1
|
Benoit JB, Weaving H, McLellan C, Terblanche JS, Attardo GM, English S. Viviparity and obligate blood feeding: tsetse flies as a unique research system to study climate change. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101369. [PMID: 40122517 DOI: 10.1016/j.cois.2025.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Tsetse flies (Glossina species) are unique organisms that combine several remarkable traits: they are obligate blood feeders, serve as critical vectors for African trypanosomes, and reproduce through adenotrophic viviparity - a process in which offspring are nourished with milk-like secretions before being born live. Here, we explore how climate change will impact the physiological processes associated with live birth in tsetse. This includes considerations of how blood feeding, host-pathogen interactions, and host-symbiont dynamics are likely to be impacted by thermal shifts. The highly specialized biology of tsetse flies suggests that this system is likely to have a distinctive response to climate change. Thus, detailed empirical research into these unique features is paramount for predicting tsetse population dynamics under climate change, with caution required when generalizing from other well-studied vectors with contrasting ecology and life histories such as mosquitoes and ticks. At the same time, the reproductive biology of tsetse, as well as microbiome and feeding dynamics, allow for a powerful model to investigate climate change through the lens of pregnancy and associated physiological adaptations in an extensively researched invertebrate.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Hester Weaving
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom; Department of Pathology, Microbiology & Immunology, University of California Davis, Davis, CA, United States
| | - Callum McLellan
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, United States
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
2
|
Xing Z, Zhang Y, Kang H, Dong H, Zhu D, Liu Y, Sun C, Guo P, Hu B, Tan A. ABHD5 regulates midgut-specific lipid homeostasis in Bombyx mori. INSECT SCIENCE 2025; 32:425-436. [PMID: 38841829 DOI: 10.1111/1744-7917.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Lipids are an important energy source and are utilized as substrates for various physiological processes in insects. Comparative gene identification 58 (CGI-58), also known as α/β hydrolase domain-containing 5 (ABHD5), is a highly conserved and multifunctional gene involved in regulating lipid metabolism and cellular energy balance in many organisms. However, the biological functions of ABHD5 in insects are poorly understood. In the current study, we describe the identification and characterization of the ABHD5 gene in the lepidopteran model insect, Bombyx mori. The tissue expression profile investigated using quantitative reverse transcription polymerase chain reaction (RT-qPCR) reveals that BmABHD5 is widely expressed in all tissues, with particularly high levels found in the midgut and testis. A binary transgenic CRISPR/Cas9 system was employed to conduct a functional analysis of BmABHD5, with the mutation of BmABHD5 leading to the dysregulation of lipid metabolism and excessive lipid accumulation in the larval midgut. Histological and physiological analysis further reveals a significant accumulation of lipid droplets in the midgut of mutant larvae. RNA-seq and RT-qPCR analysis showed that genes related to metabolic pathways were significantly affected by the absence of BmABHD5. Altogether, our data prove that BmABHD5 plays an important role in regulating tissue-specific lipid metabolism in the silkworm midgut.
Collapse
Affiliation(s)
- Zhiping Xing
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Yuting Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Hongxia Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Hui Dong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Dalin Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Yutong Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Chenxin Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Peilin Guo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
3
|
Itoe MA, Shaw WR, Stryapunina I, Vidoudez C, Peng D, Du EW, Rinvee TA, Singh N, Yan Y, Hulai O, Thornburg KE, Catteruccia F. Maternal lipid mobilization is essential for embryonic development in the malaria vector Anopheles gambiae. PLoS Biol 2024; 22:e3002960. [PMID: 39689130 PMCID: PMC11703037 DOI: 10.1371/journal.pbio.3002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/06/2025] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Lipid metabolism is an essential component in reproductive physiology. While lipid mobilization has been implicated in the growth of Plasmodium falciparum malaria parasites in their Anopheles vectors, the role of this process in the reproductive biology of these mosquitoes remains elusive. Here, we show that impairing lipolysis in Anopheles gambiae, the major malaria vector, leads to embryonic lethality. Embryos derived from females in which we silenced the triglyceride lipase AgTL2 or the lipid storage droplet AgLSD1 develop normally during early embryogenesis but fail to hatch due to severely impaired metabolism. Embryonic lethality is efficiently recapitulated by exposing adult females to broad-spectrum lipase inhibitors prior to blood feeding, unveiling lipolysis as a potential target for inducing mosquito sterility. Our findings provide mechanistic insights into the importance of maternal lipid mobilization in embryonic health that may inform studies on human reproduction.
Collapse
Affiliation(s)
- Maurice A. Itoe
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - W. Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Iryna Stryapunina
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Cambridge, Massachusetts, United States of America
| | - Duo Peng
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Esrah W. Du
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Tasneem A. Rinvee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Naresh Singh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Yan Yan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Oleksandr Hulai
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Kate E. Thornburg
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Gebeyehu S, Robi DT. Epidemiological investigation of trypanosomosis in livestock and distribution of vector in Dabo Hana district, Southwest Oromia, Ethiopia. Parasite Epidemiol Control 2024; 27:e00396. [PMID: 39720310 PMCID: PMC11667175 DOI: 10.1016/j.parepi.2024.e00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/30/2024] [Accepted: 12/01/2024] [Indexed: 12/26/2024] Open
Abstract
The trypanosomosis remains unresolved due to its impact on various hosts, leading to production losses in Ethiopia. In the Southwest of Oromia, multiple livestock species share grazing land in tsetse-infested areas. Thus, a cross-sectional study was conducted from December 2020 to December 2021 to determine the prevalence and associated risk factors of trypanosomosis in bovines, small ruminants, and equines, as well as the distribution of the vector in the Dabo Hana district of Southwest Oromia, Ethiopia. A vector survey was carried out using 60 monoconical traps placed at intervals ranging from about 100 to 200 m. Out of the 1441 flies captured, 86.2 % were Glossina, 7.84 % were Stomoxys, and 5.96 % were Tabanus. The overall apparent density of flies was 12 flies per trap per day. Among the 1242 caught Glossina species, 85 % were identified as G. tachinoides and 15 % as G. m. submorsitans. The average age of male tsetse flies was 28 days, and the overall infection rate of trypanosomes in tsetse flies was 4.8 %. A total of 701 blood samples (190 from bovines, 384 from small ruminants, and 127 from equines) were analyzed using buffy coat and Giemsa techniques. The prevalence of trypanosomosis was found to be 10 % in bovines, 4.2 % in small ruminants, and 3.1 % in equines. A significant difference (P < 0.05) in trypanosome infection was observed among the three host species, as well as with respect to the age and body condition of the animals. The predominant cause of infection was T. congolense, accounting for 74.4 % of cases. The mean packed cell volume (PCV) values of infected bovines, small ruminants, and equines were significantly lower (P < 0.05) compared to those of non-infected animals. Trypanosomosis is a major livestock disease in the study area. The findings provide valuable insights into the prevalence and infection rates of trypanosomosis, identify the affected species, and highlight significant risk factors, such as age, body condition, and vector distribution. Implementing sustainable and integrated practices for trypanosomosis control is crucial, and conducting molecular techniques in different seasons is also recommended.
Collapse
Affiliation(s)
- Surra Gebeyehu
- Wollega University, School of Veterinary Medicine, Nekemte, Ethiopia
| | - Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| |
Collapse
|
5
|
Wang L, Han Z, Liu X, Li S, Bi H, Feng C. Identification and Functional Analysis of Adipokinetic Hormone Receptor in Ostrinia furnacalis Guenée Larvae Parasitized by Macrocentrus cingulum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22147. [PMID: 39190556 DOI: 10.1002/arch.22147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
As a typical G protein-coupled receptor, the adipokinetic hormone receptor (AKHR) has seven transmembrane domains (TMDs), and its structure and function are similar to the gonadotropin-releasing hormone receptor (GnRHR) in vertebrates. However, there is a dearth of information on other components of the AKHR signaling pathway and how it functions in the interaction between insect hosts and parasitoids. In this study, we cloned and analyzed the multifunctional Ostrinia furnacalis AKHR (OfAKHR) cDNA (GenBank accession number MF797868). OfAKHR has a 2206 bp full-length cDNA, which includes an open reading frame containing 1194 bp. OfAKHR contains the typical seven TMDs, and a "DRY" motif. OfAKHR has the highest relative expression in the fat body and the fifth instar larvae. The results revealed that ApoLpⅢ, PPO2, GS, TPS, Cecropin, and Moricin decreased the transcription levels from 48 to 72 h after the knockdown of OfAKHR expression by dsOfAKHR injection in the fourth instar O. furnacalis larvae. The parasitization of Macrocentrus cingulum selectively upregulated the expression levels of nutrition metabolism and immune-related genes in parasitized O. furnacalis larvae, stimulated lysozyme activity, and obviously raised the concentrations of triglyceride and trehalose in the hemolymph of O. furnacalis larvae. However, they inhibited the activities of PO and trehalase. This study is conducive to a deeper cognition of the roles of OfAKHR in nutrition and immune homeostasis, coevolution, and coexistence between parasitic wasps and hosts. It also sheds light on the potential as the target of pest control reagents.
Collapse
Affiliation(s)
- Libao Wang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Oceanology & Marine Fisheries, Nantong, Jiangsu, China
| | - Zhaoyang Han
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xu Liu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuzhong Li
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Honglun Bi
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congjing Feng
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Li J, Holford P, Beattie GAC, Wu S, He J, Tan S, Wang D, He Y, Cen Y, Nian X. Adipokinetic hormone signaling mediates the enhanced fecundity of Diaphorina citri infected by ' Candidatus Liberibacter asiaticus'. eLife 2024; 13:RP93450. [PMID: 38985571 PMCID: PMC11236419 DOI: 10.7554/elife.93450] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Diaphorina citri serves as the primary vector for 'Candidatus Liberibacter asiaticus (CLas),' the bacterium associated with the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts and require extra energy expenditure. Therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. In this study, we found adipokinetic hormone (DcAKH) and its receptor (DcAKHR) were essential for increasing lipid metabolism and fecundity in response to CLas infection in D. citri. Knockdown of DcAKH and DcAKHR not only resulted in the accumulation of triacylglycerol and a decline of glycogen, but also significantly decreased fecundity and CLas titer in ovaries. Combined in vivo and in vitro experiments showed that miR-34 suppresses DcAKHR expression by binding to its 3' untranslated region, whilst overexpression of miR-34 resulted in a decline of DcAKHR expression and CLas titer in ovaries and caused defects that mimicked DcAKHR knockdown phenotypes. Additionally, knockdown of DcAKH and DcAKHR significantly reduced juvenile hormone (JH) titer and JH signaling pathway genes in fat bodies and ovaries, including the JH receptor, methoprene-tolerant (DcMet), and the transcription factor, Krüppel homolog 1 (DcKr-h1), that acts downstream of it, as well as the egg development related genes vitellogenin 1-like (DcVg-1-like), vitellogenin A1-like (DcVg-A1-like) and the vitellogenin receptor (DcVgR). As a result, CLas hijacks AKH/AKHR-miR-34-JH signaling to improve D. citri lipid metabolism and fecundity, while simultaneously increasing the replication of CLas, suggesting a mutualistic interaction between CLas and D. citri ovaries.
