1
|
Chen Y, Peng J, Xie W, Zhang H, Yuchi Z, Liu J, Li Y. Computer-aided design of novel anthranilic diamides containing fluorinated alkoxy groups as potential ryanodine receptor insecticides. PEST MANAGEMENT SCIENCE 2025; 81:3074-3087. [PMID: 39878126 DOI: 10.1002/ps.8678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Increasing the diversity of lead compounds has been shown to enhance the efficacy of diamide insecticides. Fifty novel compounds were precisely designed and synthesized utilizing fragment-based assembly and virtual screening coupling. RESULTS The median lethal concentration (LC50) values of compounds X-30 and X-40 against Mythimna separata were 0.09 and 0.08 mg L-1, respectively, which are lower than that of chlorantraniliprole (CHL, 0.11 mg L-1). Notably, compounds X-10, X-18, X-25, X-32 and X-43 had corresponding LC50 values of 2.0 × 10-4, 5.0 × 10-4, 6.0 × 10-4, 9.0 × 10-4 and 7.0 × 10-4 mg L-1 against Plutella xylostella, respectively. The best compound X-10 exhibited five-fold greater efficacy than CHL (1.0 × 10-3 mg L-1). The LC50 values of compounds X-21, X-29, and X-40 against Spodoptera frugiperda were 0.27, 0.26 and 0.25 mg L-1, respectively, which are slightly lower than that of CHL (0.33 mg L-1). In the case of Ostrinia furnacalis, compound X-43 showed good efficacy with LC50 values comparable to those of CHL (1.38 versus 1.57 mg L-1). Calcium imaging experiments demonstrated that X-21 acted on S. frugiperda ryanodine receptors. Furthermore, this series of compounds showed safety toward nontarget mammals compared to CHL. CONCLUSION The introduction of fluorinated alkoxy groups at the 3-position of the pyrazole ring leads to good insecticidal activity and improved insect selectivity. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
| | - Jinmin Peng
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
| | - Weibin Xie
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
| | - Hongyuan Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin University, Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
- Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, Cangzhou, China
| |
Collapse
|
2
|
Yi MH, Wang HJ, Wang BJ, Wang MY, Tang Z, Meng QQ, Shi Y, Li WL, Liao XL, Shi L. Molecular Mechanisms of Resistance to Diamide Insecticides in Spodoptera litura: Insights from Both Metabolic and Target-Site Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12653-12665. [PMID: 40372351 DOI: 10.1021/acs.jafc.5c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Tiorantraniliprole is a novel diamide insecticide, and the resistance level and mechanism of Spodoptera litura to tiorantraniliprole and the multiresistance mechanism with other diamide insecticides are still unknown. In this study, bioassays showed that field S. litura developed high and medium levels of resistance to tiorantraniliprole, chlorantraniliprole, and cyantraniliprole. Enzyme activity and synergist bioassay indicated that P450s was the main factor leading to metabolic resistance to tiorantraniliprole. Transcriptome sequencing and qPCR showed that CYP6B50 was upregulated by tiorantraniliprole induction and overexpressed in the field-resistant strain. RNA interference and transgenic fruit fly indicated that CYP6B50 was involved in multiresistance to tiorantraniliprole, chlorantraniliprole, and cyantraniliprole. In addition, a target mutation site I4723M in RyR was detected in the field-resistant strain. Further genetic crossing and insecticides docking confirmed that the I4723M mutation involved in chlorantraniliprole and cyantraniliprole resistance also mediated resistance to tiorantraniliprole. This study comprehensively elucidated the mechanisms of resistance to diamide insecticides from both metabolic and target-site resistance in S. litura.
Collapse
Affiliation(s)
- Ming-Hui Yi
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Heng-Ji Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Bing-Jie Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Meng-Yu Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zi Tang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Qing-Qi Meng
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Wen-Lin Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Xiao-Lan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Ullah F, Ullah Z, Gul H, Li X, Pan Y, Zhang H, Zhang Z, Huang J, Emmanouil R, Guedes RNC, Desneux N, Lu Y. Proactive Resistance Management Studies Highlight the Role of Cytochrome P450 Genes in the Resistance of Tuta absoluta Against Tetraniliprole. Int J Mol Sci 2025; 26:5180. [PMID: 40507990 PMCID: PMC12155287 DOI: 10.3390/ijms26115180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2025] [Revised: 05/25/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
The diamide insecticide tetraniliprole is a valuable tool for managing major insect pests like the invasive tomato pinworm, Tuta absoluta (Meyrick). However, the mechanisms underlying tetraniliprole resistance, as well as its associated fitness costs, remain unclear. In this study, we assessed the fitness of tetraniliprole-resistant (TetraRS) and susceptible (SS) strains of T. absoluta and conducted Illumina RNA-seq to compare their transcriptomes. We also used nanocarrier-mediated RNA interference (RNAi) to knockdown P450 genes and evaluate their role in tetraniliprole resistance. After eight generations of selection, T. absoluta developed a 20.80-fold resistance to tetraniliprole, accompanied by fitness costs. RNA-seq analysis revealed 3332 differentially expressed genes (DEGs), with 1707 upregulated and 1625 downregulated in the TetraRS compared to the SS strain. Gene Ontology (GO) annotations showed significant enrichment in categories related to metabolic processes, cellular processes, catalytic activity, cellular anatomical entity, and binding. These genes were also identified in key KEGG pathways such as cytochrome P450, drug metabolism, carbon metabolism, oxidative phosphorylation, fatty acid metabolism, and protein processing. RT-qPCR analysis confirmed that P450 genes (CYP405D1, CYP6AB269, and CYP4AU1) were upregulated in TetraRS insects, in line with the RNA-seq results. Cytochrome P450 activity was significantly higher in the TetraRS strain than in the SS strain. Notably, nano-encapsulated dsRNA targeting these overexpressed P450 genes increased the susceptibility of T. absoluta to tetraniliprole. Further, cytochrome P450 activity was significantly reduced following silencing of P450 genes. These findings suggest that multiple genes and pathways, particularly P450 genes, contribute to tetraniliprole resistance in T. absoluta. This study provides valuable insights into the molecular mechanisms underlying insecticide resistance in this key pest species.
