1
|
Wang X, Xu M, Kong X, Zhong S, Kabissa JJ, Li D, Kang Z, Xu Y, Chen Z. The role of insulin receptor InR in photoperiod-regulated reproductive diapause of Chrysoperla nipponensis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104305. [PMID: 40158640 DOI: 10.1016/j.ibmb.2025.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Insects usually diapause, a process regulated by hormonal signals as an adaptive mechanism developed through long-term evolution to survive unfavorable environmental conditions. Chrysoperla nipponensis is classified as a photoperiod-sensitive insect. Treatments with short-day (SD) and long-day (LD) conditions have distinct effects on ovarian development and lipid accumulation in adults, with SD condition inducing diapause. Injecting bovine insulin promoted ovarian development and egg formation in diapause females, while injecting insulin receptor induced diapause-like traits in reproductive females. This study investigate the biological function of insulin signaling in the reproductive diapause of females of C. nipponensis. Under SD treatment the mRNA expression level of InR1 and InR2, as well as the protein expression level of InR1 were significantly reduced. This reduction led to stagnant ovarian development, increased adipose tissue mass, and a significant rise in triglyceride (TG) content. Silencing InR1 under LD conditions resulted in halted ovarian development and enhanced lipid accumulation, with the expression levels of Akt, Kr-h1, and Vg significantly decreased mirroring those observed under SD conditions. Interestingly, silencing InR2 under LD condition did not affect ovarian development. Furthermore, transcriptome analysis identified six genes (Akt, PkN, Skp2, CycB3, BTrC, and AurkA) associated with reproductive regulation and eight genes (FadΔ11, EchA, EcI, Ugts (2A3, 1-9), AR, Gpdh and Cbr) linked to lipid metabolism, all of which are involved in InR1 mediated regulation of C. nipponensis reproduction.
Collapse
Affiliation(s)
- Xiao Wang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Minghui Xu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Xue Kong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Shaofeng Zhong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Jeremiah Joe Kabissa
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China; Tanzania Agricultural Research Institute (TARI), Mwanza, 999132, Tanzania
| | - Dandan Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Zhiwei Kang
- College of Life Sciences, Hebei University, Baoding, 071000, PR China.
| | - Yongyu Xu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China.
| | - Zhenzhen Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, PR China.
| |
Collapse
|
2
|
Force E, Alvarez C, Fuentes A, Maria A, Bozzolan F, Debernard S. Diet influence on male sexual maturation through interplay between insulin signaling and juvenile hormone in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104252. [PMID: 39701395 DOI: 10.1016/j.ibmb.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
In animals, sexual maturation coincides with the development of sexual behaviors and reproductive system. These developmental events are influenced by diet and governed by endocrine signals. Here, for the first time in insects, we explored functional links between nutrition and juvenile hormone (JH) in the male reproductive physiology through the insulin signaling pathway (ISP) acting as a transducer of nutritional signals. We turned to the male moth Agrotis ipsilon for which sexual maturation, including accessory sex glands (ASGs) development concomitantly with antennal lobes (ALs) maturation for female sex pheromone processing and display of sexual behavior, is known to be JH- and diet-dependent. Indeed, a diet rich in sugars with sodium was previously shown to accelerate sexual maturation, which was achieved from the third day of adult life. In this study, we demonstrated that such a diet raised i) the expression of JH signaling actors (Methoprene-tolerant, Taiman, and Krüppel homolog 1) in ALs and ASGs, ii) the biosynthesis and circulating levels of JH, and iii) the expression of both insulin receptor (InR) and insulin-like peptides (ILPs) in corpora allata (CAs) and brain respectively. Insulin injection raised JH biosynthesis following increased HMG-CoA reductase expression in CAs; opposite effects were induced in InR-deficient males. Thus, we highlighted that promoting effects of a diet composed of sugars with sodium on male sexual maturation results from an early induction of ISP causing an increase in JH biosynthesis followed by a potentiation of JH actions on the development of ASGs and ALs in A. ipsilon.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France.
| | | | - Annabelle Fuentes
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Annick Maria
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Françoise Bozzolan
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France.
| |
Collapse
|
3
|
Xu J, Yuan Z, Zhao H, Wu X, Cai N, Ma T, Tang B, Chen G, Wang S. RNAi-Mediated FoxO Silencing Inhibits Reproduction in Locusta migratoria. INSECTS 2024; 15:891. [PMID: 39590490 PMCID: PMC11594837 DOI: 10.3390/insects15110891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
FoxO is a downstream target gene of cellular nutrient and growth factors, oxidative stress responses, and insulin signaling pathways. It play a crucial role in insect growth, development, and reproduction. Locusta migratoria is a significant agricultural pest; therefore, the identification of novel control targets for its management is of significant importance. After injecting dsRNA to interfere with FoxO expression, we observed changes in the reproduction-related gene expression and ovary development through RT-qPCR and morphological observation. Simultaneously, the trehalose and glycogen contents were measured following RNAi. The results demonstrate that interference with FoxO significantly downregulates key genes in the Hippo pathway and Notch gene expression. In terms of carbohydrate metabolism, the trehalose content decreases significantly while the glycogen content increases markedly after FoxO silencing. Additionally, FoxO silencing considerably inhibits reproductive-related gene expression, resulting in delayed ovarian development. These findings indicate that FoxO regulates L. migratoria reproduction through the Hippo signaling pathway: when impaired, the reproductive capacity function declines. In addition, FoxO-mediated energy mobilization is involved in the regulation of egg production. These results indicate that the RNAi of FoxO may be a useful control strategy against L. migratoria.
Collapse
Affiliation(s)
- Jiaying Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (Z.Y.); (H.Z.); (X.W.); (N.C.); (T.M.); (B.T.)
| | - Zeming Yuan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (Z.Y.); (H.Z.); (X.W.); (N.C.); (T.M.); (B.T.)
| | - Huazhang Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (Z.Y.); (H.Z.); (X.W.); (N.C.); (T.M.); (B.T.)
| | - Xinru Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (Z.Y.); (H.Z.); (X.W.); (N.C.); (T.M.); (B.T.)
| | - Nina Cai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (Z.Y.); (H.Z.); (X.W.); (N.C.); (T.M.); (B.T.)
| | - Tingting Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (Z.Y.); (H.Z.); (X.W.); (N.C.); (T.M.); (B.T.)
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (Z.Y.); (H.Z.); (X.W.); (N.C.); (T.M.); (B.T.)
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (Z.Y.); (H.Z.); (X.W.); (N.C.); (T.M.); (B.T.)
| |
Collapse
|
4
|
Toprak U, İnak E, Nauen R. Lipid Metabolism as a Target Site in Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39466572 DOI: 10.1007/5584_2024_822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of "lipid biosynthesis inhibitors", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).
Collapse
Affiliation(s)
- Umut Toprak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey.
| | - Emre İnak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
5
|
Pujal D, Escudero J, Cabrera P, Bos L, Vargas-Chávez C, Fernández R, Bellés X, Maestro JL. Functional redundancy of the three insulin receptors of cockroaches. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 172:104161. [PMID: 39059715 DOI: 10.1016/j.ibmb.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Gene duplication is a fundamental evolutionary process which provides opportunities to acquire new gene functions. In the case of the insulin receptors (InRs) in cockroaches and close-related insects, two successive duplications determined the occurrence of three InR genes: InR2, InR1 and InR3, the last two forming a sister cluster to InR2. The biological role of each of the gene duplicates and whether they resulted from neofunctionalization or subfunctionalization is still unclear. The analysis of the sequences from different lineages did not detect positive selection as driving the divergence of InR1 and InR3, discarding neofunctionalization, and suggesting that there is no functional divergence between both gene copies. Using the cockroach Blattella germanica as a model, we have determined that BgInR2 is the gene with the highest expression levels in all the tissues analyzed, both in adult females and males, as well as in nymphs and embryos. BgInR3 is second in expression levels while BgInR1 is expressed at lower levels and only in some tissues. The selective depletion by RNAi of each of the three InRs, analyzed in terms of phenotype and fat body transcriptomic profiles, resulted in essentially redundant effects, with a magnitude approximately proportional to the level of expression of the respective InR. Therefore, the results indicate that the InR duplicates likely experienced a subfunctionalization process, by which the three InRs maintained similar functions but contributing to those functions proportionally to their expression levels.
Collapse
Affiliation(s)
- David Pujal
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Jorge Escudero
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Pol Cabrera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Laura Bos
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Carlos Vargas-Chávez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Rosa Fernández
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Xavier Bellés
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - José Luis Maestro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
6
|
Qiu X, Huang W, Yue W, Li D, Zhi J. Response of the serine/threonine kinase AKT and phosphoinositide-dependent kinase PDK in Frankliniella occidentalis (Thysanoptera: Thripidae) to three kinds of foods and their regulation of reproductive function. INSECT MOLECULAR BIOLOGY 2024; 33:372-386. [PMID: 38450915 DOI: 10.1111/imb.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Frankliniella occidentalis (Pergande) is a typical omnivorous insect that feeds on host plants, pollens and mite eggs, and poses a threat to crops worldwide. The insulin signalling pathway (ISP) is a typical nutrient-sensitive pathway that participates in the regulation of various functions in insects. Serine/threonine kinases (AKTs) and phosphoinositide-dependent kinases (PDKs) are key components of the ISP. In this study, the FoAKT and FoPDK genes in F. occidentalis were cloned, and the effects of three foods on their expression were determined. The expression of FoAKT and FoPDK in the thrips fed on kidney bean leaves supplemented with pine pollen or mite eggs was higher than in those primarily fed on leaves alone. Meanwhile, the fecundity of thrips fed on leaves supplemented with pine pollen was highest. In addition, RNA interference-mediated knockdown of FoAKT and FoPDK decreased vitellogenin (Vg) content and Vg expression in females, shortened ovariole length, delayed egg development and reduced fecundity and offspring hatching rates. Furthermore, the synthesis of juvenile hormone (JH) was reduced, and the contents of glucose, trehalose, glycogen and trehalase were affected. These results suggest that FoAKT and FoPDK regulate the reproduction of F. occidentalis by regulating Vg and JH production as well as carbohydrate metabolism.