Collapse
Affiliation(s)
- Jiayun Li
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, Australia
| | | | - Shujie Wu
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jielan He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shijian Tan
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Desen Wang
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yurong He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaoge Nian
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| |
Collapse
|
7
|
Shen Z, Liu Z, Chen J, Li Y, Mao J, Wang M, Zhang L. Functional analysis of adipokinetic hormone signaling in reproductive diapause of Coccinella septempunctata. PEST MANAGEMENT SCIENCE 2024; 80:3665-3674. [PMID: 38459943 DOI: 10.1002/ps.8070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND The ladybeetle, Coccinella septempunctata, an important predator, is widely used to control aphids, whiteflies, mites, thrips, and lepidopteran pests. Diapause control technology is key to extending C. septempunctata shelf-life and commercialization. Lipid accumulation is a major feature of reproductive diapause, but the function of AKH signaling as a regulator of lipid mobilization in reproductive diapause remains unclear. This study aimed to identify and characterize AKH and AKHR genes, and clarify their functions in reproductive diapause. RESULTS The relative expression levels of CsAKH and CsAKHR were the highest in the head and fat body, respectively, and were significantly decreased under diapause conditions, both in developmental stages and tissues (head, midgut, fat body, and ovary). Furthermore, CsAKH and CsAKHR expression was increased significantly after juvenile hormone (JH) injection, but CsMet silencing significantly inhibited CsAKH and CsAKHR expression, whereas CsMet knockdown blocked the induction effect of JH. CsAKH and CsAKHR knockdown significantly reduced water content, increased lipid storage, and promoted the expression of genes related to lipid synthesis, but significantly blocked ovarian development, and induced forkhead box O (FOXO) gene expression in C. septempunctata under reproduction conditions. By contrast, injection of AKH peptide significantly inhibited FOXO expression, reduced lipid storage, and increased water content in C. septempunctata under diapause conditions. CONCLUSION These results indicate that CsAKH and CsAKHR are involved in the regulation of lipid accumulation and ovarian development during diapause in C. septempunctata, and provide a promising target for manipulating C. septempunctata diapause. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhongjian Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaohan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuyan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianjun Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengqing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lisheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Leyria J, Fruttero LL, Canavoso LE. Lipids in Insect Reproduction: Where, How, and Why. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874891 DOI: 10.1007/5584_2024_809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Modern insects have inhabited the earth for hundreds of millions of years, and part of their successful adaptation lies in their many reproductive strategies. Insect reproduction is linked to a high metabolic rate that provides viable eggs in a relatively short time. In this context, an accurate interplay between the endocrine system and the nutrients synthetized and metabolized is essential to produce healthy offspring. Lipids guarantee the metabolic energy needed for egg formation and represent the main energy source consumed during embryogenesis. Lipids availability is tightly regulated by a complex network of endocrine signals primarily controlled by the central nervous system (CNS) and associated endocrine glands, the corpora allata (CA) and corpora cardiaca (CC). This endocrine axis provides hormones and neuropeptides that significatively affect tissues closely involved in successful reproduction: the fat body, which is the metabolic center supplying the lipid resources and energy demanded in egg formation, and the ovaries, where the developing oocytes recruit lipids that will be used for optimal embryogenesis. The post-genomic era and the availability of modern experimental approaches have advanced our understanding of many processes involved in lipid homeostasis; therefore, it is crucial to integrate the findings of recent years into the knowledge already acquired in the last decades. The present chapter is devoted to reviewing major recent contributions made in elucidating the impact of the CNS/CA/CC-fat body-ovary axis on lipid metabolism in the context of insect reproduction, highlighting areas of fruitful research.
Collapse
Affiliation(s)
- Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Lilián E Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina.
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
9
|
Leyria J. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol Cell Endocrinol 2024; 587:112211. [PMID: 38494046 DOI: 10.1016/j.mce.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The endocrine system plays a pivotal role in shaping the mechanisms that ensure successful reproduction. With over a million known insect species, understanding the endocrine control of reproduction has become increasingly complex. Some of the key players include the classic insect lipid hormones juvenile hormone (JH) and ecdysteroids, and neuropeptides such as insulin-like peptides (ILPs). Individual endocrine factors not only modulate their own target tissue but also play crucial roles in crosstalk among themselves, ensuring successful vitellogenesis and oogenesis. Recent advances in omics, gene silencing, and genome editing approaches have accelerated research, offering both fundamental insights and practical applications for studying in-depth endocrine signaling pathways. This review provides an updated and integrated view of endocrine factors modulating vitellogenesis and oogenesis in insect females.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
10
|
Arêdes DS, Rios T, Carvalho-Kelly LF, Braz V, Araripe LO, Bruno RV, Meyer-Fernandes JR, Ramos I, Gondim KC. Deficiency of Brummer lipase disturbs lipid mobilization and locomotion, and impairs reproduction due to defects in the eggshell ultrastructure in the insect vector Rhodnius prolixus. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159442. [PMID: 38042331 DOI: 10.1016/j.bbalip.2023.159442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Rhodnius prolixus is a hematophagous insect, which feeds on large and infrequent blood meals, and is a vector of trypanosomatids that cause Chagas disease. After feeding, lipids derived from blood meal are stored in the fat body as triacylglycerol, which is recruited under conditions of energy demand by lipolysis, where the first step is catalyzed by the Brummer lipase (Bmm), whose orthologue in mammals is the adipose triglyceride lipase (ATGL). Here, we investigated the roles of Bmm in adult Rhodnius prolixus under starvation, and after feeding. Its gene (RhoprBmm) was expressed in all the analyzed insect organs, and its transcript levels in the fat body were not altered by nutritional status. RNAi-mediated knockdown of RhoprBmm caused triacylglycerol retention in the fat body during starvation, resulting in larger lipid droplets and lower ATP levels compared to control females. The silenced females showed decreased flight capacity and locomotor activity. When RhoprBmm knockdown occurred before the blood meal and the insects were fed, the females laid fewer eggs, which collapsed and showed low hatching rates. Their hemolymph had reduced diacylglycerol content and vitellogenin concentration. The chorion (eggshell) of their eggs had no difference in hydrocarbon amounts or in dityrosine crosslinking levels compared to control eggs. However, it showed ultrastructural defects. These results demonstrated that Bmm activity is important not only to guarantee lipid mobilization to maintain energy homeostasis during starvation, but also for the production of viable eggs after a blood meal, by somehow contributing to the right formation of the egg chorion.
Collapse
Affiliation(s)
- Daniela Saar Arêdes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamara Rios
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Valdir Braz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana O Araripe
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - Rafaela V Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem - INCT-BEB/CNPq, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil.
| |
Collapse
|
11
|
Dos Santos LV, Silva ERMND, Caiado MS, Rezende SRDF, de Carvalho MG, Pontes EG. Differential expression of brummer and levels of TAG in different developmental stages Aedes aegypti (Diptera: Culicidae), including fasted adults. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22084. [PMID: 38288494 DOI: 10.1002/arch.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Lipid storage in the form of triacylglycerol (TAG) is essential for insect life, as it enables flight, development, and reproduction. The activity of the lipase brummer (bmm) has been shown to be essential to insects' homeostasis. The objective of this study was to evaluate how bmm expression occurs in Aedes aegypti larvae and adults, and to observe TAG levels during fasting in adult females. The bmm sequence was identified in A. aegypti and exhibited a patatin-like phospholipase domain reinforced by the presence of a catalytic dyad with serine and aspartate residues, revealing a high degree of similarity with other organisms. Bmm expression was differentiated in the larvae and adult fat body (FB) following TAG reserve dynamics. Bmm was expressed three times in larval stages L3, L4, and pupae compared with L1 and L2, which could indicate its role in the maturation of these insects. In the postemergence (PE) and post-blood meal (PBM) FB of adult insects, bmm expression varied over several days. PE adults showed a pronounced bmm increase from the third day onward compared with those not subjected to fasting. This was accompanied by a decrease in TAG from the third day onward, suggesting the participation of bmm. Six hours after blood feeding, TAG levels increased in mosquitos reared in the absence of sucrose, suggesting lipid accumulation to guarantee reproduction. Bmm responded positively to fasting, followed by TAG mobilization in adult FB. During the previtellogenic period, bmm levels responded to low TAG levels, unlike the PBM period.
Collapse
Affiliation(s)
- Luan Valim Dos Santos
- Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Matheus Silva Caiado
- Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Mario Geraldo de Carvalho
- Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Emerson Guedes Pontes
- Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Kaboré BA, Nawaj A, Maiga H, Soukia O, Pagabeleguem S, Ouédraogo/Sanon MSG, Vreysen MJB, Mach RL, de Beer CJ. X-rays are as effective as gamma-rays for the sterilization of Glossina palpalis gambiensis Vanderplank, 1911 (Diptera: Glossinidae) for use in the sterile insect technique. Sci Rep 2023; 13:17633. [PMID: 37848516 PMCID: PMC10582188 DOI: 10.1038/s41598-023-44479-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
An area-wide integrated pest management strategy with a sterile insect technique (SIT) component requires a radiation source for the sterilisation of male insects. Self-contained gamma irradiators, which were exclusively used in past SIT programmes, are now facing increasing constraints and challenges due to stringent regulations. As a potential alternative, new generation high output X-ray irradiators have been proposed. The feasibility of using X-ray irradiators was assessed by comparing the effects of both gamma- and X-ray irradiators on biological parameters of Glossina palpalis gambiensis (Vanderplank, 1911), that are important for SIT applications. The gamma irradiator Foss Model 812 and two X-ray irradiators, the Rad Source 2400 and the blood irradiator Raycell Mk2 were used. Glossina palpalis gambiensis males were exposed to radiation as pupae. A radiation dose of 110 Gy or above induced more than 97% sterility in females that mated with the irradiated males for all the irradiators. Adult emergence rate, flight propensity, survival and mating performance did not differ between gamma- and X-rays irradiators. These results suggest that irradiating pupae with a dose of 110 Gy is optimal for both gamma-and X-ray irradiators used in this study, to achieve a sterility of approximately 99%. Similar research on other tsetse species could gradually phase out the use of gamma-ray irradiators in favour of X-rays irradiators, especially for smaller SIT programmes.
Collapse
Affiliation(s)
- Bénéwendé Aristide Kaboré
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.
- Insectarium de Bobo-Dioulasso-Campagne d'Eradication de la mouche Tsé-tsé et de la Trypanosomose, Bobo-Dioulasso, Burkina Faso.
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria.
| | - Arooj Nawaj
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Hamidou Maiga
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
| | - Olga Soukia
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Soumaïla Pagabeleguem
- Insectarium de Bobo-Dioulasso-Campagne d'Eradication de la mouche Tsé-tsé et de la Trypanosomose, Bobo-Dioulasso, Burkina Faso
| | | | - Marc J B Vreysen
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Chantel J de Beer
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| |
Collapse
|
13
|
Attardo GM, Benoit JB, Michalkova V, Kondragunta A, Baumann AA, Weiss BL, Malacrida A, Scolari F, Aksoy S. Lipid metabolism dysfunction following symbiont elimination is linked to altered Kennedy pathway homeostasis. iScience 2023; 26:107108. [PMID: 37534171 PMCID: PMC10391724 DOI: 10.1016/j.isci.2023.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/27/2023] [Accepted: 06/08/2023] [Indexed: 08/04/2023] Open
Abstract
Lipid metabolism is critical for insect reproduction, especially for species that invest heavily in the early developmental stages of their offspring. The role of symbiotic bacteria during this process is understudied but likely essential. We examined the role of lipid metabolism during the interaction between the viviparous tsetse fly (Glossina morsitans morsitans) and its obligate endosymbiotic bacteria (Wigglesworthia glossinidia) during tsetse pregnancy. We observed increased CTP:phosphocholine cytidylyltransferase (cct1) expression during pregnancy, which is critical for phosphatidylcholine biosynthesis in the Kennedy pathway. Experimental removal of Wigglesworthia impaired lipid metabolism via disruption of the Kennedy pathway, yielding obese mothers whose developing progeny starve. Functional validation via experimental cct1 suppression revealed a phenotype similar to females lacking obligate Wigglesworthia symbionts. These results indicate that, in Glossina, symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity.