Collapse
Affiliation(s)
- Farman Ullah
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.U.); (H.G.); (Y.P.); (H.Z.); (Z.Z.); (J.H.)
| | - Zeeshan Ullah
- Department of Entomology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan;
| | - Hina Gul
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.U.); (H.G.); (Y.P.); (H.Z.); (Z.Z.); (J.H.)
| | - Xiaowei Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.U.); (H.G.); (Y.P.); (H.Z.); (Z.Z.); (J.H.)
| | - Yuhan Pan
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.U.); (H.G.); (Y.P.); (H.Z.); (Z.Z.); (J.H.)
| | - Haixia Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.U.); (H.G.); (Y.P.); (H.Z.); (Z.Z.); (J.H.)
| | - Zhijun Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.U.); (H.G.); (Y.P.); (H.Z.); (Z.Z.); (J.H.)
| | - Jun Huang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.U.); (H.G.); (Y.P.); (H.Z.); (Z.Z.); (J.H.)
| | - Roditakis Emmanouil
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, 71410 Heraklion, Greece;
| | - Raul Narciso C. Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil;
| | - Nicolas Desneux
- Université Côte d’Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France;
| | - Yaobin Lu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.U.); (H.G.); (Y.P.); (H.Z.); (Z.Z.); (J.H.)
| |
Collapse
|
4
|
Li L, Jia Z, Fu K, Ding X, Jiang W, Wang X, Ahmat T, Wu J, Wen Y, Ye X, Guo W, Hu H. Multigeneration Sublethal Chlorantraniliprole Treatment Disrupts Nutritional Metabolism and Inhibits Growth, Development, and Reproduction of Phthorimaea absoluta. INSECTS 2025; 16:524. [PMID: 40429237 PMCID: PMC12112179 DOI: 10.3390/insects16050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025]
Abstract
Phthorimaea absoluta, an important pest of tomato crops, has reportedly developed high levels of resistance to the insecticide chlorantraniliprole, which has a unique mode of action and high efficacy. This study evaluated the sustained multigenerational effects of chlorantraniliprole on P. absoluta, focusing on resistance development, growth, development, reproductive capacity, population parameters, and nutritional indicators. After continuous selection with sublethal chlorantraniliprole for eight generations (CX-Sub8), bioassays showed that CX-Sub8 had 225.37-fold higher resistance than the susceptible strain. The age-stage, two-sex life table analysis revealed that the preadult development time and mean generation time were significantly prolonged, while population reproduction and pupal weight were reduced. Moreover, the relative fitness of CX-Sub8 was 0.62, and changes in the life table parameters correlated with an increase in the serial number of selection cycles. The second-instar larvae of CX-Sub8 presented lower triglyceride, glycerol, trehalose, free fatty acid, and protein contents than the unselected strain (CX-S8). Transcriptome analysis identified 2517 differentially expressed genes, with most being enriched in nutrient metabolism-related pathways, such as amino acid biosynthesis and fatty acid degradation metabolism. These results indicate that multigenerational sublethal chlorantraniliprole treatment disrupts the nutritional metabolism, and inhibits the growth, development, and reproduction of P. absoluta.
Collapse
Affiliation(s)
- Lun Li
- College of Life Science and Technology, Xinjiang University/Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China; (L.L.); (Y.W.)
- Institute of Plant Protection, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (Z.J.); (K.F.); (X.D.); (X.W.); (T.A.); (X.Y.)
| | - Zunzun Jia
- Institute of Plant Protection, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (Z.J.); (K.F.); (X.D.); (X.W.); (T.A.); (X.Y.)
| | - Kaiyun Fu
- Institute of Plant Protection, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (Z.J.); (K.F.); (X.D.); (X.W.); (T.A.); (X.Y.)
| | - Xinhua Ding
- Institute of Plant Protection, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (Z.J.); (K.F.); (X.D.); (X.W.); (T.A.); (X.Y.)
| | - Weihua Jiang
- College of Plant Protection, Nanjing Agricultural University/State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing 211800, China;
| | - Xiaowu Wang
- Institute of Plant Protection, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (Z.J.); (K.F.); (X.D.); (X.W.); (T.A.); (X.Y.)
| | - Tursun. Ahmat
- Institute of Plant Protection, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (Z.J.); (K.F.); (X.D.); (X.W.); (T.A.); (X.Y.)
| | - Jiahe Wu
- Institute of Microbiology, Chinese Academy of Sciences/State Key Laboratory of Plant Genomics, Beijing 100101, China;
| | - Yutong Wen
- College of Life Science and Technology, Xinjiang University/Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China; (L.L.); (Y.W.)
- Institute of Plant Protection, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (Z.J.); (K.F.); (X.D.); (X.W.); (T.A.); (X.Y.)
| | - Xiaoqin Ye
- Institute of Plant Protection, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (Z.J.); (K.F.); (X.D.); (X.W.); (T.A.); (X.Y.)
| | - Wenchao Guo
- Institute of Plant Protection, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (Z.J.); (K.F.); (X.D.); (X.W.); (T.A.); (X.Y.)
| | - Hongying Hu
- College of Life Science and Technology, Xinjiang University/Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China; (L.L.); (Y.W.)
| |
Collapse
|
5
|
Chandra Mohan MLB, Marimuthu M, Venkatasamy B, Sankarasubramanian H, Krish KK, Mannu J. Prevalence of insecticide resistance and enhanced detoxifying enzymes in field populations of Tuta absoluta (Lepidoptera: Gelechiidae) in the major Tomato growing regions of South India. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:589-605. [PMID: 39976828 DOI: 10.1007/s10646-025-02859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 05/04/2025]
Abstract
South American pinworm Tuta absoluta (Meyrick) is an invasive and major tomato pest that attained resistance or reduced susceptibility to most insecticides used in their management due to repeated and intensive applications. This study aimed to find the levels of resistance in T. absoluta populations collected from South Indian states against novel insecticides such as chlorantraniliprole 18.5% SC, flubendiamide 39.35% SC, spinosad 45% SC, indoxacarb 14.5% SC, and emamectin benzoate 5% SG using leaf dip bioassay. Among the eight populations collected from major tomato growing belts spanning three states of South India (Andhra Pradesh, Karnataka and Tamil Nadu), Krishnagiri of Tamil Nadu showed the highest level of resistance to flubendiamide and the least resistance was shown by the Tirupati population, with a resistance ratio of 174.89 and 2.24, respectively. Significant correlation was found between LC50 values of flubendiamide and chlorantraniliprole (0.859), emamectin benzoate and flubendiamide (0.855) and spinosad and emamectin benzoate (0.866). The biochemical assay conducted to quantify the mixed function oxidase (MFO), carboxyl/choline esterase (CCE) and glutathione S-transferase (GST) in the T. absoluta larval populations showed an increased level of MFO, CCE and GST in Krishnagiri population with 15.59, 1.72 and 6.02-fold, respectively compared to susceptible population. It showed that the detoxification enzyme plays an important role in the insecticide resistance of the field population of T. absoluta. The results serve as an initial assessment for further understanding of the molecular mechanisms of insecticide resistance at the genetic level to design and implement successful insecticide resistance management strategies.