Collapse
Affiliation(s)
- Xinyue Qiu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Wanqing Huang
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Tobacco Company, Tongren Branch, Tongren, China
| | - Wenbo Yue
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Dingyin Li
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Junrui Zhi
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Gou F, Zhang D, Chen S, Zhang M, Chen J. Role of nuclear protein Akirin in the modulation of female reproduction in Nilaparvata lugens (Hemiptera: Delphacidae). Front Physiol 2024; 15:1415746. [PMID: 39045218 PMCID: PMC11264338 DOI: 10.3389/fphys.2024.1415746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction: Akirin as a highly conserved transcription factor, exerts a profound influence on the growth, development, immune response, and reproductive processes in animals. The brown planthopper (BPH), Nilaparvata lugens, a major pest in rice production in Asia, possesses high reproductive capacity, a critical factor contributing to reduced rice yields. The aims of this study were to demonstrate the regulatory role of Akirin in the reproduction of BPH. Methods: In this study, quantitative PCR (qPCR) was used to detect the mRNA expression of genes. RNA interference (RNAi) was used to downregulate the expression of Akirin gene, and RNA sequencing (RNA-seq) was used to screen for differentially expressed genes caused by Akirin downregulation. Hormone contents were measured with the enzyme linked immunosorbent assay (ELISA), and protein content was evaluated with the bicinchoninic acid (BCA) method. Results: Using BPH genome data, we screened for an Akirin gene (NlAkirin). An analysis of tissue-specific expressions showed that NlAkirin was expressed in all tissues tested in female BPH, but its expression level was highest in the ovary. After inhibiting the mRNA expression of NlAkirin in BPH females, the number of eggs laid, hatching rate, and number of ovarioles decreased. Transcriptome sequencing was performed, following a NlAkirin double-stranded RNA treatment. Compared with the genes of the control, which was injected with GFP double-stranded RNA, there were 438 upregulated genes and 1012 downregulated genes; the expression of vitellogenin (Vg) and vitellogenin receptor (VgR) genes as well as the mRNA expression of genes related to the target of rapamycin (TOR), juvenile hormone (JH), and insulin pathways involved in Vg synthesis was significantly downregulated. As a result of NlAkirin knockdown, the titers of JH III and Ecdysone (Ecd) were downregulated in unmated females but returned to normal levels in mated females. The ovarian protein contents in both unmated and mated females were downregulated. Discussion and conclusion: Our results suggest that NlAkirin affects female BPH reproduction by regulating the mRNA expression of genes related to the Vg, VgR, TOR, JH, and insulin signaling pathways, in addition to the titers of JH III and Ecd. The findings of this research provide novel insights into the regulatory role of Akirin in insect reproductive capacity.
Collapse
Affiliation(s)
- Feiyan Gou
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Daowei Zhang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Siqi Chen
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Mingjing Zhang
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Jing Chen
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Leyria J. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol Cell Endocrinol 2024; 587:112211. [PMID: 38494046 DOI: 10.1016/j.mce.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The endocrine system plays a pivotal role in shaping the mechanisms that ensure successful reproduction. With over a million known insect species, understanding the endocrine control of reproduction has become increasingly complex. Some of the key players include the classic insect lipid hormones juvenile hormone (JH) and ecdysteroids, and neuropeptides such as insulin-like peptides (ILPs). Individual endocrine factors not only modulate their own target tissue but also play crucial roles in crosstalk among themselves, ensuring successful vitellogenesis and oogenesis. Recent advances in omics, gene silencing, and genome editing approaches have accelerated research, offering both fundamental insights and practical applications for studying in-depth endocrine signaling pathways. This review provides an updated and integrated view of endocrine factors modulating vitellogenesis and oogenesis in insect females.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
9
|
Hu K, Jin R, Liu J, Zhu J, Dai W, Wang Y, Li Y, Liu F. Functional characterization of the InR/PI3K/AKT signaling pathway in female reproduction of the predatory bug Cyrtorhinus lividipennis (Hemiptera: Miridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae113. [PMID: 38783398 DOI: 10.1093/jee/toae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The insulin signaling (IIS) pathway plays a key role in the regulation of various physiological functions in animals. However, the involvement of IIS pathway in the reproduction of natural enemy insects remains enigmatic. Here, 3 key genes (named ClInR, ClPI3K, and ClAKT) related to IIS pathway were cloned from Cyrtorhinus lividipennis (Reuter) (Hemiptera: Miridae), an important natural enemy in the rice ecosystem. These 3 proteins had the typical features of corresponding protein families and shared high similarity with their respective homologs from the Hemipteran species. The ClInR, ClPI3K, and ClAKT were highly expressed in the adult stage. Tissue distribution analysis revealed that ClInR, ClPI3K, and ClAKT were highly expressed in the midgut and ovary of adults. Silencing of ClInR, ClPI3K, and ClAKT caused 92.1%, 72.1%, and 57.8% reduction in the expression of ClVg, respectively. Depletion of these 3 genes impaired vitellogenin synthesis and ovary development. Moreover, the fecundity in the dsInR, dsPI3K, and dsAKT injected females were 53.9%, 50.8%, and 48.5% lower than the control treatment, respectively. These results indicated that ClInR, ClPI3K, and ClAKT are of great importance for the reproduction of C. lividipennis. Our results advance the knowledge about the molecular mechanism of reproduction regulation in natural enemy insects.
Collapse
Affiliation(s)
- Kui Hu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Rong Jin
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianqi Liu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jun Zhu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wei Dai
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Ying Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Fang Liu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu, Yangzhou 225009, China
| |
Collapse
|
10
|
Pei X, Bai T, Luo Y, Zhang Z, Li S, Fan Y, Liu TX. Acetyl coenzyme A carboxylase modulates lipogenesis and sugar homeostasis in Blattella germanica. INSECT SCIENCE 2024; 31:387-404. [PMID: 37486126 DOI: 10.1111/1744-7917.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 07/25/2023]
Abstract
Lipid and sugar homeostasis is critical for insect development and survival. In this study, we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica (BgACC) that is involved in both lipogenesis and sugar homeostasis. We found that BgACC was dominantly expressed in the fat body and integument, and was significantly upregulated after molting. Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage, but it caused a lethal phenotype during adult emergence. BgACC-RNA interference (RNAi) significantly downregulated total free fatty acid (FFA) and triacylglycerol (TAG) levels, and also caused a significant decrease of cuticular hydrocarbons (CHCs). Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females, but BgACC-RNAi did not affect the reproductive ability of males. Interestingly, knockdown of BgACC also changed the expression of insulin-like peptide genes (BgILPs), which mimicked a physiological state of high sugar uptake. In addition, BgACC was upregulated when B. germanica were fed on a high sucrose diet, and repression of BgACC upregulated the expression of the glycogen synthase gene (BgGlyS). Moreover, BgACC-RNAi increased the circulating sugar levels and glycogen storage, and a longevity assay suggested that BgACC was important for the survival of B. germanica under conditions of high sucrose uptake. Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes, which further modulates insect reproduction and sugar tolerance. This study benefits our understanding of the crosstalk between lipid and sugar metabolism.
Collapse
Affiliation(s)
- Xiaojin Pei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Tiantian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Zhanfeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Yongliang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Su Y, Wang W, Dai Y, Qi R, Gu H, Guo X, Liu X, Ren Y, Li F, Li B, Sun H. JH degradation pathway participates in hormonal regulation of larval development of Bombyx mori following λ-cyhalothrin exposure. CHEMOSPHERE 2024; 349:140871. [PMID: 38056714 DOI: 10.1016/j.chemosphere.2023.140871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
λ-Cyhalothrin (λ-cyh), a widely utilized pyrethroid insecticide, poses serious threats to non-target organisms due to its persistence nature in the environment. Exposure to low concentrations of λ-cyh has been observed to result in prolonged larval development in Bombyx mori, leading to substantial financial losses in sericulture. The present study was undertaken to elucidate the underlying mechanisms for prolonged development caused by λ-cyh (LC10) exposure. The results showed that the JH Ⅲ titer was significantly increased at 24 h of λ-cyh exposure, and the JH interacting genes Methoprene-tolerant 2, Steroid Receptor Co-activator, Krüppel-homolog 1, and JH binding proteins were also up-regulated. Although the target of rapamycin (Tor) genes were induced by λ-cyh, the biosynthesis of JH in the corpora allata was not promoted. Notably, 13 JH degradation genes were found to be significantly down-regulated in the midgut of B. mori. The mRNA levels and enzyme activity assays indicated that λ-cyh had inhibitory effects on JH esterase, JH epoxide hydrolase, and JH diol kinase (JHDK). Furthermore, the suppression of JHDK (KWMTBOMO01580) was further confirmed by both western blot and immunohistochemistry. This study has offered a comprehensive perspective on the mechanisms underlying the prolonged development caused by insecticides, and our results also hold significant implications for the safe production of sericulture.
Collapse
Affiliation(s)
- Yue Su
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Wanwan Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yixin Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Ruinan Qi
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Haoyi Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Xiqian Guo
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Xinyu Liu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yuying Ren
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
12
|
Ponton F, Tan YX, Forster CC, Austin AJ, English S, Cotter SC, Wilson K. The complex interactions between nutrition, immunity and infection in insects. J Exp Biol 2023; 226:jeb245714. [PMID: 38095228 DOI: 10.1242/jeb.245714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Insects are the most diverse animal group on the planet. Their success is reflected by the diversity of habitats in which they live. However, these habitats have undergone great changes in recent decades; understanding how these changes affect insect health and fitness is an important challenge for insect conservation. In this Review, we focus on the research that links the nutritional environment with infection and immune status in insects. We first discuss the research from the field of nutritional immunology, and we then investigate how factors such as intracellular and extracellular symbionts, sociality and transgenerational effects may interact with the connection between nutrition and immunity. We show that the interactions between nutrition and resistance can be highly specific to insect species and/or infection type - this is almost certainly due to the diversity of insect social interactions and life cycles, and the varied environments in which insects live. Hence, these connections cannot be easily generalised across insects. We finally suggest that other environmental aspects - such as the use of agrochemicals and climatic factors - might also influence the interaction between nutrition and resistance, and highlight how research on these is essential.
Collapse
Affiliation(s)
- Fleur Ponton
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Yin Xun Tan
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Casey C Forster
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | | | - Sinead English
- School of Biological Sciences , University of Bristol, Bristol, BS8 1QU, UK
| | | | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
13
|
Liu F, Yu S, Chen N, Ren C, Li S. Nutrition- and hormone-controlled developmental plasticity in Blattodea. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101128. [PMID: 37806339 DOI: 10.1016/j.cois.2023.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Blattodea, which includes cockroaches and termites, possesses high developmental plasticity that is mainly controlled by nutritional conditions and insect hormones. Insulin/insulin-like growth factor signaling (IIS), target of rapamycin complex 1 (TORC1), and adenosine monophosphate-activated protein complex are the three primary nutrition-responsive signals. Juvenile hormone (JH) and 20-hydroxyecdysone (20E) constitute the two most vital insect hormones that might interact with each other through the Met, Kr-h1, E93 (MEKRE93) pathway. Nutritional and hormonal signals interconnect to create a complex regulatory network. Here we summarize recent progress in our understanding of how nutritional and hormonal signals coordinately control the developmental plasticity of metamorphosis, reproduction, and appendage regeneration in cockroaches as well as caste differentiation in termites. We also highlight several perspectives that should be further emphasized in the studies of developmental plasticity in Blattodea. This review provides a general landscape in the field of nutrition- and hormone-controlled developmental plasticity in insects.