Collapse
Affiliation(s)
- Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Entomology and Nematology, Division of Agriculture and Natural Resources, University of California Davis, Davis, CA 95616, USA
| | - Joshua B. Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alekhya Kondragunta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Aaron A. Baumann
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anna Malacrida
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Institute of Molecular Genetics (IGM), Italian National Research Council (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
14
|
Benoit JB, Lahondère C, Attardo GM, Michalkova V, Oyen K, Xiao Y, Aksoy S. Warm Blood Meal Increases Digestion Rate and Milk Protein Production to Maximize Reproductive Output for the Tsetse Fly, Glossina morsitans. INSECTS 2022; 13:997. [PMID: 36354821 PMCID: PMC9695897 DOI: 10.3390/insects13110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The ingestion of blood represents a significant burden that immediately increases water, oxidative, and thermal stress, but provides a significant nutrient source to generate resources necessary for the development of progeny. Thermal stress has been assumed to solely be a negative byproduct that has to be alleviated to prevent stress. Here, we examined if the short thermal bouts incurred during a warm blood meal are beneficial to reproduction. To do so, we examined the duration of pregnancy and milk gland protein expression in the tsetse fly, Glossina morsitans, that consumed a warm or cool blood meal. We noted that an optimal temperature for blood ingestion yielded a reduction in the duration of pregnancy. This decline in the duration of pregnancy is due to increased rate of blood digestion when consuming warm blood. This increased digestion likely provided more energy that leads to increased expression of transcript for milk-associated proteins. The shorter duration of pregnancy is predicted to yield an increase in population growth compared to those that consume cool or above host temperatures. These studies provide evidence that consumption of a warm blood meal is likely beneficial for specific aspects of vector biology.
Collapse
Affiliation(s)
- Joshua B. Benoit
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center of Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Entomology at Virginia Polytechnic Institute and State Univerity, Blacksburg, VA 24061, USA
| | - Geoffrey M. Attardo
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
- Department of Entomology and Nematology, Division of Agriculture and Natural Resources, University of California Davis, Davis, CA 95616, USA
| | - Veronika Michalkova
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 814 38 Bratislava, Slovakia
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yanyu Xiao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Serap Aksoy
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
| |
Collapse
|
15
|
Arêdes DS, De Paula IF, Santos-Araujo S, Gondim KC. Silencing of Mitochondrial Trifunctional Protein A Subunit (HADHA) Increases Lipid Stores, and Reduces Oviposition and Flight Capacity in the Vector Insect Rhodnius prolixus. FRONTIERS IN INSECT SCIENCE 2022; 2:885172. [PMID: 38468769 PMCID: PMC10926480 DOI: 10.3389/finsc.2022.885172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/16/2022] [Indexed: 03/13/2024]
Abstract
Rhodnius prolixus is an obligatory hematophagous insect, vector of Chagas disease. After blood meal, lipids are absorbed, metabolized, synthesized, and accumulated in the fat body. When necessary, stored lipids are mobilized, transported to other organs, or are oxidized to provide energy. Mitochondrial β-oxidation is a cyclic conserved pathway, where degradation of long-chain fatty acids occurs to contribute to cellular energetic demands. Three of its reactions are catalyzed by the mitochondrial trifunctional protein (MTP), which is composed by hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunits alpha and beta (HADHA and HADHB, respectively). Here, we investigated the role of HADHA in lipid metabolism and reproduction of Rhodnius prolixus females. The expression of HADHA gene (RhoprHadha) was determined in the organs of starving adult insects. The flight muscle and ovary had higher expression levels when compared to the anterior and posterior midguts or the fat body. RhoprHadha gene expression was upregulated by blood meal in the flight muscle and fat body. We generated insects with RNAi-mediated knockdown of RhoprHadha to address the physiological role of this gene. RhoprHadha deficiency resulted in higher triacylglycerol content and larger lipid droplets in the fat body during starvation. After feeding, lifespan of the knockdown females was not affected, but they exhibited a decrease in oviposition, although hatching was the same in both groups. Silenced females showed lower forced flight capacity than the control ones, and their fat bodies had lower gene expression levels of Brummer lipase (RhoprBmm) and long-chain acyl-CoA synthetase 2 (RhoprAcsl2). Taken together, these findings indicate that HADHA is important to guarantee successful reproduction and efficient mobilization of lipid stores during starvation and flight.
Collapse
Affiliation(s)
| | | | | | - Katia C. Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Naitore C, Villinger J, Kibet CK, Kalayou S, Bargul JL, Christoffels A, Masiga DK. The developmentally dynamic microRNA transcriptome of Glossina pallidipes tsetse flies, vectors of animal trypanosomiasis. BIOINFORMATICS ADVANCES 2021; 2:vbab047. [PMID: 36699416 PMCID: PMC9710702 DOI: 10.1093/bioadv/vbab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/25/2021] [Accepted: 12/24/2021] [Indexed: 01/28/2023]
Abstract
Summary MicroRNAs (miRNAs) are single stranded gene regulators of 18-25 bp in length. They play a crucial role in regulating several biological processes in insects. However, the functions of miRNA in Glossina pallidipes, one of the biological vectors of African animal trypanosomosis in sub-Saharan Africa, remain poorly characterized. We used a combination of both molecular biology and bioinformatics techniques to identify miRNA genes at different developmental stages (larvae, pupae, teneral and reproductive unmated adults, gravid females) and sexes of G. pallidipes. We identified 157 mature miRNA genes, including 12 novel miRNAs unique to G. pallidipes. Moreover, we identified 93 miRNA genes that were differentially expressed by sex and/or in specific developmental stages. By combining both miRanda and RNAhybrid algorithms, we identified 5550 of their target genes. Further analyses with the Gene Ontology term and KEGG pathways for these predicted target genes suggested that the miRNAs may be involved in key developmental biological processes. Our results provide the first repository of G. pallidipes miRNAs across developmental stages, some of which appear to play crucial roles in tsetse fly development. Hence, our findings provide a better understanding of tsetse biology and a baseline for exploring miRNA genes in tsetse flies. Availability and implementation Raw sequence data are available from NCBI Sequence Read Archives (SRA) under Bioproject accession number PRJNA590626. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Careen Naitore
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,To whom correspondence should be addressed. or
| | - Caleb K Kibet
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya
| | - Shewit Kalayou
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya
| | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Bellville 7530, South Africa
| | - Daniel K Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,To whom correspondence should be addressed. or
| |
Collapse
|
17
|
McDonough-Goldstein CE, Whittington E, McCullough EL, Buel SM, Erdman S, Pitnick S, Dorus S. Pronounced Postmating Response in the Drosophila Female Reproductive Tract Fluid Proteome. Mol Cell Proteomics 2021; 20:100156. [PMID: 34597791 PMCID: PMC9357439 DOI: 10.1016/j.mcpro.2021.100156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Fertility depends on the progression of complex and coordinated postmating processes within the extracellular environment of the female reproductive tract (FRT). Molecular interactions between ejaculate and FRT proteins regulate many of these processes, including sperm motility, migration, storage, and modification, along with concurrent changes in the female. Although extensive progress has been made in the proteomic characterization of the male-derived components of sperm and seminal fluid, investigations into the FRT have remained more limited. To achieve a comparable level of knowledge regarding female-derived proteins that comprise the reproductive environment, we utilized semiquantitative MS-based proteomics to study the composition of the FRT tissue and, separately, the luminal fluid, before and after mating in Drosophila melanogaster. Our approach leveraged whole-fly isotopic labeling to delineate female proteins from transferred male ejaculate proteins. Our results revealed several characteristics that distinguish the FRT fluid proteome from the FRT tissue proteome: (1) the fluid proteome is encoded by genes with higher overall levels of FRT gene expression and tissue specificity, including many genes with enriched expression in the fat body, (2) fluid-biased proteins are enriched for metabolic functions, and (3) the fluid exhibits pronounced postmating compositional changes. The dynamic mating-induced proteomic changes in the FRT fluid inform our understanding of secretory mechanisms of the FRT, serve as a foundation for establishing female contributions to the ejaculate-female interactions that regulate fertility, and highlight the importance of applying proteomic approaches to characterize the composition and dynamics of the FRT environment.
Collapse
Affiliation(s)
| | - Emma Whittington
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Erin L McCullough
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Sharleen M Buel
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Scott Erdman
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Scott Pitnick
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA.
| |
Collapse
|
18
|
Son JH, Weiss BL, Schneider DI, Dera KSM, Gstöttenmayer F, Opiro R, Echodu R, Saarman NP, Attardo GM, Onyango M, Abd-Alla AMM, Aksoy S. Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis. PLoS Pathog 2021; 17:e1009539. [PMID: 34529715 PMCID: PMC8478229 DOI: 10.1371/journal.ppat.1009539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/28/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host's metabolic, reproductive, and immune physiologies. One of these endosymbionts, Spiroplasma, was recently discovered to reside within multiple tissues of field captured and laboratory colonized tsetse flies grouped in the Palpalis subgenera. In various arthropods, Spiroplasma induces reproductive abnormalities and pathogen protective phenotypes. In tsetse, Spiroplasma infections also induce a protective phenotype by enhancing the fly's resistance to infection with trypanosomes. However, the potential impact of Spiroplasma on tsetse's viviparous reproductive physiology remains unknown. Herein we employed high-throughput RNA sequencing and laboratory-based functional assays to better characterize the association between Spiroplasma and the metabolic and reproductive physiologies of G. fuscipes fuscipes (Gff), a prominent vector of human disease. Using field-captured Gff, we discovered that Spiroplasma infection induces changes of sex-biased gene expression in reproductive tissues that may be critical for tsetse's reproductive fitness. Using a Gff lab line composed of individuals heterogeneously infected with Spiroplasma, we observed that the bacterium and tsetse host compete for finite nutrients, which negatively impact female fecundity by increasing the length of intrauterine larval development. Additionally, we found that when males are infected with Spiroplasma, the motility of their sperm is compromised following transfer to the female spermatheca. As such, Spiroplasma infections appear to adversely impact male reproductive fitness by decreasing the competitiveness of their sperm. Finally, we determined that the bacterium is maternally transmitted to intrauterine larva at a high frequency, while paternal transmission was also noted in a small number of matings. Taken together, our findings indicate that Spiroplasma exerts a negative impact on tsetse fecundity, an outcome that could be exploited for reducing tsetse population size and thus disease transmission.
