1
|
Wang Y, Ma H, Liu Z, Zhao P, Liu J, Zhu H, Zhou Y, Man Y, Zhou X. The Elongation Factor 1 Alpha Promoter Drives the Functional Expression of Kir2A in Plutella xylostella Cells. Int J Mol Sci 2025; 26:3042. [PMID: 40243678 PMCID: PMC11989005 DOI: 10.3390/ijms26073042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Cell lines and their corresponding expression plasmids are extensively utilized in the study of insect physiology and pathology. In this research, four single-cell cultured lines (Px4-1 to Px4-4) of Plutella xylostella were established from eggs. The promoter for the P. xylostella elongation factor 1α (PxEF1α), known for its high driving activity in cells, was cloned and used to construct expression plasmids. Dual-luciferase activity assays and EGFP expression analyses demonstrated that the PxEF1α promoter exhibited the strongest driving activity in Px4-2 cells, comparable to that of the immediate-early 1 promoter associated with the homologous region 5 enhancer (AcIE1hr5) from the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). In contrast, the driving activity of PxEF1α in cells derived from Spodoptera frugiperda, Trichoplusia ni, and Helicoverpa armigera was lower. Furthermore, the PxEF1α promoter was successfully employed to drive inward rectifier potassium 2A (Kir2A) expression in Px4-2 cells. The electrophysiological properties of the insect Kir2A channel were successfully characterized for the first time. It was observed that the PxKir2A channel possesses typical inward rectifier potassium channel properties and can be inhibited by nanomolar concentrations of VU625 and VU590. This study offers a novel approach for the expression and investigation of foreign gene function in insect cells and provides a valuable tool for the in-depth study of key biomolecules in P. xylostella.
Collapse
Affiliation(s)
- Yinna Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China;
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haihao Ma
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China;
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Zheming Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Piao Zhao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Jia Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Hang Zhu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Yong Zhou
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Yilong Man
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Xiaomao Zhou
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China;
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| |
Collapse
|
2
|
Guo H, Gao Y, Sun D, Liu X, Qiao J, Liu T, Su J. Molecular Insights into Pharmacological Mechanism of Insect Kir Channels and the Toxicity of Kir Inhibitors on Hemipteran Insects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6522-6536. [PMID: 40062477 DOI: 10.1021/acs.jafc.4c12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Inwardly rectifying potassium channels (Kir) play a key role in regulating various physiological processes. However, the structural and pharmacological mechanisms of insect Kir channels remain unclear. In this study, we show that coexpression of different Kir subunits in the same tissue did not affect the rectification properties of strongly rectifying Kir. The Kir inhibitor VU041, along with the insecticide flonicamid and its metabolite flumetnicam, were tested for their inhibitory effects on the homotetrameric Kir1 and Kir2 channels. Both Kir1 and Kir2 channels from the two insect species showed similar pharmacological responses to VU041, flonicamid, and flumetnicam. However, VU041 demonstrated significantly higher inhibitory activity than both insecticides across all four Kir channels, while flumetnicam exhibited the weakest inhibition. Molecular docking analyses indicate that the binding site of VU041 is not the same as that of flonicamid, and flumetnicam. flonicamid, and flumetnicam have binding sites similar to the ATP binding sites in cytoplasmic region of human Kir6.2, whereas VU041 is located in the pore of the ion channel, and serves as a pore blocker that inhibits Kir channels. Mutation analysis confirmed the essential roles of these residues in channel function and binding affinity. Finally, the toxicities of the three inhibitors were evaluated in N. lugens and M. persicae. VU041, a potent inhibitor of the insect Kir channel, showed lower toxicity compared to the other two inhibitors, whereas flumethoxan, which is less active on the Kir1 channel, showed higher toxicity, probably related to the different bioavailability of the different compounds. These findings suggest that the potential of targeting Kir channels as insecticidal strategies requires further evaluation.
Collapse
Affiliation(s)
- Hailiang Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuying Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongmei Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jizu Qiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfei Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianya Su
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Zhu J, Wang X, Mo Y, Wu B, Yi T, Yang Z. Toxicity of Flonicamid to Diaphorina citri (Hemiptera: Liviidae) and Its Identification and Expression of Kir Channel Genes. INSECTS 2024; 15:900. [PMID: 39590499 PMCID: PMC11594753 DOI: 10.3390/insects15110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Flonicamid is a selective insecticide effective against piercing-sucking insects. Although its molecular target has been identified in other species, the specific effects and detailed mechanism of action in Diaphorina citri Kuwayama remain poorly understood. In this study, we determined that the LC50 of flonicamid for D. citri adults was 16.6 mg AI L-1 after 4 days of exposure. To explore the relevant mechanisms, the treatments with acetone and with 20 mg AI L-1 flonicamid for 96 h were collected as samples for RNA-Seq. The analysis of the transcriptomes revealed 345 differentially expressed genes (DEGs) in D. citri adults subjected to different treatments. Among these DEGs, we focused on the inward-rectifying potassium (Kir) channel genes, which have been extensively studied as potential targets of flonicamid. Three Kir subunit genes (Dckir1, Dckir2, Dckir3) in D. citri were successfully cloned and identified. Furthermore, the expression profiles of these DcKirs were investigated using RT-qPCR and showed that their expression significantly increased after D. citri eclosion to adulthood, particularly for DcKir3. The DcKirs were predominantly expressed in gut tissues, with DcKir1 and DcKir2 exhibiting high expression levels in the hindgut and midgut, respectively, while DcKir3 showing high expression in the midgut and Malpighian tubules. This study provides insights into the potential roles of Kir subunits in D. citri and enhances our understanding of the physiological effects of flonicamid in this pest.
Collapse
Affiliation(s)
| | | | | | | | - Tuyong Yi
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (X.W.); (Y.M.); (B.W.)
| | - Zhongxia Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (X.W.); (Y.M.); (B.W.)
| |
Collapse
|
4
|
Durant AC, Donini A. Ammonia transport in the excretory system of mosquito larvae (Aedes aegypti): Rh protein expression and the transcriptome of the rectum. Comp Biochem Physiol A Mol Integr Physiol 2024; 294:111649. [PMID: 38670480 DOI: 10.1016/j.cbpa.2024.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The role of the mosquito excretory organs (Malpighian tubules, MT and hindgut, HG) in ammonia transport as well as expression and function of the Rhesus (Rh protein) ammonia transporters within these organs was examined in Aedes aegypti larvae and adult females. Immunohistological examination revealed that the Rh proteins are co-localized with V-type H+-ATPase (VA) to the apical membranes of MT and HG epithelia of both larvae and adult females. Of the two Rh transporter genes present in A. aegypti, AeRh50-1 and AeRh50-2, we show using quantitative real-time PCR (qPCR) and an RNA in-situ hybridization (ISH) assay that AeRh50-1 is the predominant Rh protein expressed in the excretory organs of larvae and adult females. Further assessment of AeRh50-1 function in larvae and adults using RNAi (i.e. dsRNA-mediated knockdown) revealed significantly decreased [NH4+] (mmol l-1) levels in the secreted fluid of larval MT which does not affect overall NH4+ transport rates, as well as significantly decreased NH4+ flux rates across the HG (haemolymph to lumen) of adult females. We also used RNA sequencing to identify the expression of ion transporters and enzymes within the rectum of larvae, of which limited information currently exists for this important osmoregulatory organ. Of the ammonia transporters in A. aegypti, AeRh50-1 transcript is most abundant in the rectum thus validating our immunohistochemical and RNA ISH findings. In addition to enriched VA transcript (subunits A and d1) in the rectum, we also identified high Na+-K+-ATPase transcript (α subunit) expression which becomes significantly elevated in response to HEA, and we also found enriched carbonic anhydrase 9, inwardly rectifying K+ channel Kir2a, and Na+-coupled cation-chloride (Cl-) co-transporter CCC2 transcripts. Finally, the modulation in excretory organ function and/or Rh protein expression was examined in relation to high ammonia challenge, specifically high environmental ammonia (HEA) rearing of larvae. NH4+ flux measurements using the scanning-ion selective electrode (SIET) technique revealed no significant differences in NH4+ transport across organs comprising the alimentary canal of larvae reared in HEA vs freshwater. Further, significantly increased VA activity, but not NKA, was observed in the MT of HEA-reared larvae. Relatively high Rh protein immunostaining persists within the hindgut epithelium, as well as the ovary, of females at 24-48 h post blood meal corresponding with previously demonstrated peak levels of ammonia formation. These data provide new insight into the role of the excretory organs in ammonia transport physiology and the contribution of Rh proteins in mediating ammonia movement across the epithelia of the MT and HG, and the first comprehensive examination of ion transporter and channel expression in the mosquito rectum.
Collapse
Affiliation(s)
- Andrea C Durant
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800, USA
| | - Andrew Donini
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
5
|
Sourisseau F, Chahine C, Pouliot V, Cens T, Charnet P, Chahine M. Cloning, functional expression, and pharmacological characterization of inwardly rectifying potassium channels (Kir) from Apis mellifera. Sci Rep 2024; 14:7834. [PMID: 38570597 PMCID: PMC10991380 DOI: 10.1038/s41598-024-58234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Potassium channels belong to the super family of ion channels and play a fundamental role in cell excitability. Kir channels are potassium channels with an inwardly rectifying property. They play a role in setting the resting membrane potential of many excitable cells including neurons. Although putative Kir channel family genes can be found in the Apis mellifera genome, their functional expression, biophysical properties, and sensitivity to small molecules with insecticidal activity remain to be investigated. We cloned six Kir channel isoforms from Apis mellifera that derive from two Kir genes, AmKir1 and AmKir2, which are present in the Apis mellifera genome. We studied the tissue distribution, the electrophysiological and pharmacological characteristics of three isoforms that expressed functional currents (AmKir1.1, AmKir2.2, and AmKir2.3). AmKir1.1, AmKir2.2, and AmKir2.3 isoforms exhibited distinct characteristics when expressed in Xenopus oocytes. AmKir1.1 exhibited the largest potassium currents and was impermeable to cesium whereas AmKir2.2 and AmKir2.3 exhibited smaller currents but allowed cesium to permeate. AmKir1 exhibited faster opening kinetics than AmKir2. Pharmacological experiments revealed that both AmKir1.1 and AmKir2.2 are blocked by the divalent ion barium, with IC50 values of 10-5 and 10-6 M, respectively. The concentrations of VU041, a small molecule with insecticidal properties required to achieve a 50% current blockade for all three channels were higher than those needed to block Kir channels in other arthropods, such as the aphid Aphis gossypii and the mosquito Aedes aegypti. From this, we conclude that Apis mellifera AmKir channels exhibit lower sensitivity to VU041.