Collapse
Affiliation(s)
- Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Shuxin Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|
14
|
Lu T, Lu Y, Wang L, Liu Z, Miao S, Tai Y, Yang B. The serine/threonine kinase Akt gene affects fecundity by reducing Juvenile hormone synthesis in Liposcelis entomophila (Enderlein). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105583. [PMID: 37945269 DOI: 10.1016/j.pestbp.2023.105583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/20/2023] [Indexed: 11/12/2023]
Abstract
The serine/threonine kinase Akt is an important component of the insulin signalling pathway (ISP) in regulating insect metabolism, growth, and reproduction. The psocid Liposcelis entomophila (Enderlein) is a distasteful stored products pest for its fecundity. However, the molecular mechanism of Akt that controls vitellogenesis and oviposition in L. entomophila remains obscure. In this study, the function of the Akt gene in the female reproduction of L. entomophila (designated as LeAkt) was characterized and investigated. LeAkt contains a 1587 bp open reading frame encoding a 529 amino acid protein that possesses a conserved Pleckstrin Homology domain (PH) and a Ser/Thr-type protein kinase (S_TKc) domain. The mRNA expression of LeAkt was the highest in female adult stages and peaked for 7-day female adults. In female adult tissues, LeAkt was highly expressed in the head and the ovary, indicating that LeAkt was closely correlated with female ovarian development. LeAkt transcription level was significantly suppressed by oral feeding on artificial diets mixed with dsRNA-LeAkt. RNAi-mediated silencing of LeAkt led to a severe inhibition of vitellogenein (Vg) expression and ovarian development, together with lower fecundity and hatchability compared to that of the normal feeding group, suggesting a critical role for LeAkt in L. entomophila reproduction. Further studies revealed that LeAkt silencing significantly decreased the mRNA levels of several signalling and biosynthetic genes in the juvenile hormone (JH) signalling pathway, such as methoprene-tolerant (LeMet), krüppel homolog 1 (LeKr-h1) and JH methyltransferase (LeJHAMT), leading to a severe inhibition of JH biosynthesis in L. entomophila female adults. These results suggested that LeAkt was affecting JH synthesis, thereby influencing Vg synthesis and ultimately L. entomophila reproduction.
Collapse
Affiliation(s)
- Ting Lu
- School of Food Science and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China; School of Food Science and Strategic Reserves, Henan University of Technology, Zhengzhou, China.
| | - Lei Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhipei Liu
- School of Food Science and Technology, The University of New South Wales, Australia
| | - Shiyuan Miao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yajie Tai
- School of Food Science and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Binbin Yang
- School of Food Science and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
15
|
Yu H, Yang B, Wang L, Wang S, Wang K, Song Q, Zhang H. Neuropeptide hormone bursicon mediates female reproduction in the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Front Endocrinol (Lausanne) 2023; 14:1277439. [PMID: 37854192 PMCID: PMC10579919 DOI: 10.3389/fendo.2023.1277439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
Bursicon, a neuropeptide hormone comprising two subunits-bursicon (burs) and partner of burs (pburs), belongs to the cystine-knot protein family. Bursicon heterodimers and homodimers bind to the lucine-rich G-protein coupled receptor (LGR) encoded by rickets to regulate multiple physiological processes in arthropods. Notably, these processes encompass the regulation of female reproduction, a recent revelation in Tribolium castaneum. In this study we investigated the role of burs/pburs/rickets in mediating female vitellogenesis and reproduction in a hemipteran insect, the whitefly, Bemisia tabaci. Our investigation unveiled a synchronized expression of burs, pburs and rickets, with their transcripts persisting detectable in the days following eclosion. RNAi-mediated knockdown of burs, pburs or rickets significantly suppressed the transcript levels of vitellogenin (Vg) and Vg receptor in the female whiteflies. These effects also impaired ovarian maturation and female fecundity, as evidenced by a reduction in the number of eggs laid per female, a decrease in egg size and a decline in egg hatching rate. Furthermore, knockdown of burs, pburs or rickets led to diminished juvenile hormone (JH) titers and reduced transcript level of Kruppel homolog-1. However, this impact did not extend to genes in the insulin pathway or target of rapamycin pathway, deviating from the results observed in T. castaneum. Taken together, we conclude that burs/pburs/rickets regulates the vitellogenesis and reproduction in the whiteflies by coordinating with the JH signaling pathway.
Collapse
Affiliation(s)
- Hao Yu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Bin Yang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Liuhao Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Sijia Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Kui Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Hongwei Zhang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
16
|
Zhang X, Jin L, Li G. RNAi-Mediated Functional Analysis Reveals the Regulation of Oocyte Vitellogenesis by Ecdysone Signaling in Two Coleoptera Species. BIOLOGY 2023; 12:1284. [PMID: 37886994 PMCID: PMC10604093 DOI: 10.3390/biology12101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Coleoptera is the largest taxa of animals by far. The robust reproductive capacity is one of the main reasons for such domination. Successful female reproduction partially relies on effective vitellogenesis. However, the hormone regulation of vitellogenesis remains to be explored. In the present paper, in vitro culture of Leptinotarsa decemlineata 1-day-old adult fat bodies in the 20E-contained median did not activate juvenile hormone production and insulin-like peptide pathways, but significantly stimulated the expression of two LdVg genes, in a cycloheximide-dependent pattern. In vivo RNA interference (RNAi) of either ecdysone receptor (LdEcR) or ultraspiracle (Ldusp) by injection of corresponding dsRNA into 1-day-old female adults inhibited oocyte development, dramatically repressed the transcription of LdVg genes in fat bodies and of LdVgR in ovaries; application of JH into the LdEcR or Ldusp RNAi L. decemlineata females did not restore the oocyte development, partially rescued the decreased LdVg mRNA levels but over-compensated LdVgR expression levels. The same RNAi experiments were performed in another Coleoptera species, Henosepilachna vigintioctopunctata. Little yolk substances were seen in the misshapen oocytes in the HvEcR or Hvusp RNAi ovaries, in contrast to larger amounts of yolk granules in the normal oocytes. Correspondingly, the transcript levels of HvVg in the fat bodies and ovaries decreased significantly in the HvEcR and Hvusp RNAi samples. Our results here show that 20E signaling is indispensable in the activation of vitellogenesis in the developing oocytes of the two beetle species.
Collapse
Affiliation(s)
| | | | - Guoqing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (L.J.)
| |
Collapse
|
17
|
Rau V, Flatt T, Korb J. The remoulding of dietary effects on the fecundity / longevity trade-off in a social insect. BMC Genomics 2023; 24:244. [PMID: 37147612 PMCID: PMC10163710 DOI: 10.1186/s12864-023-09335-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND In many organisms increased reproductive effort is associated with a shortened life span. This trade-off is reflected in conserved molecular pathways that link nutrient-sensing with fecundity and longevity. Social insect queens apparently defy the fecundity / longevity trade-off as they are both, extremely long-lived and highly fecund. Here, we have examined the effects of a protein-enriched diet on these life-history traits and on tissue-specific gene expression in a termite species of low social complexity. RESULTS On a colony level, we did not observe reduced lifespan and increased fecundity, effects typically seen in solitary model organisms, after protein enrichment. Instead, on the individual level mortality was reduced in queens that consumed more of the protein-enriched diet - and partially also in workers - while fecundity seemed unaffected. Our transcriptome analyses supported our life-history results. Consistent with life span extension, the expression of IIS (insulin/insulin-like growth factor 1 signalling) components was reduced in fat bodies after protein enrichment. Interestingly, however, genes involved in reproductive physiology (e.g., vitellogenin) were largely unaffected in fat body and head transcriptomes. CONCLUSION These results suggest that IIS is decoupled from downstream fecundity-associated pathways, which can contribute to the remoulding of the fecundity/longevity trade-off in termites as compared to solitary insects.
Collapse
Affiliation(s)
- Veronika Rau
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg (Brsg.), Germany.
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg (Brsg.), Germany.
- RIEL, Charles Darwin University Casuarina Campus, Ellengowan Drive, Darwin, NT0811, Australia.
| |
Collapse
|
18
|
Wang L, Wei DD, Wang GQ, Huang HQ, Wang JJ. High-Sucrose Diet Exposure on Larvae Contributes to Adult Fecundity and Insecticide Tolerance in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel). INSECTS 2023; 14:insects14050407. [PMID: 37233035 DOI: 10.3390/insects14050407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is one of the broad host ranges and economically-important insect pests in tropical and subtropical areas. A wide range of hosts means they have strong adaptation ability to changes in dietary macronutrients (e.g., sucrose and protein). However, the effects of dietary conditions on the phenotypes and genotypes of B. dorsalis are still unclear. In this study, we aimed to investigate the effects of larval dietary sucrose on the life history traits and stress tolerance of B. dorsalis, and its defense response at the molecular level. The results showed that low-sucrose (LS) induced decreased body size, shortened developmental duration, and enhanced sensitivity to beta-cypermethrin. Otherwise, high-sucrose (HS) diet increased developmental duration, adult fecundity, and tolerance to malathion. Based on transcriptome data, 258 and 904 differentially expressed genes (DEGs) were identified in the NS (control) versus LS groups, and NS versus HS groups, respectively. These yielded DEGs were relevant to multiple specific metabolisms, hormone synthesis and signaling, and immune-related pathways. Our study will provide biological and molecular perspective to understand phenotypic adjustments to diets and the strong host adaptability in oriental fruit flies.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Gui-Qiang Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Han-Qin Huang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
19
|
Huangfu N, Zhu X, Wang L, Zhang K, Li D, Chen L, Gao X, Niu L, Gao M, Ji J, Luo J, Cui J. Insulin Receptor Substrate-1 ( IRS1) Regulates Oogenesis and Vitellogenesis in Propylea japonica by Mediating the FOXO Transcription Factor Expression, Independent of JH and 20E Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:300-310. [PMID: 36538395 DOI: 10.1021/acs.jafc.2c07433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The insulin receptor substrate (IRS), as the core cytoplasmic adapter protein in the insulin/insulin-like signaling (IIS) pathway, is an important mediator of cellular signaling. However, it is still unknown how IRS crosstalk with hormone signaling regulates insect growth, development, and reproduction. In this study, we demonstrated that knockdown of IRS1 significantly inhibited oogenesis, vitellogenesis, and the development of nurse cells and follicular epithelial cells. In addition, qRT-PCR results showed that FOXO transcription factors significantly responded to silencing of the IRS1 gene. However, IRS1 silencing had no significant effect on the expression of juvenile hormone/20-hydroxyecdysone (JH/20E)-signaling genes, JH synthesis, and degradation enzyme-related genes and the JH/20E titers. Our results suggested that the IIS pathway regulated ovarian development and Vg production through FOXO, independent of JH and 20E signaling pathways. This study revealed the reproductive regulation mechanism in Propylea japonica, which provides a theoretical basis for large-scale expansion of P. japonica as an environment-friendly biological control strategy.