Collapse
Affiliation(s)
- Jae Hak Son
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Daniela I. Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Kiswend-sida M. Dera
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Insectarium de Bobo-Dioulasso—Campagne d’Eradication de la mouche Tse´-tse´ et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
| | - Fabian Gstöttenmayer
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Robert Opiro
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Norah P. Saarman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Maria Onyango
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
19
|
Leyria J, El-Mawed H, Orchard I, Lange AB. Regulation of a Trehalose-Specific Facilitated Transporter (TRET) by Insulin and Adipokinetic Hormone in Rhodnius prolixus, a Vector of Chagas Disease. Front Physiol 2021; 12:624165. [PMID: 33643069 PMCID: PMC7902789 DOI: 10.3389/fphys.2021.624165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Using the blood-sucking kissing bug, Rhodnius prolixus as an experimental model, we have studied the involvement of insulin-like peptides (ILPs) and adipokinetic hormone (AKH) signaling in carbohydrate metabolism, focusing on the regulation of the trehalose-specific facilitated transporter (Rhopr-TRET), particularly in the ovaries. We find that trehalose stores in ovaries increase after feeding, synchronously with the beginning of vitellogenesis, but that the transcript expression of enzymes involved in trehalose synthesis show no changes between unfed and blood-fed animals. However, an eightfold increase in Rhopr-TRET transcript expression is observed in the ovaries post-blood meal. In vivo and ex vivo assays using exogenous insulins and Rhopr-AKH, reveal that Rhopr-TRET is up-regulated in ovaries by both peptide families. In accordance with these results, when ILP and AKH signaling cascades are impaired using RNA interference, Rhopr-TRET transcript is down-regulated. In addition, trehalose injection induces an up-regulation of Rhopr-TRET transcript expression and suggests an activation of insulin signaling. Overall, the results support the hypothesis of a direct trehalose uptake by ovaries from the hemolymph through Rhopr-TRET, regulated by ILP and/or AKH. We also show that Rhopr-TRET may work cooperatively with AKH signaling to support the release of trehalose from the ovaries into the hemolymph during the unfed (starved) condition. In conclusion, the results indicate that in females of R. prolixus, trehalose metabolism and its hormonal regulation by ILP and AKH play critical roles in adapting to different nutritional conditions and physiological states.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Hanine El-Mawed
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
20
|
Santos-Araujo S, Bomfim L, Araripe LO, Bruno R, Ramos I, Gondim KC. Silencing of ATG6 and ATG8 promotes increased levels of triacylglycerol (TAG) in the fat body during prolonged starvation periods in the Chagas disease vector Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103484. [PMID: 33022370 DOI: 10.1016/j.ibmb.2020.103484] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Rhodnius prolixus is an obligatorily hematophagous insect known as an important vector of Chagas disease. Autophagy is a conserved cellular mechanism that acts in response to nutrient starvation, where components of the cytoplasm are sequestered by a double membrane organelle, named autophagosome, which is targeted to fuse with the lysosome for degradation. Lipophagy is the process of lipid degradation by selective autophagy, where autophagosomes sequester lipid droplets and degrade triacylglycerol (TAG) generating free fatty acids for β-oxidation. Here, two essential genes of the autophagic pathway, Atg6/Beclin1 (RpAtg6) and Atg8/LC3 (RpAtg8), were silenced and the storage of lipids during starvation in Rhodnius prolixus was monitored. We found that RNAi knockdown of both RpAtg6 and RpAtg8 resulted in higher levels of TAG in the fat body and the flight muscle, 24 days after the blood meal, as well as a larger average diameter of the lipid droplets in the fat body, as seen by Nile Red staining under the confocal fluorescence microscope. Silenced starved insects had lower survival rates when compared to control insects. Accordingly, when examined during the starvation period for monitored activity, silenced insects had lower spontaneous locomotor activity and lower forced flight rates. Furthermore, we found that some genes involved in lipid metabolism had their expression levels altered in silenced insects, such as the Brummer lipase (down regulated) and the adipokinetic hormone receptor (up regulated), suggesting that, as previously observed in mammalian models, the autophagy and neutral lipolysis machineries are interconnected at the transcriptional level. Altogether, our data indicate that autophagy in the fat body is important to allow insects to mobilize energy from lipid stores.
Collapse
Affiliation(s)
- Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Larissa Bomfim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Luciana O Araripe
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz. Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - Rafaela Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz. Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil.
| |
Collapse
|
21
|
Zheng X, Xin Y, Peng Y, Shan J, Zhang N, Wu D, Guo J, Huang J, Guan W, Shi S, Zhou C, Chen R, Du B, Zhu L, Yang F, Fu X, Yuan L, He G. Lipidomic analyses reveal enhanced lipolysis in planthoppers feeding on resistant host plants. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1502-1521. [PMID: 33165813 DOI: 10.1007/s11427-020-1834-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/10/2020] [Indexed: 11/26/2022]
Abstract
The brown planthopper (BPH) (Nilaparvata lugens Stål) is a highly destructive pest that seriously damages rice (Oryza sativa L.) and causes severe yield losses. To better understand the physiological and metabolic mechanisms through which BPHs respond to resistant rice, we combined mass-spectrometry-based lipidomics with transcriptomic analysis and gene knockdown techniques to compare the lipidomes of BPHs feeding on either of the two resistant (NIL-Bph6 and NIL-Bph9) plants or a wild-type, BPH susceptible (9311) plant. Insects that were fed on resistant rice transformed triglyceride (TG) to phosphatidylcholine (PC) and digalactosyldiacylglycerol (DGDG), with these lipid classes showing significant alterations in fatty acid composition. Moreover, the insects that were fed on resistant rice were characterized by prominent expression changes in genes involved in lipid metabolism processes. Knockdown of the NlBmm gene, which encodes a lipase that regulates the mobilization of lipid reserves, significantly increased TG content and feeding performance of BPHs on resistant plants relative to dsGFP-injected BPHs. Our study provides the first detailed description of lipid changes in BPHs fed on resistant and susceptible rice genotypes. Results from BPHs fed on resistant rice plants reveal that these insects can accelerate TG mobilization to provide energy for cell proliferation, body maintenance, growth and oviposition.
Collapse
Affiliation(s)
- Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yeyun Xin
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yaxin Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junhan Shan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ning Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Di Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jin Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Guan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shaojie Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Cong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiqin Fu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Longping Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
22
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
23
|
Zheng H, Chen C, Liu C, Song Q, Zhou S. Rhythmic change of adipokinetic hormones diurnally regulates locust vitellogenesis and egg development. INSECT MOLECULAR BIOLOGY 2020; 29:283-292. [PMID: 31904153 DOI: 10.1111/imb.12633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Adipokinetic hormones (AKHs), the neurohormones synthesized in the insect corpora cardiaca are known to mobilize lipids and carbohydrates for energy-consuming activities including reproduction. However, both inhibitory and stimulatory effects of AKHs on insect reproduction have been reported, and the underlying mechanisms remain elusive. Using the migratory locust, Locusta migratoria, as a model system, we report here that AKHs are expressed in response to rhythmic diel change, and AKH III expression increases markedly at photophase. Diurnal injection of AKH III but not AKH I or AKH II in adult females stimulates vitellogenesis and egg development. In contrast, AKH treatment at scotophase represses female reproduction. RNA interference-mediated knockdown of AKH receptor (AKHR) results in significantly reduced vitellogenin (Vg) expression in the fat body at photophase along with reduced Vg deposition in the ovary. AKHR knockdown also leads to decreased expression of Brummer, triacylglycerol lipase and trehalose transporter, accompanied by suppressed mobilization of triacylglycerol and trehalose. We propose that in addition to stimulating Vg expression at photophase, AKH/AKHR signalling is likely to regulate ovarian uptake of Vg via triacylglycerol mobilization and trehalose homeostasis. This study provides new insights into the understanding of AKH/AKHR signalling in the regulation of insect reproduction.
Collapse
Affiliation(s)
- H Zheng
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - C Chen
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - C Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Q Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - S Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
24
|
Toprak U. The Role of Peptide Hormones in Insect Lipid Metabolism. Front Physiol 2020; 11:434. [PMID: 32457651 PMCID: PMC7221030 DOI: 10.3389/fphys.2020.00434] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Lipids are the primary storage molecules and an essential source of energy in insects during reproduction, prolonged periods of flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. The fat body is primarily composed of adipocytes, which accumulate triacylglycerols in intracellular lipid droplets. Genomics and proteomics, together with functional analyses, such as RNA interference and CRISPR/Cas9-targeted genome editing, identified various genes involved in lipid metabolism and elucidated their functions. However, the endocrine control of insect lipid metabolism, in particular the roles of peptide hormones in lipogenesis and lipolysis are relatively less-known topics. In the current review, the neuropeptides that directly or indirectly affect insect lipid metabolism are introduced. The primary lipolytic and lipogenic peptide hormones are adipokinetic hormone and the brain insulin-like peptides (ILP2, ILP3, ILP5). Other neuropeptides, such as insulin-growth factor ILP6, neuropeptide F, allatostatin-A, corazonin, leucokinin, tachykinins and limostatin, might stimulate lipolysis, while diapause hormone-pheromone biosynthesis activating neuropeptide, short neuropeptide F, CCHamide-2, and the cytokines Unpaired 1 and Unpaired 2 might induce lipogenesis. Most of these peptides interact with one another, but mostly with insulin signaling, and therefore affect lipid metabolism indirectly. Peptide hormones are also involved in lipid metabolism during reproduction, flight, diapause, starvation, infections and immunity; these are also highlighted. The review concludes with a discussion of the potential of lipid metabolism-related peptide hormones in pest management.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Lab., Department of Plant Protection Ankara, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
25
|
Gäde G, Šimek P, Marco HG. The Adipokinetic Peptides in Diptera: Structure, Function, and Evolutionary Trends. Front Endocrinol (Lausanne) 2020; 11:153. [PMID: 32296388 PMCID: PMC7136388 DOI: 10.3389/fendo.2020.00153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Nineteen species of various families of the order Diptera and one species from the order Mecoptera are investigated with mass spectrometry for the presence and primary structure of putative adipokinetic hormones (AKHs). Additionally, the peptide structure of putative AKHs in other Diptera are deduced from data mining of publicly available genomic or transcriptomic data. The study aims to demonstrate the structural biodiversity of AKHs in this insect order and also possible evolutionary trends. Sequence analysis of AKHs is achieved by liquid chromatography coupled to mass spectrometry. The corpora cardiaca of almost all dipteran species contain AKH octapeptides, a decapeptide is an exception found only in one species. In general, the dipteran AKHs are order-specific- they are not found in any other insect order with two exceptions only. Four novel AKHs are revealed by mass spectrometry: two in the basal infraorder of Tipulomorpha and two in the brachyceran family Syrphidae. Data mining revealed another four novel AKHs: one in various species of the infraorder Culicumorpha, one in the brachyceran superfamily Asiloidea, one in the family Diopsidae and in a Drosophilidae species, and the last of the novel AKHs is found in yet another Drosophila. In general, there is quite a biodiversity in the lower Diptera, whereas the majority of the cyclorraphan Brachycera produce the octapeptide Phote-HrTH. A hypothetical molecular peptide evolution of dipteran AKHs is suggested to start with an ancestral AKH, such as Glomo-AKH, from which all other AKHs in Diptera to date can evolve via point mutation of one of the base triplets, with one exception.
Collapse
Affiliation(s)
- Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Petr Šimek
- Biology Centre, Czech Academy of Sciences, Ceské Budejovice, Czechia
| | - Heather G. Marco
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
Li L, Gao X, Lan M, Yuan Y, Guo Z, Tang P, Li M, Liao X, Zhu J, Li Z, Ye M, Wu G. De novo transcriptome analysis and identification of genes associated with immunity, detoxification and energy metabolism from the fat body of the tephritid gall fly, Procecidochares utilis. PLoS One 2019; 14:e0226039. [PMID: 31846465 PMCID: PMC6917277 DOI: 10.1371/journal.pone.0226039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/19/2019] [Indexed: 01/13/2023] Open
Abstract
The fat body, a multifunctional organ analogous to the liver and fat tissue of vertebrates, plays an important role in insect life cycles. The fat body is involved in protein storage, energy metabolism, elimination of xenobiotics, and production of immunity regulator-like proteins. However, the molecular mechanism of the fat body's physiological functions in the tephritid stem gall-forming fly, Procecidochares utilis, are still unknown. In this study, we performed transcriptome analysis of the fat body of P. utilis using Illumina sequencing technology. In total, 3.71 G of clean reads were obtained and assembled into 30,559 unigenes, with an average length of 539 bp. Among those unigenes, 21,439 (70.16%) were annotated based on sequence similarity to proteins in NCBI's non-redundant protein sequence database (Nr). Sequences were also compared to NCBI's non-redundant nucleotide sequence database (Nt), a manually curated and reviewed protein sequence database (SwissProt), and KEGG and gene ontology annotations were applied to better understand the functions of these unigenes. A comparative analysis was performed to identify unigenes related to detoxification, immunity and energy metabolism. Many unigenes involved in detoxification were identified, including 50 unigenes of putative cytochrome P450s (P450s), 18 of glutathione S-transferases (GSTs), 35 of carboxylesterases (CarEs) and 26 of ATP-binding cassette (ABC) transporters. Many unigenes related to immunity were identified, including 17 putative serpin genes, five peptidoglycan recognition proteins (PGRPs) and four lysozyme genes. In addition, unigenes potentially involved in energy metabolism, including 18 lipase genes, five fatty acid synthase (FAS) genes and six elongases of very long chain fatty acid (ELOVL) genes, were identified. This transcriptome improves our genetic understanding of P. utilis and the identification of a numerous transcripts in the fat body of P. utilis offer a series of valuable molecular resources for future studies on the functions of these genes.