Collapse
Affiliation(s)
- Fabien Sourisseau
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Chaimaa Chahine
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Valérie Pouliot
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Thierry Cens
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, 1919 Route de Mende, Montpellier, France
| | - Pierre Charnet
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, 1919 Route de Mende, Montpellier, France
| | - Mohamed Chahine
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
6
|
Li S, Li Z, Ke X, Wisawapipat W, Christie P, Wu L. Cadmium toxicity to and accumulation in a soil collembolan (Folsomia candida): major factors and prediction using a back-propagation neural network model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23790-23801. [PMID: 38429592 DOI: 10.1007/s11356-024-32638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Accurate prediction of cadmium (Cd) ecotoxicity to and accumulation in soil biota is important in soil health. However, very limited information on Cd ecotoxicity on naturally contaminated soils. Herein, we investigated soil Cd ecotoxicity using Folsomia candida, a standard single-species test animal, in 28 naturally Cd-contaminated soils, and the back-propagation neural network (BPNN) model was used to predict Cd ecotoxicity to and accumulation in F. candida. Soil total Cd and pH were the primary soil properties affecting Cd toxicity. However, soil pH was the main factor when the total Cd concentration was < 3 mg kg-1. Interestingly, correlation analysis and the K-spiked test confirmed nutrient potassium (K) was essential for Cd accumulation, highlighting the significance of studying K in Cd accumulation. The BPNN model showed greater prediction accuracy of collembolan survival rate (R2 = 0.797), reproduction inhibitory rate (R2 = 0.827), body Cd concentration (R2 = 0.961), and Cd bioaccumulation factor (R2 = 0.964) than multiple linear regression models. Then the developed BPNN model was used to predict Cd ecological risks in 57 soils in southern China. Compared to multiple linear regression models, the BPNN models can better identify high-risk regions. This study highlights the potential of BPNN as a novel and rapid tool for the evaluation and monitoring of Cd ecotoxicity in naturally contaminated soils.
Collapse
Affiliation(s)
- Simin Li
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhu Li
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xin Ke
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Worachart Wisawapipat
- Soil Chemistry and Biogeochemistry Group, Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Peter Christie
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Longhua Wu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
7
|
Li Z, Soohoo-Hui A, O’Hara FM, Swale DR. ATP-sensitive inward rectifier potassium channels reveal functional linkage between salivary gland function and blood feeding in the mosquito, Aedes aegypti. Commun Biol 2022; 5:278. [PMID: 35347209 PMCID: PMC8960802 DOI: 10.1038/s42003-022-03222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Reducing saliva secretions into the vertebrate host reduces feeding efficacy by most hematophagous arthropods. However, seminal studies suggested saliva is not a prerequisite for blood feeding in Aedes aegypti. To test this paradigm, we manually transected the salivary duct of female A. aegypti and an inability to salivate was correlated to an inability to imbibe blood. These data justified testing the relevance of inwardly rectifying potassium (Kir) channels in the A. aegypti salivary gland as an antifeedant target site. Pharmacological activation of ATP-gated Kir (KATP) channels reduced the secretory activity of the salivary gland by 15-fold that led to near elimination of blood ingestion during feeding. The reduced salivation and feeding success nearly eliminated horizontal transmission and acquisition of Dengue virus-2 (DENV2). These data suggest mosquito salivation is a prerequisite for blood feeding and provide evidence that KATP channels are critical for salivation, feeding, and vector competency. The salivary gland of Aedes aegypti is needed for efficient blood feeding, and disruption of ATP-gated Kir channels prevents salivation and blood feeding in A. aegypti as well as horizontal transmission and acquisition of Dengue virus2.
Collapse
|
8
|
Piermarini PM, Denton JS, Swale DR. The Molecular Physiology and Toxicology of Inward Rectifier Potassium Channels in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:125-142. [PMID: 34606365 DOI: 10.1146/annurev-ento-062121-063338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inward rectifier K+ (Kir) channels have been studied extensively in mammals, where they play critical roles in health and disease. In insects, Kir channels have recently been found to be key regulators of diverse physiological processes in several tissues. The importance of Kir channels in insects has positioned them to serve as emerging targets for the development of insecticides with novel modes of action. In this article, we provide the first comprehensive review of insect Kir channels, highlighting the rapid progress made in understanding their molecular biology, physiological roles, pharmacology, and toxicology. In addition, we highlight key gaps in our knowledge and suggest directions for future research to advance our understanding of Kir channels and their roles in insect physiology. Further knowledge of their functional roles will also facilitate their exploitation as targets for controlling arthropod pests and vectors of economic, medical, and/or veterinary relevance.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Entomology, The Ohio State University, Wooster, Ohio 44691, USA;
| | - Jerod S Denton
- Departments of Anesthesiology & Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37235, USA;
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, Louisiana 70803, USA;
| |
Collapse
|
9
|
Lee CE. Ion Transporter Gene Families as Physiological Targets of Natural Selection During Salinity Transitions in a Copepod. Physiology (Bethesda) 2021; 36:335-349. [PMID: 34704854 DOI: 10.1152/physiol.00009.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Salinity is a key factor that structures biodiversity on the planet. With anthropogenic change, such as climate change and species invasions, many populations are facing rapid and dramatic changes in salinity throughout the globe. Studies on the copepod Eurytemora affinis species complex have implicated ion transporter gene families as major loci contributing to salinity adaptation during freshwater invasions. Laboratory experiments and population genomic surveys of wild populations have revealed evolutionary shifts in genome-wide gene expression and parallel genomic signatures of natural selection during independent salinity transitions. Our results suggest that balancing selection in the native range and epistatic interactions among specific ion transporter paralogs could contribute to parallel freshwater adaptation. Overall, these studies provide unprecedented insights into evolutionary mechanisms underlying physiological adaptation during rapid salinity change.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
10
|
Meng X, Wu Z, Yang X, Qian K, Zhang N, Jiang H, Yin X, Guan D, Zheng Y, Wang J. Flonicamid and knockdown of inward rectifier potassium channel gene CsKir2B adversely affect the feeding and development of Chilo suppressalis. PEST MANAGEMENT SCIENCE 2021; 77:2045-2053. [PMID: 33342029 DOI: 10.1002/ps.6232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 12/20/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND The selective insecticide flonicamid shows highly insecticidal activities against piercing-sucking insects and has been widely used for the control of Hemipteran insect pests, whereas its effects on Lepidopteran insect pests remain largely unknown. Recently, inward rectifier potassium (Kir) channel has been verified to be a target of flonicamid, however, functional characterization of Lepidopteran Kir genes is still lacking. RESULTS Flonicamid shows no insecticidal toxicity against Chilo suppressalis larvae. However, the feeding and growth of larvae were reversibly inhibited by flonicamid (50-1200 mg L-1 ). Flonicamid treatment also remarkably reduced and delayed the pupation and eclosion of Chilo suppressalis. Additionally, five distinct Kir channel genes (CsKir1, CsKir2A, CsKir2B, CsKir3A and CsKir3B) were cloned from Chilo suppressalis. Expression profiles analysis revealed that CsKir2A was predominately expressed in the hindgut of larvae, whereas CsKir2B had high expressions in the Malpighian tubules and hindgut. RNA interference (RNAi)-mediated knockdown of CsKir2B significantly reduced the growth and increased the mortalities of larvae, whereas silencing of CsKir2A had no obvious effects on Chilo suppressalis. CONCLUSION Flonicamid exhibits adverse effects on the growth and development of Chilo suppressalis. CsKir2B might be involved in the feeding behavior of Chilo suppressalis. These results provide valuable information on the effects of flonicamid on non-target insects as well as the function of insect Kir channels, and are helpful in developing new insecticide targeting insect Kir channels. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhaolu Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xingcan Yin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Daojie Guan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Saelao P, Hickner PV, Bendele KG, Pérez de León AA. Phylogenomics of Tick Inward Rectifier Potassium Channels and Their Potential as Targets to Innovate Control Technologies. Front Cell Infect Microbiol 2021; 11:647020. [PMID: 33816352 PMCID: PMC8018274 DOI: 10.3389/fcimb.2021.647020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 02/03/2023] Open
Abstract
This study was conducted to enhance the identification of novel targets to develop acaricides that can be used to advance integrated tick-borne disease management. Drivers for the emergence and re-emergence of tick-borne diseases affecting humans, livestock, and other domestic animals in many parts of the world include the increased abundance and expanded geographic distribution of tick species that vector pathogens. The evolution of resistance to acaricides among some of the most important tick vector species highlights the vulnerability of relying on chemical treatments for tick control to mitigate the health burden of tick-borne diseases. The involvement of inward rectifier potassium (Kir) channels in homeostasis, diuresis, and salivary gland secretion in ticks and other pests identified them as attractive targets to develop novel acaricides. However, few studies exist on the molecular characteristics of Kir channels in ticks. This bioinformatic analysis described Kir channels in 20 species of hard and soft ticks. Summarizing relevant investigations on Kir channel function in invertebrate pests allowed the phylogenomic study of this class of ion channels in ticks. How this information can be adapted to innovate tick control technologies is discussed.
Collapse
Affiliation(s)
- Perot Saelao
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, United States.,Veterinary Pest Genomics Center, Kerrville, TX, United States
| | - Paul V Hickner
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, United States.,Veterinary Pest Genomics Center, Kerrville, TX, United States
| | - Kylie G Bendele
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, United States.,Veterinary Pest Genomics Center, Kerrville, TX, United States
| | - Adalberto A Pérez de León
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, United States.,Veterinary Pest Genomics Center, Kerrville, TX, United States
| |
Collapse
|
12
|
Posavi M, Gulisija D, Munro JB, Silva JC, Lee CE. Rapid evolution of genome-wide gene expression and plasticity during saline to freshwater invasions by the copepod Eurytemora affinis species complex. Mol Ecol 2020; 29:4835-4856. [PMID: 33047351 DOI: 10.1111/mec.15681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
Saline migrants into freshwater habitats constitute among the most destructive invaders in aquatic ecosystems throughout the globe. However, the evolutionary and physiological mechanisms underlying such habitat transitions remain poorly understood. To explore the mechanisms of freshwater adaptation and distinguish between adaptive (evolutionary) and acclimatory (plastic) responses to salinity change, we examined genome-wide patterns of gene expression between ancestral saline and derived freshwater populations of the Eurytemora affinis species complex, reared under two different common-garden conditions (0 versus 15 PSU). We found that evolutionary shifts in gene expression (between saline and freshwater inbred lines) showed far greater changes and were more widespread than acclimatory responses to salinity (0 versus 15 PSU). Most notably, 30-40 genes showing evolutionary shifts in gene expression across the salinity boundary were associated with ion transport function, with inorganic cation transmembrane transport forming the largest Gene Ontology category. Of particular interest was the sodium transporter, the Na+ /H+ antiporter (NHA) gene family, which was discovered in animals relatively recently. Thirty key ion regulatory genes, such as NHA paralogue #7, demonstrated concordant evolutionary and plastic shifts in gene expression, suggesting the evolution of ion transporter function and plasticity during rapid invasions into novel salinities. Moreover, freshwater invasions were associated with the evolution of reduced plasticity in the freshwater population, again for the same key ion transporters, consistent with the predicted evolution of canalization following adaptation to stressful conditions. Our results have important implications for understanding evolutionary and physiological mechanisms of range expansions by some of the most widespread invaders in aquatic habitats.