Collapse
Affiliation(s)
- Ningbo Huangfu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lulu Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Mengxue Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
20
|
Yang B, Miao S, Lu Y, Wang S, Wang Z, Zhao Y. Involvement of Methoprene-tolerant and Krüppel homolog 1 in juvenile hormone-mediated vitellogenesis of female Liposcelis entomophila (End.) (Psocoptera: Liposcelididae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21973. [PMID: 36193599 PMCID: PMC10078567 DOI: 10.1002/arch.21973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Methoprene-tolerant (Met) as an intracellular receptor of juvenile hormone (JH) and the Krüppel-homolog 1 (Kr-h1) as a JH-inducible transcription factor had been proved to contribute to insect reproduction. Their functions vary in different insect orders, however, they are not clear in Psocoptera. In this study, LeMet and LeKr-h1 were identified and their roles in vitellogenesis and ovarian development were investigated in Liposcelis entomophila (Enderlein). Treatment with exogenous JH III significantly induced the expression of LeKr-h1, LeVg, and LeVgR. Furthermore, silencing LeMet and LeKr-h1 remarkably reduced the transcription of LeVg and LeVgR, disrupted the production of Vg in fat body and the uptake of Vg by oocytes, and ultimately led to a decline in fecundity. The results indicated that the JH signaling pathway was essential to the reproductive process of this species. Interestingly, knockdown of LeMet or LeKr-h1 also resulted in fluctuations in the expression of FoxO, indicating the complex regulatory interactions between different hormone factors. Besides, knockdown of both LeMet and LeKr-h1 significantly increased L. entomophila mortality. Our study provides initial insight into the roles of JH signaling in the female reproduction of psocids and provided evidence that RNAi-mediated knockdown of Met or Kr-h1 is a potential pest control strategy.
Collapse
Affiliation(s)
- Bin‐Bin Yang
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Shi‐Yuan Miao
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Yu‐Jie Lu
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Sui‐Sui Wang
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Zheng‐Yan Wang
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Ya‐Ru Zhao
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| |
Collapse
|
21
|
Crosstalk between Nutrition, Insulin, Juvenile Hormone, and Ecdysteroid Signaling in the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 24:ijms24010007. [PMID: 36613451 PMCID: PMC9819625 DOI: 10.3390/ijms24010007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle.
Collapse
|
22
|
Li Z, Zhou C, Chen Y, Ma W, Cheng Y, Chen J, Bai Y, Luo W, Li N, Du E, Li S. Egfr signaling promotes juvenile hormone biosynthesis in the German cockroach. BMC Biol 2022; 20:278. [PMID: 36514097 PMCID: PMC9749228 DOI: 10.1186/s12915-022-01484-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In insects, an interplay between the activities of distinct hormones, such as juvenile hormone (JH) and 20-hydroxyecdysone (20E), regulates the progression through numerous life history hallmarks. As a crucial endocrine factor, JH is mainly synthesized in the corpora allata (CA) to regulate multiple physiological and developmental processes, including molting, metamorphosis, and reproduction. During the last century, significant progress has been achieved in elucidating the JH signal transduction pathway, while less progress has been made in dissecting the regulatory mechanism of JH biosynthesis. Previous work has shown that receptor tyrosine kinase (RTK) signaling regulates hormone biosynthesis in both insects and mammals. Here, we performed a systematic RNA interference (RNAi) screening to identify RTKs involved in regulating JH biosynthesis in the CA of adult Blattella germanica females. RESULTS We found that the epidermal growth factor receptor (Egfr) is required for promoting JH biosynthesis in the CA of adult females. The Egf ligands Vein and Spitz activate Egfr, followed by Ras/Raf/ERK signaling, and finally activation of the downstream transcription factor Pointed (Pnt). Importantly, Pnt induces the transcriptional expression of two key enzyme-encoding genes in the JH biosynthesis pathway: juvenile hormone acid methyltransferase (JHAMT) and methyl farnesoate epoxidase (CYP15A1). Dual-luciferase reporter assay shows that Pnt is able to activate a promoter region of Jhamt. In addition, electrophoretic mobility shift assay confirms that Pnt directly binds to the - 941~ - 886 nt region of the Jhamt promoter. CONCLUSIONS This study reveals the detailed molecular mechanism of Egfr signaling in promoting JH biosynthesis in the German cockroach, shedding light on the intricate regulation of JH biosynthesis during insect development.
Collapse
Affiliation(s)
- Zhaoxin Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Caisheng Zhou
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yumei Chen
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wentao Ma
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yunlong Cheng
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jinxin Chen
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Bai
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Luo
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Na Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Erxia Du
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sheng Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| |
Collapse
|
23
|
Walkowiak-Nowicka K, Chowański S, Pacholska-Bogalska J, Adamski Z, Kuczer M, Rosiński G. Antheraea peptide and its analog: Their influence on the maturation of the reproductive system, embryogenesis, and early larval development in Tenebrio molitor L. beetle. PLoS One 2022; 17:e0278473. [PMID: 36454989 PMCID: PMC9714928 DOI: 10.1371/journal.pone.0278473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, many new immunologically active peptides from insects have been identified. Unfortunately, in most cases, their physiological functions are not fully known. One example is yamamarin, a pentapeptide isolated from the caterpillars of the Antheraea yamamai moth. This peptide has strong antiproliferative properties and is probably involved in the regulation of diapause. Additionally, antiviral activity was discovered. The results of the research presented in this paper are, to our knowledge, the first attempt to characterize the biological effects of yamamarin on the functioning of the reproductive processes and embryonic development of insects using a model species, the beetle Tenebrio molitor, a commonly known pest of grain storage. Simultaneously, we tested the possible activity of the molecule in an in vivo system. In this research, we present the multifaceted effects of yamamarin in this beetle. We show that yamamarin influences ovarian growth and development, maturation of terminal oocytes, level of vitellogenin gene transcript, the number of laid eggs, duration of embryonic development, and larval hatching. In experiments with palmitic acid-conjugated yamamarin (C16-yamamarin), we also showed that this peptide is a useful starting molecule for the synthesis of biopharmaceuticals or new peptidomimetics with gonadotropic activity and effects on embryonic development. The data obtained additionally provide new knowledge about the possible function of yamamarin in insect physiology, pointing to the important role of this pentapeptide as a regulator of reproductive processes and embryonic development in a heterologous bioassay with T. molitor.
Collapse
Affiliation(s)
- Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- * E-mail:
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wroclaw, Wrocław, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
24
|
Wu S, Tang Y, Su S, Ding W, He H, Xue J, Gao Q, Qiu L, Li Y. RNA interference knockdown of insulin receptor inhibits ovarian development in Chilo suppressalis. Mol Biol Rep 2022; 49:11765-11773. [PMID: 36201100 DOI: 10.1007/s11033-022-07948-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The nutritional signaling pathway regulates an insect's size, development, and lifespan, as well as playing a vital role in reproduction. The insulin/insulin-like growth factor signaling (IIS) pathway plays a key role in the nutrition signaling pathway. As an integral component of the IIS pathway, insulin receptor (InR), a receptor tyrosine kinase, plays a role in the insulin pathway by controlling reproduction in many insect species. However, the precise molecular function of InR in non-model insect reproduction is poorly understood. METHODS In our study, Chilo suppressalis, a well-known rice pest, was used as a molecular system to determine the role of InR in insect reproduction. Sequencing the InR gene of C. suppressalis, comparing the amino acid sequence-specific structure, and constructing a phylogenetic tree revealed that this gene has four main domains: ligand binding L domain, Furin-like region, fibronectin type III domains, and Tyrosine kinase catalytic domain, which were all highly conserved in insects. RESULTS By characterizing the spatiotemporal expression profile of InR in different developmental stages and tissues, we found that InR gene expression was highest on the 3-day old in female pupae, 6th instar larvae, and fat body on the 6-day old in female pupae. InR gene expression may promote the molting and pupation of larvae and play a role in reproduction in the fat body. Furthermore, the RNA interference knockdown of InR dramatically reduced yolk deposition and blocked oocyte maturation. After suppression of InR, the expression of several other genes fluctuated to varying degrees. CONCLUSION In conclusion, InR is vital to reproduction and is expected to become a new target for pest management.
Collapse
Affiliation(s)
- Shuang Wu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Tang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Shaojun Su
- Agricultural Bureau of Dingcheng County, Changde, 415006, China
| | - Wenbing Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
25
|
Zhou A, Huang C, Li Y, Li X, Zhang Z, He H, Ding W, Xue J, Li Y, Qiu L. A chromosome-level genome assembly provides insights into the environmental adaptability and outbreaks of Chlorops oryzae. Commun Biol 2022; 5:881. [PMID: 36028584 PMCID: PMC9418232 DOI: 10.1038/s42003-022-03850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Chlorops oryzae is a pest of rice that has caused severe damage to crops in major rice-growing areas in recent years. We generated a 447.60 Mb high-quality chromosome-level genome with contig and scaffold N50 values of 1.17 Mb and 117.57 Mb, respectively. Hi-C analysis anchored 93.22% scaffolds to 4 chromosomes. The relatively high expression level of Heat Shock Proteins (HSPs) and antioxidant genes in response to thermal stress suggests these genes may play a role in the environmental adaptability of C. oryzae. The identification of multiple pathways that regulate reproductive development (juvenile hormone, 20-hydroxyecdsone, and insulin signaling pathways) provides evidence that these pathways also play an important role in vitellogenesis and thus insect population maintenance. These findings identify possible reasons for the increased frequency of outbreaks of C. oryzae in recent years. Our chromosome-level genome assembly may provide a basis for further genetic studies of C. oryzae, and promote the development of novel, sustainable strategies to control this pest. A chromosome-level genome assembly for the rice pest, Chlorops oryzae, pinpoints molecular pathways that might contribute toward increased outbreaks for this important crop pest.
Collapse
Affiliation(s)
- Ailin Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.,Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yi Li
- Plant Protection and Inspection Station, Agriculture and Rural Development of Hunan Province, Changsha, 410005, China
| | - Xinwen Li
- Plant Protection and Inspection Station, Agriculture and Rural Development of Hunan Province, Changsha, 410005, China
| | - Zhengbing Zhang
- Plant Protection and Inspection Station, Agriculture and Rural Development of Hunan Province, Changsha, 410005, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Wenbing Ding
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.,Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China. .,Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China.