Collapse
Affiliation(s)
| | - Murugan Marimuthu
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | | | - Harish Sankarasubramanian
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Kumar K Krish
- Department of Plant Biotechnology, Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology & Bioinformatics, Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
6
|
Ullah F, G GPP, Gul H, Panda RM, Murtaza G, Zhang Z, Huang J, Li X, Desneux N, Lu Y. Nanocarrier-mediated RNAi of CYP9E2 and CYB5R enhance susceptibility of invasive tomato pest, Tuta absoluta to cyantraniliprole. FRONTIERS IN PLANT SCIENCE 2025; 16:1573634. [PMID: 40357159 PMCID: PMC12066504 DOI: 10.3389/fpls.2025.1573634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/21/2025] [Indexed: 05/15/2025]
Abstract
Cyantraniliprole, a second-generation anthranilic diamide, is widely used to manage lepidopteran pests, including the invasive tomato pinworm Tuta absoluta (Meyrick). However, cyantraniliprole's resistance mechanisms and associated fitness costs in T. absoluta remain underexplored. Here, we investigated the fitness costs and resistance mechanisms of cyantraniliprole-resistant strain (CyanRS) via nanocarrier-mediated RNA interference (RNAi). Results showed that the egg incubation period and developmental durations of larval and pupal stages were significantly prolonged in the CyanRS population of T. absoluta compared to the susceptible strain (SS). Further, the adult emergence, longevities of male and female, fecundity, and hatching rate were significantly reduced in CyanRS individuals. The mRNA expression levels of cytochrome b5 reductase (CYB5R) and cytochrome P450 (CYP9E2) were analyzed using RT-qPCR to explore their potential involvement in cyantraniliprole resistance in T. absoluta. Phylogenetic and motif analysis of CYB5R and CYP9E2 indicated their evolutionary and functional conservation with other insect species, especially Lepidopterans. Notably, nanocarrier-encapsulated dsRNA targeting CYB5R and CYP9E2 genes significantly reduced their expression levels. Further, the activity of cytochrome P450 was substantially decreased after the knockdown of the CYB5R and CYP92 genes. This increased susceptibility of the resistant population of T. absoluta to cyantraniliprole, leading to a higher mortality rate than the controls. These findings show that CYB5R and CYP9E2 might play a key role in cyantraniliprole resistance evolution in T. absoluta. The current study provides in-depth insights to understand the underlying mechanisms of cyantraniliprole resistance in this key invasive herbivore.
Collapse
Affiliation(s)
- Farman Ullah
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Hina Gul
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rudra Madhab Panda
- Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Ghulam Murtaza
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhijun Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jun Huang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaowei Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Yaobin Lu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Zhang F, Mu M, Wang Z, Zhang H, Song Y, Xiao R. The Characteristics and Functions of SSRs and SNPs Based on the Transcriptome of Tuta absoluta Exposed to Different Concentrations of Abamectin and Chlorantraniliprole. INSECTS 2025; 16:446. [PMID: 40429160 PMCID: PMC12112055 DOI: 10.3390/insects16050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025]
Abstract
Tuta absoluta (Meyrick) is an important invasive pest that seriously affects the yield and quality of tomatoes. In this study, based on the previously obtained transcriptome data, a total of 25,123 SSR loci and 332,537 SNP loci were identified. The identified SSRs had occurrence and appearance frequencies of 28.62% and 40.60%, respectively. SSRs with a length equal to or greater than 12 bp constituted 58.25% of the total SSR loci. Through the analysis of GO, COG annotations, and the KEGG pathway database, it was revealed that the majority of SSR-transcripts were involved in fundamental cellular metabolic functions. In addition, the frequency of SNP occurrence was approximately one SNP locus per 175 base pairs (bp), and the transition type was the main variant type. The functional annotations of SNP-transcripts were primarily concentrated in biological synthesis pathways such as peroxisome, RNA transport, carbon metabolism, and protein processing in the endoplasmic reticulum. These synthesis pathways are involved in the detoxification mechanism of T. absoluta and contribute to its enhanced survival under pesticide susceptibility. These findings provide valuable data for constructing genetic maps, assessing genetic diversity, and determining functional orientation in insects, and they also provide basic data for the molecular mechanism of T. absoluta 's response to pesticide susceptibility.
Collapse
Affiliation(s)
| | | | | | | | | | - Rong Xiao
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; (F.Z.); (M.M.); (Z.W.); (H.Z.); (Y.S.)
| |
Collapse
|
8
|
Wang S, Qiao ST, Li PZ, Xie Y, Guo FR, Liu JW, Hu WK, Gao MY, Zheng LJ, Yang FX, Yuchi ZG, Wu SF, Bass C, Gao CF. Y4667D Mutation in the Ryanodine Receptor Confers High Level Resistance to Diamide Insecticides in the Rice Stem Borer, Chilo suppressalis Walker (Lepidoptera: Crambidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9920-9931. [PMID: 40198889 DOI: 10.1021/acs.jafc.5c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Chilo suppressalis is a major rice pest with escalating resistance to diamide insecticides, threatening sustainable management. However, the precise molecular mechanisms underlying this resistance remain unclear. In this study, we assessed the sensitivity of 71 C. suppressalis field populations in China to chlorantraniliprole during 2023-2024 and investigated target-site mutations associated with resistance. The proportion of highly resistant populations increased to 80% in 2023 (RR = 111.6-2706.4) and 90.3% in 2024 (RR = 160-1794.7). Multiple RyR mutations, including Y4667D, were identified in highly resistant populations. Introgressing the Y4667D mutation into a laboratory strain generated the 4667D strain, which exhibited high resistance to chlorantraniliprole and other diamides. Resistance showed autosomal inheritance with incomplete dominance. Modeling and molecular docking revealed that Y4667D reduced CsRyR binding affinity for chlorantraniliprole. Furthermore, Y4667D conferred significant fitness costs such as longer larval duration and reduced reproductive output. These findings provide insights into the molecular mechanisms of diamide resistance, inform pesticide management strategies, and aid the development of novel resistance-breaking pesticides.