Collapse
Affiliation(s)
- Marijan Posavi
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Davorka Gulisija
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - James B Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
13
|
Lai X, Xu J, Ma H, Liu Z, Zheng W, Liu J, Zhu H, Zhou Y, Zhou X. Identification and Expression of Inward-Rectifying Potassium Channel Subunits in Plutella xylostella. INSECTS 2020; 11:insects11080461. [PMID: 32707967 PMCID: PMC7469208 DOI: 10.3390/insects11080461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
In insects, inward-rectifying potassium (Kir) channels regulate vital physiological functions, such as feeding behavior, silk secretion, renal excretion, and immune function. Therefore, they offer promising potential as targets for insecticides. Three types of Kir subunits have been identified in Diptera and Hemiptera, but the Kir subunits of Lepidoptera still remain unclear. This study identified five Kir subunit genes (pxkir1, pxkir2, pxkir3A, pxkir3B, and pxkir4) in the transcriptome of Plutella xylostella. Phylogenetic analysis identified pxkir1, pxkir2, pxkir3A, and pxkir3B as orthologous genes of kir1–3 in other insects. Interestingly, pxkir4 may be encoding a new class of Kir subunit in Lepidoptera that has not been reported to date. To identify further Kir channel subunits of P. xylostella, the gene expression profiles of five pxkir genes were studied by quantitative real-time PCR. These pxkir genes are expressed throughout the development of P. xylostella. pxkir1 and pxkir2 were highly expressed in thoraxes and legs, while pxkir3 (3A and 3B) and pxkir4 had high expression levels in the midgut and Malpighian tubules. This study identified the composition and distribution of Kir subunits in P. xylostella for the first time, and provides useful information for the further study of Kir channel subunits in Lepidoptera.
Collapse
Affiliation(s)
- Xiaoyi Lai
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; (X.L.); (W.Z.)
| | - Jie Xu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Haihao Ma
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
- Correspondence: (H.M.); (X.Z.)
| | - Zheming Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Wei Zheng
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; (X.L.); (W.Z.)
| | - Jia Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Hang Zhu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Yong Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Xiaomao Zhou
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; (X.L.); (W.Z.)
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
- Correspondence: (H.M.); (X.Z.)
| |
Collapse
|
14
|
Li Z, Guerrero F, Pérez de León AA, Foil LD, Swale DR. Small-Molecule Inhibitors of Inward Rectifier Potassium (Kir) Channels Reduce Bloodmeal Feeding and Have Insecticidal Activity Against the Horn Fly (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1131-1140. [PMID: 32006426 DOI: 10.1093/jme/tjaa015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Bloodmeal feeding by the horn fly, Haematobia irritans (L.), is associated with reduced milk production and blood loss that ultimately prevents weight gain of calves and yearlings. Thus, blood feeding by H. irritans causes significant economic losses in several continents. As with other arthropods, resistance to the majority of commercialized insecticides reduces the efficacy of current control programs. Thus, innovative technologies and novel biochemical targets for horn fly control are needed. Salivary gland and Malpighian tubule function are critical for H. irritans survivorship as they drive bloodmeal acquisition and maintain ion- and fluid homeostasis during bloodmeal processing, respectively. Experiments were conducted to test the hypothesis that pharmacological modulation of H. irritans inward rectifier potassium (Kir) channels would preclude blood feeding and induce mortality by reducing the secretory activity of the salivary gland while simultaneously inducing Malpighian tubule failure. Experimental results clearly indicate structurally diverse Kir channel modulators reduce the secretory activity of the salivary gland by up to fivefold when compared to control and the reduced saliva secretion was highly correlated to a reduction in bloodmeal acquisition in adult flies. Furthermore, adult feeding on blood treated with Kir channel modulators resulted in significant mortality. In addition to validating the Kir channels of H. irritans as putative insecticide targets, the knowledge gained from this study could be applied to develop novel therapeutic technologies targeting salivary gland or Malpighian tubule function to reduce the economic burden of horn fly ectoparasitism on cattle health and production.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA
| | | | - Adalberto A Pérez de León
- Knipling-Bushland Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service, Kerrville, TX
| | - Lane D Foil
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA
| |
Collapse
|
15
|
Swale DR. Perspectives on new strategies for the identification and development of insecticide targets. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:23-32. [PMID: 31685193 DOI: 10.1016/j.pestbp.2019.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The discovery and development of new active ingredients to control arthropod populations and circumvent the inevitable evolution of insecticide resistance has been of consistent interest to the field of insecticide science. This interest has resulted in a slow, but steady increase in the diversity of chemical scaffolds and biochemical target sites within the insecticide arsenal over the past 70 years with growth from three biochemical target sites in the 1950s to 22 distinct biochemical targets in 2018. Despite this growth, the number of biochemical target sites for insecticides remains relatively limited when compared to human pharmaceuticals, which has approximately 700 distinct biochemical targets that are targeted by FDA approved drugs. Potential reasons for this large discrepancy between two closely related fields and putative mechanisms to enhance the identification of tractable biochemical targets for insecticides are discussed. Next, this perspective discusses the movement of insecticide science into the "genomic era" and for comparative purposes, I provide a retrospective analysis of the impact the release of the human genome had to human pharmaceutical development. Based on this analysis and because the fields of insecticide science and human pharmaceuticals mirror each other, researchers in the field of insecticide science would do well to heed the lessons learned by the human pharmaceutical industry and to carefully consider the challenges that arise from genomic approaches for chemical development. Lastly, I pose the question if the field of insecticide science would benefit from adapting an industry-academia model through the generation of industry-sponsored centers of excellence. The goal of this article is not to definitively describe strategies to enhance insecticide development, but rather present different thoughts on agrochemical development that will foster discussions among academic, government, and industry scientists to address current and future problems in the field of insecticide science.
Collapse
Affiliation(s)
- Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
16
|
Aretz CD, Morwitzer MJ, Sanford AG, Hogan AM, Portillo MV, Kharade SV, Kramer M, McCarthey JB, Trigueros RR, Piermarini PM, Denton JS, Hopkins CR. Discovery and Characterization of 2-Nitro-5-(4-(phenylsulfonyl)piperazin-1-yl)- N-(pyridin-4-ylmethyl)anilines as Novel Inhibitors of the Aedes aegypti Kir1 ( AeKir1) Channel. ACS Infect Dis 2019; 5:917-931. [PMID: 30832472 DOI: 10.1021/acsinfecdis.8b00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mosquito-borne arboviral diseases such as Zika, dengue fever, and chikungunya are transmitted to humans by infected adult female Aedes aegypti mosquitoes and affect a large portion of the world's population. The Kir1 channel in Ae. aegypti ( AeKir1) is an important ion channel in the functioning of mosquito Malpighian (renal) tubules and one that can be manipulated in order to disrupt excretory functions in mosquitoes. We have previously reported the discovery of various scaffolds that are active against the AeKir1 channel. Herein we report the synthesis and biological characterization of a new 2-nitro-5-(4-(phenylsulfonyl) piperazin-1-yl)- N-(pyridin-4-ylmethyl)anilines scaffold as inhibitors of AeKir1. This new scaffold is more potent in vitro compared to the previously reported scaffolds, and the molecules kill mosquito larvae.
Collapse
Affiliation(s)
| | | | | | | | | | - Sujay V. Kharade
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Meghan Kramer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - James B. McCarthey
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | | - Peter M. Piermarini
- Department of Entomology, Ohio State University, Wooster, Ohio 44691, United States
| | - Jerod S. Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
17
|
Beyenbach KW. Voltages and resistances of the anterior Malpighian tubule of Drosophila melanogaster. ACTA ACUST UNITED AC 2019; 222:jeb.201574. [PMID: 31043456 DOI: 10.1242/jeb.201574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/25/2019] [Indexed: 01/12/2023]
Abstract
The small size of Malpighian tubules in the fruit fly Drosophila melanogaster has discouraged measurements of the transepithelial electrical resistance. The present study introduces two methods for measuring the transepithelial resistance in isolated D . melanogaster Malpighian tubules using conventional microelectrodes and PClamp hardware and software. The first method uses three microelectrodes to measure the specific transepithelial resistance normalized to tubule length or luminal surface area for comparison with resistances of other epithelia. The second method uses only two microelectrodes to measure the relative resistance for comparing before and after effects in a single Malpighian tubule. Knowledge of the specific transepithelial resistance allows the first electrical model of electrolyte secretion by the main segment of the anterior Malpighian tubule of D . melanogaster The electrical model is remarkably similar to that of the distal Malpighian tubule of Aedes aegypti when tubules of Drosophila and Aedes are studied in vitro under the same experimental conditions. Thus, despite 189 millions of years of evolution separating these two genera, the electrophysiological properties of their Malpighian tubules remains remarkably conserved.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Biology/Chemistry, Division of Animal Physiology, University of Osnabrück, Barbarastrasse 11, Osnabrück 49076, Germany
| |
Collapse
|
18
|
Inward rectifier potassium (Kir) channels mediate salivary gland function and blood feeding in the lone star tick, Amblyomma americanum. PLoS Negl Trop Dis 2019; 13:e0007153. [PMID: 30730880 PMCID: PMC6382211 DOI: 10.1371/journal.pntd.0007153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/20/2019] [Accepted: 01/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background Tick feeding causes extreme morbidity and mortality to humans through transmission of pathogens and causes severe economic losses to the agricultural industry by reducing livestock yield. Salivary gland secretions are essential for tick feeding and thus, reducing or preventing saliva secretions into the vertebrate host is likely to reduce feeding and hinder pathogen life cycles. Unfortunately, the membrane physiology of tick salivary glands is underexplored and this gap in knowledge limits the development of novel therapeutics for inducing cessation of tick feeding. Methodology We studied the influence of inward rectifier potassium (Kir) channel subtypes to the functional capacity of the isolated tick salivary gland through the use of a modified Ramsay assay. The secreted saliva was subsequently used for quantification of the elemental composition of the secreted saliva after the glands were exposed to K+ channel modulators as a measure of osmoregulatory capacity. Lastly, changes to blood feeding behavior and mortality were measured with the use of a membrane feeding system. Principal findings In this study, we characterized the fundamental role of Kir channel subtypes in tick salivary gland function and provide evidence that pharmacological inhibition of these ion channels reduces the secretory activity of the Amblyomma americanum salivary gland. The reduced secretory capacity of the salivary gland was directly correlated with a dramatic reduction of blood ingestion during feeding. Further, exposure to small-molecule modulators of Kir channel subtypes induced mortality to ticks that is likely resultant from an altered osmoregulatory capacity. Conclusions Our data contribute to understanding of tick salivary gland function and could guide future campaigns aiming to develop chemical or reverse vaccinology technologies to reduce the worldwide burden of tick feeding and tick-vectored pathogens. Tick feeding results in negative health and economic consequences worldwide and there has been continued interest in the development of products with novel mechanisms of action for control of tick populations. Kir channels have been shown to be a significant ion conductance pathway in arthropods and are critical for proper functioning of multiple biological processes. Previous work on insect Kir channels has focused on their physiological roles in renal system of mosquitoes and the data suggest that these channels represent a viable pathway to induce renal failure that leads to mortality. Based on the functional and cellular similarities of arthropod salivary glands and Malpighian tubules, we hypothesized that Kir channels constitute a critical conductance pathway within arthropod salivary glands and inhibition of this pathway will preclude feeding. Data presented in this study show that pharmacological modulators of Kir channels elicited a significant reduction in the fluid and ion secretory activity of tick salivary glands that resulted in reduced feeding, altered osmoregulation, and lead to mortality. These data could guide the future development of novel acaricides, RNAi, or genetically modified ticks to mitigate health and economic damages resulting from their feeding. Further, these data indicate a conserved function of Kir channels within multiple tissues of taxonomically diverse organisms, such as ticks and humans.