Collapse
Affiliation(s)
- Lifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Zijun Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Mengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xianbin Liao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Zhengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
27
|
Lu K, Wang Y, Chen X, Zhang X, Li W, Cheng Y, Li Y, Zhou J, You K, Song Y, Zhou Q, Zeng R. Adipokinetic Hormone Receptor Mediates Trehalose Homeostasis to Promote Vitellogenin Uptake by Oocytes in Nilaparvata lugens. Front Physiol 2019; 9:1904. [PMID: 30687120 PMCID: PMC6338042 DOI: 10.3389/fphys.2018.01904] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Adipokinetic hormones (AKHs) are well known to mobilize lipids and carbohydrates for energy-consuming activities in insects. These neuropeptides exert their functions by interacting with AKH receptors (AKHRs) located on the plasma membrane of fat body cells, which regulates energy mobilization by stimulating lipolysis of triacylglycerols (TAG) to diacylglycerols (DAG) and conversion of glycogen into trehalose. Here, we investigated the roles of AKH/AKHR signaling system in trehalose metabolism and vitellogenesis during female reproduction in the brown planthopper, Nilaparvata lugens. Knockdown of AKHR expression by RNA interference (RNAi) resulted in a decrease of the circulating trehalose in hemolymph and significantly increased levels of two trehalases in fat bodies, indicating that the modulation of hemolymph trehalose levels by AKHR may be mediated by regulating trehalose degradation. In addition, adult females that had been injected with double-stranded RNA (dsRNA) for AKHR exhibited delayed oocyte maturation, prolonged pre-oviposition period, as well as decline in egg number and reduction in fecundity. Considering that these phenotypes resulting from AKHR silencing are similar to those of vitellogenin receptor (VgR) RNAi, we further analyzed a possible connection between AKHR and vitellogenesis. Knockdown of AKHR showed no effects on the Vg synthesis in fat bodies, whereas it significantly reduced the levels of VgR in ovaries. With RNAi-females, we observed an increase of Vg accumulation in hemolymph and a decrease of Vg deposition in ovaries. Moreover, the decrease in VgR expression and Vg incorporation by developing oocytes could be partially rescued by injection of trehalose into AKHR RNAi females. The present study has implicated trehalose in the AKH/AKHR signaling-mediated control of reproduction and provided new insight into mechanisms of AKH/AKHR regulation of trehalose metabolism in insect vitellogenesis, oocyte maturation and fecundity.
Collapse
Affiliation(s)
- Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xia Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yibei Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinming Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keke You
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Song
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rensen Zeng
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
28
|
Marco HG, Gäde G. Five Neuropeptide Ligands Meet One Receptor: How Does This Tally? A Structure-Activity Relationship Study Using Adipokinetic Bioassays With the Sphingid Moth, Hippotion eson. Front Endocrinol (Lausanne) 2019; 10:231. [PMID: 31031708 PMCID: PMC6473027 DOI: 10.3389/fendo.2019.00231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Adipokinetic hormones (AKHs) play a major role in mobilizing stored energy metabolites during energetic demand in insects. We showed previously (i) the sphingid moth Hippotion eson synthesizes the highest number of AKHs ever recorded, viz. five, in its corpus cardiacum: two octa- (Hipes-AKH-I and II), two nona- (Hipes-AKH-III and Manse-AKH), and one decapeptide (Manse-AKH-II), which are all active in lipid mobilization (1). (ii) Lacol-AKH from a noctuid moth showed maximal AKH activity in H. eson despite sequence differences and analogs based on Lacol-AKH with modifications at positions 2, 3, 8, or at the termini, as well as C-terminally shortened analogs had reduced or no activity (2). Here we report on N-terminally shortened and modified analogs of the lead peptide, as well as single amino acid substitutions at positions 1, 4, 5, 6, and 7 by an alanine residue. Ala1 and Glu1 instead of pGlu are not tolerated well to bind to the H. eson AKH receptor, whereas Gln1 has high activity, suggesting it is endogenously cyclized. Replacing residue 5 or 7 with Ala did not alter activity much, in contrast with changes at position 4 or 6. Similarly, eliminating pGlu1, Leu2, or Thr3 from Lacol-AKH severely interfered with biological activity. This indicates that there is no core peptide sequence that can elicit the adipokinetic effect and that the overall conformation of the active peptide is required for a physiological response. AKHs achieve a biological action through binding to a receptor located on fat body cells. To date, one AKH receptor has been identified in any given insect species; we infer the same for H. eson. We aligned lepidopteran AKH receptor sequences and note that these are very similar. The results of our study is, therefore, also applicable to ligand-receptor interaction of other lepidopteran species. This information is important for the consideration of peptide mimetics to combat lepidopteran pest insects.
Collapse
|
29
|
Lu K, Zhang X, Chen X, Li Y, Li W, Cheng Y, Zhou J, You K, Zhou Q. Adipokinetic Hormone Receptor Mediates Lipid Mobilization to Regulate Starvation Resistance in the Brown Planthopper, Nilaparvata lugens. Front Physiol 2018; 9:1730. [PMID: 30555355 PMCID: PMC6281999 DOI: 10.3389/fphys.2018.01730] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Lipid storage must be efficiently mobilized to sustain the energy demands during processes of exercise or starvation. In insects, adipokinetic hormone (AKH) and brummer lipase are well-known regulators of lipid mobilization. We recently demonstrated that brummer-dependent lipolysis regulates starvation resistance in the brown planthopper, Nilaparvata lugens, one of the most destructive rice pests. The present work investigated the roles of the AKH signaling system in lipid mobilization during the starvation process in N. lugens. NlAKHR is a typical G protein-coupled receptor (GPCR) and possesses high structure and sequence similarity to other insect AKHRs. Spatial and developmental expression profiles suggested that NlAKH is released from the corpora cardiaca to activate NlAKHR mainly expressed in the fat body. Starvation significantly induced the expression of NlAKH and NlAKHR, indicating a potential role of the AKH signaling system in starvation resistance. To reveal the functions of the AKH signaling system, a double-stranded RNA (dsRNA)-mediated knockdown of NlAKHR and NlAKH peptide injection was performed. The results show NlAKHR silencing decreased the levels of 1,2-diacylglycerol (DAG) in the hemolymph and increased triacylglycerol (TAG) levels in the fat body, whereas NlAKH injection led to a critical accumulation of DAG in the hemolymph and a severe reduction of TAG content in the fat body. Knockdown of NlAKHR resulted in prolonged lifespan and high levels of whole-body TAG, indicating an inability to mobilize TAG reserves during starvation. Conversely, the NlAKH injection reduced the survival and accelerated TAG mobilization during starvation, which further confirms the role of NlAKH in lipolysis. Moreover, NlAKHR silencing caused obesity in N. lugens, whereas NlAKH injection depleted organismal TAG reserves in vivo and produced a slim phenotype. These results indicate that lipid mobilization is regulated by the AKH signaling system, which is essential for adjusting body lipid homeostasis and ensuring energy supplement during starvation in N. lugens.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xia Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yibei Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinming Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keke You
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Procházka E, Michalková V, Daubnerová I, Roller L, Klepsatel P, Žitňan D, Tsiamis G, Takáč P. Gene expression in reproductive organs of tsetse females - initial data in an approach to reduce fecundity. BMC Microbiol 2018; 18:144. [PMID: 30470199 PMCID: PMC6251150 DOI: 10.1186/s12866-018-1294-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Tsetse flies are vectors of African trypanosomes, and their vectorial capacity results in a major public health emergency and vast economic losses in sub-Saharan Africa. Given the limited ability of trypanosome prevention and eradication, tsetse vectors remain major targets of control efforts. Larvae of all three instars are developed in mothers' uteri, nourished through milk, and 'larviposited' shortly before pupation. The past few years have witnessed the emergence of approaches based on knockdown of genes involved in milk production, resulting in a significant reduction of fecundity. RESULTS In order to identify further genes applicable in the control of tsetse flies, we determined the expression of protein-coding genes in ovaries and uteri from both virgin and heavily pregnant Glossina morsitans morsitans females. Comparison of expression profiles allowed us to identify candidate genes with increased expression in pregnant individuals. Lists with the highest increases include genes involved in oocyte and embryonic development, or nourishment. Maximum ovarian fold change does not exceed 700, while the highest uterine fold change reaches to more than 4000. Relatively high fold changes of two neuropeptide receptors (for corazonin and myosuppressin) propose the corresponding genes alternative targets. CONCLUSIONS Given the higher fold changes in the uterus, targeting gene expression in this tissue may result in a more evident reduction of fecundity. However, ovaries should not be neglected, as manifested by several genes with top fold changes involved in early developmental stages. Apart from focusing on the highest fold changes, neuropeptide receptors with moderate increases in expression should be also verified as targets, given their roles in mediating the tissue control. However, this data needs to be considered initial, and the potential of these genes in affecting female fecundity needs to be verified experimentally.
Collapse
Affiliation(s)
- Emanuel Procházka
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Veronika Michalková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, 2 Georgiou Seferi St, Agrinio, Greece
| | - Peter Takáč
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia. .,Scientica, Ltd., Hybešova 33, 831 06, Bratislava, Slovakia.
| |
Collapse
|
31
|
Lu K, Zhou J, Chen X, Li W, Li Y, Cheng Y, Yan J, You K, Yuan Z, Zhou Q. Deficiency of Brummer Impaires Lipid Mobilization and JH-Mediated Vitellogenesis in the Brown Planthopper, Nilaparvata lugens. Front Physiol 2018; 9:1535. [PMID: 30425657 PMCID: PMC6218678 DOI: 10.3389/fphys.2018.01535] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/11/2018] [Indexed: 01/23/2023] Open
Abstract
Provisioning of sufficient lipids and vitellogenin to the oocytes is an indispensable process for fecundity of oviparous insects. Acute mobilization of lipid reserves in insects is controlled by the Brummer (Bmm), an orthologous of human adipose triglyceride lipase (ATGL). To investigate the functional roles of brummer-mediated lipolysis in the fecundity of the brown planthopper, Nilaparvata lugens, RNA interference (RNAi) analyses were performed with double-stranded RNA (dsRNA) against NlBmm in adult females. Knockdown of NlBmm expression resulted in obesity and blocked lipid mobilization in the fat body. In addition, NlBmm silencing led to retarded ovarian development with immature eggs and less ovarioles, decreased number of laid eggs, prolonged preoviposition period and egg duration. Furthermore, severe reductions of vitellogenin and its receptor abundance were observed upon NlBmm knockdown. The transcript levels of NlJHE (juvenile hormone esterase) which degrades JH were up-regulated, whereas the expression levels of JH receptors NlMet (Methoprene-tolerant) and NlTai (Taiman) and their downstream transcription factors NlKr-h1 (Krüppel-homolog 1) and NlBr (Broad-Complex) were down-regulated after suppression of NlBmm. JH-deficient females exhibited impaired vitellogenin expression, whereas JH exposure stimulated vitellogenin biosynthesis. Moreover, JH topical application partially rescued the decrease in vitellogenin expression in the NlBmm-deficient females. These results demonstrate that brummer-mediated lipolytic system is essential for lipid mobilization and energy homeostasis during reproduction in N. lugens. In addition to the classical view of brummer as a direct lipase with lipolysis activity, we propose here that brummer-mediated lipolysis works through JH signaling pathway to activate vitellogenesis and oocyte maturation that in turn regulates female fecundity.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinming Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xia Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yibei Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Yan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keke You
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhineng Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Zhou J, Chen X, Yan J, You K, Yuan Z, Zhou Q, Lu K. Brummer-dependent lipid mobilization regulates starvation resistance in Nilaparvata lugens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21481. [PMID: 29956367 DOI: 10.1002/arch.21481] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Energy homeostasis is an essential characteristic of all organisms, requiring fluctuation in energy accumulation, mobilization, and exchange with the external environment. In insects, energy mobilization is under control of the lipase brummer (bmm), which regulates nutritional status by hydrolyzing the ester bonds in triacylglycerol (TAG). In the present study, we investigated the role of bmm in the lipid mobilization and starvation resistance in the brown planthopper (BPH; Nilaparvata lugens), which is economically one of the most important rice pests in Asia. A severe decrease in TAG and glyceride contents was observed in the starved BPHs, while there was a partial rescue after refeeding. The starvation condition caused a significant increase in the expression levels of Nlbmm, and supplement of food after starvation dramatically reduced the Nlbmm expression. Sucrose rescue after starvation significantly suppressed the expression of Nlbmm, while caused an accumulation of TAG and glyceride. Knockdown of Nlbmm by double-stranded RNA treatment extended the lifespan to starvation, whereas it increased the level of TAG and glyceride in the BPHs. The decreased lipolysis rate by dsNlbmm-treated BPHs eventually resulted in increase of starvation resistance. These data demonstrated that the regulation of energy homeostasis by Nlbmm affects starvation resistance, probably through lipid mobilization control in N. lugens.
