 CPFL, 1 CPCFC, 17 CPG and 2 18 aa proteins, and the remaining 21 unclassified CPs were classed as cuticular proteins hypothetical (CPH). A phylogenetic analysis of CPs from different insects revealed species-specific clades of RR-1 and RR-2 genes, suggesting that CP gene duplication might occur independently among insect taxa, while we also found that some other CPs (such as CPAP1 and CPAP3) had a closer relationship based on their conserved domain architecture. Using available RNAseq libraries, the expression profiles of the CPs were analyzed over the four developmental stages of the insect (i.e., egg, larva, pupa, and adult), revealing stage-specific expression patterns for the CPs. In a chlorpyrifos resistant strain, 18 CP genes were found to be more than two-fold upregulated compared to the susceptible control strain, and qRT-PCR analysis showed that these CP genes were overexpressed after exposure to chlorpyrifos, suggesting a potential role in the molecular mechanism of insecticide resistance in P. xylostella. This study provides the tools and molecular basis to study the role of CPs in the post-embryonal development and the mechanisms of insecticide resistance of P. xylostella.
Collapse
Affiliation(s)
- Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Qiu-Li Hou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
29
|
Fuzita FJ, Palmisano G, Pimenta DC, Terra WR, Ferreira C. A proteomic approach to identify digestive enzymes, their exocytic and microapocrine secretory routes and their compartmentalization in the midgut of Spodoptera frugiperda. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110670. [PMID: 34438074 DOI: 10.1016/j.cbpb.2021.110670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
A proteomic approach was used to identify the digestive enzymes secreted by exocytosis and by microapocrine vesicles and enzyme midgut compartmentalization in Spodoptera frugiperda larvae. For this, proteomic analyses were performed in isolated midgut enterocyte microvillar membrane, in a fraction enriched in microapocrine vesicles (separated in soluble and membrane fractions), in the washings of the peritrophic membrane to isolate its loosely- and tightly-bound proteins, and in the peritrophic membrane contents. PM washings correspond to proteins extracted from the mucus layer surrounding PM. Serine endopeptidases (trypsins, chymotrypsins and serine endopeptidase homologs that have substitutions in the catalytic residues) and lipases are mainly secreted by exocytosis. Aminopeptidases are mainly microvillar enzymes and some are secreted membrane-bound to microapocrine vesicles, whereas carboxypeptidase isoforms follow different secretory routes. The results also showed that most polymer hydrolases (such as amylase and endopeptidases) are not retained in the ectoperitrophic fluid (found in PM washings but absent from PM contents). On the contrary, most enzymes involved in intermediate digestion (exemplified by carboxypeptidase and aminopeptidase) do not pass through the peritrophic membrane. Finally, the data revealed that the protein composition of PM includes peritrophins classified as peritrophic membrane proteins, PMP, and chitin deacetylase.
Collapse
Affiliation(s)
- Felipe J Fuzita
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Daniel C Pimenta
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Clélia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
30
|
Huang HJ, Resch-Marat Y, Casset A, Weghofer M, Zieglmayer P, Zieglmayer R, Lemell P, Horak F, Chen KW, Potapova E, Matricardi PM, Pauli G, Grote M, Valenta R, Vrtala S. IgE recognition of the house dust mite allergen Der p 37 is associated with asthma. J Allergy Clin Immunol 2021; 149:1031-1043. [PMID: 34419535 DOI: 10.1016/j.jaci.2021.07.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND House dust mite (HDM) allergens are major elicitors of allergic reactions worldwide. OBJECTIVE Identification, characterization, and evaluation of diagnostic utility of a new important HDM allergen was performed. METHODS A cDNA coding for a new Dermatophagoides pteronyssinus (Dp) allergen, Der p 37, was isolated from a Dp expression library with allergic patients' IgE antibodies. Recombinant Der p 37 (rDer p 37) expressed in Escherichia coli was purified, then characterized by mass spectrometry, circular dichroism, and IgE reactivity by ImmunoCAP ISAC technology with sera from 111 clinically defined HDM-allergic patients. The allergenic activity of rDer p 37 was studied by basophil activation and CD4+ T-cell responses by carboxyfluorescein diacetate succinimidyl ester dilution assays. Specific antibodies raised against rDer p 37 were used for the ultrastructural localization of Der p 37 in mites by immunogold transmission electron microscopy. RESULTS Der p 37, a 26 kDa allergen with homology to chitin-binding proteins, is immunologically distinct from Der p 15, 18, and 23. It is located in the peritrophic membrane of fecal pellets. Der p 37 reacted with IgE antibodies from a third of HDM-allergic patients and induced specific basophil- and CD4+ T-cell activation. Der p 37 IgE-positive patients had significantly higher IgE levels to major HDM allergens, reacted with more HDM allergens, and had a higher risk (odds ratio = 3.1) of asthma compared to Der p 37-negative patients. CONCLUSIONS Der p 37, a new Dp allergen recognized by a third of HDM-allergic patients, may serve as a surrogate marker for severe HDM sensitization and asthma.