Collapse
|
19
|
Miller JR, Koren S, Dilley KA, Puri V, Brown DM, Harkins DM, Thibaud-Nissen F, Rosen B, Chen XG, Tu Z, Sharakhov IV, Sharakhova MV, Sebra R, Stockwell TB, Bergman NH, Sutton GG, Phillippy AM, Piermarini PM, Shabman RS. Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation. Gigascience 2018; 7:1-13. [PMID: 29329394 PMCID: PMC5869287 DOI: 10.1093/gigascience/gix135] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/23/2017] [Indexed: 12/25/2022] Open
Abstract
Background The 50-year-old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome. Results The C6/36 genome assembly has the largest contig N50 (3.3 Mbp) of any mosquito assembly, presents the sequences of both haplotypes for most of the diploid genome, reveals independent null mutations in both alleles of the Dicer locus, and indicates a male-specific genome. Gene annotation was computed with publicly available mosquito transcript sequences. Gene expression data from cell line RNA sequence identified enrichment of growth-related pathways and conspicuous deficiency in aquaporins and inward rectifier K+ channels. As a test of utility, RNA sequence data from Zika-infected cells were mapped to the C6/36 genome and transcriptome assemblies. Host subtraction reduced the data set by 89%, enabling faster characterization of nonhost reads. Conclusions The C6/36 genome sequence and annotation should enable additional uses of the cell line to study arbovirus vector interactions and interventions aimed at restricting the spread of human disease.
Collapse
Affiliation(s)
- Jason R Miller
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA.,College of Natural Sciences and Mathematics, Shepherd University, Shepherdstown, WV 25443, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Kari A Dilley
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Vinita Puri
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - David M Brown
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Derek M Harkins
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | | | - Benjamin Rosen
- USDA 10300 Baltimore Ave., Bldg 306 Barc-East, Beltsville, MD 20705-2350, USA
| | - Xiao-Guang Chen
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhijian Tu
- Department of Biochemistry and the Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA
| | - Igor V Sharakhov
- Department of Entomology and the Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.,Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Maria V Sharakhova
- Department of Entomology and the Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.,Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Robert Sebra
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Granger G Sutton
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Peter M Piermarini
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA.,Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Reed S Shabman
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA.,ATCC, 217 Perry Parkway, Gaithersburg, MD 20877, USA
| |
Collapse
|
20
|
Rusconi Trigueros R, Hopkins CR, Denton JS, Piermarini PM. Pharmacological Inhibition of Inward Rectifier Potassium Channels Induces Lethality in Larval Aedes aegypti. INSECTS 2018; 9:E163. [PMID: 30445675 PMCID: PMC6315791 DOI: 10.3390/insects9040163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 11/30/2022]
Abstract
The inward rectifier potassium (Kir) channels play key roles in the physiology of mosquitoes and other insects. Our group, among others, previously demonstrated that small molecule inhibitors of Kir channels are promising lead molecules for developing new insecticides to control adult female mosquitoes. However, the potential use of Kir channel inhibitors as larvicidal agents is unknown. Here we tested the hypothesis that pharmacological inhibition of Kir channels in the larvae of Aedes aegypti, the vector of several medically important arboviruses, induces lethality. We demonstrated that adding barium, a non-specific blocker of Kir channels, or VU041, a specific small-molecule inhibitor of mosquito Kir1 channels, to the rearing water (deionized H₂O) of first instar larvae killed them within 48 h. We further showed that the toxic efficacy of VU041 within 24 h was significantly enhanced by increasing the osmolality of the rearing water to 100 mOsm/kg H₂O with NaCl, KCl or mannitol; KCl provided the strongest enhancement compared to NaCl and mannitol. These data suggest: (1) the important role of Kir channels in the acclimation of larvae to elevated ambient osmolality and KCl concentrations; and (2) the disruption of osmoregulation as a potential mechanism of the toxic action of VU041. The present study provides the first evidence that inhibition of Kir channels is lethal to larval mosquitoes and broadens the potential applications of our existing arsenal of small molecule inhibitors of Kir channels, which have previously only been considered for developing adulticides.
Collapse
Affiliation(s)
- Renata Rusconi Trigueros
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jerod S Denton
- Departments of Anesthesiology and Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| |
Collapse
|
21
|
Piermarini PM, Inocente EA, Acosta N, Hopkins CR, Denton JS, Michel AP. Inward rectifier potassium (Kir) channels in the soybean aphid Aphis glycines: Functional characterization, pharmacology, and toxicology. JOURNAL OF INSECT PHYSIOLOGY 2018; 110:57-65. [PMID: 30196125 PMCID: PMC6173977 DOI: 10.1016/j.jinsphys.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 05/21/2023]
Abstract
Inward rectifier K+ (Kir) channels contribute to a variety of physiological processes in insects and are emerging targets for insecticide development. Previous studies on insect Kir channels have primarily focused on dipteran species (e.g., mosquitoes, fruit flies). Here we identify and functionally characterize Kir channel subunits in a hemipteran insect, the soybean aphid Aphis glycines, which is an economically important insect pest and vector of soybeans. From the transcriptome and genome of Ap. glycines we identified two cDNAs, ApKir1 and ApKir2, encoding Kir subunits that were orthologs of insect Kir1 and Kir2, respectively. Notably, a gene encoding a Kir3 subunit was absent from the transcriptome and genome of Ap. glycines, similar to the pea aphid Acyrthosiphon pisum. Heterologous expression of ApKir1 and ApKir2 in Xenopus laevis oocytes enhanced K+-currents in the plasma membrane; these currents were inhibited by barium and the small molecule VU041. Compared to ApKir2, ApKir1 mediated currents that were larger in magnitude, more sensitive to barium, and less inhibited by small molecule VU041. Moreover, ApKir1 exhibited stronger inward rectification compared to ApKir2. Topical application of VU041 in adult aphids resulted in dose-dependent mortality within 24 h that was more efficacious than flonicamid, an established insecticide also known to inhibit Kir channels. We conclude that despite the apparent loss of Kir3 genes in aphid evolution, Kir channels are important to aphid survival and represent a promising target for the development of new insecticides.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA.
| | - Edna Alfaro Inocente
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Nuris Acosta
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jerod S Denton
- Departments of Anesthesiology and Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew P Michel
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| |
Collapse
|
22
|
Ren M, Niu J, Hu B, Wei Q, Zheng C, Tian X, Gao C, He B, Dong K, Su J. Block of Kir channels by flonicamid disrupts salivary and renal excretion of insect pests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 99:17-26. [PMID: 29842935 DOI: 10.1016/j.ibmb.2018.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Flonicamid is a selective insecticide for the control of sap-sucking insects; it exerts toxic effects by inhibiting insect feeding. However, its molecular target remains elusive. In this study, we functionally characterized NlKir1 channels of the brown planthopper (Nilaparvata lugens) in HEK293 cells. Homomeric NlKir1 channels generated inward-rectifying K+ currents. Flonicamid inhibited NlKir1 channels at nanomolar concentrations. Furthermore, flonicamid inhibited honeydew and salivary secretions of planthoppers, and reduced the renal excretion of female mosquitoes in a dose-dependent manner. The inhibitory effect of flonicamid on fluid secretion of isolated Malpighian tubules from Culex pipiens pullens was comparable to that of the selective Kir1 inhibitor. The observed physiological alterations by flonicamid are likely mediated by Kir1 channels and could lead to the disruption of feeding behaviors and eventually lethality. Our study establishes the Kir1 channel as the target of flonicamid and provided new insights into the mode of action of flonicamid.
Collapse
Affiliation(s)
- Miaomiao Ren
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianguo Niu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Wei
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Zheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangrui Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Congfen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingjun He
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ke Dong
- Department of Entomology and Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jianya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
23
|
Chen R, Swale DR. Inwardly Rectifying Potassium (Kir) Channels Represent a Critical Ion Conductance Pathway in the Nervous Systems of Insects. Sci Rep 2018; 8:1617. [PMID: 29371678 PMCID: PMC5785497 DOI: 10.1038/s41598-018-20005-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
A complete understanding of the physiological pathways critical for proper function of the insect nervous system is still lacking. The recent development of potent and selective small-molecule modulators of insect inward rectifier potassium (Kir) channels has enabled the interrogation of the physiological role and toxicological potential of Kir channels within various insect tissue systems. Therefore, we aimed to highlight the physiological and functional role of neural Kir channels the central nervous system, muscular system, and neuromuscular system through pharmacological and genetic manipulations. Our data provide significant evidence that Drosophila neural systems rely on the inward conductance of K+ ions for proper function since pharmacological inhibition and genetic ablation of neural Kir channels yielded dramatic alterations of the CNS spike discharge frequency and broadening and reduced amplitude of the evoked EPSP at the neuromuscular junction. Based on these data, we conclude that neural Kir channels in insects (1) are critical for proper function of the insect nervous system, (2) represents an unexplored physiological pathway that is likely to shape the understanding of neuronal signaling, maintenance of membrane potentials, and maintenance of the ionic balance of insects, and (3) are capable of inducing acute toxicity to insects through neurological poisoning.
Collapse
Affiliation(s)
- Rui Chen
- Louisiana State University AgCenter, Department of Entomology, Baton Rouge, LA, 70803, USA
| | - Daniel R Swale
- Louisiana State University AgCenter, Department of Entomology, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
24
|
Piermarini PM, Akuma DC, Crow JC, Jamil TL, Kerkhoff WG, Viel KCMF, Gillen CM. Differential expression of putative sodium-dependent cation-chloride cotransporters in Aedes aegypti. Comp Biochem Physiol A Mol Integr Physiol 2017; 214:40-49. [PMID: 28923771 DOI: 10.1016/j.cbpa.2017.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022]
Abstract
The yellow fever mosquito, Aedes aegypti, has three genes that code for proteins with sequence similarity to vertebrate Na+-K+-Cl- cotransporters (NKCCs) of the solute-linked carrier 12 superfamily of cation-chloride cotransporters (CCCs). We hypothesized that these mosquito NKCC orthologues have diverged to perform distinct roles in salt secretion and absorption. In phylogenetic analyses, one protein (aeNKCC1) groups with a Drosophila melanogaster NKCC that mediates salt secretion whereas two others (aeCCC2 and aeCCC3) group with a Drosophila transporter that is not functionally characterized. The aeCCC2 and aeCCC3 genes probably result from a tandem gene duplication in the mosquito lineage; they have similar exon structures and are consecutive in genomic DNA. Predicted aeCCC2 and aeCCC3 proteins differ from aeNKCC1 and vertebrate NKCCs in residues from the third transmembrane domain known to influence ion and inhibitor binding. Quantitative PCR revealed that aeNKCC1 and aeCCC2 were approximately equally expressed in larvae and adults, whereas aeCCC3 was approximately 100-fold more abundant in larvae than in adults. In larval tissues, aeCCC2 was approximately 2-fold more abundant in Malpighian tubules compared to anal papillae. In contrast, aeCCC3 was nearly 100-fold more abundant in larval anal papillae compared to Malpighian tubules, suggesting a role in absorption. Western blots with polyclonal antibodies against isoform-specific peptides revealed stronger aeCCC2 immunoreactivity in adults versus larvae, whereas aeCCC3 immunoreactivity was stronger in larvae versus adults. The differential expression pattern of aeCCC2 and aeCCC3, and their sequence divergence in transmembrane domains, suggests that they may have different roles in transepithelial salt transport.