Collapse
Affiliation(s)
- Shuai Wang
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Song-Tao Qiao
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Pei-Zhuo Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yuan Xie
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Fang-Rui Guo
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Jin-Wei Liu
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Wen-Kai Hu
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Meng-Yue Gao
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Ling-Jun Zheng
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Feng-Xia Yang
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Zhi-Guang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shun-Fan Wu
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, U.K
| | - Cong-Fen Gao
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| |
Collapse
|
9
|
Mei W, Yang G, Ye G, Yang Y, Wu Y. Differential contributions of the ryanodine receptor I4723M and I4723K mutations to diamide resistance in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106292. [PMID: 40015884 DOI: 10.1016/j.pestbp.2025.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
The common cutworm, Spodoptera litura, is a significant pest that damaging various crops. Previous research has shown that the I4723M mutation in the ryanodine receptor of S. litura (SlRyR), which is equivalent to the Plutella xylostella RyR I4790M, confers approximately 20-fold resistance to chlorantraniliprole. Recently, we identified a new I4723K mutation in SlRyR, in addition to I4723M, from the HZ23 population of S. litura collected in 2023 from Huizhou, Guangdong province, China. This study characterized the resistance to diamides conferred by these two point mutations of SlRyR. The HZ23 population demonstrated an 81-fold resistance to chlorantraniliprole, and the frequencies of the wild type allele 4723I and two mutant alleles 4723M and 4723K were 0.055, 0.93 and 0.015, respectively. Through marker-assisted selection, we isolated three strains from the HZ23 population, named HZ-4723I, HZ-4723M, and HZ-4723K, homozygous for each of the three alleles. Compared to the HZ-4723I strain, the HZ-4723M strain displayed medium-level resistance (23- to 43-fold), whereas the HZ-4723K strain exhibited high-level resistance (> 500-fold) to four diamides including chlorantraniliprole, cyantraniliprole, flubendiamide, and tetraniliprole. Genetic analysis revealed that resistance to chlorantraniliprole conferred by either I4723M or I4723K mutations was autosomal, incompletely recessive, and tightly linked with the SlRyR mutations. Given that the I4723K mutation confers much higher levels of diamide resistance than the I4723M mutation, the continued intensive use of diamide insecticides is likely to increase the frequency of the I4723K mutation in S. litura field populations. Our findings provide valuable insights for the monitoring and management of diamide resistance in this pest species.
Collapse
Affiliation(s)
- Wenjuan Mei
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guiqun Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guofang Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Amado D, Koch EL, Cordeiro EMG, Araújo WA, Garcia AAF, Heckel DG, Montejo-Kovacevich G, North HL, Corrêa AS, Jiggins CD, Omoto C. The genetic architecture of resistance to flubendiamide insecticide in Helicoverpa armigera (Hübner). PLoS One 2025; 20:e0318154. [PMID: 39879173 PMCID: PMC11778771 DOI: 10.1371/journal.pone.0318154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/12/2025] [Indexed: 01/31/2025] Open
Abstract
Insecticide resistance is a major problem in food production, environmental sustainability, and human health. The cotton bollworm Helicoverpa armigera is a globally distributed crop pest affecting over 300 crop species. H. armigera has rapidly evolved insecticide resistance, making it one of the most damaging pests worldwide. Understanding the genetic basis of insecticide resistance provides insights to develop tools, such as molecular markers, that can be used to slow or prevent the evolution of resistance. We explore the genetic architecture of H. armigera resistance to a widely used insecticide, flubendiamide, using two complementary approaches: genome-wide association studies (GWAS) in wild-caught samples and quantitative trait locus (QTL) mapping in a controlled cross of susceptible and resistant laboratory strains. Both approaches identified one locus on chromosome 2, revealing two SNPs within 976 bp that can be used to monitor field resistance to flubendiamide. This was the only region identified using linkage mapping, though GWAS revealed additional sites associated with resistance. Other loci identified by GWAS in field populations contained known insecticide detoxification genes from the ATP-binding cassette family, ABCA1, ABCA3, ABCF2 and MDR1. Our findings revealed an oligogenic genetic architecture, contrasting previous reports of monogenic resistance associated with the ryanodine receptor. This work elucidates the genetic basis of rapidly evolving insecticide resistance and will contribute to developing effective insecticide resistance management strategies.
Collapse
Affiliation(s)
- Douglas Amado
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Eva L. Koch
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Erick M. G. Cordeiro
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Wellingson A. Araújo
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Antonio A. F. Garcia
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | | | - Gabriela Montejo-Kovacevich
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- King’s College, University of Cambridge, Cambridge, United Kingdom
| | - Henry L. North
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Girton College, University of Cambridge, Cambridge, United Kingdom
| | - Alberto S. Corrêa
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Celso Omoto
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
11
|
Dunn TP, Cremonez PSG, Furuya A, Brown WS, Nagaoka MM, Powell CB, Sparks AN, Smith H, Riley DG, Champagne DE. Regional changes of maximum dose insecticide responses in diamondback moth (Lepidoptera: Plutellidae) populations from Georgia and Florida, USA. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2628-2635. [PMID: 39385527 DOI: 10.1093/jee/toae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
Maximum dose bioassays were conducted to assess the efficacy of multiple registered active ingredients for diamondback moth (DBM), Plutella xylostella (L.), control in Georgia and Florida from 2021 to 2023 as a follow-up to an earlier study. Low efficacy (<40% mortality) was recorded for the highest labeled rate of Bacillus thuringiensis var. kurstaki strain ATBS-351 in Georgia, as well as chlorantraniliprole, cyantraniliprole, and cyclaniliprole in Georgia and Florida. The active ingredients with the highest efficacy (>80% mortality) in both states were naled, emamectin benzoate, and spinetoram. Independent analysis of data by state indicated that the efficacy of bifenthrin, chlorantraniliprole, cyantraniliprole, tolfenpyrad, and methomyl was higher in Florida populations than in Georgia populations. In addition, a comparison of these data to a recent DBM maximum dose survey in the same region suggested that these DBM populations have rapidly developed high levels of resistance to cyantraniliprole and cyclaniliprole. This work provides growers in the region with a recent ranking of insecticide efficacy that documents the loss of control for certain active ingredients, which assists pest managers in the planning of ongoing insecticide rotations for DBM resistance management.