Collapse
Affiliation(s)
- Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yvonne Resch-Marat
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anne Casset
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margit Weghofer
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Zieglmayer
- Vienna Challenge Chamber, Vienna, Austria; Karl Landsteiner University, Krems, Austria
| | | | | | | | - Kuan-Wei Chen
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabrielle Pauli
- Service de Pneumologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Monika Grote
- Institute of Medical Physics and Biophysics, University of Muenster, Muenster, Germany
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia; Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia; Karl Landsteiner University, Krems, Austria
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
31
|
Sun Y, Sun J, Yang Y, Lan Y, Ip JCH, Wong WC, Kwan YH, Zhang Y, Han Z, Qiu JW, Qian PY. Genomic signatures supporting the symbiosis and formation of chitinous tube in the deep-sea tubeworm Paraescarpia echinospica. Mol Biol Evol 2021; 38:4116-4134. [PMID: 34255082 PMCID: PMC8476170 DOI: 10.1093/molbev/msab203] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Vestimentiferan tubeworms are iconic animals that present as large habitat-forming chitinized tube bushes in deep-sea chemosynthetic ecosystems. They are gutless and depend entirely on their endosymbiotic sulfide-oxidizing chemoautotrophic bacteria for nutrition. Information on the genomes of several siboglinid endosymbionts has improved our understanding of their nutritional supplies. However, the interactions between tubeworms and their endosymbionts remain largely unclear due to a paucity of host genomes. Here, we report the chromosome-level genome of the vestimentiferan tubeworm Paraescarpia echinospica. We found that the genome has been remodeled to facilitate symbiosis through the expansion of gene families related to substrate transfer and innate immunity, suppression of apoptosis, regulation of lysosomal digestion, and protection against oxidative stress. Furthermore, the genome encodes a programmed cell death pathway that potentially controls the endosymbiont population. Our integrated genomic, transcriptomic, and proteomic analyses uncovered matrix proteins required for the formation of the chitinous tube and revealed gene family expansion and co-option as evolutionary mechanisms driving the acquisition of this unique supporting structure for deep-sea tubeworms. Overall, our study provides novel insights into the host’s support system that has enabled tubeworms to establish symbiosis, thrive in deep-sea hot vents and cold seeps, and produce the unique chitinous tubes in the deep sea.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jin Sun
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yi Yang
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yi Lan
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jack Chi-Ho Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Wai Chuen Wong
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yick Hang Kwan
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanjie Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhuang Han
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Corresponding authors: E-mails: ;
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Corresponding authors: E-mails: ;
| |
Collapse
|
32
|
Lin YB, Rong JJ, Wei XF, Sui ZX, Xiao J, Huang DW. Proteomics and ultrastructural analysis of Hermetia illucens (Diptera: Stratiomyidae) larval peritrophic matrix. Proteome Sci 2021; 19:7. [PMID: 33836751 PMCID: PMC8035744 DOI: 10.1186/s12953-021-00175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/03/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The black soldier fly (Hermetia illucens) has significant economic potential. The larvae can be used in financially viable waste management systems, as they are voracious feeders able to efficiently convert low-quality waste into valuable biomass. However, most studies on H. illucens in recent decades have focused on optimizing their breeding and bioconversion conditions, while information on their biology is limited. METHODS About 200 fifth instar well-fed larvae were sacrificed in this work. The liquid chromatography-tandem mass spectrometry and scanning electron microscopy were employed in this study to perform a proteomic and ultrastructural analysis of the peritrophic matrix (PM) of H. illucens larvae. RESULTS A total of 565 proteins were identified in the PM samples of H. illucen, of which 177 proteins were predicted to contain signal peptides, bioinformatics analysis and manual curation determined 88 proteins may be associated with the PM, with functions in digestion, immunity, PM modulation, and others. The ultrastructure of the H. illucens larval PM observed by scanning electron microscopy shows a unique diamond-shaped chitin grid texture. CONCLUSIONS It is the first and most comprehensive proteomics research about the PM of H. illucens larvae to date. All the proteins identified in this work has been discussed in details, except several unnamed or uncharacterized proteins, which should not be ignored and need further study. A comparison of the ultrastructure between H. illucens larval PM and those of other insects as observed by SEM indicates that the PM displays diverse textures on an ultra-micro scale and we suscept a unique diamond-shaped chitin grid texture may help H. illucens larval to hold more food. This work deepens our understanding of the molecular architecture and ultrastructure of the H. illucens larval PM.
Collapse
Affiliation(s)
- Yu-Bo Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Jing Rong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun-Fan Wei
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhuo-Xiao Sui
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinhua Xiao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Da-Wei Huang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
33
|
Chitin Synthesis and Degradation in Crustaceans: A Genomic View and Application. Mar Drugs 2021; 19:md19030153. [PMID: 33804177 PMCID: PMC8002005 DOI: 10.3390/md19030153] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
Chitin is among the most important components of the crustacean cuticular exoskeleton and intestinal peritrophic matrix. With the progress of genomics and sequencing technology, a large number of gene sequences related to chitin metabolism have been deposited in the GenBank database in recent years. Here, we summarized the genes and pathways associated with the biosynthesis and degradation of chitins in crustaceans based on genomic analyses. We found that chitin biosynthesis genes typically occur in single or two copies, whereas chitin degradation genes are all multiple copies. Moreover, the chitinase genes are significantly expanded in most crustacean genomes. The gene structure and expression pattern of these genes are similar to those of insects, albeit with some specific characteristics. Additionally, the potential applications of the chitin metabolism genes in molting regulation and immune defense, as well as industrial chitin degradation and production, are also summarized in this review.