Collapse
Affiliation(s)
- Peter M Piermarini
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Daniel C Akuma
- Department of Biology, Kenyon College, Gambier, OH, United States
| | - John C Crow
- Department of Biology, Kenyon College, Gambier, OH, United States
| | - Taylor L Jamil
- Department of Biology, Kenyon College, Gambier, OH, United States
| | - Willa G Kerkhoff
- Department of Biology, Kenyon College, Gambier, OH, United States
| | | | | |
Collapse
|
25
|
Swale DR, Li Z, Guerrero F, Pérez De León AA, Foil LD. Role of inward rectifier potassium channels in salivary gland function and sugar feeding of the fruit fly, Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 141:41-49. [PMID: 28911739 DOI: 10.1016/j.pestbp.2016.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 06/07/2023]
Abstract
The arthropod salivary gland is of critical importance for horizontal transmission of pathogens, yet a detailed understanding of the ion conductance pathways responsible for saliva production and excretion is lacking. A superfamily of potassium ion channels, known as inward rectifying potassium (Kir) channels, is overexpressed in the Drosophila salivary gland by 32-fold when compared to the whole body mRNA transcripts. Therefore, we aimed to test the hypothesis that pharmacological and genetic depletion of salivary gland specific Kir channels alters the efficiency of the gland and reduced feeding capabilities using the fruit fly Drosophila melanogaster as a model organism that could predict similar effects in arthropod disease vectors. Exposure to VU041, a selective Kir channel blocker, reduced the volume of sucrose consumption by up to 3.2-fold and was found to be concentration-dependent with an EC50 of 68μM. Importantly, the inactive analog, VU937, was shown to not influence feeding, suggesting the reduction in feeding observed with VU041 is due to Kir channel inhibition. Next, we performed a salivary gland specific knockdown of Kir1 to assess the role of these channels specifically in the salivary gland. The genetically depleted fruit flies had a reduction in total volume ingested and an increase in the time spent feeding, both suggestive of a reduction in salivary gland function. Furthermore, a compensatory mechanism appears to be present at day 1 of RNAi-treated fruit flies, and is likely to be the Na+-K+-2Cl- cotransporter and/or Na+-K+-ATPase pumps that serve to supplement the inward flow of K+ ions, which highlights the functional redundancy in control of ion flux in the salivary glands. These findings suggest that Kir channels likely provide, at least in part, a principal potassium conductance pathway in the Drosophila salivary gland that is required for sucrose feeding.
Collapse
Affiliation(s)
- Daniel R Swale
- Louisiana State University AgCenter, Department of Entomology, Baton Rouge, LA 70803, United States.
| | - Zhilin Li
- Louisiana State University AgCenter, Department of Entomology, Baton Rouge, LA 70803, United States
| | - Felix Guerrero
- United States Department of Agriculture-Agricultural Research Service, Knipling-Bushland United States Livestock Insects Research Laboratory, Veterinary Pest Genomics Center, 2700 Fredericksburg Rd., Kerrville, TX 78028, United States
| | - Adalberto A Pérez De León
- United States Department of Agriculture-Agricultural Research Service, Knipling-Bushland United States Livestock Insects Research Laboratory, Veterinary Pest Genomics Center, 2700 Fredericksburg Rd., Kerrville, TX 78028, United States
| | - Lane D Foil
- Louisiana State University AgCenter, Department of Entomology, Baton Rouge, LA 70803, United States
| |
Collapse
|
26
|
O'Neal ST, Swale DR, Anderson TD. ATP-sensitive inwardly rectifying potassium channel regulation of viral infections in honey bees. Sci Rep 2017; 7:8668. [PMID: 28819165 PMCID: PMC5561242 DOI: 10.1038/s41598-017-09448-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Honey bees are economically important pollinators of a wide variety of crops that have attracted the attention of both researchers and the public alike due to unusual declines in the numbers of managed colonies in some parts of the world. Viral infections are thought to be a significant factor contributing to these declines, but viruses have proven a challenging pathogen to study in a bee model and interactions between viruses and the bee antiviral immune response remain poorly understood. In the work described here, we have demonstrated the use of flock house virus (FHV) as a model system for virus infection in bees and revealed an important role for the regulation of the bee antiviral immune response by ATP-sensitive inwardly rectifying potassium (KATP) channels. We have shown that treatment with the KATP channel agonist pinacidil increases survival of bees while decreasing viral replication following infection with FHV, whereas treatment with the KATP channel antagonist tolbutamide decreases survival and increases viral replication. Our results suggest that KATP channels provide a significant link between cellular metabolism and the antiviral immune response in bees.
Collapse
Affiliation(s)
- Scott T O'Neal
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA.
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
27
|
O'Neal ST, Swale DR, Bloomquist JR, Anderson TD. ATP-sensitive inwardly rectifying potassium channel modulators alter cardiac function in honey bees. JOURNAL OF INSECT PHYSIOLOGY 2017; 99:95-100. [PMID: 28412203 DOI: 10.1016/j.jinsphys.2017.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
ATP-sensitive inwardly rectifying potassium (KATP) channels couple cellular metabolism to the membrane potential of the cell and play an important role in a variety of tissue types, including the insect dorsal vessel, making them a subject of interest not only for understanding invertebrate physiology, but also as a potential target for novel insecticides. Most of what is known about these ion channels is the result of work performed in mammalian systems, with insect studies being limited to only a few species and physiological systems. The goal of this study was to investigate the role that KATP channels play in regulating cardiac function in a model social insect, the honey bee (Apis mellifera), by examining the effects that modulators of these ion channels have on heart rate. Heart rate decreased in a concentration-dependent manner, relative to controls, with the application of the KATP channel antagonist tolbutamide and KATP channel blockers barium and magnesium, whereas heart rate increased with the application of a low concentration of the KATP channel agonist pinacidil, but decreased at higher concentrations. Furthermore, pretreatment with barium magnified the effects of tolbutamide treatment and eliminated the effects of pinacidil treatment at select concentrations. The data presented here confirm a role for KATP channels in the regulation of honey bee dorsal vessel contractions and provide insight into the underlying physiology that governs the regulation of bee cardiac function.
Collapse
Affiliation(s)
- Scott T O'Neal
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA.
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Jeffrey R Bloomquist
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
28
|
Malpighian Tubules as Novel Targets for Mosquito Control. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020111. [PMID: 28125032 PMCID: PMC5334665 DOI: 10.3390/ijerph14020111] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/06/2017] [Accepted: 01/22/2017] [Indexed: 11/17/2022]
Abstract
The Malpighian tubules and hindgut are the renal excretory tissues of mosquitoes; they are essential to maintaining hemolymph water and solute homeostasis. Moreover, they make important contributions to detoxifying metabolic wastes and xenobiotics in the hemolymph. We have focused on elucidating the molecular mechanisms of Malpighian tubule function in adult female mosquitoes and developing chemical tools as prototypes for next-generation mosquitocides that would act via a novel mechanism of action (i.e., renal failure). To date, we have targeted inward rectifier potassium (Kir) channels expressed in the Malpighian tubules of the yellow fever mosquito Aedes aegypti and malaria mosquito Anopheles gambiae. Inhibition of these channels with small molecules inhibits transepithelial K⁺ and fluid secretion in Malpighian tubules, leading to a disruption of hemolymph K⁺ and fluid homeostasis in adult female mosquitoes. In addition, we have used next-generation sequencing to characterize the transcriptome of Malpighian tubules in the Asian tiger mosquito Aedes albopictus, before and after blood meals, to reveal new molecular targets for potentially disrupting Malpighian tubule function. Within 24 h after a blood meal, the Malpighian tubules enhance the mRNA expression of genes encoding mechanisms involved with the detoxification of metabolic wastes produced during blood digestion (e.g., heme, NH₃, reactive oxygen species). The development of chemical tools targeting these molecular mechanisms in Malpighian tubules may offer a promising avenue for the development of mosquitocides that are highly-selective against hematophagous females, which are the only life stage that transmits pathogens.
Collapse
|
29
|
Swale DR, Engers DW, Bollinger SR, Gross A, Inocente EA, Days E, Kanga F, Johnson RM, Yang L, Bloomquist JR, Hopkins CR, Piermarini PM, Denton JS. An insecticide resistance-breaking mosquitocide targeting inward rectifier potassium channels in vectors of Zika virus and malaria. Sci Rep 2016; 6:36954. [PMID: 27849039 PMCID: PMC5111108 DOI: 10.1038/srep36954] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/19/2016] [Indexed: 01/01/2023] Open
Abstract
Insecticide resistance is a growing threat to mosquito control programs around the world, thus creating the need to discover novel target sites and target-specific compounds for insecticide development. Emerging evidence suggests that mosquito inward rectifier potassium (Kir) channels represent viable molecular targets for developing insecticides with new mechanisms of action. Here we describe the discovery and characterization of VU041, a submicromolar-affinity inhibitor of Anopheles (An.) gambiae and Aedes (Ae.) aegypti Kir1 channels that incapacitates adult female mosquitoes from representative insecticide-susceptible and -resistant strains of An. gambiae (G3 and Akron, respectively) and Ae. aegypti (Liverpool and Puerto Rico, respectively) following topical application. VU041 is selective for mosquito Kir channels over several mammalian orthologs, with the exception of Kir2.1, and is not lethal to honey bees. Medicinal chemistry was used to develop an analog, termed VU730, which retains activity toward mosquito Kir1 but is not active against Kir2.1 or other mammalian Kir channels. Thus, VU041 and VU730 are promising chemical scaffolds for developing new classes of insecticides to combat insecticide-resistant mosquitoes and the transmission of mosquito-borne diseases, such as Zika virus, without harmful effects on humans and beneficial insects.
Collapse
Affiliation(s)
- Daniel R Swale
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Darren W Engers
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sean R Bollinger
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aaron Gross
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Edna Alfaro Inocente
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Emily Days
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Fariba Kanga
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Reed M Johnson
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Liu Yang
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Jeffrey R Bloomquist
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Corey R Hopkins
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Institute for Global Health, Vanderbilt University, Nashville, TN 37203, USA
| |
Collapse
|
30
|
Dynamic expression of genes encoding subunits of inward rectifier potassium (Kir) channels in the yellow fever mosquito Aedes aegypti. Comp Biochem Physiol B Biochem Mol Biol 2016; 204:35-44. [PMID: 27836744 DOI: 10.1016/j.cbpb.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/13/2016] [Accepted: 11/03/2016] [Indexed: 01/06/2023]
Abstract
Inward rectifier potassium (Kir) channels play fundamental roles in neuromuscular, epithelial, and endocrine function in mammals. Recent research in insects suggests that Kir channels play critical roles in the development, immune function, and excretory physiology of fruit flies and/or mosquitoes. Moreover, our group has demonstrated that mosquito Kir channels may serve as valuable targets for the development of novel insecticides. Here we characterize the molecular expression of 5 mRNAs encoding Kir channel subunits in the yellow fever mosquito, Aedes aegypti: Kir1, Kir2A-c, Kir2B, Kir2B', and Kir3. We demonstrate that 1) Kir mRNA expression is dynamic in whole mosquitoes, Malpighian tubules, and the midgut during development from 4th instar larvae to adult females, 2) Kir2B and Kir3 mRNA levels are reduced in 4th instar larvae when reared in water containing an elevated concentration (50mM) of KCl, but not NaCl, and 3) Kir mRNAs are differentially expressed in the Malpighian tubules, midgut, and ovaries within 24h after blood feeding. Furthermore, we provide the first characterization of Kir mRNA expression in the anal papillae of 4th instar larval mosquitoes, which indicates that Kir2A-c is the most abundant. Altogether, the data provide the first comprehensive characterization of Kir mRNA expression in Ae. aegypti and offer insights into the putative physiological roles of Kir subunits in this important disease vector.