Collapse
Affiliation(s)
- Thomas P Dunn
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Paulo S G Cremonez
- Department of Entomology, University of Georgia Tifton Campus, Tifton, GA, USA
| | - Amanda Furuya
- Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | - Will S Brown
- Department of Entomology, University of Georgia Tifton Campus, Tifton, GA, USA
| | - Mirela M Nagaoka
- Department of Entomology, University of Georgia Tifton Campus, Tifton, GA, USA
| | - Chase B Powell
- Department of Entomology, University of Georgia Tifton Campus, Tifton, GA, USA
| | - Alton N Sparks
- Department of Entomology, University of Georgia Tifton Campus, Tifton, GA, USA
| | - Hugh Smith
- Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | - David G Riley
- Department of Entomology, University of Georgia Tifton Campus, Tifton, GA, USA
| | | |
Collapse
|
12
|
Askew WT, Edwards MG, Gatehouse AMR. Ex vivo delivery of dsRNA targeting ryanodine receptors for control of Tuta absoluta. PEST MANAGEMENT SCIENCE 2024; 80:6400-6408. [PMID: 39148493 DOI: 10.1002/ps.8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND RNA interference (RNAi) is an endogenous eukaryote viral defence mechanism representing a unique form of post-transcriptional gene silencing. Owing to its high specificity, this technology is being developed for use in dsRNA-based biopesticides for control of pest insects. Whilst many lepidopteran species are recalcitrant to RNAi, Tuta absoluta, a polyphagous insect responsible for extensive crop damage, is sensitive. Ryanodine receptors (RyRs) are intracellular calcium channels regulating calcium ion (Ca2+) release. The chemical pesticide class of diamides functions agonistically against lepidopteran RyR, resulting in uncontrolled Ca2+ release, feeding cessation and death. Resistance to diamides has emerged in T. absoluta, derived from RyR point mutations. RESULTS RNAi was used to target RyR transcripts of T. absoluta. Data presented here demonstrate the systemic use of exogenous T. absoluta RyR-specific (TaRy) dsRNA in tomato plants (Solanum lycopersicum) to significantly downregulate expression of the target gene, resulting in significant insect mortality and reduced leaf damage. Using a leaflet delivery system, daily dosing of 3 μg TaRy dsRNA for 72 h resulted in 50% downregulation of the target gene and 50% reduction in tomato leaf damage. Corrected larval mortality and adult emergence were reduced by 38% and 33%, respectively. TaRy dsRNA demonstrated stability in tomato leaves ≤72 h after dosing. CONCLUSIONS This work identifies TaRy as a promising target for RNAi control of this widespread crop pest. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- William T Askew
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Martin G Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Wang S, Liu C, Qiao ST, Guo FR, Xie Y, Sun H, Liu Y, Zhao SQ, Zhou LQ, He LF, Yang FX, Wu SF, Bass C, Gao CF. The Evolution and Mechanisms of Multiple-Insecticide Resistance in Rice Stem Borer, Chilo suppressalis Walker (Lepidoptera: Crambidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26475-26490. [PMID: 39557539 DOI: 10.1021/acs.jafc.4c06839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The emergence of insecticide resistance in the rice stem borer, Chilo suppressalis, is a growing threat to the sustainable control of this important insect crop pest. Thus, monitoring of C. suppressalis populations for insecticide resistance and characterization of the underlying genetic mechanisms is essential to inform rational control decisions and the development of resistance management strategies. Here, we monitored 126 C. suppressalis field populations from China for resistance evolution to four major insecticides: 53 for chlorantraniliprole, 50 for abamectin, 74 for triazophos, and 76 for spinetoram. Moderate to high levels of resistance were observed to all four insecticides. Investigation of the underlying resistance mechanisms revealed multiple mutations in the ryanodine receptor (RyR) and acetylcholinesterase 1 (AChE1), leading to target-site resistance to chlorantraniliprole and triazophos, respectively. In contrast, the absence of mutations in the glutamate-gated chloride channel (GluCl) and α6 nicotinic acetylcholine receptor (nAChR α6) subunit suggested that nontarget site mechanisms contribute to the multiple-insecticide resistance phenotypes observed in C. suppressalis. In this regard, we revealed overexpression of the uridine 5'-diphospho-glycosyltransferase UGT33AF1 and cytochrome P450 CYP6AB45 in C. suppressalis field populations. Functional characterization using transgenic Drosophila demonstrated that UGT33AF1 confers resistance against multiple insecticides in vivo, whereas CYP6AB45 does not appear to contribute to resistance. Collectively, our findings reveal the current status of resistance of C. suppressalis to insecticides in China and uncover a diverse profile of resistance mechanisms in this species. These findings provide a foundation for the development of sustainable strategies to effectively manage and control this pest.
Collapse
Affiliation(s)
- Shuai Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Chong Liu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Song-Tao Qiao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Fang-Rui Guo
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Yuan Xie
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Hao Sun
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Yan Liu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Si-Qi Zhao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Li-Qi Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Lin-Feng He
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Feng-Xia Yang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Shun-Fan Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, U.K
| | - Cong-Fen Gao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| |
Collapse
|
14
|
Ma X, Qu C, Yao J, Xia J, Luo C, Guedes RNC, Wang R. Resistance monitoring of diamide insecticides and characterization of field-evolved chlorantraniliprole resistance among Chinese populations of the tomato pinworm Phthorimaea (=Tuta) absoluta (Lepidoptera: Gelechiidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106140. [PMID: 39477592 DOI: 10.1016/j.pestbp.2024.106140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024]
Abstract
The tomato pinworm, Phthorimaea (=Tuta) absoluta, is considered one of the most destructive and invasive insect pests worldwide, having developed significant resistance to many popular insecticides. In this study, we monitored the field resistance of P. absoluta populations from China to three diamide insecticides: flubendiamide, chlorantraniliprole, and cyantraniliprole. We found that one field population from Wuzhong City (WZ) exhibited high level of resistance to chlorantraniliprole. Using the WZ population and a susceptible reference strain (YN-S), we established a near-isogenic line (WZ-NIL) of P. absoluta with resistance to chlorantraniliprole. This strain also showed substantial cross-resistance to flubendiamide, and cyantraniliprole. Genetic analysis revealed that the inheritance of resistance to chlorantraniliprole in the WZ-NIL strain was autosomal and incompletely dominant. Additionally, the pesticide synergist piperonyl butoxide significantly inhibited chlorantraniliprole resistance by compromising P450 monooxygenase activity, which was significantly higher in the resistant strain. Furthermore, WZ-NIL had significantly prolonged developmental stages, lower pupation rates, reduced female fecundity, and lower egg hatchability than YN-S individuals. The fitness of WZ-NIL relative to YN-S was estimated to be 0.73, indicating significant fitness cost associated with chlorantraniliprole resistance. Rotating chlorantraniliprole with other insecticides that have different modes of action and degradation may be particularly useful for managing chlorantraniliprole resistance in P. absoluta.