Collapse
|
34
|
Shaked SA, Abehsera S, Levy T, Chalifa-Caspi V, Sagi A. From sporadic single genes to a broader transcriptomic approach: Insights into the formation of the biomineralized exoskeleton in decapod crustaceans. J Struct Biol 2020; 212:107612. [PMID: 32896659 DOI: 10.1016/j.jsb.2020.107612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 01/01/2023]
Abstract
One fundamental character common to pancrustaceans (Crustacea and Hexapoda) is a mineralized rigid exoskeleton whose principal organic components are chitin and proteins. In contrast to traditional research in the field that has been devoted to the structural and physicochemical aspects of biomineralization, the present study explores transcriptomic aspects of biomineralization as a first step towards adding a complementary molecular layer to this field. The rigidity of the exoskeleton in pancrustaceans dictates essential molt cycles enabling morphological changes and growth. Thus, formation and mineralization of the exoskeleton are concomitant to the timeline of the molt cycle. Skeletal proteinaceous toolkit elements have been discovered in previous studies using innovative molt-related binary gene expression patterns derived from transcriptomic libraries representing the major stages comprising the molt cycle of the decapod crustacean Cherax quadricarinatus. Here, we revisited some prominent exoskeleton-related structural proteins encoding and, using the above molt-related binary pattern methodology, enlarged the transcriptomic database of C. quadricarinatus. The latter was done by establishing a new transcriptomic library of the cuticle forming epithelium and molar tooth at four different molt stages (i.e., inter-molt, early pre-molt, late pre-molt and post-molt) and incorporating it to a previous transcriptome derived from the gastroliths and mandible. The wider multigenic approach facilitated by the newly expanded transcriptomic database not only revisited single genes of the molecular toolkit, but also provided both scattered and specific information that broaden the overview of proteins and gene clusters which are involved in the construction and biomineralization of the exoskeleton in decapod crustaceans.
Collapse
Affiliation(s)
- Shai A Shaked
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shai Abehsera
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tom Levy
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amir Sagi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
35
|
Zha XL, Yu XB, Zhang HY, Wang H, Huang XZ, Shen YH, Lu C. Identification of Peritrophins and Antiviral Effect of Bm01504 against BmNPV in the Silkworm, Bombyx mori. Int J Mol Sci 2020; 21:ijms21217973. [PMID: 33121000 PMCID: PMC7663561 DOI: 10.3390/ijms21217973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
The insect midgut secretes a semi-permeable, acellular peritrophic membrane (PM) that maintains intestinal structure, promotes digestion, and protects the midgut from food particles and pathogenic microorganisms. Peritrophin is an important PM protein (PMP) in the PM. Here, we identified 11 peritrophins with 1–16 chitin binding domains (CBDs) comprising 50–56 amino acid residues. Multiple CBDs in the same peritrophin clustered together, rather than by species. The CBD contained six highly conserved cysteine residues, with the key feature of amino acids between them being CX11-15CX5CX9-14CX11-12CX6-7C. Peritrophins with 2 and 4 CBDs (Bm09641 and Bm01504, respectively), and with 1, 8, and 16 CBDs (Bm11851, Bm00185, and Bm01491, respectively) were mainly expressed in the anterior midgut, and throughout the midgut, respectively. Survival rates of transgenic silkworms with Bm01504 overexpression (Bm01504-OE) and knockout (Bm01504-KO) infected with B. morinucleopolyhedrovirus (BmNPV) were significantly higher and lower, whereas expression of the key viral gene, p10, were lower and higher, respectively, compared with wild type (WT). Therefore, Bm01504-OE and Bm01504-KO transgenic silkworms were more and less resistant, respectively, to BmNPV. Bm01504 plays important roles in resisting BmNPV invasion. We provide a new perspective for studying PM function, and reveal how the silkworm midgut resists invasive exogenous pathogenic microorganisms.
Collapse
Affiliation(s)
- Xu-Le Zha
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
| | - Xin-Bo Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
| | - Hong-Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
| | - Han Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
| | - Xian-Zhi Huang
- Science and Technology Department, Southwest University, Chongqing 400715, China;
| | - Yi-Hong Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
- Correspondence: (Y.-H.S.); (C.L.); Tel.: +86-138-8360-7000 (Y.-H.S.); +86-23-6825-0346 (C.L.)
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
- Correspondence: (Y.-H.S.); (C.L.); Tel.: +86-138-8360-7000 (Y.-H.S.); +86-23-6825-0346 (C.L.)
| |
Collapse
|
36
|
Volovych O, Lin Z, Du J, Jiang H, Zou Z. Identification and temporal expression profiles of cuticular proteins in the endoparasitoid wasp, Microplitis mediator. INSECT SCIENCE 2020; 27:998-1018. [PMID: 31317624 PMCID: PMC7497268 DOI: 10.1111/1744-7917.12711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 05/10/2023]
Abstract
Recently, parasitoid wasp species Microplitis mediator has evoked increasing research attention due to its possible use in the control of Lepidoptera insects. Because insect development involves changes in cuticle composition, identification and expression analysis of M. mediator cuticular proteins may clarify the mechanisms involved in parasite development processes. We found 70 cuticular proteins from the M. mediator transcriptome and divided them into seven distinct families. Expression profiling indicated that most of these cuticular protein genes have expression peaks specific for one particular developmental stage of M. mediator. Eggs and pupae have the highest number of transcriptionally active cuticular protein genes (47 and 52 respectively). Only 12 of these genes maintained high expression activity during late larval development. Functional analysis of two larval proteins, MmCPR3 and MmCPR14, suggested their important role in the proper organization of the cuticle layers of larvae. During M. mediator larval development, normal cuticle formation can be supported by a limited number of cuticular proteins.