Collapse
Affiliation(s)
- Jinming Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xia Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Jing Yan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Keke You
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhineng Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Kai Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| |
Collapse
|
33
|
Gondim KC, Atella GC, Pontes EG, Majerowicz D. Lipid metabolism in insect disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:108-123. [PMID: 30171905 DOI: 10.1016/j.ibmb.2018.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
More than a third of the world population is at constant risk of contracting some insect-transmitted disease, such as Dengue fever, Zika virus disease, malaria, Chagas' disease, African trypanosomiasis, and others. Independent of the life cycle of the pathogen causing the disease, the insect vector hematophagous habit is a common and crucial trait for the transmission of all these diseases. This lifestyle is unique, as hematophagous insects feed on blood, a diet that is rich in protein but relatively poor in lipids and carbohydrates, in huge amounts and low frequency. Another unique feature of these insects is that blood meal triggers essential metabolic processes, as molting and oogenesis and, in this way, regulates the expression of various genes that are involved in these events. In this paper, we review current knowledge of the physiology and biochemistry of lipid metabolism in insect disease vectors, comparing with classical models whenever possible. We address lipid digestion and absorption, hemolymphatic transport, and lipid storage by the fat body and ovary. In this context, both de novo fatty acid and triacylglycerol synthesis are discussed, including the related fatty acid activation process and the intracellular lipid binding proteins. As lipids are stored in order to be mobilized later on, e.g. for flight activity or survivorship, lipolysis and β-oxidation are also considered. All these events need to be finely regulated, and the role of hormones in this control is summarized. Finally, we also review information about infection, when vector insect physiology is affected, and there is a crosstalk between its immune system and lipid metabolism. There is not abundant information about lipid metabolism in vector insects, and significant current gaps in the field are indicated, as well as questions to be answered in the future.
Collapse
Affiliation(s)
- Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emerson G Pontes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
34
|
Zhou J, Yan J, You K, Chen X, Yuan Z, Zhou Q, Lu K. Characterization of a Nilaparvata lugens (Stål) brummer gene and analysis of its role in lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21442. [PMID: 29230863 DOI: 10.1002/arch.21442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The brummer (bmm) genes encode the lipid storage droplet-associated triacylglycerols (TAG) lipases, which belong to the Brummer/Nutrin subfamily. These enzymes hydrolyze the ester bonds in TAG in lipid metabolism and act in insect energy homeostasis. Exposure to some agricultural chemicals leads to increased fecundity, which necessarily involves lipid metabolism, in some planthopper species. However, the biological roles of bmm in planthopper lipid storage and mobilization have not been investigated. Here, the open reading frame (ORF) of bmm (Nlbmm) was cloned and sequenced from the brown planthopper (BPH; Nilaparvata lugens). The ORF is 1014 bp encoding 338 amino acid residues. Nlbmm contained patatin domains and shared considerable evolutionary conservation with other insect bmms. Nlbmm is highly expressed in the fat body, consistent with its roles in lipid metabolism. Injection with Nlbmm double-stranded RNA (dsNlbmm) led to reduced Nlbmm mRNA accumulation, but did not influence expression of several genes related to lipid synthesis including acyl-CoA-binding protein (ACBP), acetyl-CoA carboxylase (ACC), and a lipophorin receptor (LpR). Nlbmm knockdown led to increased TAG contents in whole bodies, accumulation of total fat body lipid, and decreased hemolymph lipid content. Nlbmm knockdown did not influence the synthesis and distribution of glycerol. We infer that Nlbmm acts in TAG breakdown and fat metabolism in N. lugens.
Collapse
Affiliation(s)
- Jinming Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jing Yan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Keke You
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xia Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Zhineng Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Kai Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| |
Collapse
|
35
|
Molecular identification, transcript expression, and functional deorphanization of the adipokinetic hormone/corazonin-related peptide receptor in the disease vector, Aedes aegypti. Sci Rep 2018; 8:2146. [PMID: 29391531 PMCID: PMC5794978 DOI: 10.1038/s41598-018-20517-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/19/2018] [Indexed: 02/01/2023] Open
Abstract
The recently discovered adipokinetic hormone/corazonin-related peptide (ACP) is an insect neuropeptide structurally intermediate between corazonin (CRZ) and adipokinetic (AKH) hormones, which all demonstrate homology to the vertebrate gonadotropin-releasing hormone (GnRH). To date, the function of the ACP signaling system remains unclear. In the present study, we molecularly identified the complete open reading frame encoding the Aedes aegypti ACP receptor (ACPR), which spans nine exons and undergoes alternative splicing giving rise to three transcript variants. Only a single variant, AedaeACPR-I, yielding a deduced 577 residue protein, contains all seven transmembrane domains characteristic of rhodopsin-like G protein-coupled receptors. Functional deorphanization of AedaeACPR-I using a heterologous cell culture-based system revealed highly-selective and dose-dependent receptor activation by AedaeACP (EC50 = 10.25 nM). Analysis of the AedaeACPR-I and AedaeACP transcript levels in all post-embryonic developmental stages using quantitative RT-PCR identified enrichment of both transcripts after adult eclosion. Tissue-specific expression profiling in adult mosquitoes reveals expression of the AedaeACPR-I receptor transcript in the central nervous system, including significant enrichment within the abdominal ganglia. Further, the AedaeACP transcript is prominently detected within the brain and thoracic ganglia. Collectively, these results indicate a neuromodulator or neurotransmitter role for ACP and suggest this neuropeptide may function in regulation of post-ecdysis activities.
Collapse
|
36
|
Benoit JB, Michalkova V, Didion EM, Xiao Y, Baumann AA, Attardo GM, Aksoy S. Rapid autophagic regression of the milk gland during involution is critical for maximizing tsetse viviparous reproductive output. PLoS Negl Trop Dis 2018; 12:e0006204. [PMID: 29385123 PMCID: PMC5809099 DOI: 10.1371/journal.pntd.0006204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/12/2018] [Accepted: 01/02/2018] [Indexed: 12/03/2022] Open
Abstract
Tsetse flies are important vectors of human and animal trypanosomiasis. Ability to reduce tsetse populations is an effective means of disease control. Lactation is an essential component of tsetse’s viviparous reproductive physiology and requires a dramatic increase in the expression and synthesis of milk proteins by the milk gland organ in order to nurture larval growth. In between each gonotrophic cycle, tsetse ceases milk production and milk gland tubules undergo a nearly two-fold reduction in width (involution). In this study, we examined the role autophagy plays during tsetse fly milk gland involution and reproductive output. Autophagy genes show elevated expression in tissues associated with lactation, immediately before or within two hours post-parturition, and decline at 24-48h post-parturition. This expression pattern is inversely correlated with that of the milk gland proteins (lactation-specific protein coding genes) and the autophagy inhibitor fk506-bp1. Increased expression of Drosophila inhibitor of apoptosis 1, diap1, was also observed in the milk gland during involution, when it likely prevents apoptosis of milk gland cells. RNAi-mediated knockdown of autophagy related gene 8a (atg8a) prevented rapid milk gland autophagy during involution, prolonging gestation, and reducing fecundity in the subsequent gonotrophic cycle. The resultant inhibition of autophagy reduced the recovery of stored lipids during the dry (non-lactating) periods by 15–20%. Ecdysone application, similar to levels that occur immediately before birth, induced autophagy, and increased milk gland involution even before abortion. This suggests that the ecdysteroid peak immediately preceding parturition likely triggers milk gland autophagy. Population modeling reveals that a delay in involution would yield a negative population growth rate. This study indicates that milk gland autophagy during involution is critical to restore nutrient reserves and allow efficient transition between pregnancy cycles. Targeting post-birth phases of reproduction could be utilized as a novel mechanism to suppress tsetse populations and reduce trypanosomiasis. Tsetse flies are vectors for trypanosomes that cause both African sleeping sickness in humans and Nagana in animals. The reduction of tsetse populations is the most efficient way to reduce the prevalence of this economically important disease with current control methods including pesticide application, traps, and sterile insect techniques. Tsetse pregnancy and milk production represent a species-specific target for population control and milk gland transition during each larval growth cycle could represent a novel target for tsetse control. Within one day after birth, the milk gland organ, essential for provisioning nutrients to the intrauterine larva, undergoes involution marked by an ecdysone driven increase in autophagy that allows breakdown of this gland. Inhibiting the process of autophagy prevents the timely transition from the lactation phase to the dry phase, triggering a delay in subsequent pregnancy cycle. This misregulation of milk gland involution leads to an overall decrease in the number of offspring that each female can produce per lifetime. This study has determined the molecular components of this process, and reveals new targets of interference for vector control.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States.,Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States.,Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Biological Sciences, Florida International University, Miami, Florida, United States
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States
| | - Yanyu Xiao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, United States
| | - Aaron A Baumann
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States
| | - Geoffrey M Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States.,Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States
| |
Collapse
|
37
|
Hou QL, Chen EH, Jiang HB, Wei DD, Gui SH, Wang JJ, Smagghe G. Adipokinetic hormone receptor gene identification and its role in triacylglycerol mobilization and sexual behavior in the oriental fruit fly (Bactrocera dorsalis). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:1-13. [PMID: 28919559 DOI: 10.1016/j.ibmb.2017.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/11/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Energy homeostasis requires continuous compensation for fluctuations in energy expenditure and availability of food resources. In insects, energy mobilization is under control of the adipokinetic hormone (AKH) where it is regulating the nutritional status by supporting the mobilization of lipids. In this study, we characterized the gene coding for the AKH receptor (AKHR) and investigated its function in the oriental fruit fly (Bactrocera dorsalis) that is economically one of the most important pest insects of tropical and subtropical fruit. Bacdo-AKHR is a typical G protein-coupled receptor (GPCR) and phylogenetic analysis confirmed that Bacdo-AKHR is closely related to insect AKHRs from other species. When expressed in Chinese hamster ovary (CHO) cells, Bacdo-AKHR exhibited a high sensitivity and selectivity for AKH peptide (EC50 = 19.3 nM). Using qPCR, the developmental stage and tissue-specific expression profiles demonstrated that Bacdo-AKHR was highly expressed in both the larval and adult stages, and also specifically in the fat body and midgut of the adult with no difference in sex. To investigate the role of AKHR in B. dorsalis, RNAi assays were performed with dsRNA against Bacdo-AKHR in adult flies of both sexes and under starvation and feeding condition. As major results, the knockdown of this gene resulted in triacylglycerol (TAG) accumulation. With RNAi-males, we observed a severe decrease in their sexual courtship activity when starved, but there was a partial rescue in copulation when refed. Also in RNAi-males, the tethered-flight duration declined compared with the control group when starved, which is confirming the dependency on energy metabolism. In RNAi-females, the sexual behavior was not affected, but their fecundity was decreased. Our findings indicate an interesting role of AKHR in the sexual behavior of males specifically. The effects are associated with TAG accumulation, and we also reported that the conserved role of AKH-mediated system in B. dorsalis is nutritional state-dependent. Hence, we provided further understanding on the multiple functions of AKH/AKHR in B. dorsalis.