Collapse
Affiliation(s)
- Xiaoli Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiaqi Yao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Department of Plant Protection, Heilongjiang University, Harbin 150080, China
| | - Jixing Xia
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
15
|
Lin L, Wang C, Wang W, Jiang H, Murayama T, Kobayashi T, Hadiatullah H, Chen YS, Wu S, Wang Y, Korza H, Gu Y, Zhang Y, Du J, Van Petegem F, Yuchi Z. Cryo-EM structures of ryanodine receptors and diamide insecticides reveal the mechanisms of selectivity and resistance. Nat Commun 2024; 15:9056. [PMID: 39428398 PMCID: PMC11491487 DOI: 10.1038/s41467-024-53490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
The resistance of pests to common insecticides is a global issue that threatens food production worldwide. Diamide insecticides target insect ryanodine receptors (RyRs), causing uncontrolled calcium release from the sarcoplasmic and endoplasmic reticulum. Despite their high potency and species selectivity, several resistance mutations have emerged. Using a chimeric RyR (chiRyR) approach and cryo-electron microscopy (cryo-EM), we investigate how insect RyRs engage two different diamide insecticides from separate families: flubendiamide, a phthalic acid derivative, and tetraniliprole, an anthranilic compound. Both compounds target the same site in the transmembrane region of the RyR, albeit with different poses, and promote channel opening through coupling with the pore-forming domain. To explore the resistance mechanisms, we also solve two cryo-EM structures of chiRyR carrying the two most common resistance mutations, I4790M and G4946E, both alone and in complex with the diamide insecticide chlorantraniliprole. The resistance mutations perturb the local structure, directly reducing the binding affinity and altering the binding pose. Our findings elucidate the mode of action of different diamide insecticides, reveal the molecular mechanism of resistance mutations, and provide important clues for the development of novel pesticides that can bypass the resistance mutations.
Collapse
Affiliation(s)
- Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Changshi Wang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wenlan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Heng Jiang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Yu Seby Chen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shunfan Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yiwen Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Henryk Korza
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Jiamu Du
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Filip Van Petegem
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
16
|
Li YQ, Huang A, Li XJ, Edwards MG, Gatehouse AMR. RNAi targeting Na v and CPR via leaf delivery reduces adult emergence and increases the susceptibility to λ-cyholthin in Tuta absoluta (Meyrick). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106089. [PMID: 39277402 DOI: 10.1016/j.pestbp.2024.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
The tomato leafminer, Tuta absoluta (Meyrick), one of the most economically destructive pests of tomato, causes severe yields losses of tomato production globally. Rapid evolution of insecticide resistance requires the development of alternative control strategy for this pest. RNA interference (RNAi) represents a promising, innovative control strategy against key agricultural insect pests, which has recently been licensed for Colorado Potato Beetle control. Here two essential genes, voltage-gated sodium channel (Nav) and NADPH-cytochrome P450 reductase (CPR) were evaluated as targets for RNAi using an ex vivo tomato leaf delivery system. Developmental stage-dependent expression profiles showed TaNav was most abundant in adult stages, whereas TaCPR was highly expressed in larval and adult stages. T. absoluta larvae feeding on tomato leaflets treated with dsRNA targeting TaNav and TaCPR showed significant knockdown of gene expression, leading to reduction in adult emergence. Additionally, tomato leaves treated with dsRNA targeting these two genes were significantly less damaged by larval feeding and mining. Furthermore, bioassay with LC30 doses of λ-cyholthin showed that silencing TaNav and TaCPR increased T. absoluta mortality about 32.2 and 17.4%, respectively, thus indicating that RNAi targeting TaNav and TaCPR could increase the susceptibility to λ-cyholthin in T. absoluta. This study demonstrates the potential of using RNAi targeting key genes, like TaNav and TaCPR, as an alternative technology for the control of this most destructive tomato pests in the future.
Collapse
Affiliation(s)
- Yong-Qiang Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK.
| | - Anqi Huang
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK
| | - Xiao-Jie Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Martin G Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK.
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK
| |
Collapse
|
17
|
Bavithra CMML, Murugan M, Balasubramani V, Harish S, Prakash K. Baseline susceptibility of an A1 quarantine pest - the South American tomato pinworm Tuta absoluta (Lepidoptera: Gelechiidae) to insecticides: past incidents and future probabilities in line to implementing successful pest management. FRONTIERS IN PLANT SCIENCE 2024; 15:1404250. [PMID: 39286840 PMCID: PMC11404364 DOI: 10.3389/fpls.2024.1404250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/18/2024] [Indexed: 09/19/2024]
Abstract
Tomato is a widely cultivated crop significant for its economic and nutritional benefits. The South American tomato pinworm, Tuta absoluta, originated in Peru South America and has invaded many nations, causing up to 100% yield loss in tomatoes. The pest was classified as a quarantine pest by the European Plant Protection Organization, before invading the Spain region. Later, this quarantine pest also invaded other regions of Europe, Africa and Asian countries. Invasive insect pests cause global economic losses of 70 billion dollars annually. Among the several management measures suggested against pests, insecticides are the primary method in practice among growers due to significant results, easier operations, and other crucial advantages. Anyhow, repeated application of insecticides has caused the pest to evolve resistance against most of the insecticides in vogue, resulting in a chain of events like management failures, using increased doses of insecticides, intensified chemical residues in the food chain, and irreparable environmental contamination. Major insecticides globally used to control T. absoluta belong to organophosphates, synthetic pyrethroids, neonicotinoids, diamides, avermectins, spinosyns, and oxadizines. Understanding the baseline susceptibility of pests to insecticides helps for better pest management options and is the same for T. absoluta populations to insecticides. The current review paper discusses the T. absoluta distribution, biology, spread, host range, baseline insecticide susceptibility, global insecticide resistance status, and possible management inputs based on our understanding of insecticide susceptibility. The pest can be managed with integrated insecticide resistance management including molecular approaches.
Collapse
Affiliation(s)
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | | | - Kolanchi Prakash
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
18
|
Qu C, Yao J, Huang J, Che W, Fang Y, Luo C, Wang R. Tetraniliprole resistance in field-collected populations of Tuta absoluta (Lepidoptera: Gelechiidae) from China: Baseline susceptibility, cross-resistance, inheritance, and biochemical mechanism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106019. [PMID: 39084779 DOI: 10.1016/j.pestbp.2024.106019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024]
Abstract
Tuta absoluta is one of the most destructive and invasive insect pests throughout the world. It feeds on numerous solanaceous plant species and has developed resistance to most types of popular insecticides. Tetraniliprole is a novel diamide chemical agent that acts as a modulator of the ryanodine receptor. To establish T. absoluta susceptibility to tetraniliprole and to understand potential mechanisms of resistance, we monitored 18 field populations of T. absoluta collected from northern China. One field-evolved resistant population, Huailai (HL), showed moderate resistance to tetraniliprole (36.2-fold) in comparison with susceptible strain YN-S. Assays of cross-resistance, synergism, metabolic enzyme activity, and inheritance of resistance were performed with YN-S strain and HL population. The latter displayed 12.2- and 6.7-fold cross-resistance to chlorantraniliprole and flubendiamide, respectively, but little cross-resistance to broflanilide (1.6-fold), spinosad (2.1-fold), metaflumizone (1.5-fold), or indoxacarb (2.8-fold). Genetic analyses revealed that tetraniliprole resistance in HL population was autosomal, incompletely dominant, and polygenic. Piperonyl butoxide was found to significantly increase tetraniliprole toxicity, and enzymatic activities of P450 monooxygenase and glutathione S-transferase were significantly higher in HL than YN-S population. These results enhance our knowledge of the inheritance and mechanism of tetraniliprole resistance, enabling future optimization of resistance management strategies.