Collapse
Affiliation(s)
- Olga Volovych
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jie Du
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hong Jiang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
37
|
Coutinho-Abreu IV, Serafim TD, Meneses C, Kamhawi S, Oliveira F, Valenzuela JG. Leishmania infection induces a limited differential gene expression in the sand fly midgut. BMC Genomics 2020; 21:608. [PMID: 32887545 PMCID: PMC7487717 DOI: 10.1186/s12864-020-07025-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sand flies are the vectors of Leishmania parasites. To develop in the sand fly midgut, Leishmania multiplies and undergoes various stage differentiations giving rise to the infective form, the metacyclic promastigotes. To determine the changes in sand fly midgut gene expression caused by the presence of Leishmania, we performed RNA-Seq of uninfected and Leishmania infantum-infected Lutzomyia longipalpis midguts from seven different libraries corresponding to time points which cover the various Leishmania developmental stages. RESULTS The combined transcriptomes resulted in the de novo assembly of 13,841 sand fly midgut transcripts. Importantly, only 113 sand fly transcripts, about 1%, were differentially expressed in the presence of Leishmania parasites. Further, we observed distinct differentially expressed sand fly midgut transcripts corresponding to the presence of each of the various Leishmania stages suggesting that each parasite stage influences midgut gene expression in a specific manner. Two main patterns of sand fly gene expression modulation were noted. At early time points (days 1-4), more transcripts were down-regulated by Leishmania infection at large fold changes (> 32 fold). Among the down-regulated genes, the transcription factor Forkhead/HNF-3 and hormone degradation enzymes were differentially regulated on day 2 and appear to be the upstream regulators of nutrient transport, digestive enzymes, and peritrophic matrix proteins. Conversely, at later time points (days 6 onwards), most of the differentially expressed transcripts were up-regulated by Leishmania infection with small fold changes (< 32 fold). The molecular functions of these genes have been associated with the metabolism of lipids and detoxification of xenobiotics. CONCLUSION Overall, our data suggest that the presence of Leishmania produces a limited change in the midgut transcript expression profile in sand flies. Further, Leishmania modulates sand fly gene expression early on in the developmental cycle in order to overcome the barriers imposed by the midgut, yet it behaves like a commensal at later time points where a massive number of parasites in the anterior midgut results only in modest changes in midgut gene expression.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Tiago Donatelli Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
38
|
Höring F, Biscontin A, Harms L, Sales G, Reiss CS, De Pittà C, Meyer B. Seasonal gene expression profiling of Antarctic krill in three different latitudinal regions. Mar Genomics 2020; 56:100806. [PMID: 32773253 DOI: 10.1016/j.margen.2020.100806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
The Antarctic krill, Euphausia superba, has evolved seasonal rhythms of physiology and behaviour to survive under the extreme photoperiodic conditions in the Southern Ocean. However, the molecular mechanisms generating these rhythms remain far from understood. The aim of this study was to investigate seasonal differences in gene expression in three different latitudinal regions (South Georgia, South Orkneys/Bransfield Strait, Lazarev Sea) and to identify genes with potential regulatory roles in the seasonal life cycle of Antarctic krill. The RNA-seq data were analysed (a) for seasonal differences between summer and winter krill sampled from each region, and (b) for regional differences within each season. A large majority of genes showed an up-regulation in summer krill in all regions with respect to winter krill. However, seasonal differences in gene expression were less pronounced in Antarctic krill from South Georgia, most likely due to the milder seasonal conditions of the lower latitudes of this region, with a less extreme light regime and food availability between summer and winter. Our results suggest that in the South Orkneys/Bransfield Strait and Lazarev Sea region, Antarctic krill entered a state of metabolic depression and regressed development (winter quiescence) in winter. Moreover, seasonal gene expression signatures seem to be driven by a photoperiodic timing system that may adapt the flexible behaviour and physiology of Antarctic krill to the highly seasonal environment according to the latitudinal region. However, at the lower latitude South Georgia region, food availability might represent the main environmental cue influencing seasonal physiology.