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
26
|
Effect of Insulin Receptor on Juvenile Hormone Signal and Fecundity in Spodoptera litura (F.). INSECTS 2022; 13:insects13080701. [PMID: 36005325 PMCID: PMC9409390 DOI: 10.3390/insects13080701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The tobacco cutworm, Spodoptera litura (F.), exemplifies strong reproductive capacities and damages many agricultural crops. The insulin signaling pathway is known as a key determinant of female reproduction in insects. However, the detailed molecular mechanisms in these processes are poorly studied. Here, we injected bovine insulin into the newly emerged moth, resulting in gene expression changes in the insulin pathway, while knockdown of SlInR caused an inverse gene expression change involved in the insulin pathway. Further studies indicated that the content of JH-III, Vg, total proteins and triacylgycerol could be suppressed by SlInR dsRNA injection. Furthermore, stunted ovaries and lower fecundity were observed by RNAi. Our studies indicated that SlInR plays a key role in JH-III synthesis and the ovarian development in S. litura. Abstract Insulin signaling can regulate various physiological functions, such as energy metabolism and reproduction and so on, in many insects, including mosquito and locust. However, the molecular mechanism of this physiological process remains elusive. The tobacco cutworm, Spodoptera litura, is one of the most important pests of agricultural crops around the world. In this study, phosphoinositide 3-kinase (SlPI3K), protein kinase B (SlAKT), target of rapamycin (SlTOR), ribosomal protein S6 kinase (SlS6K) and transcription factor cAMP-response element binding protein (SlCREB) genes, except transcription factor forkhead box class O (SlFoxO), can be activated by bovine insulin injection. Then, we studied the influence of the insulin receptor gene (SlInR) on the reproduction of S. litura using RNA interference technology. qRT-PCR analysis revealed that SlInR was most abundant in the head. The SlPI3K, SlAKT, SlTOR, SlS6K and SlCREB genes were decreased, except SlFoxO, after the SlInR gene knockdown. Further studies revealed that the expression of vitellogenin mRNA and protein, Methoprene-tolerant gene (SlMet), could be down-regulated by the injection of dsRNA of SlInR significantly. Furthermore, a depletion in the insulin receptor by RNAi significantly decreased the content of juvenile hormone III (JH-III), total proteins and triacylgycerol. These changes indicated that a lack of SlInR could impair ovarian development and decrease fecundity in S. litura. Our studies contribute to a comprehensive insight into reproduction, regulated by insulin and the juvenile hormone signaling pathway through nutrition, and a provide theoretical basis for the reproduction process in pest insects.
Collapse
|
27
|
Domínguez CV, Pagone V, Maestro JL. Regulation of insulin-like peptide expression in adult Blattella germanica females. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103706. [PMID: 34974083 DOI: 10.1016/j.ibmb.2021.103706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The insulin-IGF-signalling (IIS) pathway regulates key processes in metazoans. The pathway is activated through the binding of the ligands, which in insects are usually referred to as insulin-like peptides (ILPs), to a class of receptor tyrosine kinases, the insect insulin receptor. To study the pathway regulation, it is therefore essential to understand how ILPs are produced and released. In this study we analysed the factors that regulate the expression of the seven ILPs (BgILPs) expressed in adult females of the German cockroach, Blattella germanica. The results showed that the starvation-induced expression reduction of brain BgILP3, 5 and 6 and fat body BgILP7 is not due to reduced juvenile hormone (JH) or decreased TOR pathway activity. In addition, depletion of FoxO in starved females did not correct the low levels of these BgILPs, but even reduced further BgILP5 expression, indicating the need to maintain certain basal levels of BgILP5 even during starvation. Furthermore, JH promoted increased BgILP5 and decreased BgILP3 expression in the brain, an effect that required Methoprene-tolerant (Met), the JH receptor, but not Krüppel homolog 1 (Kr-h1), the main JH transducer. On the other hand, JH inhibited the expression of BgILP7 in the fat body, although in this case, the action required both Met and Kr-h1. In addition, JH reduction treatments produced a decrease in the expression of the insulin receptor in the fat body, which suggests an increase in IIS. The results show a peculiar regulation of ILP expression in adult B. germanica females, which is clearly different than that seen in other species. This is understandable given that gene duplications in recent clades have resulted in different sets of ILP genes, involving substantial changes in gene regulatory networks.
Collapse
Affiliation(s)
- Claudia V Domínguez
- Institute of Evolutionary Biology (CSIC.Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Viviana Pagone
- Institute of Evolutionary Biology (CSIC.Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - José L Maestro
- Institute of Evolutionary Biology (CSIC.Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
28
|
Zeng B, Zhao W, Ma J, Wu Z. Replication protein A is required for juvenile hormone-dependent vitellogenesis and oocyte maturation in locusts. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104345. [PMID: 34902432 DOI: 10.1016/j.jinsphys.2021.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Aside from inhibiting insect metamorphosis, juvenile hormone (JH) has a well-known role in stimulating various aspects of insect reproduction. Replication protein A (RPA), a heterotrimeric complex comprised of RPA1, RPA2 and RPA3 subunits plays an essential role in DNA replication and DNA repair. Here we report that RPAs are highly expressed in the fat body of adult female locust, Locusta migratoria. While RPA1 is upregulated by the JH receptor Methoprene-tolerant (Met), RPA2 and RPA3 expression appears to be primarily controlled by Forkhead box O transcription factor (FoxO). Knockdown of RPA1, RPA2 or RPA3 results in markedly reducd vitellogenin (Vg) expression in the fat body, accompanied by arrested ovarian growth and inhibited oocyte maturation. In addition, depletion of an RPA subunit leads to increased expression of other RPA subunits as well as a pro-apoptotic gene, Smac that is involved in DNA repair and apoptosis. The data indicate a crucial role of RPAs in JH-dependent vitellogenesis and oocyte maturation.
Collapse
Affiliation(s)
- Baojuan Zeng
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenxiao Zhao
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jiajie Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zhongxia Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
29
|
Li G, Zhang J, Liu XY, Niu J, Wang JJ. De novo RNA-Seq and Annotation of Sesquiterpenoid and Ecdysteroid Biosynthesis Genes and MicroRNAs in a Spider Mite Eotetranychus kankitus. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2543-2552. [PMID: 34668540 DOI: 10.1093/jee/toab166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 06/13/2023]
Abstract
Eotetranychus kankitus is an important mite pest in citrus, but molecular data on the developmental processes of E. kankitus are lacking. The different development stages mix of E. kankitus was used to sequence for transcriptome and small RNAs to identify genes and predict miRNAs associated with sesquiterpenoid and ecdysteroid biosynthesis and signaling pathways. More than 36 million clean reads were assembled and 67,927 unigenes were generated. Of the unigenes, 19,300 were successfully annotated through annotation databases NR, SwissProt, COG, GO, KEGG, PFAM, and KOG. The transcripts were involved in sesquiterpenoid biosynthesis (11 genes) and ecdysteroid biosynthesis and signaling pathway (13 genes). Another, small RNA library was obtained and 31 conserved miRNAs were identified. Five most abundant miRNAs were Ek-miR-5735, Ek-miR-1, Ek-miR-263a, Ek-miR-184, and Ek-miR-8. The target genes related to sesquiterpenoid and ecdysteroid showed that 10 of the conserved miRNAs could potentially target the sesquiterpenoid and ecdysteroid pathway according to four-prediction software, sRNAT, miRanda, RNAhybrid, and Risearch2. Thus, the results of this study will provide bioinformatics information for further molecular studies of E. kankitus which may facilitate improved pest control strategies.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
30
|
Zhu S, Liu Y, Liao M, Yang Y, Bai Y, Li N, Li S, Luan Y, Chen N. Evaluation of Reference Genes for Transcriptional Profiling in Two Cockroach Models. Genes (Basel) 2021; 12:genes12121880. [PMID: 34946836 PMCID: PMC8701133 DOI: 10.3390/genes12121880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023] Open
Abstract
The German cockroach, Blattella germanica, and the American cockroach, Periplaneta americana are the most common and synanthropic household pests of interest to public health. While they have increasingly served as model systems in hemimetabolous insects for studying many biological issues, there is still a lack of stable reference gene evaluation for reliable quantitative real-time PCR (qPCR) outputs and functional genomics. Here, we evaluated the expression variation of common insect reference genes, including the historically used actin, across various tissues and developmental stages, and also under experimental treatment conditions in these two species by using three individual algorithms (geNorm, BestKeeper, and NormFinder) and a comprehensive program (RefFinder). RPL32 in B. germanica and EF1α in P. americana showed the overall lowest variation among all examined samples. Based on the stability rankings by RefFinder, the optimal but varied reference genes under specific conditions were selected for qPCR normalization. In addition, the combination of RPL32 and EF1α was recommended for all the tested tissues and stages in B. germanica, whereas the combination of multiple reference genes was unfavorable in P. americana. This study provides a condition-specific resource of reference gene selection for accurate gene expression profiling and facilitating functional genomics in these two important cockroaches.
Collapse
Affiliation(s)
- Shen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Yongjun Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Mingtao Liao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Yunxia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
- Correspondence:
| |
Collapse
|
31
|
Li J, Zhu Z, Bi J, Feng Q, Beerntsen BT, Song Q. Neuropeptide Bursicon Influences Reproductive Physiology in Tribolium Castaneum. Front Physiol 2021; 12:717437. [PMID: 34744761 PMCID: PMC8567023 DOI: 10.3389/fphys.2021.717437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Bursicon is a neuropeptide belonging to the cystine knot family and is composed of burs and partner of burs (pburs) subunits. It can form heterodimers or homodimers to execute different biological functions. Bursicon heterodimers regulate cuticle sclerotization and wing maturation, whereas bursicon homodimers mediate innate immunity and midgut stem cell proliferation. A recent study has shown that bursicon potentially induces the expression of vitellogenin (Vg) in the black tiger shrimp Penaeus monodon; however, the underlying mechanism remains unknown. In this study, we investigated the role of bursicon in the reproductive physiology of the red flour beetle, Tribolium castaneum. The knockdown of burs, pburs, or its receptor T. castaneum rickets (Tcrk) in 2-day pupae significantly downregulated the expression levels of Vg1, Vg2, and Vg receptor (VgR) genes in females 3- and 5-day post-adult emergence, leading to abnormal oocytes with limited Vg content. The silencing of burs repressed the number of eggs laid and completely inhibited egg hatch, whereas the silencing of pburs dramatically decreased the number of eggs laid, hatch rate, and offspring larval size, and this RNA interference (RNAi) effects persisted to the next generation. Furthermore, the knockdown of burs or pburs downregulated the expression of the insulin/insulin-like signaling/target of rapamycin (TOR) signaling genes encoding insulin receptor (InR), protein kinase B (Akt), TOR, and ribosomal protein S6 kinase (S6K). Most importantly, the injection of recombinant pburs (r-pburs) protein was able to upregulate the expression of Vg, VgR, InR, Akt, TOR, S6K, JH synthesis (JHAMT), Methoprene-tolerant (Met), and Taiman (Tai) in normal females and rescue the expression of Vg and VgR in pburs RNAi females but failed to rescue Vg and VgR in Tcrk knockdown females. We infer that bursicon homodimers influence Vg expression via the receptor Tcrk, possibly by mediating the expression of the juvenile hormone (JH) and IIS/TOR pathway genes, thereby regulating reproduction in T. castaneum.