Collapse
|
31
|
Piermarini PM, Dunemann SM, Rouhier MF, Calkins TL, Raphemot R, Denton JS, Hine RM, Beyenbach KW. Localization and role of inward rectifier K(+) channels in Malpighian tubules of the yellow fever mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:59-73. [PMID: 26079629 DOI: 10.1016/j.ibmb.2015.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 05/04/2023]
Abstract
Malpighian tubules of adult female yellow fever mosquitoes Aedes aegypti express three inward rectifier K(+) (Kir) channel subunits: AeKir1, AeKir2B and AeKir3. Here we 1) elucidate the cellular and membrane localization of these three channels in the Malpighian tubules, and 2) characterize the effects of small molecule inhibitors of AeKir1 and AeKir2B channels (VU compounds) on the transepithelial secretion of fluid and electrolytes and the electrophysiology of isolated Malpighian tubules. Using subunit-specific antibodies, we found that AeKir1 and AeKir2B localize exclusively to the basolateral membranes of stellate cells and principal cells, respectively; AeKir3 localizes within intracellular compartments of both principal and stellate cells. In isolated tubules bathed in a Ringer solution containing 34 mM K(+), the peritubular application of VU590 (10 μM), a selective inhibitor of AeKir1, inhibited transepithelial fluid secretion 120 min later. The inhibition brings rates of transepithelial KCl and fluid secretion to 54% of the control without a change in transepithelial NaCl secretion. VU590 had no effect on the basolateral membrane voltage (Vbl) of principal cells, but it significantly reduced the cell input conductance (gin) to values 63% of the control within ∼90 min. In contrast, the peritubular application of VU625 (10 μM), an inhibitor of both AeKir1 and AeKir2B, started to inhibit transepithelial fluid secretion as early as 60 min later. At 120 min after treatment, VU625 was more efficacious than VU590, inhibiting transepithelial KCl and fluid secretion to ∼35% of the control without a change in transepithelial NaCl secretion. Moreover, VU625 caused the Vbl and gin of principal cells to respectively drop to values 62% and 56% of the control values within only ∼30 min. Comparing the effects of VU590 with those of VU625 allowed us to estimate that AeKir1 and AeKir2B respectively contribute to 46% and 20% of the transepithelial K(+) secretion when the tubules are bathed in a Ringer solution containing 34 mM K(+). Thus, we uncover an important role of AeKir1 and stellate cells in transepithelial K(+) transport under conditions of peritubular K(+) challenge. The physiological role of AeKir3 in intracellular membranes of both stellate and principal cells remains to be determined.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA.
| | - Sonja M Dunemann
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Matthew F Rouhier
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Travis L Calkins
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Rene Raphemot
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rebecca M Hine
- Department of Biomedical Sciences, VRT 8004, Cornell University, Ithaca, NY 14853, USA
| | - Klaus W Beyenbach
- Department of Biomedical Sciences, VRT 8004, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
32
|
Ruiz-Sanchez E, O'Donnell MJ. The insect excretory system as a target for novel pest control strategies. CURRENT OPINION IN INSECT SCIENCE 2015; 11:14-20. [PMID: 28285757 DOI: 10.1016/j.cois.2015.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 06/06/2023]
Abstract
The insect excretory system plays essential roles in osmoregulation, ionoregulation and toxin elimination. Understanding the mechanisms of fluid and ion transport by the epithelial cells of the excretory system provides a foundation for development of novel pest management strategies. In the present review, we focus on two such strategies: first, impairment of osmoregulation by manipulation of diuretic or antidiuretic signaling pathways and second, interference with toxin elimination by inhibition of toxin transport systems.
Collapse
Affiliation(s)
- Esau Ruiz-Sanchez
- Instituto Tecnologico de Conkal, Km. 16.3, Ex-Carretera Merida-Motul, Conkal , Yucatan C.P. 97345, Mexico
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
33
|
Beyenbach KW, Yu Y, Piermarini PM, Denton J. Targeting renal epithelial channels for the control of insect vectors. Tissue Barriers 2015; 3:e1081861. [PMID: 26716074 DOI: 10.1080/21688370.2015.1081861] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 12/14/2022] Open
Abstract
Three small molecules were identified in high throughput screens that 1) block renal inward rectifier potassium (Kir) channels of Aedes aegypti expressed in HEK cells and Xenopus oocytes, 2) inhibit the secretion of KCl but not NaCl in isolated Malpighian tubules, and after injection into the hemolymph, 3) inhibit KCl excretion in vivo, and 4) render mosquitoes flightless or dead within 24h. Some mosquitoes had swollen abdomens at death consistent with renal failure. VU625, the most potent and promising small molecule for development as mosquitocide, inhibits AeKir1-mediated currents with an IC50 less than 100 nM. It is highly selective for AeKir1 over mammalian Kir channels, and it affects only 3 of 68 mammalian membrane proteins. These results document 1) renal failure as a new mode-of-action for mosquitocide development, 2) renal Kir channels as molecular target for inducing renal failure, and 3) the promise of the discovery and development of new species-specific insecticides.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Biomedical Sciences; Cornell University ; Ithaca, NY USA
| | - Yasong Yu
- College of Medicine; SUNY Downstate Medical Center ; Brooklyn, NY USA
| | - Peter M Piermarini
- Department of Entomology; Ohio Agricultural Research and Development Center; The Ohio State University ; Wooster, OH USA
| | - Jerod Denton
- Department of Anesthesiology; Vanderbilt University School of Medicine ; Nashville, TN USA
| |
Collapse
|
34
|
Wu Y, Baum M, Huang CL, Rodan AR. Two inwardly rectifying potassium channels, Irk1 and Irk2, play redundant roles in Drosophila renal tubule function. Am J Physiol Regul Integr Comp Physiol 2015. [PMID: 26224687 DOI: 10.1152/ajpregu.00148.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inwardly rectifying potassium channels play essential roles in renal physiology across phyla. Barium-sensitive K(+) conductances are found on the basolateral membrane of a variety of insect Malpighian (renal) tubules, including Drosophila melanogaster. We found that barium decreases the lumen-positive transepithelial potential difference in isolated perfused Drosophila tubules and decreases fluid secretion and transepithelial K(+) flux. In those insect species in which it has been studied, transcripts from multiple genes encoding inwardly rectifying K(+) channels are expressed in the renal (Malpighian) tubule. In Drosophila melanogaster, this includes transcripts of the Irk1, Irk2, and Irk3 genes. The role of each of these gene products in renal tubule function is unknown. We found that simultaneous knockdown of Irk1 and Irk2 in the principal cell of the fly tubule decreases transepithelial K(+) flux, with no additive effect of Irk3 knockdown, and decreases barium sensitivity of transepithelial K(+) flux by ∼50%. Knockdown of any of the three inwardly rectifying K(+) channels individually has no effect, nor does knocking down Irk3 simultaneously with Irk1 or Irk2. Irk1/Irk2 principal cell double-knockdown tubules remain sensitive to the kaliuretic effect of cAMP. Inhibition of the Na(+)/K(+)-ATPase with ouabain and Irk1/Irk2 double knockdown have additive effects on K(+) flux, and 75% of transepithelial K(+) transport is due to Irk1/Irk2 or ouabain-sensitive pathways. In conclusion, Irk1 and Irk2 play redundant roles in transepithelial ion transport in the Drosophila melanogaster renal tubule and are additive to Na(+)/K(+)-ATPase-dependent pathways.
Collapse
Affiliation(s)
- Yipin Wu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Michel Baum
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; and Department of Pediatrics, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
35
|
Weihrauch D, O’Donnell MJ. Links between Osmoregulation and Nitrogen-Excretion in Insects and Crustaceans. Integr Comp Biol 2015; 55:816-29. [DOI: 10.1093/icb/icv013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
36
|
Calkins TL, Woods-Acevedo MA, Hildebrandt O, Piermarini PM. The molecular and immunochemical expression of innexins in the yellow fever mosquito, Aedes aegypti: insights into putative life stage- and tissue-specific functions of gap junctions. Comp Biochem Physiol B Biochem Mol Biol 2015; 183:11-21. [PMID: 25585357 DOI: 10.1016/j.cbpb.2014.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022]
Abstract
Gap junctions (GJ) mediate direct intercellular communication by forming channels through which certain small molecules and/or ions can pass. Connexins, the proteins that form vertebrate GJ, are well studied and known to contribute to neuronal, muscular and epithelial physiology. Innexins, the GJ proteins of insects, have only recently received much investigative attention and many of their physiological roles remain to be determined. Here we characterize the molecular expression of six innexin (Inx) genes in the yellow fever mosquito Aedes aegypti (AeInx1, AeInx2, AeInx3, AeInx4, AeInx7, and AeInx8) and the immunochemical expression of one innexin protein, AeInx3, in the alimentary canal. We detected the expression of no less than four innexin genes in each mosquito life stage (larva, pupa, adult) and tissue/body region from adult males and females (midgut, Malpighian tubules, hindgut, head, carcass, gonads), suggesting a remarkable potential molecular diversity of GJ in mosquitoes. Moreover, the expression patterns of some innexins were life stage and/or tissue specific, suggestive of potential functional specializations. Cloning of the four full-length cDNAs expressed in the Malpighian tubules of adult females (AeInx1, AeInx2, AeInx3, and AeInx7) revealed evidence for 1) alternative splicing of AeInx1 and AeInx3 transcripts, and 2) putative N-glycosylation of AeInx3 and AeInx7. Finally, immunohistochemistry of AeInx3 in the alimentary canal of larval and adult female mosquitoes confirmed localization of this innexin to the intercellular regions of Malpighian tubule and hindgut epithelial cells, suggesting that it is an important component of GJ in these tissues.