Collapse
Affiliation(s)
- Flavia Höring
- Alfred Wegener Institute Helmholtz Centre for Polar und Marine Research, Am Handelshafen 12, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Alberto Biscontin
- Dipartimento di Biologia, Università degli Studi di Padova, via Ugo Bassi 58b, 35121 Padova, Italy
| | - Lars Harms
- Alfred Wegener Institute Helmholtz Centre for Polar und Marine Research, Am Handelshafen 12, Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, Oldenburg 26129, Germany
| | - Gabriele Sales
- Dipartimento di Biologia, Università degli Studi di Padova, via Ugo Bassi 58b, 35121 Padova, Italy
| | - Christian S Reiss
- National Oceanic and Atmospheric Administration, Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, La Jolla, CA 92037, USA
| | - Cristiano De Pittà
- Dipartimento di Biologia, Università degli Studi di Padova, via Ugo Bassi 58b, 35121 Padova, Italy.
| | - Bettina Meyer
- Alfred Wegener Institute Helmholtz Centre for Polar und Marine Research, Am Handelshafen 12, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, Oldenburg 26129, Germany.
| |
Collapse
|
39
|
Muthukrishnan S, Mun S, Noh MY, Geisbrecht ER, Arakane Y. Insect Cuticular Chitin Contributes to Form and Function. Curr Pharm Des 2020; 26:3530-3545. [PMID: 32445445 DOI: 10.2174/1381612826666200523175409] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Chitin contributes to the rigidity of the insect cuticle and serves as an attachment matrix for other cuticular proteins. Deficiency of chitin results in abnormal embryos, cuticular structural defects and growth arrest. When chitin is not turned over during molting, the developing insect is trapped inside the old cuticle. Partial deacetylation of cuticular chitin is also required for proper laminar organization of the cuticle and vertical pore canals, molting, and locomotion. Thus, chitin and its modifications strongly influence the structure of the exoskeleton as well as the physiological functions of the insect. Internal tendons and specialized epithelial cells called "tendon cells" that arise from the outer layer of epidermal cells provide attachment sites at both ends of adult limb muscles. Membrane processes emanating from both tendon and muscle cells interdigitate extensively to strengthen the attachment of muscles to the extracellular matrix (ECM). Protein ligands that bind to membrane-bound integrin complexes further enhance the adhesion between muscles and tendons. Tendon cells contain F-actin fiber arrays that contribute to their rigidity. In the cytoplasm of muscle cells, proteins such as talin and other proteins provide attachment sites for cytoskeletal actin, thereby increasing integrin binding and activation to mechanically couple the ECM with actin in muscle cells. Mutations in integrins and their ligands, as well as depletion of chitin deacetylases, result in defective locomotion and muscle detachment from the ECM. Thus, chitin in the cuticle and chitin deacetylases strongly influence the shape and functions of the exoskeleton as well as locomotion of insects.
Collapse
Affiliation(s)
- Subbaratnam Muthukrishnan
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Seulgi Mun
- Department of Applied Biology, Chonnam National University, Gwangju 500-757, Korea
| | - Mi Y Noh
- Department of Forestry, Chonnam National University, Gwangju, 500-757, Korea
| | - Erika R Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
40
|
Xie J, Sang M, Song X, Zhang S, Kim D, Veenstra JA, Park Y, Li B. A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum. PLoS Genet 2020; 16:e1008772. [PMID: 32365064 PMCID: PMC7224569 DOI: 10.1371/journal.pgen.1008772] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/14/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
In the postgenomics era, comparative genomics have advanced the understanding of evolutionary processes of neuropeptidergic signaling systems. The evolutionary origin of many neuropeptidergic signaling systems can be traced date back to early metazoan evolution based on the conserved sequences. Insect parathyroid hormone receptor (iPTHR) was previously described as an ortholog of vertebrate PTHR that has a well-known function in controlling bone remodeling. However, there was no sequence homologous to PTH sequence in insect genomes, leaving the iPTHR as an orphan receptor. Here, we identified the authentic ligand insect PTH (iPTH) for the iPTHR. The taxonomic distribution of iPTHR, which is lacking in Diptera and Lepidoptera, provided a lead for identifying the authentic ligand. We found that a previously described orphan ligand known as PXXXamide (where X is any amino acid) described in the cuttlefish Sepia officinalis has a similar taxonomic distribution pattern as iPTHR. Tests of this peptide, iPTH, in functional reporter assays confirmed the interaction of the ligand-receptor pair. Study of a model beetle, Tribolium castaneum, was used to investigate the function of the iPTH signaling system by RNA interference followed by RNA sequencing and phenotyping. The results suggested that the iPTH system is likely involved in the regulation of cuticle formation that culminates with a phenotype of defects in wing exoskeleton maturation at the time of adult eclosion. Moreover, RNAi of iPTHRs also led to significant reductions in egg numbers and hatching rates after parental RNAi. Vertebrate parathyroid hormone (PTH) and its receptors have been extensively studied with respect to their function in bone remodeling and calcium metabolism. Insect parathyroid hormone receptors (iPTHRs) have been previously described as counterparts of vertebrate PTHRs, however, they are still orphan receptors for which the authentic ligands and biological functions remain unknown. We describe an insect form of parathyroid hormone (iPTH) by analyzing its interactions with iPTHRs. Identification of this new insect peptidergic system proved that the PTH system is an ancestral signaling system dating back to the evolutionary time before the divergence of protostomes and deuterostomes. We also investigated the functions of the iPTH system in a model beetle Tribolium castaneum by using RNA interference. RNA interference of iPTHR resulted in defects in wing exoskeleton maturation and fecundity. Based on the differential gene expression patterns and the phenotype induced by RNAi, we propose that the iPTH system is likely involved in the regulation of exoskeletal cuticle formation and fecundity in insects.