Collapse
Affiliation(s)
- Jingjing Li
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Zidan Zhu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States.,Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jingxiu Bi
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States.,Institution of Quality Standard and Testing Technology for Agro-Product, Shandong Academy of Agricultural Science, Jinan, China
| | - Qili Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Brenda T Beerntsen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States.,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
32
|
Xu KK, Yan Y, Yan SY, Xia PL, Yang WJ, Li C, Yang H. Disruption of the Serine/Threonine Kinase Akt Gene Affects Ovarian Development and Fecundity in the Cigarette Beetle, Lasioderma serricorne. Front Physiol 2021; 12:765819. [PMID: 34690822 PMCID: PMC8529032 DOI: 10.3389/fphys.2021.765819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Serine/threonine kinase Akt, an important component of the insulin signaling pathway, plays an essential role in many physiological processes. In this study, we identified and characterized an Akt gene (designated LsAkt) from the cigarette beetle, Lasioderma serricorne. LsAkt contains a 1614 bp open reading frame encoding a 537 amino acid protein that possesses a conserved pleckstrin homology domain and a serine/threonine kinase domain. The expression of LsAkt was high in pupal stages and peaked in day-4 female pupae. In adult tissues, LsAkt was highly expressed in the thorax, ovary, and midgut. The expression of LsAkt was induced by methoprene or bovine insulin in vivo, but significantly decreased by 20-hydroxyecdysone. RNA interference-mediated knockdown of LsAkt resulted in severely blocked ovarian development and reduced fecundity and hatchability. The vitellogenin (Vg) content and juvenile hormone (JH) titers of LsAkt-depletion beetles were decreased, and expressions of Vg and four JH signaling and biosynthetic genes were significantly decreased. Silencing of LsAkt reduced the amounts of glucose, glycogen, and trehalose in female adults and affected the expressions of seven key carbohydrate metabolic genes. Taken together, it is inferred that Akt implicates in L. serricorne reproduction by modification of Vg synthesis, juvenile hormone production and carbohydrate metabolism.
Collapse
Affiliation(s)
- Kang-Kang Xu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yi Yan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Shu-Yan Yan
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | | | - Wen-Jia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Hong Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China.,College of Tobacco Science, Guizhou University, Guiyang, China
| |
Collapse
|
33
|
Insects as a New Complex Model in Hormonal Basis of Obesity. Int J Mol Sci 2021; 22:ijms222011066. [PMID: 34681728 PMCID: PMC8540125 DOI: 10.3390/ijms222011066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
Nowadays, one of the biggest problems in healthcare is an obesity epidemic. Consumption of cheap and low-quality energy-rich diets, low physical activity, and sedentary work favor an increase in the number of obesity cases within many populations/nations. This is a burden on society, public health, and the economy with many deleterious consequences. Thus, studies concerning this disorder are extremely needed, including searching for new, effective, and fitting models. Obesity may be related, among other factors, to disrupting adipocytes activity, disturbance of metabolic homeostasis, dysregulation of hormonal balance, cardiovascular problems, or disorders in nutrition which may lead to death. Because of the high complexity of obesity, it is not easy to find an ideal model for its studies which will be suitable for genetic and physiological analysis including specification of different compounds’ (hormones, neuropeptides) functions, as well as for signaling pathways analysis. In recent times, in search of new models for human diseases there has been more and more attention paid to insects, especially in neuro-endocrine regulation. It seems that this group of animals might also be a new model for human obesity. There are many arguments that insects are a good, multidirectional, and complex model for this disease. For example, insect models can have similar conservative signaling pathways (e.g., JAK-STAT signaling pathway), the presence of similar hormonal axis (e.g., brain–gut axis), or occurrence of structural and functional homologues between neuropeptides (e.g., neuropeptide F and human neuropeptide Y, insulin-like peptides, and human insulin) compared to humans. Here we give a hint to use insects as a model for obesity that can be used in multiple ways: as a source of genetic and peptidomic data about etiology and development correlated with obesity occurrence as well as a model for novel hormonal-based drug activity and their impact on mechanism of disease occurrence.
Collapse
|
34
|
Role of Endocrine System in the Regulation of Female Insect Reproduction. BIOLOGY 2021; 10:biology10070614. [PMID: 34356469 PMCID: PMC8301000 DOI: 10.3390/biology10070614] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022]
Abstract
The proper synthesis and functioning of ecdysteroids and juvenile hormones (JHs) are very important for the regulation of vitellogenesis and oogenesis. However, their role and function contrast among different orders, and even in the same insect order. For example, the JH is the main hormone that regulates vitellogenesis in hemimetabolous insect orders, which include Orthoptera, Blattodea, and Hemiptera, while ecdysteroids regulate the vitellogenesis among the insect orders of Diptera, some Hymenoptera and Lepidoptera. These endocrine hormones also regulate each other. Even at some specific stage of insect life, they positively regulate each other, while at other stages of insect life, they negatively control each other. Such positive and negative interaction of 20-hydroxyecdysone (20E) and JH is also discussed in this review article to better understand the role of these hormones in regulating the reproduction. Therefore, the purpose of the present review is to deeply understand the complex interaction of endocrine hormones with each other and with the insulin signaling pathway. The role of microbiomes in the regulation of the insect endocrine system is also reviewed, as the endocrine hormones are significantly affected by the compounds produced by the microbiota.
Collapse
|
35
|
Chowański S, Walkowiak-Nowicka K, Winkiel M, Marciniak P, Urbański A, Pacholska-Bogalska J. Insulin-Like Peptides and Cross-Talk With Other Factors in the Regulation of Insect Metabolism. Front Physiol 2021; 12:701203. [PMID: 34267679 PMCID: PMC8276055 DOI: 10.3389/fphys.2021.701203] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The insulin-like peptide (ILP) and insulin-like growth factor (IGF) signalling pathways play a crucial role in the regulation of metabolism, growth and development, fecundity, stress resistance, and lifespan. ILPs are encoded by multigene families that are expressed in nervous and non-nervous organs, including the midgut, salivary glands, and fat body, in a tissue- and stage-specific manner. Thus, more multidirectional and more complex control of insect metabolism can occur. ILPs are not the only factors that regulate metabolism. ILPs interact in many cross-talk interactions of different factors, for example, hormones (peptide and nonpeptide), neurotransmitters and growth factors. These interactions are observed at different levels, and three interactions appear to be the most prominent/significant: (1) coinfluence of ILPs and other factors on the same target cells, (2) influence of ILPs on synthesis/secretion of other factors regulating metabolism, and (3) regulation of activity of cells producing/secreting ILPs by various factors. For example, brain insulin-producing cells co-express sulfakinins (SKs), which are cholecystokinin-like peptides, another key regulator of metabolism, and express receptors for tachykinin-related peptides, the next peptide hormones involved in the control of metabolism. It was also shown that ILPs in Drosophila melanogaster can directly and indirectly regulate AKH. This review presents an overview of the regulatory role of insulin-like peptides in insect metabolism and how these factors interact with other players involved in its regulation.
Collapse
Affiliation(s)
- Szymon Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Winkiel
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Pawel Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,HiProMine S.A., Robakowo, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
36
|
Montañés JC, Rojano C, Ylla G, Piulachs MD, Maestro JL. siRNA enrichment in Argonaute 2-depleted Blattella germanica. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194704. [PMID: 33895310 DOI: 10.1016/j.bbagrm.2021.194704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND RNA interference (RNAi) is a cellular mechanism used to fight various threats, including transposons, aberrant RNAs, and some types of viruses. This mechanism relies on the detection of dsRNA molecules, which through a pathway involving Dicer-2 (Dcr-2) and Argonaute 2 (AGO2), produces small interfering RNAs (siRNAs) that bind to the complementary RNAs triggering their degradation. METHODS Using the cockroach Blattella germanica as a model, we examined AGO2 activity by depleting its mRNA using RNAi and analyzing the phenotypes produced. RESULTS Depleting AGO2 expression had no remarkable effect on nymphal development or reproduction. dsRNA treatment triggered an immediate and transitory increase in AGO2 expression, independently of Dcr-2 action. In addition, we analyzed the siRNAs generated after injecting a heterologous dsRNA in control and AGO2-depleted animals. The results revealed that obtained siRNAs mapped non-uniformly along the dsRNA sequence. In AGO2-depleted animals, the proportion of 22 nucleotide reads was higher and accumulations of reads appeared in areas less well-represented in the controls. We also detected a preference for cytosine as the first nucleotide in controls that was significantly attenuated in AGO2-depleted individuals. CONCLUSIONS/GENERAL SIGNIFICANCE The siRNAs produced from a dsRNA mapped heterogeneously along the length of the dsRNA and this arrangement depends on the dsRNA sequence. AGO2 exerts its role as nuclease on the siRNA duplexes independently of its action on the corresponding mRNA. This study sheds light on an extremely useful process for reverse genetics in laboratories, in addition to the design of more effective, specific, and eco-friendly pest-control strategies.
Collapse
Affiliation(s)
- José Carlos Montañés
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Carlos Rojano
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Maria Dolors Piulachs
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - José Luis Maestro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
37
|
Smýkal V, Pivarči M, Provazník J, Bazalová O, Jedlička P, Lukšan O, Horák A, Vaněčková H, Beneš V, Fiala I, Hanus R, Doležel D. Complex Evolution of Insect Insulin Receptors and Homologous Decoy Receptors, and Functional Significance of Their Multiplicity. Mol Biol Evol 2021; 37:1775-1789. [PMID: 32101294 PMCID: PMC7253209 DOI: 10.1093/molbev/msaa048] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Evidence accumulates that the functional plasticity of insulin and insulin-like growth factor signaling in insects could spring, among others, from the multiplicity of insulin receptors (InRs). Their multiple variants may be implemented in the control of insect polyphenism, such as wing or caste polyphenism. Here, we present a comprehensive phylogenetic analysis of insect InR sequences in 118 species from 23 orders and investigate the role of three InRs identified in the linden bug, Pyrrhocoris apterus, in wing polymorphism control. We identified two gene clusters (Clusters I and II) resulting from an ancestral duplication in a late ancestor of winged insects, which remained conserved in most lineages, only in some of them being subject to further duplications or losses. One remarkable yet neglected feature of InR evolution is the loss of the tyrosine kinase catalytic domain, giving rise to decoys of InR in both clusters. Within the Cluster I, we confirmed the presence of the secreted decoy of insulin receptor in all studied Muscomorpha. More importantly, we described a new tyrosine kinase-less gene (DR2) in the Cluster II, conserved in apical Holometabola for ∼300 My. We differentially silenced the three P. apterus InRs and confirmed their participation in wing polymorphism control. We observed a pattern of Cluster I and Cluster II InRs impact on wing development, which differed from that postulated in planthoppers, suggesting an independent establishment of insulin/insulin-like growth factor signaling control over wing development, leading to idiosyncrasies in the co-option of multiple InRs in polyphenism control in different taxa.