Collapse
Affiliation(s)
- Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Shun-Hua Gui
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China.
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China; Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
38
|
Mamta B, Rajam MV. RNAi technology: a new platform for crop pest control. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:487-501. [PMID: 28878489 PMCID: PMC5567704 DOI: 10.1007/s12298-017-0443-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 05/15/2023]
Abstract
The insect pests are big threat in meeting the food demands for future generation. The present pest control strategies, including the existing transgenic approaches show certain limitations and are not completely successful in limiting the insect pests. However, the sequence-specific gene silencing via RNA interference (RNAi) holds a great promise for effective management of agricultural pests. RNAi is naturally occurring conserved process responsible for gene regulation and defense against pathogens. The efficacy of RNAi varies among different insect orders and also depends upon various factors, including the target gene selection, method of dsRNAs delivery, expression of dsRNAs and presence of off-target effects. RNAi-mediated silencing of different insect genes involved in various physiological processes was found to be detrimental to insects growth, development and survival. In this article, we have reviewed the potential of RNAi-based strategies for effective management of insect pests. We have also discussed the various parameters, which are to be considered for host-induced RNAi-mediated control of insect pests without producing any effect on non-target organisms and environment.
Collapse
Affiliation(s)
- B. Mamta
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021 India
| | - M. V. Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021 India
| |
Collapse
|
39
|
Bil M, Timmermans I, Verlinden H, Huybrechts R. Characterization of the adipokinetic hormone receptor of the anautogenous flesh fly, Sarcophaga crassipalpis. JOURNAL OF INSECT PHYSIOLOGY 2016; 89:52-59. [PMID: 27063262 DOI: 10.1016/j.jinsphys.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Adipokinetic hormone (AKH) is an insect neuropeptide mainly involved in fat body energy mobilization. In flies (Phormia regina, Sarcophaga crassipalpis), bugs (Pyrrhocoris apterus) and cockroaches (Periplaneta americana) AKH was also demonstrated to be involved in the regulation of digestion. This makes AKH an important peptide for anautogenous female flies that need to feed on a supplementary protein meal to initiate vitellogenesis, the large scale synthesis of yolk proteins and their uptake by the developing oocytes. Flesh fly AKH, originally identified as Phormia terraenovae hypertrehalosemic hormone (PhoteHrTH), functions through activation of the AKH receptor (AKHR). This is a G protein-coupled receptor that is the orthologue of the human gonadotropin-releasing hormone receptor. Pharmacological characterization indicated that the receptor can be activated by two related dipteran AKH ligands with an EC50 value in the low nanomolar range, whereas micromolar concentrations of the Tribolium castaneum AKH were needed. Consistent with the energy mobilizing function of AKH, the receptor transcript levels were most abundant in the fat body tissue. Nonetheless, Sarcophaga crassipalpis AKHR transcript levels were also high in the brain, the foregut and the hindgut. Interestingly, the receptor transcript numbers were reduced in almost all measured tissues after protein feeding. These changes may enforce the use of ingested energy carrying molecules prior to stored energy mobilization.
Collapse
Affiliation(s)
- Magdalena Bil
- Research Group of Insect Physiology and Molecular Ethology, KU Leuven, Naamsestraat 59, B-3000, Belgium
| | - Iris Timmermans
- Research Group of Insect Physiology and Molecular Ethology, KU Leuven, Naamsestraat 59, B-3000, Belgium
| | - Heleen Verlinden
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, B-3000, Belgium
| | - Roger Huybrechts
- Research Group of Insect Physiology and Molecular Ethology, KU Leuven, Naamsestraat 59, B-3000, Belgium.
| |
Collapse
|
40
|
Caers J, Janssen T, Van Rompay L, Broeckx V, Van Den Abbeele J, Gäde G, Schoofs L, Beets I. Characterization and pharmacological analysis of two adipokinetic hormone receptor variants of the tsetse fly, Glossina morsitans morsitans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:73-84. [PMID: 26690928 DOI: 10.1016/j.ibmb.2015.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/05/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Adipokinetic hormones (AKH) are well known regulators of energy metabolism in insects. These neuropeptides are produced in the corpora cardiaca and perform their hormonal function by interacting with specific G protein-coupled receptors (GPCRs) at the cell membranes of target tissues, mainly the fat body. Here, we investigated the sequences, spatial and temporal distributions, and pharmacology of AKH neuropeptides and receptors in the tsetse fly, Glossina morsitans morsitans. The open reading frames of two splice variants of the Glomo-akh receptor (Glomo-akhr) gene and of the AKH neuropeptide encoding genes, gmmhrth and gmmakh, were cloned. Both tsetse AKHR isoforms show strong sequence conservation when compared to other insect AKHRs. Glomo-AKH prepropeptides also have the typical architecture of AKH precursors. In an in vitro Ca(2+) mobilization assay, Glomo-AKH neuropeptides activated each receptor isoform up to nanomolar concentrations. We identified structural features of tsetse AKH neuropeptides essential for receptor activation in vitro. Gene expression profiles suggest a function for AKH signaling in regulating Glossina energy metabolism, where AKH peptides are released from the corpora cardiaca and activate receptors mainly expressed in the fat body. This analysis of the ligand-receptor coupling, expression, and pharmacology of the two Glomo-AKHR variants facilitates further elucidation of the function of AKH in G. m. morsitans.
Collapse
Affiliation(s)
- Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Tom Janssen
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Valérie Broeckx
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerpen, Belgium; Laboratory of Zoophysiology, Department of Physiology, University of Ghent, Krijgslaan 281, 9000, Ghent, Belgium.
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Private Bag, 7701, Rondebosch, South Africa.
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Isabel Beets
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| |
Collapse
|
41
|
Alves-Bezerra M, De Paula IF, Medina JM, Silva-Oliveira G, Medeiros JS, Gäde G, Gondim KC. Adipokinetic hormone receptor gene identification and its role in triacylglycerol metabolism in the blood-sucking insect Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 69:51-60. [PMID: 26163435 DOI: 10.1016/j.ibmb.2015.06.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Adipokinetic hormone (AKH) has been associated with the control of energy metabolism in a large number of arthropod species due to its role on the stimulation of lipid, carbohydrate and amino acid mobilization/release. In the insect Rhodnius prolixus, a vector of Chagas' disease, triacylglycerol (TAG) stores must be mobilized to sustain the metabolic requirements during moments of exercise or starvation. Besides the recent identification of the R. prolixus AKH peptide, other components required for the AKH signaling cascade and its mode of action remain uncharacterized in this insect. In the present study, we identified and investigated the expression profile of the gene encoding the AKH receptor of R. prolixus (RhoprAkhr). This gene is highly conserved in comparison to other sequences already described and its transcript is abundant in the fat body and the flight muscle of the kissing bug. Moreover, RhoprAkhr expression is induced in the fat body at moments of increased TAG mobilization; the knockdown of this gene resulted in TAG accumulation both in fat body and flight muscle after starvation. The inhibition of Rhopr-AKHR transcription as well as the treatment of insects with the peptide Rhopr-AKH in its synthetic form altered the transcript levels of two genes involved in lipid metabolism, the acyl-CoA-binding protein-1 (RhoprAcbp1) and the mitochondrial glycerol-3-phosphate acyltransferase-1 (RhoprGpat1). These results indicate that the AKH receptor is regulated at transcriptional level and is required for TAG mobilization under starvation. In addition to the classical view of AKH as a direct regulator of enzymatic activity, we propose here that AKH signaling may account for the regulation of nutrient metabolism by affecting the expression profile of target genes.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iron F De Paula
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge M Medina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gleidson Silva-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonas S Medeiros
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, John Day Building, Rondebosch ZA-7701, South Africa
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
42
|
Insecticide Resistance and Management Strategies in Urban Ecosystems. INSECTS 2016; 7:insects7010002. [PMID: 26751480 PMCID: PMC4808782 DOI: 10.3390/insects7010002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 01/02/2023]
Abstract
The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM) strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to minimize inadvertent exposures to insecticides in the urban environment. Development of insecticide resistance management (IRM) strategies in urban ecosystems involves understanding the status and mechanisms of insecticide resistance and reducing insecticide selection pressure by combining multiple chemical and non-chemical approaches. In this review, we will focus on the commonly used insecticides and molecular and physiological mechanisms underlying insecticide resistance in six major urban insect pests: house fly, German cockroach, mosquitoes, red flour beetle, bed bugs and head louse. We will also discuss several strategies that may prove promising for future urban IPM programs.
Collapse
|
43
|
Caers J, Boonen K, Van Den Abbeele J, Van Rompay L, Schoofs L, Van Hiel MB. Peptidomics of Neuropeptidergic Tissues of the Tsetse Fly Glossina morsitans morsitans. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2024-2038. [PMID: 26463237 DOI: 10.1007/s13361-015-1248-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Neuropeptides and peptide hormones are essential signaling molecules that regulate nearly all physiological processes. The recent release of the tsetse fly genome allowed the construction of a detailed in silico neuropeptide database (International Glossina Genome Consortium, Science 344, 380-386 (2014)), as well as an in-depth mass spectrometric analysis of the most important neuropeptidergic tissues of this medically and economically important insect species. Mass spectrometric confirmation of predicted peptides is a vital step in the functional characterization of neuropeptides, as in vivo peptides can be modified, cleaved, or even mispredicted. Using a nanoscale reversed phase liquid chromatography coupled to a Q Exactive Orbitrap mass spectrometer, we detected 51 putative bioactive neuropeptides encoded by 19 precursors: adipokinetic hormone (AKH) I and II, allatostatin A and B, capability/pyrokinin (capa/PK), corazonin, calcitonin-like diuretic hormone (CT/DH), FMRFamide, hugin, leucokinin, myosuppressin, natalisin, neuropeptide-like precursor (NPLP) 1, orcokinin, pigment dispersing factor (PDF), RYamide, SIFamide, short neuropeptide F (sNPF) and tachykinin. In addition, propeptides, truncated and spacer peptides derived from seven additional precursors were found, and include the precursors of allatostatin C, crustacean cardioactive peptide, corticotropin releasing factor-like diuretic hormone (CRF/DH), ecdysis triggering hormone (ETH), ion transport peptide (ITP), neuropeptide F, and proctolin, respectively. The majority of the identified neuropeptides are present in the central nervous system, with only a limited number of peptides in the corpora cardiaca-corpora allata and midgut. Owing to the large number of identified peptides, this study can be used as a reference for comparative studies in other insects. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Kurt Boonen
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
- Laboratory of Zoophysiology, Department of Physiology, University of Ghent, 9000, Ghent, Belgium
| | - Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| | - Matthias B Van Hiel
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
44
|
Zhao X, Silva TLAE, Cronin L, Savage AF, O’Neill M, Nerima B, Okedi LM, Aksoy S. Immunogenicity and Serological Cross-Reactivity of Saliva Proteins among Different Tsetse Species. PLoS Negl Trop Dis 2015; 9:e0004038. [PMID: 26313460 PMCID: PMC4551805 DOI: 10.1371/journal.pntd.0004038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/05/2015] [Indexed: 12/17/2022] Open
Abstract
Tsetse are vectors of pathogenic trypanosomes, agents of human and animal trypanosomiasis in Africa. Components of tsetse saliva (sialome) are introduced into the mammalian host bite site during the blood feeding process and are important for tsetse’s ability to feed efficiently, but can also influence disease transmission and serve as biomarkers for host exposure. We compared the sialome components from four tsetse species in two subgenera: subgenus Morsitans: Glossina morsitans morsitans (Gmm) and Glossina pallidipes (Gpd), and subgenus Palpalis: Glossina palpalis gambiensis (Gpg) and Glossina fuscipes fuscipes (Gff), and evaluated their immunogenicity and serological cross reactivity by an immunoblot approach utilizing antibodies from experimental mice challenged with uninfected flies. The protein and immune profiles of sialome components varied with fly species in the same subgenus displaying greater similarity and cross reactivity. Sera obtained from cattle from disease endemic areas of Africa displayed an immunogenicity profile reflective of tsetse species distribution. We analyzed the sialome fractions of Gmm by LC-MS/MS, and identified TAg5, Tsal1/Tsal2, and Sgp3 as major immunogenic proteins, and the 5'-nucleotidase family as well as four members of the Adenosine Deaminase Growth Factor (ADGF) family as the major non-immunogenic proteins. Within the ADGF family, we identified four closely related proteins (TSGF-1, TSGF-2, ADGF-3 and ADGF-4), all of which are expressed in tsetse salivary glands. We describe the tsetse species-specific expression profiles and genomic localization of these proteins. Using a passive-immunity approach, we evaluated the effects of rec-TSGF (TSGF-1 and TSGF-2) polyclonal antibodies on tsetse fitness parameters. Limited exposure of tsetse to mice with circulating anti-TSGF antibodies resulted in a slight detriment to their blood feeding ability as reflected by compromised digestion, lower weight gain and less total lipid reserves although these results were not statistically significant. Long-term exposure studies of tsetse flies to antibodies corresponding to the ADGF family of proteins are warranted to evaluate the role of this conserved family in fly biology. Insect saliva contains many proteins that are injected into the mammalian host during the blood feeding process. Saliva proteins enhance the blood feeding ability of insects, but they can also induce mammalian immune responses that inhibit successful feeding, or modulate the bite site to benefit pathogen transmission. Here we studied saliva from four different tsetse species that belong to two distant species groups. We show that the saliva protein profiles of different species groups vary. Experimental mice subjected to fly bites display varying immunological responses against the abundant saliva proteins and the antigenicity of the shared saliva proteins in different tsetse species differs. We show that one member of the ADGF family with adenosine deaminase motifs, TSGF-2, is non-immunogenic in Glossina morsitans in mice, while the same protein from Glossina fuscipes is highly immunogenic. Such species-specific immune responses could be exploited as biomarkers of host exposures in the field. We also show that short-term exposure of G. morsitans to mice passively immunized by anti-TSGF antibodies leads to slight but not statistically significant negative fitness effects. Thus, future investigations with non-antigenic saliva proteins are warranted as they can lead to novel mammalian vaccine targets to reduce tsetse populations in the field.