Collapse
Affiliation(s)
- Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Entomology, Kansas State University, Manhattan, KS, United States of America
| | - Ming Sang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Sisi Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Donghun Kim
- Department of Entomology, Kansas State University, Manhattan, KS, United States of America
- Department of Applied Biology, Kyungpook National University, Sangju, Korea
| | - Jan A. Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Pessac, France
- * E-mail: (JAV); (YP); (BL)
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States of America
- * E-mail: (JAV); (YP); (BL)
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail: (JAV); (YP); (BL)
| |
Collapse
|
41
|
Wang J, Jin H, Yang L, Ye X, Xiao S, Song Q, Stanley D, Ye G, Fang Q. Genome-wide identification and analysis of genes encoding cuticular proteins in the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21628. [PMID: 31599036 DOI: 10.1002/arch.21628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 05/27/2023]
Abstract
The multifunctional insect cuticle serves as the exoskeleton, determines body shape, restricts water loss, provides attachment sites for muscles and internal organs and is a formidable barrier to invaders. It is morphologically divided into three layers, including envelope, epicuticle, and procuticle and is composed of chitin and cuticular proteins (CPs). Annotation of CPs and their cognate genes may help understand the structure and functions of insect cuticles. In this paper, we interrogated the genome of Pteromalus puparum, an endoparasitoid wasp that parasitizes Pieris rapae and Papilio xuthus pupae, and identified 82 genes encoding CPs belonging to six CP families, including 62 in the CPR family, 8 in CPAP3, 5 in CPF/CPFL, 2 low complexity proteins, 2 in TWDL, and 3 in Apidermin. We used six RNA-seq libraries to determine CP gene expression profiles through development and compared the cuticle hydrophobicity between the P. puparum and the ectoparasitoid Nasonia vitripennis based on GRAVY values of CPR sequences. In the Nasonia-Pteromalus comparison, we found in both N. vitripennis and P. puparum, the peak of their CPR hydrophobicity displayed at their pupal stage, whereas their adult stage showed the lowest level. Except at the adult stage, the CPR hydrophobicity in N. vitripennis is always higher than P. puparum. Finally, we identified three novel Apidermin genes, a family found solely in Hymenoptera and revealed a new sequence feature of this family. This new information contributes to a broader understanding of insect CPs generally.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongxia Jin
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri
| | - David Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Qi H, Liu T, Lu Q, Yang Q. Molecular Insights into the Insensitivity of Lepidopteran Pests to Cycloxaprid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:982-988. [PMID: 31909997 DOI: 10.1021/acs.jafc.9b06959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cycloxaprid (CYC) is effective in the control of hemipteran pests, but its bioactivity against lepidopteran pests is still unclear. Here, the bioactivity of CYC against lepidopteran pests was found to be much worse than that against hemipteran insects. To reveal the mechanism, the transcriptomes of CYC-treated and untreated Ostrinia furnacalis larvae were compared. Among the top 20 differentially expressed genes, 11 encode proteins involved in cuticle formation, while only one encodes a detoxifying enzyme. Thus, the cuticle appears to be important for the insensitivity of O. furnacalis to CYC. A pretreatment of O. furnacalis larvae with methoprene enhanced the bioactivity of CYC by 1.12-fold. Moreover, mixtures of CYC with graphene oxide increased the bioactivity of CYC by 1.88-fold. Because lepidopteran and hemipteran insects often harm crops at the same time, the work can help make full use of CYC and reduce the environmental impacts of using multiple pesticides.
Collapse
Affiliation(s)
- Huitang Qi
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Tian Liu
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Qiong Lu
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Qing Yang
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| |
Collapse
|
43
|
Yang F, Li X, Li S, Xiang J, Li F. A novel cuticle protein involved in WSSV infection to the Pacific white shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103491. [PMID: 31494218 DOI: 10.1016/j.dci.2019.103491] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
As the most productive crustacean species in aquaculture, Litopenaeus vannamei is seriously threatened by white spot syndrome virus (WSSV), which has caused huge economic damage in the past decades. Shrimp cuticle proteins are the important components in the frontier target tissues, including cuticle and the chitinous lining of the digestive tract. In present study, a novel cuticle protein gene, named LvCPAP1, was isolated and demonstrated to play an important role in WSSV infection. The deduced amino acid sequence of LvCPAP1 contained a signal peptide and a conserved chitin-binding domain type 2 (ChBD2). Tissue distribution analysis revealed that LvCPAP1 was predominantly expressed in epidermis and stomach. The transcription levels of LvCPAP1 in epidermis and stomach were significantly regulated upon WSSV challenge. DsRNA silencing of LvCPAP1 decreased the in vivo WSSV copy numbers and the death rate of shrimp after WSSV infection, indicating that LvCPAP1 might facilitate WSSV invasion. In addition, the interaction between LvCPAP1 and the major envelop protein VP24 of WSSV was revealed by yeast two-hybrid system and further confirmed by dot blot and pull-down assays. The present study implied that cuticle protein LvCPAP1 might favor the entry process of WSSV, which provided new clues for understanding the role of cuticle proteins during virus infection.
Collapse
Affiliation(s)
- Feifei Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xuechun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| |
Collapse
|
44
|
Mohd Ghani F, Bhassu S. A new insight to biomarkers related to resistance in survived-white spot syndrome virus challenged giant tiger shrimp, Penaeus monodon. PeerJ 2019; 7:e8107. [PMID: 31875142 PMCID: PMC6927347 DOI: 10.7717/peerj.8107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes, hepatopancreas and muscle of P. monodon was studied using Illumina HiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulated and 2,194 genes significantly down-regulated as a result of the infection with WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF and c-Jun in P. monodon as new potential candidate genes for further investigation for the development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species.