Collapse
Affiliation(s)
- Vlastimil Smýkal
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Martin Pivarči
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jan Provazník
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Olga Bazalová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Pavel Jedlička
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondřej Lukšan
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Hana Vaněčková
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Vladimír Beneš
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ivan Fiala
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Robert Hanus
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Doležel
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Department of Molecular Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
38
|
Leyria J, Orchard I, Lange AB. The involvement of insulin/ToR signaling pathway in reproductive performance of Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 130:103526. [PMID: 33453353 DOI: 10.1016/j.ibmb.2021.103526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Insulins are peptide hormones widely studied for their important regulatory roles in metabolism, growth and development. In insects, insulin signaling along with the target of rapamycin (ToR) are involved in detecting and interpreting nutrient levels. Recently, by transcriptome analysis we reported an up-regulation of transcripts involved in insulin/ToR signaling in unfed Rhodnius prolixus; however, this signaling pathway is only activated in fed insects. Here, continuing with the blood-gorging triatomine R. prolixus as a model, we report the direct effect of insulin/ToR signaling on reproductive performance. By immunofluorescence we identified cells in the brain with positive signal to the R. prolixus ILP (Rhopr-ILP1) and show that the insulin receptor and protein effectors downstream of insulin/ToR signaling activation, are differentially expressed in ovarian follicles dependent on their developmental stage. Using qPCR we find that the expression of transcripts involved in insulin signaling in the central nervous system (CNS), fat body and ovaries increase as the state of starvation progresses, promoting a more highly sensitized state to respond rapidly to ILP/IGF levels. In addition, using dsRNA injection and in vivo and ex vivo assays to promote signaling activation we demonstrate a direct participation of insulin/ToR signaling in coordinating the synthesis of the main yolk protein precursor, vitellogenin, thereby influencing the numbers of eggs laid per female. We thereby show a mechanism by which nutritional signaling regulates reproductive performance in a vector of Chagas disease. As reproduction is responsible for propagation of insect populations, this work is important for the development of innovative biocontrol methods.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
39
|
Wu Z, Yang L, He Q, Zhou S. Regulatory Mechanisms of Vitellogenesis in Insects. Front Cell Dev Biol 2021; 8:593613. [PMID: 33634094 PMCID: PMC7901893 DOI: 10.3389/fcell.2020.593613] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Vitellogenesis is pre-requisite to insect egg production and embryonic development after oviposition. During insect vitellogenesis, the yolk protein precursor vitellogenin (Vg) is mainly synthesized in the fat body, transported by the hemolymph through the intercellular spaces (known as patency) in the follicular epithelium to reach the membrane of maturing oocytes, and sequestered into the maturing oocytes via receptor-mediated endocytosis. Insect vitellogenesis is governed by two critical hormones, the sesquiterpenoid juvenile hormone (JH) and the ecdysteriod 20-hydroxyecdysone (20E). JH acts as the principal gonadotropic hormone to stimulate vitellogenesis in basal hemimetabolous and most holometabolous insects. 20E is critical for vitellogenesis in some hymenopterans, lepidopterans and dipterans. Furthermore, microRNA (miRNA) and nutritional (amino acid/Target of Rapamycin and insulin) pathways interplay with JH and 20E signaling cascades to control insect vitellogenesis. Revealing the regulatory mechanisms underlying insect vitellogenesis is critical for understanding insect reproduction and helpful for developing new strategies of insect pest control. Here, we outline the recent research progress in the molecular action of gonadotropic JH and 20E along with the role of miRNA and nutritional sensor in regulating insect vitellogenesis. We highlight the advancements in the regulatory mechanisms of insect vitellogenesis by the coordination of hormone, miRNA and nutritional signaling pathways.
Collapse
Affiliation(s)
- Zhongxia Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Libin Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiongjie He
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
40
|
Sun CX, Li ZX. Biosynthesis of aphid alarm pheromone is modulated in response to starvation stress under regulation by the insulin, glycolysis and isoprenoid pathways. JOURNAL OF INSECT PHYSIOLOGY 2021; 128:104174. [PMID: 33242454 DOI: 10.1016/j.jinsphys.2020.104174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/11/2023]
Abstract
The mechanism for biosynthesis and molecular regulation of the aphid alarm pheromone (AAP) is still a mystery. Previous studies indicated that the biosynthesis of AAP was directly affected by the terpenoid backbone biosynthesis pathway, and several pathways involved in nutritional metabolism providing the bricks for AAP biosynthesis were up-regulated in response to simulated stimulation. This suggests that AAP biosynthesis might be regulated by complex metabolic pathways. Here the molecular responses of the bird cherry-oat aphid Rhopalosiphum padi to starvation stress were investigated, and the molecular pathways were further analyzed by using RNA interference (RNAi) and protein inhibitor, combined with gas chromatography-mass spectrometry analysis of (E)-β-farnesene (EβF), the major component of the alarm pheromone in R. padi. The results showed that the nutritional stress significantly reduced the weight of aphid and the quantity of EβF, and meanwhile dramatically up-regulated the insulin receptor genes (InsR1/2) and down-regulated the downstream genes encoding the kinases PI3K and Akt, key enzymes in the glycolysis pathway (HK, A6PFK, PK) and the isoprenoid pathway (ACSS, HMGR, FPPS1, FPPS2, GGPPS, DPPS). PI3K inhibitor LY294002 treatment and RNAi-mediated knockdown of InsR1/2 significantly reduced the expression level of downstream genes and the quantity of EβF. Furthermore, knockdown of PK, the rate-limiting enzyme in the glycolysis pathway, down-regulated the genes in the isoprenoid pathway and the production of EβF; knockdown of the genes encoding isoprenyl diphosphate enzymes revealed that FPPS1 and FPPS2 were both required for EβF biosynthesis. Our data suggested that AAP is synthesized via glycolysis and isoprenoid pathways under regulation by the insulin signaling pathway.
Collapse
Affiliation(s)
- Cheng-Xian Sun
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zheng-Xi Li
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
41
|
Zeng B, Ye Y, Ma J, Song J. Juvenile hormone upregulates sugarbabe for vitellogenesis and egg development in the migratory locust Locusta migratoria. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21742. [PMID: 32978973 DOI: 10.1002/arch.21742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Sugarbabe is a C2 H2 zinc-finger transcription factor that is sensitive to sugar and essential for lipid biosynthesis in larvae of Drosophila melanogaster. However, the role of Sugarbabe in adult insect development remains unexplored. Vitellogenesis is a nutrient-dependent process that is promoted by juvenile hormone (JH) in many insect species. Here, we cloned an ortholog gene of D. melanogaster Sugarbabe (DmSug) in the migratory locust Locusta migratoria. The locust Sugarbabe (LmSug) has five C2 H2 zinc-finger motifs similar to DmSug. LmSug was expressed at a low level in adult female locusts raised under poor nutrient conditions. JH treatment increased the expression level of LmSug. Knockdown of the JH receptor gene Met caused a reduction of LmSug expression. Depletion of the LmSug transcript level caused a significant reduction in vitellogenin expression in the fat body, resulting in impaired oocyte development and ovary growth. The results suggest that LmSug is expressed in response to JH, and plays an essential role in female insect reproduction.
Collapse
Affiliation(s)
- Baojuan Zeng
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yueru Ye
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiajie Ma
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiasheng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
42
|
Zhu H, Zheng S, Xu J, Wu Q, Song Q, Ge L. The Amino Acid-Mediated TOR Pathway Regulates Reproductive Potential and Population Growth in Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae). Front Physiol 2020; 11:617237. [PMID: 33329069 PMCID: PMC7733968 DOI: 10.3389/fphys.2020.617237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
The predatory mirid bug, Cyrtorhinus lividipennis Reuter, feeds on brown planthopper (BPH) eggs that are deposited on rice and gramineous plants surrounding rice fields. The development and reproduction of C. lividipennis are inhibited by feeding on BPH eggs from gramineous species, and the underlining regulatory mechanism for this phenomenon is unclear. In the present study, HPLC-MS/MS analysis revealed that the concentrations of six amino acids (AAs:Ala, Arg, Ser, Lys, Thr, and Pro) were significantly higher in rice than in five gramineous species. When C. lividipennis fed on gramineous plants with BPH eggs, expression of several genes in the target of rapamycin (TOR) pathway (Rheb, TOR, and S6K) were significantly lower than that in the insects fed on rice plants with BPH eggs. Treatment of C. lividipennis females with rapamycin, dsRheb, dsTOR, or dsS6K caused a decrease in Rheb, TOR, and S6K expression, and these effects were partially rescued by the juvenile hormone (JH) analog, methoprene. Dietary dsTOR treatment significantly influenced a number of physiological parameters and resulted in impaired predatory capacity, fecundity, and population growth. This study indicates that these six AAs play an important role in the mediated-TOR pathway, which in turn regulates vitellogenin (Vg) synthesis, reproduction, and population growth in C. lividipennis.
Collapse
Affiliation(s)
- Haowen Zhu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Sui Zheng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jinming Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qing Wu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Linquan Ge
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
43
|
Zhu S, Liu F, Zeng H, Li N, Ren C, Su Y, Zhou S, Wang G, Palli SR, Wang J, Qin Y, Li S. Insulin/IGF signaling and TORC1 promote vitellogenesis via inducing juvenile hormone biosynthesis in the American cockroach. Development 2020; 147:147/20/dev188805. [PMID: 33097549 DOI: 10.1242/dev.188805] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022]
Abstract
Vitellogenesis, including vitellogenin (Vg) production in the fat body and Vg uptake by maturing oocytes, is of great importance for the successful reproduction of adult females. The endocrinal and nutritional regulation of vitellogenesis differs distinctly in insects. Here, the complex crosstalk between juvenile hormone (JH) and the two nutrient sensors insulin/IGF signaling (IIS) and target of rapamycin complex1 (TORC1), was investigated to elucidate the molecular mechanisms of vitellogenesis regulation in the American cockroach, Periplaneta americana Our data showed that a block of JH biosynthesis or JH action arrested vitellogenesis, in part by inhibiting the expression of doublesex (Dsx), a key transcription factor gene involved in the sex determination cascade. Depletion of IIS or TORC1 blocked both JH biosynthesis and vitellogenesis. Importantly, the JH analog methoprene, but not bovine insulin (to restore IIS) and amino acids (to restore TORC1 activity), restored vitellogenesis in the neck-ligated (IIS-, TORC1- and JH-deficient) and rapamycin-treated (TORC1- and JH-deficient) cockroaches. Combining classic physiology with modern molecular techniques, we have demonstrated that IIS and TORC1 promote vitellogenesis, mainly via inducing JH biosynthesis in the American cockroach.