Collapse
Affiliation(s)
- Xin Zhao
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Thiago Luiz Alves e Silva
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Laura Cronin
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Amy F. Savage
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Michelle O’Neill
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | | | | | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
45
|
Energy Homeostasis Control in Drosophila Adipokinetic Hormone Mutants. Genetics 2015; 201:665-83. [PMID: 26275422 DOI: 10.1534/genetics.115.178897] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
Maintenance of biological functions under negative energy balance depends on mobilization of storage lipids and carbohydrates in animals. In mammals, glucagon and glucocorticoid signaling mobilizes energy reserves, whereas adipokinetic hormones (AKHs) play a homologous role in insects. Numerous studies based on AKH injections and correlative studies in a broad range of insect species established the view that AKH acts as master regulator of energy mobilization during development, reproduction, and stress. In contrast to AKH, the second peptide, which is processed from the Akh encoded prohormone [termed "adipokinetic hormone precursor-related peptide" (APRP)] is functionally orphan. APRP is discussed as ecdysiotropic hormone or as scaffold peptide during AKH prohormone processing. However, as in the case of AKH, final evidence for APRP functions requires genetic mutant analysis. Here we employed CRISPR/Cas9-mediated genome engineering to create AKH and AKH plus APRP-specific mutants in the model insect Drosophila melanogaster. Lack of APRP did not affect any of the tested steroid-dependent processes. Similarly, Drosophila AKH signaling is dispensable for ontogenesis, locomotion, oogenesis, and homeostasis of lipid or carbohydrate storage until up to the end of metamorphosis. During adulthood, however, AKH regulates body fat content and the hemolymph sugar level as well as nutritional and oxidative stress responses. Finally, we provide evidence for a negative autoregulatory loop in Akh gene regulation.
Collapse
|
46
|
Zandawala M, Hamoudi Z, Lange AB, Orchard I. Adipokinetic hormone signalling system in the Chagas disease vector, Rhodnius prolixus. INSECT MOLECULAR BIOLOGY 2015; 24:264-276. [PMID: 25545120 DOI: 10.1111/imb.12157] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Neuropeptides and their G protein-coupled receptors are widespread throughout Metazoa and in several cases, clear orthologues can be identified in both protostomes and deuterostomes. One such neuropeptide is the insect adipokinetic hormone (AKH), which is related to the mammalian gonadotropin-releasing hormone. AKH has been studied extensively and is known to mobilize lipid, carbohydrates and proline for energy-consuming activities such as flight. In order to determine the possible roles for this signalling system in Rhodnius prolixus, we isolated the cDNA sequences encoding R. prolixus AKH (Rhopr-AKH) and its receptor (Rhopr-AKHR). We also examined their spatial expression pattern using quantitative PCR. Our expression analysis indicates that Rhopr-AKH is only expressed in the corpus cardiacum of fifth-instars and adults. Rhopr-AKHR, by contrast, is expressed in several peripheral tissues including the fat body. The expression of the receptor in the fat body suggests that AKH is involved in lipid mobilization, which was confirmed by knockdown of Rhopr-AKHR via RNA interference. Adult males that had been injected with double-stranded RNA (dsRNA) for Rhopr-AKHR exhibited increased lipid content in the fat body and decreased lipid levels in the haemolymph. Moreover, injection of Rhopr-AKH in Rhopr-AKHR dsRNA-treated males failed to elevate haemolymph lipid levels, confirming that this is indeed the receptor for Rhopr-AKH.
Collapse
Affiliation(s)
- M Zandawala
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | | | |
Collapse
|
47
|
Benoit JB, Attardo GM, Baumann AA, Michalkova V, Aksoy S. Adenotrophic viviparity in tsetse flies: potential for population control and as an insect model for lactation. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:351-71. [PMID: 25341093 PMCID: PMC4453834 DOI: 10.1146/annurev-ento-010814-020834] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tsetse flies (Glossina spp.), vectors of African trypanosomes, are distinguished by their specialized reproductive biology, defined by adenotrophic viviparity (maternal nourishment of progeny by glandular secretions followed by live birth). This trait has evolved infrequently among insects and requires unique reproductive mechanisms. A key event in Glossina reproduction involves the transition between periods of lactation and nonlactation (dry periods). Increased lipolysis, nutrient transfer to the milk gland, and milk-specific protein production characterize lactation, which terminates at the birth of the progeny and is followed by a period of involution. The dry stage coincides with embryogenesis of the progeny, during which lipid reserves accumulate in preparation for the next round of lactation. The obligate bacterial symbiont Wigglesworthia glossinidia is critical to tsetse reproduction and likely provides B vitamins required for metabolic processes underlying lactation and/or progeny development. Here we describe findings that utilized transcriptomics, physiological assays, and RNA interference-based functional analysis to understand different components of adenotrophic viviparity in tsetse flies.
Collapse
Affiliation(s)
- Joshua B. Benoit
- Department of Biological Sciences, McMicken School of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio 45221
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
| | - Aaron A. Baumann
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava 845 06 SR, Slovakia
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
48
|
Aksoy S, Weiss BL, Attardo GM. Trypanosome Transmission Dynamics in Tsetse. CURRENT OPINION IN INSECT SCIENCE 2014; 3:43-49. [PMID: 25580379 PMCID: PMC4286356 DOI: 10.1016/j.cois.2014.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Tsetse flies (Diptera:Glossinidae) are vectors of African trypanosomes. Tsetse undergo viviparous reproductive biology, and depend on their obligate endosymbiont (genus Wigglesworthia) for the maintenance of fecundity and immune system development. Trypanosomes establish infections in the midgut and salivary glands of the fly. Tsetse's resistance to trypanosome infection increases as a function of age. Among the factors that mediate resistance to parasites are antimicrobial peptides (AMPs) produced by the Immune deficiency (Imd) signaling pathway, peptidoglycan recognition protein (PGRP) LB, tsetse-EP protein and the integrity of the midgut peritrophic matrix (PM) barrier. The presence of obligate Wigglesworthia during larval development is essential for adult immune system maturation and PM development. Thus, Wigglesworthia prominently influences the vector competency of it's tsetse host.
Collapse
|
49
|
Gołębiowski M, Cerkowniak M, Urbanek A, Słocińska M, Rosiński G, Stepnowski P. Adipokinetic hormone induces changes in the fat body lipid composition of the beetle Zophobas atratus. Peptides 2014; 58:65-73. [PMID: 24905623 DOI: 10.1016/j.peptides.2014.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/24/2014] [Accepted: 05/26/2014] [Indexed: 12/17/2022]
Abstract
In insects, neuropeptide adipokinetic hormone (AKH) released from the corpora cardiaca mobilizes lipids and carbohydrates in the fat body. We examined the developmental differences in the action of Tenmo-AKH, a bioanalogue belonging to the adipokinetic/hypertrahelosemic family (AKH/HrTH), on the lipid composition of larval and pupal fat bodies in the beetle Zophobas atratus. Tenmo-AKH was administered to the beetle larvae and pupae either as a single dose or as two doses of 20 pmol during a 24h interval. Extracts of fat bodies were used to analyse the lipid composition by gas chromatography (GC) combined with mass spectrometry (GC-MS). Control extracts were analyzed using the same method. Fatty acids (FA) and fatty acid methyl esters (FAME) were the most abundant compounds in the fat bodies from both developmental stages. We observed significant differences in their concentrations following hormonal treatment. Tenmo-AKH also induced a distinct increase in larval sterols, fatty alcohols and benzoic acid.
Collapse
Affiliation(s)
- Marek Gołębiowski
- Laboratory of Natural Products Analysis, Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308, Poland.
| | - Magdalena Cerkowniak
- Laboratory of Natural Products Analysis, Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308, Poland
| | - Aleksandra Urbanek
- Department of Invertebrate Zoology and Parasitology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Development, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Piotr Stepnowski
- Laboratory of Natural Products Analysis, Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308, Poland
| |
Collapse
|
50
|
Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Microbiol 2014; 80:5844-53. [PMID: 25038091 DOI: 10.1128/aem.01150-14] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viviparous tsetse fly utilizes proline as a hemolymph-borne energy source. In tsetse, biosynthesis of proline from alanine involves the enzyme alanine-glyoxylate aminotransferase (AGAT), which requires pyridoxal phosphate (vitamin B6) as a cofactor. This vitamin can be synthesized by tsetse's obligate symbiont, Wigglesworthia glossinidia. In this study, we examined the role of Wigglesworthia-produced vitamin B6 for maintenance of proline homeostasis, specifically during the energetically expensive lactation period of the tsetse's reproductive cycle. We found that expression of agat, as well as genes involved in vitamin B6 metabolism in both host and symbiont, increases in lactating flies. Removal of symbionts via antibiotic treatment of flies (aposymbiotic) led to hypoprolinemia, reduced levels of vitamin B6 in lactating females, and decreased fecundity. Proline homeostasis and fecundity recovered partially when aposymbiotic tsetse were fed a diet supplemented with either yeast or Wigglesworthia extracts. RNA interference-mediated knockdown of agat in wild-type flies reduced hemolymph proline levels to that of aposymbiotic females. Aposymbiotic flies treated with agat short interfering RNA (siRNA) remained hypoprolinemic even upon dietary supplementation with microbial extracts or B vitamins. Flies infected with parasitic African trypanosomes display lower hemolymph proline levels, suggesting that the reduced fecundity observed in parasitized flies could result from parasite interference with proline homeostasis. This interference could be manifested by competition between tsetse and trypanosomes for vitamins, proline, or other factors involved in their synthesis. Collectively, these results indicate that the presence of Wigglesworthia in tsetse is critical for the maintenance of proline homeostasis through vitamin B6 production.
Collapse
|