Collapse
Affiliation(s)
- Farhana Mohd Ghani
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Kruppke B, Farack J, Weil S, Aflalo ED, Poláková D, Sagi A, Hanke T. Crayfish hemocyanin on chitin bone substitute scaffolds promotes the proliferation and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2019; 108:694-708. [DOI: 10.1002/jbm.a.36849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden Dresden Germany
| | - Jana Farack
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden Dresden Germany
| | - Simy Weil
- Department of Life Sciences Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Eliahu David Aflalo
- Department of Life Sciences Ben‐Gurion University of the Negev Beer‐Sheva Israel
- Department of Life Sciences Achva Academic College Arugot Israel
| | - Dagmar Poláková
- Faculty of Mechatronics and Interdisciplinary Engineering Studies, Technical University of Liberec Liberec Czech Republic
| | - Amir Sagi
- Department of Life Sciences Ben‐Gurion University of the Negev Beer‐Sheva Israel
- The National Institute for Biotechnology in the Negev, Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Thomas Hanke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden Dresden Germany
| |
Collapse
|
46
|
Fan S, Zheng Z, Hao R, Du X, Jiao Y, Huang R. PmCBP, a novel poly (chitin-binding domain) gene, participates in nacreous layer formation of Pinctada fucata martensii. Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110374. [PMID: 31733296 DOI: 10.1016/j.cbpb.2019.110374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/22/2019] [Accepted: 10/25/2019] [Indexed: 11/29/2022]
Abstract
Chitin participates in shell formation as the main component of an organic framework. Chitin-binding protein contains domains that can bind to chitin specifically. In this study, a novel chitin-binding protein from Pinctada fucata martensii (PmCBP) with poly (chitin-binding domain) was cloned, which contains a 5'-untranslated region (UTR) of 114 bp and 3'UTR of 116 bp, and encodes a putative protein of 2044 amino acids. The predicted PmCBP protein was structurally typical of the CBP family with 20 ChtBD2 domains. Phylogenetic and linear relation analyses showed that the ChtBD2 domain has a highly conserved structure among the three species of P. f. martensii, Crassostrea gigas, and Mizuhopecten yessoensis. qRT-PCR and in-situ hybridization analysis revealed that PmCBP was most abundant in the mantle pallium whose expression level was significantly correlated with the growth traits. After RNAi, PmCBP expression was significantly inhibited in the mantle pallium (P < 0.05) and the microstructure of nacreous layers showed a disordered growth in the experiment group. These results indicated that PmCBP may be involved in nacreous layer formation through participation in the process of binding chitin in pearl oyster P. f. martensii.
Collapse
Affiliation(s)
- Shanshan Fan
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China.
| | - Ruijuan Hao
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China.
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
47
|
Hegedus DD, Toprak U, Erlandson M. Peritrophic matrix formation. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103898. [PMID: 31211963 DOI: 10.1016/j.jinsphys.2019.103898] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Dwayne D Hegedus
- Molecular Genetics Section, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada; Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Umut Toprak
- Molecular Genetics Section, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada; Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Molecular Entomology Laboratory, College of Agriculture, Ankara University, Ankara, Turkey
| | - Martin Erlandson
- Molecular Genetics Section, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada; Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
48
|
Osman GH, Soltane R, Saleh I, Abulreesh HH, Gazi KS, Arif IA, Ramadan AM, Alameldin HF, Osman YA, Idriss M. Isolation, characterization, cloning and bioinformatics analysis of a novel receptor from black cut worm ( Agrotis ipsilon) of Bacillus thuringiensis vip 3Aa toxins. Saudi J Biol Sci 2019; 26:1078-1083. [PMID: 31303843 PMCID: PMC6601361 DOI: 10.1016/j.sjbs.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/03/2018] [Accepted: 06/12/2018] [Indexed: 12/03/2022] Open
Abstract
Black cutworm (BCW) is an economically important lepidopteran insect. The control of this insect by a Bt toxin and the understanding of the interaction between the Bt toxin and its receptor molecule were the objectives of this research work. A gene coding for a Vip3A receptor molecule was identified, characterized, and cloned, from the brush border membrane vesicles (BBMV) of the BCW. The nucleotide sequence analysis of the cloned putative Vip3A-receptor gene revealed that the gene was 1.3-kb long and exhibited no homology with any gene in the gene bank. We succeeded in identifying and characterizing most of the Vip3A-receptor gene sequence; and the nucleotide sequence analysis of the cloned putative Vip3A-receptor gene (accession no. KX858809) revealed about 92% of the expected sequence was recovered, which exhibited no homology with any gene in the GenBank.