Collapse
Affiliation(s)
- Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huanchao Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yunlin Su
- Molecular Analysis and Genetic Improvement Center South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Guirong Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China .,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| |
Collapse
|
44
|
Wu Z, He Q, Zeng B, Zhou H, Zhou S. Juvenile hormone acts through FoxO to promote Cdc2 and Orc5 transcription for polyploidy-dependent vitellogenesis. Development 2020; 147:dev.188813. [PMID: 32907849 DOI: 10.1242/dev.188813] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
Vitellogenin (Vg) is a prerequisite for egg production and embryonic development after ovipositioning in oviparous animals. In many insects, juvenile hormone (JH) promotes fat body cell polyploidization for the massive Vg synthesis required for the maturation of multiple oocytes, but the underlying mechanisms remain poorly understood. Using the migratory locust Locusta migratoria as a model system, we report here that JH induces the dephosphorylation of Forkhead box O transcription factor (FoxO) through a signaling cascade including leucine carboxyl methyltransferase 1 (LCMT1) and protein phosphatase 2A (PP2A). JH promotes PP2A activity via LCMT1-mediated methylation, consequently triggering FoxO dephosphorylation. Dephosphorylated FoxO binds to the upstream region of two endocycle-related genes, cell-division-cycle 2 (Cdc2) and origin-recognition-complex subunit 5 (Orc5), and activates their transcription. Depletion of FoxO, Cdc2 or Orc5 results in blocked polyploidization of fat body cells, accompanied by markedly reduced Vg expression, impaired oocyte maturation and arrested ovarian development. The results suggest that JH acts via LCMT1-PP2A-FoxO to regulate Cdc2 and Orc5 expression, and to enhance ploidy of fat body cells in preparation for the large-scale Vg synthesis required for synchronous maturation of multiple eggs.
Collapse
Affiliation(s)
- Zhongxia Wu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiongjie He
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Baojuan Zeng
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haodan Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
45
|
Transcriptomic analysis of regulatory pathways involved in female reproductive physiology of Rhodnius prolixus under different nutritional states. Sci Rep 2020; 10:11431. [PMID: 32651410 PMCID: PMC7351778 DOI: 10.1038/s41598-020-67932-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
The triatomine Rhodnius prolixus, a vector of the etiological agent of Chagas disease, has long been used as model to understand important aspects of insect physiology. Despite this history, the impact of the nutritional state on regulatory pathways associated with reproductive performance in triatomines has never been studied. The insulin-like peptide/target of rapamycin (ILP/ToR) signaling pathway is typically responsible for detecting and interpreting nutrient levels. Here, we analyzed transcriptomes from the central nervous system, fat bodies and ovaries of adult females in unfed and fed conditions, with a focus on the ILP/ToR signaling. The results show an up-regulation of transcripts involved in ILP/ToR signaling in unfed insects. However, we demonstrate that this signaling is only activated in tissues from fed insects. Moreover, we report that FoxO (forkhead box O) factor, which regulates longevity via ILP signaling, is responsible for the up-regulation of transcripts related with ILP/ToR signaling in unfed insects. As a consequence, we reveal that unfed females are in a sensitized state to respond to an increase of ILP levels by rapidly activating ILP/ToR signaling. This is the first analysis that correlates gene expression and protein activation of molecules involved with ILP/ToR signaling in R. prolixus females in different nutritional states.
Collapse
|
46
|
Tang Y, He H, Qu X, Cai Y, Ding W, Qiu L, Li Y. RNA interference-mediated knockdown of the transcription factor Krüppel homologue 1 suppresses vitellogenesis in Chilo suppressalis. INSECT MOLECULAR BIOLOGY 2020; 29:183-192. [PMID: 31566829 DOI: 10.1111/imb.12617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/02/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Vitellogenesis in holometabolous insects involves the production and secretion of vitellogenin (Vg) and other yolk protein precursors in developing oocyte by the fat body, all of which is predominantly orchestrated by juvenile hormone (JH). Krüppel homologue 1 (Kr-h1) is a zinc finger transcription factor that has been demonstrated to be a JH-early inducible gene and to contribute to reproduction. However, the exact molecular function of Kr-h1 in insect reproduction is poorly understood. In the current study, we used the notorious pest Chilo suppressalis as a model system to investigate the role of Kr-h1 in female reproduction. Cloning and sequencing C. suppressalis Kr-h1 revealed that it shares high identity with its homologues from other lepidopteran insects. Moreover, RNA interference-mediated knockdown of CsKr-h1 substantially reduced the transcription of Vg in the fat body, dramatically decreased yolk protein deposition and also impaired oocyte maturation and ovarian development, indicating that Kr-h1 is indispensable for normal vitellogenesis in C. suppressalis. Based on these results, we conclude that Kr-h1 is crucial to reproduction in insects and that targeting this gene could potentially be a new way to suppress rice pests.
Collapse
Affiliation(s)
- Y Tang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - H He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - X Qu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Y Cai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - W Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, China
| | - L Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Y Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
47
|
Liu H, Lin Y, Gu J, Ruan Y, Shen G, Zhang Y, Wang H, Meng Z, Li K, Xia Q. The increase of amino acids induces the expression of vitellogenin after spinning in the silkworm Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103913. [PMID: 31302015 DOI: 10.1016/j.jinsphys.2019.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Silkworms are economically important insects because of the value of their silk. After finishing silk spinning, silkworms begin another important physiological process, vitellogenesis. In this study, we explored the relationship between silk spinning and vitellogenin (BmVg) expression in silkworms. In silkworms with the silk fibroin heavy chain gene knocked-out, the concentration of amino acids in the hemolymph was found to be significantly higher than that in the wild type, and the expression of BmVg was advanced at day 7 of the fifth instar stage and 0 h after spinning. Furthermore, through culturing fat body in vitro with different substances treatment including glucose, trehalose, amino acids, 20-hydroxyecdysone, and insulin, we found that only amino acids could induce BmVg expression. RNA interference of BmTOR1 in female silkworms could down-regulate BmVg transcription, resulting in shortened egg ducts and smaller eggs relative to the control. Therefore, these results showed that amino acids could induce BmVg expression through the TOR signaling pathway. Fat body cultured with amino acids in vitro and experiments involving amino acids injected into the silkworm showed that the majority of main amino acids of silk protein could induce BmVg expression. These results suggested that BmVg expression is related to silk spinning and this study would lay a foundation for elucidating the stage specificity expression of BmVg.
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China
| | - Jianjian Gu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China
| | - Yang Ruan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China
| | - Yujing Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China
| | - Huijuan Wang
- College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Ziwang Meng
- College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Kairong Li
- College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center of Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China.
| |
Collapse
|
48
|
Li N, Zeng M, Xiao H, Lin S, Yang S, Huang H, Zhu S, Zhao Z, Ren C, Li S. Alteration of insulin and nutrition signal gene expression or depletion of Met reduce both lifespan and reproduction in the German cockroach. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103934. [PMID: 31449796 DOI: 10.1016/j.jinsphys.2019.103934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
In insects, nutrition and hormones coordinately regulate lifespan and reproduction, which might affect each other. We here investigated how nutrition, insulin, and juvenile hormone (JH) signal genes affect lifespan and reproduction in the German cockroach, Blattella germanica, a serious urban pest throughout the world. Starvation as well as altering insulin and nutrition signal genes by RNA interference (RNAi) knockdown of the expression of either positive or negative components in the two pathways simultaneously reduced lifespan and ootheca number of the mated female cockroaches. Meanwhile, depletion of the JH receptor Methoprene-tolerant (Met), but not kruppel homolog 1 (Kr-h1) that predominately transduces JH signaling to prevent metamorphosis, significantly reduced the two parameters. Moreover, suppressing the expression of several reproduction-related genes, including doublesex (Dsx), vitellogenin (Vg), and the Vg receptor (VgR), had little yet various effects on lifespan; nevertheless, it is likely that there are some reproduction-independent mating factors reducing lifespan. In conclusion, through blocking lifespan and reproduction in a simultaneous manner, the alteration of insulin and nutrient signal gene expression or the depletion of Met might provide a great potential for controlling the German cockroach.
Collapse
Affiliation(s)
- Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Mei Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Huilu Xiao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Shuren Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Shuting Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Haixin Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Zheng Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|
49
|
Zhang J, Liu X, Liu Y, An Y, Fang H, Michaud JP, Zhang H, Li Y, Zhang Q, Li Z. Molecular Characterization of Primary Juvenile Hormone Responders Methoprene-Tolerant (Met) and Krüppel Homolog 1 (Kr-h1) in Grapholita molesta (Lepidoptera: Tortricidae) with Clarification of Their Roles in Metamorphosis and Reproduction. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2369-2380. [PMID: 31173097 DOI: 10.1093/jee/toz155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Methoprene-tolerant (Met) is a putative JH intracellular receptor that transduces JH signal by activation of the inducible Krüppel homolog 1 (Kr-h1). We analyzed the gene sequences of Met and Kr-h1 and their patterns of expression in Grapholita molesta (Busck) immature and adult stages in order to better understand the roles of these primary JH responders in regulating the metamorphosis and reproduction of this global pest of fruit crops. The deduced amino acid sequences of both GmMet and GmKr-h1 were highly homologous to those of other Lepidoptera, especially the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Peak expression of GmMet occurred during the last 3 to 5 d of the final instar, followed by that of GmKr-h1, in the last 3 d of final instar. Similar patterns of GmMet and GmKr-h1 expression were detected across various tissue types in the fifth-instar larvae, with the highest expression observed in the head, followed by the epidermis, and the fat body. When expression of GmMet and GmKr-h1 was knocked down via dsRNA injection in the fifth instar, the results were increased larval mortality, abnormal pupation, delayed pupal duration, reduced adult emergence, extended preoviposition period, and reduced fecundity. We infer that both GmMet and GmKr-h1 participated in regulation of metamorphosis and reproduction in G. molesta, the former acting upstream of the latter, and could present biorational targets for novel pest control compounds.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yichen Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yueqing An
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Haibo Fang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Station-Hays, Hays, KS
| | - Huaijiang Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Liaoning, China
| | - Yisong Li
- The College of Agronomy, Xinjiang Agricultural University, Xinjiang, China
| | - Qingwen Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
50
|
Li K, Jia QQ, Li S. Juvenile hormone signaling - a mini review. INSECT SCIENCE 2019; 26:600-606. [PMID: 29888456 DOI: 10.1111/1744-7917.12614] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Since it was first postulated by Wigglesworth in 1934, juvenile hormone (JH) is considered a status quo hormone in insects because it prevents metamorphosis that is initiated by the molting hormone 20-hydroxyecdysone (20E). During the last decade, significant advances have been made regarding JH signaling. First, the bHLH-PAS transcription factor Met/Gce was identified as the JH intracellular receptor. In the presence of JH, with the assistance of Hsp83, and through physical association with a bHLH-PAS transcriptional co-activator, Met/Gce enters the nucleus and binds to E-box-like motifs in promoter regions of JH primary-response genes for inducing gene expression. Second, the zinc finger transcription factor Kr-h1 was identified as the anti-metamorphic factor which transduces JH signaling. Via Kr-h1 binding sites, Kr-h1 represses expression of 20E primary-response genes (i.e. Br, E93 and E75) to prevent 20E-induced metamorphosis. Third, through the intracellular signaling, JH promotes different aspects of female reproduction. Nevertheless, this action varies greatly from species to species. Last, a hypothetical JH membrane receptor has been predicted to be either a GPCR or a tyrosine kinase receptor. In future, it will be a great challenge to understand how the JH intracellular receptor Met/Gce and the yet unidentified JH membrane receptor coordinate to regulate metamorphosis and reproduction in insects.
Collapse
Affiliation(s)
- Kang Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qiang-Qiang Jia
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|