Collapse
Affiliation(s)
- Travis L Calkins
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Mikal A Woods-Acevedo
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Oliver Hildebrandt
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States.
| |
Collapse
|
37
|
Raphemot R, Rouhier MF, Swale DR, Days E, Weaver CD, Lovell KM, Konkel LC, Engers DW, Bollinger SF, Hopkins C, Piermarini PM, Denton JS. Discovery and characterization of a potent and selective inhibitor of Aedes aegypti inward rectifier potassium channels. PLoS One 2014; 9:e110772. [PMID: 25375326 PMCID: PMC4222822 DOI: 10.1371/journal.pone.0110772] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022] Open
Abstract
Vector-borne diseases such as dengue fever and malaria, which are transmitted by infected female mosquitoes, affect nearly half of the world's population. The emergence of insecticide-resistant mosquito populations is reducing the effectiveness of conventional insecticides and threatening current vector control strategies, which has created an urgent need to identify new molecular targets against which novel classes of insecticides can be developed. We previously demonstrated that small molecule inhibitors of mammalian Kir channels represent promising chemicals for new mosquitocide development. In this study, high-throughput screening of approximately 30,000 chemically diverse small-molecules was employed to discover potent and selective inhibitors of Aedes aegypti Kir1 (AeKir1) channels heterologously expressed in HEK293 cells. Of 283 confirmed screening ‘hits’, the small-molecule inhibitor VU625 was selected for lead optimization and in vivo studies based on its potency and selectivity toward AeKir1, and tractability for medicinal chemistry. In patch clamp electrophysiology experiments of HEK293 cells, VU625 inhibits AeKir1 with an IC50 value of 96.8 nM, making VU625 the most potent inhibitor of AeKir1 described to date. Furthermore, electrophysiology experiments in Xenopus oocytes revealed that VU625 is a weak inhibitor of AeKir2B. Surprisingly, injection of VU625 failed to elicit significant effects on mosquito behavior, urine excretion, or survival. However, when co-injected with probenecid, VU625 inhibited the excretory capacity of mosquitoes and was toxic, suggesting that the compound is a substrate of organic anion and/or ATP-binding cassette (ABC) transporters. The dose-toxicity relationship of VU625 (when co-injected with probenecid) is biphasic, which is consistent with the molecule inhibiting both AeKir1 and AeKir2B with different potencies. This study demonstrates proof-of-concept that potent and highly selective inhibitors of mosquito Kir channels can be developed using conventional drug discovery approaches. Furthermore, it reinforces the notion that the physical and chemical properties that determine a compound's bioavailability in vivo will be critical in determining the efficacy of Kir channel inhibitors as insecticides.
Collapse
Affiliation(s)
- Rene Raphemot
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Matthew F. Rouhier
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States of America
| | - Daniel R. Swale
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Emily Days
- Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Kimberly M. Lovell
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Leah C. Konkel
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Darren W. Engers
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Sean F. Bollinger
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Corey Hopkins
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Institute for Global Health, Vanderbilt University, Nashville, TN, United States of America
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Peter M. Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States of America
- * E-mail: (PMP); (JSD)
| | - Jerod S. Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Institute for Global Health, Vanderbilt University, Nashville, TN, United States of America
- * E-mail: (PMP); (JSD)
| |
Collapse
|
38
|
Raphemot R, Estévez-Lao TY, Rouhier MF, Piermarini PM, Denton JS, Hillyer JF. Molecular and functional characterization of Anopheles gambiae inward rectifier potassium (Kir1) channels: a novel role in egg production. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 51:10-9. [PMID: 24855023 PMCID: PMC4121989 DOI: 10.1016/j.ibmb.2014.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/03/2014] [Accepted: 05/10/2014] [Indexed: 05/21/2023]
Abstract
Inward rectifier potassium (Kir) channels play essential roles in regulating diverse physiological processes. Although Kir channels are encoded in mosquito genomes, their functions remain largely unknown. In this study, we identified the members of the Anopheles gambiae Kir gene family and began to investigate their function. Notably, we sequenced the A. gambiae Kir1 (AgKir1) gene and showed that it encodes all the canonical features of a Kir channel: an ion pore that is composed of a pore helix and a selectivity filter, two transmembrane domains that flank the ion pore, and the so-called G-loop. Heterologous expression of AgKir1 in Xenopus oocytes revealed that this gene encodes a functional, barium-sensitive Kir channel. Quantitative RT-PCR experiments then showed that relative AgKir1 mRNA levels are highest in the pupal stage, and that AgKir1 mRNA is enriched in the adult ovaries. Gene silencing of AgKir1 by RNA interference did not affect the survival of female mosquitoes following a blood meal, but decreased their egg output. These data provide evidence for a new role of Kir channels in mosquito fecundity, and further validates them as promising molecular targets for the development of a new class of mosquitocides to be used in vector control.
Collapse
Affiliation(s)
- Rene Raphemot
- Department of Anesthesiology, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Tania Y Estévez-Lao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew F Rouhier
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA; Institute for Global Health, Vanderbilt University, Nashville, TN 37232, USA.
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Institute for Global Health, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
39
|
Rouhier MF, Hine RM, Park ST, Raphemot R, Denton J, Piermarini PM, Beyenbach KW. Excretion of NaCl and KCl loads in mosquitoes. 2. Effects of the small molecule Kir channel modulator VU573 and its inactive analog VU342. Am J Physiol Regul Integr Comp Physiol 2014; 307:R850-61. [PMID: 25056106 DOI: 10.1152/ajpregu.00106.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of two small molecules VU342 and VU573 on renal functions in the yellow fever mosquito Aedes aegypti was investigated in vitro and in vivo. In isolated Malpighian tubules, VU342 (10 μM) had no effect on the transepithelial secretion of Na(+), K(+), Cl(-), and water. In contrast, 10 μM VU573 first stimulated and then inhibited the transepithelial secretion of fluid when the tubules were bathed in Na(+)-rich or K(+)-rich Ringer solution. The early stimulation was blocked by bumetanide, suggesting the transient stimulation of Na-K-2Cl cotransport, and the late inhibition of fluid secretion was consistent with the known block of AeKir1, an Aedes inward rectifier K(+) channel, by VU573. VU342 and VU573 at a hemolymph concentration of about 11 μM had no effect on the diuresis triggered by hemolymph Na(+) or K(+) loads. VU342 at a hemolymph concentration of 420 μM had no effect on the diuresis elicited by hemolymph Na(+) or K(+) loads. In contrast, the same concentration of VU573 significantly diminished the Na(+) diuresis by inhibiting the urinary excretion of Na(+), Cl(-), and water. In K(+)-loaded mosquitoes, 420 μM VU573 significantly diminished the K(+) diuresis by inhibiting the urinary excretion of K(+), Na(+), Cl(-), and water. We conclude that 1) the effects of VU573 observed in isolated Malpighian tubules are overwhelmed in vivo by the diuresis triggered with the coinjection of Na(+) and K(+) loads, and 2) at a hemolymph concentration of 420 μM VU573 affects Kir channels systemically, including those that might be involved in the release of diuretic hormones.
Collapse
Affiliation(s)
- Matthew F Rouhier
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| | - Rebecca M Hine
- Department of Biomedical Sciences, Cornell University, Ithaca, New York; and
| | - Seokhwan Terry Park
- Department of Biomedical Sciences, Cornell University, Ithaca, New York; and
| | - Rene Raphemot
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jerod Denton
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| | - Klaus W Beyenbach
- Department of Biomedical Sciences, Cornell University, Ithaca, New York; and
| |
Collapse
|
40
|
Hine RM, Rouhier MF, Park ST, Qi Z, Piermarini PM, Beyenbach KW. The excretion of NaCl and KCl loads in mosquitoes. 1. Control data. Am J Physiol Regul Integr Comp Physiol 2014; 307:R837-49. [PMID: 25056103 DOI: 10.1152/ajpregu.00105.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The handling of Na(+) and K(+) loads was investigated in isolated Malpighian tubules and in whole mosquitoes of Aedes aegypti. Isolated Malpighian tubules bathed in Na(+)-rich Ringer solution secreted Na(+)-rich fluid, and tubules bathed in K(+)-rich Ringer solution secreted K(+)-rich fluid. Upon Na(+) loading the hemolymph, the mosquito removed 77% the injected Na(+) within the next 30 min. The rapid onset and magnitude of this diuresis and the excretion of more Na(+) than can be accounted for by tubular secretion in vitro is consistent with the release of the calcitonin-like diuretic hormone in the mosquito to remove the Na(+) load from the hemolymph. Downstream, K(+) was reabsorbed with water in the hindgut, which concentrated Na(+) in excreted urine hyperosmotic to the hemolymph. Upon K(+) loading the hemolymph, the mosquito took 2 h to remove 100% of the injected K(+) from the hemolymph. The excretion of K(+)-rich isosmotic urine was limited to clearing the injected K(+) from the hemolymph with a minimum of Cl(-) and water. As a result, 43.3% of the injected Cl(-) and 48.1% of the injected water were conserved. The cation retained in the hemolymph with Cl(-) was probably N-methyl-d-glucamine, which replaced Na(+) in the hemolymph injection of the K(+) load. Since the tubular secretion of K(+) accounts for the removal of the K(+) load from the hemolymph, the reabsorption of K(+), Na(+), Cl(-), and water must be inhibited in the hindgut. The agents mediating this inhibition are unknown.
Collapse
Affiliation(s)
- Rebecca M Hine
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - Matthew F Rouhier
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio; and
| | | | - Zhijun Qi
- Institute of Pesticide Science, Northwestern Agricultural and Forestry University, Yangling, Shaanxi, China
| | - Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio; and
| | - Klaus W Beyenbach
- Department of Biomedical Sciences, Cornell University, Ithaca, New York;
| |
Collapse
|
41
|
Pharmacological validation of an inward-rectifier potassium (Kir) channel as an insecticide target in the yellow fever mosquito Aedes aegypti. PLoS One 2014; 9:e100700. [PMID: 24959745 PMCID: PMC4069099 DOI: 10.1371/journal.pone.0100700] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/27/2014] [Indexed: 12/13/2022] Open
Abstract
Mosquitoes are important disease vectors that transmit a wide variety of pathogens to humans, including those that cause malaria and dengue fever. Insecticides have traditionally been deployed to control populations of disease-causing mosquitoes, but the emergence of insecticide resistance has severely limited the number of active compounds that are used against mosquitoes. Thus, to improve the control of resistant mosquitoes there is a need to identify new insecticide targets and active compounds for insecticide development. Recently we demonstrated that inward rectifier potassium (Kir) channels and small molecule inhibitors of Kir channels offer promising new molecular targets and active compounds, respectively, for insecticide development. Here we provide pharmacological validation of a specific mosquito Kir channel (AeKir1) in the yellow fever mosquito Aedes aegypti. We show that VU590, a small-molecule inhibitor of mammalian Kir1.1 and Kir7.1 channels, potently inhibits AeKir1 but not another mosquito Kir channel (AeKir2B) in vitro. Moreover, we show that a previously identified inhibitor of AeKir1 (VU573) elicits an unexpected agonistic effect on AeKir2B in vitro. Injection of VU590 into the hemolymph of adult female mosquitoes significantly inhibits their capacity to excrete urine and kills them within 24 h, suggesting a mechanism of action on the excretory system. Importantly, a structurally-related VU590 analog (VU608), which weakly blocks AeKir1 in vitro, has no significant effects on their excretory capacity and does not kill mosquitoes. These observations suggest that the toxic effects of VU590 are associated with its inhibition of AeKir1.