Collapse
Affiliation(s)
- Gamal H. Osman
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makka, Saudi Arabia
- Microbial Genetics Department, Agricultural Genetic Engineering Research Institute (AGERI), Giza, Egypt
| | - Raya Soltane
- Faculty of Sciences of Tunis, Tunis El Manar University, Tunisia
- Department of basic sciences, Adham University college, Umm Al-Qura University, Saudi Arabia
| | - Ibrahim Saleh
- Prince Sultan Research Chair for Environment and Wildlife, Department of Botany & Microbiology, College of Sciences, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Hussein H. Abulreesh
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makka, Saudi Arabia
| | - Khaled S. Gazi
- Department of Biology, Faculty of Arts and Sciences in Almandaq, Albaha University, Saudi Arabia
| | - Ibrahim A. Arif
- Prince Sultan Research Chair for Environment and Wildlife, Department of Botany & Microbiology, College of Sciences, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Ahmed M. Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 80203, Saudi Arabia
- Plant Molecular Biology Department, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Hussien F. Alameldin
- Department of Energy - Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Bioinformatics, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Yehia A. Osman
- Microbiology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mamdouh Idriss
- Department of Entomology, Faculty of Agriculture, Alexandria University, Egypt
| |
Collapse
|
49
|
Liu J, Li S, Li W, Peng L, Chen Z, Xiao Y, Guo H, Zhang J, Cheng T, Goldsmith MR, Arunkumar KP, Xia Q, Mita K. Genome-wide annotation and comparative analysis of cuticular protein genes in the noctuid pest Spodoptera litura. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:90-97. [PMID: 31009677 DOI: 10.1016/j.ibmb.2019.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 05/28/2023]
Abstract
Insect cuticle is considered an adaptable and versatile building material with roles in the construction and function of exoskeleton. Its physical properties are varied, as the biological requirements differ among diverse structures and change during the life cycle of the insect. Although the bulk of cuticle consists basically of cuticular proteins (CPs) associated with chitin, the degree of cuticular sclerotization is an important factor in determining its physical properties. Spodoptera litura, the tobacco cutworm, is an important agricultural pest in Asia. Compared to the domestic silkworm, Bombyx mori, another lepidopteran whose CP genes have been well annotated, S. litura has a shorter life cycle, hides in soil during daytime beginning in the 5th instar and is exposed to soil in the pupal stage without the protection of a cocoon. In order to understand how the CP genes may have been adapted to support the characteristic life style of S. litura, we searched its genome and found 287 putative cuticular proteins that can be classified into 9 CP families (CPR with three groups (RR-1, RR-2, RR-3), CPAP1, CPAP3, CPF, CPFL, CPT, CPG, CPCFC and CPLCA), and a collection of unclassified CPs named CPH. There were also 112 cuticular proteins enriched in Histidine residues with content varying from 6% to 30%, comprising many more His-rich cuticular proteins than B. mori. A phylogenetic analysis between S. litura, M. sexta and B. mori uncovered large expansions of RR-1 and RR-2 CPs, forming large gene clusters in different regions of S. litura chromosome 9. We used RNA-seq analysis to document the expression profiles of CPs in different developmental stages and tissues of S. litura. The comparative genomic analysis of CPs between S. litura and B. mori integrated with the unique behavior and life cycle of the two species offers new insights into their contrasting ecological adaptations.
Collapse
Affiliation(s)
- Jianqiu Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Shenglong Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Wanshun Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Li Peng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Zhiwei Chen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Yingdan Xiao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Jiwei Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Marian R Goldsmith
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China; University of Rhode Island, Kingston, 02881, USA
| | - Kallare P Arunkumar
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China; Central Muga Eri Research and Training Institute, (CMER&TI), Central Silk Board, Lahdoigarh, Jorhat, 785700, India
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
50
|
Chen J, Lu HR, Zhang L, Liao CH, Han Q. RNA interference-mediated knockdown of 3, 4-dihydroxyphenylacetaldehyde synthase affects larval development and adult survival in the mosquito Aedes aegypti. Parasit Vectors 2019; 12:311. [PMID: 31234914 PMCID: PMC6591897 DOI: 10.1186/s13071-019-3568-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cuticle is an indispensable structure that protects the mosquito against adverse environmental conditions and prevents pathogen entry. While most cuticles are hard and rigid, some parts of cuticle are soft and flexible to allow movement and blood-feeding. It has been reported that 3, 4-dihydroxyphenylacetaldehyde (DOPAL) synthase is associated with flexible cuticle formation in Aedes aegypti. However, the molecular function of DOPAL synthase in the ontogenesis of mosquito remains largely unknown. In this study, we characterized gene expression profiles of DOPAL synthase and investigated its functions in larvae and female adults of Aedes agypti by RNAi. RESULTS Our results suggest that the expression of DOPAL synthase is different during development and the transcriptional level reached its peak at the female white pupal stage, and DOPAL synthase was more highly expressed in the cuticle and midgut than other tissues in the adult. The development process from larva to pupa was slowed down strikingly by feeding the first-instar larvae with chitosan/DOPAL synthase dsRNA nanoparticles. A qRT-PCR analysis confirmed that the dsRNA-mediated transcription of the DOPAL synthase was reduced > 50% in fourth-instar larvae. Meanwhile, larval molt was abnormal during development. Transmission electron microscopy results indicated that the formation of endocuticle and exocuticle was blocked. In addition, we detected that the dsDOPAL synthase RNA caused significant mortality when injected into the female adult mosquitoes. CONCLUSIONS Our findings demonstrate that DOPAL synthase plays a critical role in mosquito larval development and adult survival and suggest that DOPAL synthase could be a good candidate gene in RNAi intervention strategies in mosquito control.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China.,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Hao-Ran Lu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China.,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Lei Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China.,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Cheng-Hong Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China. .,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China. .,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|