Collapse
Affiliation(s)
- Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiaqi Yao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Department of Plant Protection, Heilongjiang University, Harbin 150080, China
| | - Jianlei Huang
- College of Agriculture and Forestry Technology, Hebei North University, Zhangjiakou 075000, China
| | - Wunan Che
- Department of Pesticide Sciences, Shenyang Agricultural University, Shenyang 110866, China
| | - Yong Fang
- Yuelushan Laboratory, Changsha 410128, China; Agriculture Biotechnology Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
19
|
Guo Z, Ma H, Tang J, Wu M, He S, Wan H, Li J, Ma K. Chlorantraniliprole Resistance in Spodoptera frugiperda: Resistance Monitoring, Resistance Risk, and Resistance Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39038437 DOI: 10.1021/acs.jafc.4c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Spodoptera frugiperda is a significant global pest, and chlorantraniliprole (CAP) is extensively used in China for its control. Understanding CAP resistance in S. frugiperda is crucial for effective management of this pest. Field populations exhibited varying degrees of resistance to CAP (RR = 1.74-5.60-fold). After 10 generations of selection, the CAP-resistant strain developed over 10-fold resistance, with a realized heritability (h2) of 0.10. Genetic analysis reveals inheritance patterns as autosomal, incomplete recessive, and monofactorial. The CAP-resistant strain showed limited cross-resistance to lufenuron and tetrachlorantraniliprole, negative cross-resistance to spinetoram, and no observed cross-resistance to other insecticides. Biochemical analysis suggested that P450-mediated detoxification is the primary resistance mechanism, with 26 genes overexpressed in the CAP-resistant strain. Additionally, the knockdown of CYP4L13, CYP6B39, CYP6B40, and CYP4G74 significantly increased the sensitivity of the resistant larvae to CAP. These findings highlight the resistance risk of CAP in S. frugiperda and emphasize the crucial role of P450 enzymes in resistance.
Collapse
Affiliation(s)
- Zhimin Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huina Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiahui Tang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mengyan Wu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shun He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianhong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kangsheng Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
20
|
Jiang D, Yu Z, He Y, Wang F, Gu Y, Davies TGE, Fan Z, Wang X, Wu Y. Key role of the ryanodine receptor I4790K mutation in mediating diamide resistance in Plutella xylostella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104107. [PMID: 38492676 DOI: 10.1016/j.ibmb.2024.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
The diamondback moth Plutella xylostella, a global insect pest of cruciferous vegetables, has evolved resistance to many classes of insecticides including diamides. Three point mutations (I4790M, I4790K, and G4946E) in the ryanodine receptor of P. xylostella (PxRyR) have been identified to associate with varying levels of resistance. In this study, we generated a knockin strain (I4790K-KI) of P. xylostella, using CRISPR/Cas9 to introduce the I4790K mutation into PxRyR of the susceptible IPP-S strain. Compared to IPP-S, the edited I4790K-KI strain exhibited high levels of resistance to both anthranilic diamides (chlorantraniliprole 1857-fold, cyantraniliprole 1433-fold) and the phthalic acid diamide flubendiamide (>2272-fold). Resistance to chlorantraniliprole in the I4790K-KI strain was inherited in an autosomal and recessive mode, and genetically linked with the I4790K knockin mutation. Computational modeling suggests the I4790K mutation reduces the binding of diamides to PxRyR by disrupting key hydrogen bonding interactions within the binding cavity. The approximate frequencies of the 4790M, 4790K, and 4946E alleles were assessed in ten geographical field populations of P. xylostella collected in China in 2021. The levels of chlorantraniliprole resistance (2.3- to 1444-fold) in these populations were significantly correlated with the frequencies (0.017-0.917) of the 4790K allele, but not with either 4790M (0-0.183) or 4946E (0.017-0.450) alleles. This demonstrates that the PxRyR I4790K mutation is currently the major contributing factor to chlorantraniliprole resistance in P. xylostella field populations within China. Our findings provide in vivo functional evidence for the causality of the I4790K mutation in PxRyR with high levels of diamide resistance in P. xylostella, and suggest that tracking the frequency of the I4790K allele is crucial for optimizing the monitoring and management of diamide resistance in this crop pest.
Collapse
Affiliation(s)
- Dong Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Yingshi He
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Falong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | - T G Emyr Davies
- Insect Molecular Genomics Group, Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Xingliang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
21
|
Ochieng TA, Akutse KS, Ajene IJ, Kilalo DC, Muiru M, Khamis FM. Interactions between Bacillus thuringiensis and selected plant extracts for sustainable management of Phthorimaea absoluta. Sci Rep 2024; 14:9299. [PMID: 38653843 DOI: 10.1038/s41598-024-60140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Phthorimaea absoluta is a global constraint to tomato production and can cause up to 100% yield loss. Farmers heavily rely on synthetic pesticides to manage this pest. However, these pesticides are detrimental to human, animal, and environmental health. Therefore, exploring eco-friendly, sustainable Integrated Pest Management approaches, including biopesticides as potential alternatives, is of paramount importance. In this context, the present study (i) evaluated the efficacy of 10 Bacillus thuringiensis isolates, neem, garlic, and fenugreek; (ii) assessed the interactions between the most potent plant extracts and B. thuringiensis isolates, and (iii) evaluated the gut microbial diversity due to the treatments for the development of novel formulations against P. absoluta. Neem recorded the highest mortality of 93.79 ± 3.12% with an LT50 value of 1.21 ± 0.24 days, Bt HD263 induced 91.3 ± 3.68% mortality with LT50 of 2.63 ± 0.11 days, compared to both Bt 43 and fenugreek that caused < 50% mortality. Larval mortality was further enhanced to 99 ± 1.04% when Bt HD263 and neem were combined. Furthermore, the microbiome analyses showed that Klebsiella, Escherichia and Enterobacter had the highest abundance in all treatments with Klebsiella being the most abundant. In addition, a shift in the abundance of the bacterial genera due to the treatments was observed. Our findings showed that neem, garlic, and Bt HD263 could effectively control P. absoluta and be integrated into IPM programs after validation by field efficacy trials.