Collapse
|
42
|
Esquivel CJ, Cassone BJ, Piermarini PM. Transcriptomic evidence for a dramatic functional transition of the malpighian tubules after a blood meal in the Asian tiger mosquito Aedes albopictus. PLoS Negl Trop Dis 2014; 8:e2929. [PMID: 24901705 PMCID: PMC4046972 DOI: 10.1371/journal.pntd.0002929] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/21/2014] [Indexed: 01/02/2023] Open
Abstract
Background The consumption of a vertebrate blood meal by adult female mosquitoes is necessary for their reproduction, but it also presents significant physiological challenges to mosquito osmoregulation and metabolism. The renal (Malpighian) tubules of mosquitoes play critical roles in the initial processing of the blood meal by excreting excess water and salts that are ingested. However, it is unclear how the tubules contribute to the metabolism and excretion of wastes (e.g., heme, ammonia) produced during the digestion of blood. Methodology/Principal Findings Here we used RNA-Seq to examine global changes in transcript expression in the Malpighian tubules of the highly-invasive Asian tiger mosquito Aedes albopictus during the first 24 h after consuming a blood meal. We found progressive, global changes in the transcriptome of the Malpighian tubules isolated from mosquitoes at 3 h, 12 h, and 24 h after a blood meal. Notably, a DAVID functional cluster analysis of the differentially-expressed transcripts revealed 1) a down-regulation of transcripts associated with oxidative metabolism, active transport, and mRNA translation, and 2) an up-regulation of transcripts associated with antioxidants and detoxification, proteolytic activity, amino-acid metabolism, and cytoskeletal dynamics. Conclusions/Significance The results suggest that blood feeding elicits a functional transition of the epithelium from one specializing in active transepithelial fluid secretion (e.g., diuresis) to one specializing in detoxification and metabolic waste excretion. Our findings provide the first insights into the putative roles of mosquito Malpighian tubules in the chronic processing of blood meals. The Asian tiger mosquito Aedes albopictus is a vector of several medically-important arboviruses and one of the most invasive mosquito species in the world. Existing control measures for mosquitoes are presently being challenged by the emergence of resistance to insecticides that target the nervous system. Thus, it is necessary to identify novel physiological targets to guide the development of new insecticides. We recently demonstrated that the ‘kidneys’ (Malpighian tubules) of mosquitoes offer a valuable, new physiological target for insecticides. However, our understanding of how this tissue contributes to the chronic metabolic processing of blood meals by mosquitoes is limited. Here we characterize the changes in transcript expression that occur in the Malpighian tubules of adult female A. albopictus with the goal of identifying key molecular pathways that may reveal valuable targets for insecticide development. We find dramatic changes in transcript accumulation in Malpighian tubules, which 1) provide new insights into the potential functional roles of Malpighian tubules after a blood meal, and 2) reveal new potential molecular pathways and targets to guide the development of new insecticides that would disrupt the renal functions of mosquitoes.
Collapse
Affiliation(s)
- Carlos J. Esquivel
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Bryan J. Cassone
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Peter M. Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail:
| |
Collapse
|
43
|
Rouhier MF, Piermarini PM. Identification of life-stage and tissue-specific splice variants of an inward rectifying potassium (Kir) channel in the yellow fever mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 48:91-99. [PMID: 24657620 DOI: 10.1016/j.ibmb.2014.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Inward-rectifier potassium (Kir) channels play key roles in nerve, muscle, and epithelial cells in mammals, but their physiological roles in insects remain to be determined. The yellow fever mosquito (Aedes aegypti) possesses five different genes encoding Kir channel subunits: Kir1, Kir2A, Kir2B, Kir2B', and Kir3. We have recently cloned and characterized the Kir1, Kir2B, and Kir3 cDNAs in the renal (Malpighian) tubules of adult female Ae. aegypti. Here we characterize the expression of the Kir2A gene in Ae. aegypti, which was not abundantly expressed in Malpighian tubules. We find that the 1) Kir2A gene is expressed primarily in the midgut and hindgut of adult female mosquitoes, and 2) Kir2A mRNAs are alternatively spliced into three distinct variants (Kir2A-a, -b, and -c). The deduced Kir2A proteins from these splice forms share a completely conserved transmembrane domain (a pore-forming domain flanked by two transmembrane-spanning segments), but possess novel NH2-terminal and/or COOH-terminal domains. Semi-quantitative RT-PCR analyses indicate that the splice variants exhibit both developmental- and tissue-specific expression. Lastly, we provide insights into the conservation of alternative splicing among the Kir2A genes of dipterans, which may add molecular diversity that compensates for the relatively limited number of Kir channel genes in insects compared to mammals.
Collapse
Affiliation(s)
- Matthew F Rouhier
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
44
|
Pacey EK, O'Donnell MJ. Transport of H(+), Na(+) and K(+) across the posterior midgut of blood-fed mosquitoes (Aedes aegypti). JOURNAL OF INSECT PHYSIOLOGY 2014; 61:42-50. [PMID: 24406662 DOI: 10.1016/j.jinsphys.2013.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/03/2013] [Accepted: 12/28/2013] [Indexed: 06/03/2023]
Abstract
Following ingestion of a blood meal, the adult female mosquito undergoes a massive diuresis during which Na(+), Cl(-) and water are secreted at high rates by the Malpighian tubules. In the hours following completion of diuresis, digestion of the K(+)-rich blood cells provides a source of energy as well as amino acids for proteins in the developing eggs. Although the transport of inorganic ions by the Malpighian tubules of blood-fed mosquitoes has been extensively characterized, relatively little is known of the epithelial transport mechanisms responsible for movement of Na(+), H(+), and K(+) across the posterior midgut. In this paper we have used the Scanning Ion-selective Electrode Technique (SIET) to measure the basal (unstimulated) rates of transport of K(+), Na(+) and H(+) across the isolated posterior midgut at intervals after the blood meal. We have also measured luminal concentrations of Na(+) and K(+) and the transepithelial electrical potential at the same time points and have calculated the electrochemical potentials for Na(+), K(+) and H(+) across the midgut. SIET measurements reveal absorption (lumen to bath) of Na(+) and H(+) and secretion of K(+) for the first 2h after blood-feeding. By 24h after the meal, absorption of Na(+) and H(+) remains active while there is an electrochemical gradient favouring absorption of K(+). Inhibition by ouabain and Ba(2+) suggest a role for the Na(+)/K(+)-ATPase and K(+) channels in absorption of Na(+) and K(+), respectively. Inhibition of H(+) absorption by acetazolamide implicates carbonic anhydrase in transepithelial H(+) transport.
Collapse
Affiliation(s)
- Evan K Pacey
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton L8S 4K1, Canada
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton L8S 4K1, Canada.
| |
Collapse
|
45
|
Raphemot R, Rouhier MF, Hopkins CR, Gogliotti RD, Lovell KM, Hine RM, Ghosalkar D, Longo A, Beyenbach KW, Denton JS, Piermarini PM. Eliciting renal failure in mosquitoes with a small-molecule inhibitor of inward-rectifying potassium channels. PLoS One 2013; 8:e64905. [PMID: 23734226 PMCID: PMC3666979 DOI: 10.1371/journal.pone.0064905] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022] Open
Abstract
Mosquito-borne diseases such as malaria and dengue fever take a large toll on global health. The primary chemical agents used for controlling mosquitoes are insecticides that target the nervous system. However, the emergence of resistance in mosquito populations is reducing the efficacy of available insecticides. The development of new insecticides is therefore urgent. Here we show that VU573, a small-molecule inhibitor of mammalian inward-rectifying potassium (Kir) channels, inhibits a Kir channel cloned from the renal (Malpighian) tubules of Aedes aegypti (AeKir1). Injection of VU573 into the hemolymph of adult female mosquitoes (Ae. aegypti) disrupts the production and excretion of urine in a manner consistent with channel block of AeKir1 and renders the mosquitoes incapacitated (flightless or dead) within 24 hours. Moreover, the toxicity of VU573 in mosquitoes (Ae. aegypti) is exacerbated when hemolymph potassium levels are elevated, suggesting that Kir channels are essential for maintenance of whole-animal potassium homeostasis. Our study demonstrates that renal failure is a promising mechanism of action for killing mosquitoes, and motivates the discovery of selective small-molecule inhibitors of mosquito Kir channels for use as insecticides.
Collapse
Affiliation(s)
- Rene Raphemot
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Matthew F. Rouhier
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Corey R. Hopkins
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Rocco D. Gogliotti
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kimberly M. Lovell
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Rebecca M. Hine
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Dhairyasheel Ghosalkar
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Anthony Longo
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Klaus W. Beyenbach
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Jerod S. Denton
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Institute for Global Health, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (JSD); (PMP)
| | - Peter M. Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail: (JSD); (PMP)
| |
Collapse
|
46
|
Mamidala P, Mittapelly P, Jones SC, Piermarini PM, Mittapalli O. Molecular characterization of genes encoding inward rectifier potassium (Kir) channels in the bed bug (Cimex lectularius). Comp Biochem Physiol B Biochem Mol Biol 2013; 164:275-9. [PMID: 23416179 DOI: 10.1016/j.cbpb.2013.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/02/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
The molecular genetics of inward-rectifier potassium (Kir) channels in insects is poorly understood. To date, Kir channel genes have been characterized only from a few representative dipterans (i.e., fruit flies and mosquitoes). The goal of the present study was to characterize Kir channel cDNAs in a hemipteran, the bed bug (Cimex lectularius). Using our previously reported bed bug transcriptome (RNA-seq), we identified two cDNAs that encode putative Kir channels. One was a full-length cDNA that encodes a protein belonging to the insect 'Kir3' clade, which we designate as 'ClKir3'. The other was a partial cDNA that encodes a protein with similarity to both the insect 'Kir1' and 'Kir2' clades, which we designate as 'ClKir1/2'. Quantitative real-time PCR analysis revealed that ClKir1/2 and ClKir3 exhibited peak expression levels in late-instar nymphs and early-instar nymphs, respectively. Furthermore, ClKir3, but not ClKir1/2, showed tissue-specific expression in Malpighian tubules of adult bed bugs. Lastly, using an improved procedure for delivering double-stranded RNA (dsRNA) to male and female bed bugs (via the cervical membrane) we demonstrate rapid and systemic knockdown of ClKir3 transcripts. In conclusion, we demonstrate that the bed bug possesses at least two genes encoding Kir channels, and that RNAi is possible for at least Kir3, thereby offering a potential approach for elucidating the roles of Kir channel genes in bed bug physiology.
Collapse
Affiliation(s)
- Praveen Mamidala
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, OH 44691, USA
| | - Priyanka Mittapelly
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, OH 44691, USA
| | - Susan C Jones
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, OH 44691, USA
| | - Omprakash Mittapalli
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, OH 44691, USA.
| |
Collapse
|
47
|
Denholm B. Shaping up for action: the path to physiological maturation in the renal tubules of Drosophila. Organogenesis 2013; 9:40-54. [PMID: 23445869 DOI: 10.4161/org.24107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Malpighian tubule is the main organ for excretion and osmoregulation in most insects. During a short period of embryonic development the tubules of Drosophila are shaped, undergo differentiation and become precisely positioned in the body cavity, so they become fully functional at the time of larval hatching a few hours later. In this review I explore three developmental events on the path to physiological maturation. First, I examine the molecular and cellular mechanisms that generate organ shape, focusing on the process of cell intercalation that drives tubule elongation, the roles of the cytoskeleton, the extracellular matrix and how intercalation is coordinated at the tissue level. Second, I look at the genetic networks that control the physiological differentiation of tubule cells and consider how distinctive physiological domains in the tubule are patterned. Finally, I explore how the organ is positioned within the body cavity and consider the relationship between organ position and function.
Collapse
Affiliation(s)
- Barry Denholm
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|