Collapse
Affiliation(s)
- Terry A Ochieng
- International Centre of Insect Physiology and Ecology (icipe), P. O. Box 30772-00100, Nairobi, Kenya
- College of Agriculture and Veterinary Sciences, University of Nairobi, P. O. Box 30197-00199, Nairobi, Kenya
| | - Komivi S Akutse
- International Centre of Insect Physiology and Ecology (icipe), P. O. Box 30772-00100, Nairobi, Kenya.
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| | - Inusa J Ajene
- International Centre of Insect Physiology and Ecology (icipe), P. O. Box 30772-00100, Nairobi, Kenya
| | - Dora C Kilalo
- College of Agriculture and Veterinary Sciences, University of Nairobi, P. O. Box 30197-00199, Nairobi, Kenya
| | - Maina Muiru
- College of Agriculture and Veterinary Sciences, University of Nairobi, P. O. Box 30197-00199, Nairobi, Kenya
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (icipe), P. O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
22
|
Karanu SW, Ajene IJ, Lelmen EK, Ong'onge MA, Akutse KS, Khamis FM. Biochemistry and transcriptomic analyses of Phthorimaea absoluta (Lepidoptera: Gelechiidae) response to insecticides. Sci Rep 2024; 14:7931. [PMID: 38575641 PMCID: PMC10995152 DOI: 10.1038/s41598-024-58413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Phthorimaea absoluta is an invasive solanaceous plant pest with highly devastating effects on tomato plant. Heavy reliance on insecticide use to tackle the pest has been linked to insecticide resistance selection in P. absoluta populations. To underline insights on P. absoluta insecticide resistance mechanisms to diamides and avermectins, we evaluated the transcriptomic profile of parental (field-collected) and F8 (lab-reared) populations. Furthermore, to screen for the presence of organophosphate and pyrethroid resistance, we assessed the gene expression levels of acetylcholinesterase (ace1) and para-type voltage-gated sodium channel (VGSG) genes in the F1 to F8 lab-reared progeny of diamide and avermectin exposed P. absoluta field-collected populations. The VGSG gene showed up-regulation in 12.5% and down-regulation in 87.5% of the screened populations, while ace1 gene showed up-regulation in 37.5% and down-regulation in 62.5% of the screened populations. Gene ontology of the differentially expressed genes from both parental and eighth generations of diamide-sprayed P. absoluta populations revealed three genes involved in the metabolic detoxification of diamides in P. absoluta. Therefore, our study showed that the detoxification enzymes found could be responsible for P. absoluta diamide-based resistance, while behavioural resistance, which is stimulus-dependent, could be attributed to P. absoluta avermectin resistance.
Collapse
Affiliation(s)
- Samantha W Karanu
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Biochemistry, Egerton University, Egerton, Kenya
| | - Inusa J Ajene
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Elijah K Lelmen
- Department of Biochemistry, Egerton University, Egerton, Kenya
| | | | - Komivi S Akutse
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
| |
Collapse
|
23
|
Bass C, Hayward A, Troczka BJ, Haas J, Nauen R. The molecular determinants of pesticide sensitivity in bee pollinators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170174. [PMID: 38246392 DOI: 10.1016/j.scitotenv.2024.170174] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Bees carry out vital ecosystem services by pollinating both wild and economically important crop plants. However, while performing this function, bee pollinators may encounter potentially harmful xenobiotics in the environment such as pesticides (fungicides, herbicides and insecticides). Understanding the key factors that influence the toxicological outcomes of bee exposure to these chemicals, in isolation or combination, is essential to safeguard their health and the ecosystem services they provide. In this regard, recent work using toxicogenomic and phylogenetic approaches has begun to identify, at the molecular level, key determinants of pesticide sensitivity in bee pollinators. These include detoxification systems that convert pesticides to less toxic forms and key residues in insecticide target-sites that underlie species-specific insecticide selectivity. Here we review this emerging body of research and summarise the state of knowledge of the molecular determinants of pesticide sensitivity in bee pollinators. We identify gaps in our knowledge for future research and examine how an understanding of the genetic basis of bee sensitivity to pesticides can be leveraged to, a) predict and avoid negative bee-pesticide interactions and facilitate the future development of pest-selective bee-safe insecticides, and b) inform traditional effect assessment approaches in bee pesticide risk assessment and address issues of ecotoxicological concern.
Collapse
Affiliation(s)
- Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom.
| | - Angela Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Bartlomiej J Troczka
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Julian Haas
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany.
| |
Collapse
|
24
|
Posos-Parra O, Mota-Sanchez D, Pittendrigh BR, Wise JC, DiFonzo CD, Patterson E. Characterization of the inheritance of field-evolved resistance to diamides in the fall armyworm (Spodoptera frugiperda) (Lepidoptera: Noctuidae) population from Puerto Rico. PLoS One 2024; 19:e0295928. [PMID: 38394153 PMCID: PMC10889863 DOI: 10.1371/journal.pone.0295928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/29/2023] [Indexed: 02/25/2024] Open
Abstract
The fall armyworm (Spodoptera frugiperda) is one of the most destructive pests of corn. New infestations have been reported in the East Hemisphere, reaching India, China, Malaysia, and Australia, causing severe destruction to corn and other crops. In Puerto Rico, practical resistance to different mode of action compounds has been reported in cornfields. In this study, we characterized the inheritance of resistance to chlorantraniliprole and flubendiamide and identified the possible cross-resistance to cyantraniliprole and cyclaniliprole. The Puerto Rican (PR) strain showed high levels of resistance to flubendiamide (RR50 = 2,762-fold) and chlorantraniliprole (RR50 = 96-fold). The inheritance of resistance showed an autosomal inheritance for chlorantraniliprole and an X-linked inheritance for flubendiamide. The trend of the dominance of resistance demonstrated an incompletely recessive trait for H1 (♂ SUS × ♀ PR) × and an incompletely dominant trait for H2 (♀ SUS × ♂ PR) × for flubendiamide and chlorantraniliprole. The PR strain showed no significant presence of detoxification enzymes (using synergists: PBO, DEF, DEM, and VER) to chlorantraniliprole; however, for flubendiamide the SR = 2.7 (DEM), SR = 3.2 (DEF) and SR = 7.6 (VER) indicated the role of esterases, glutathione S- transferases and ABC transporters in the metabolism of flubendiamide. The PR strain showed high and low cross-resistance to cyantraniliprole (74-fold) and cyclaniliprole (11-fold), respectively. Incomplete recessiveness might lead to the survival of heterozygous individuals when the decay of diamide residue occurs in plant tissues. These results highlight the importance of adopting diverse pest management strategies, including insecticide rotating to manage FAW populations in Puerto Rico and other continents.
Collapse
Affiliation(s)
- Omar Posos-Parra
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Barry R. Pittendrigh
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - John C. Wise
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Christina D. DiFonzo
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Eric Patterson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
25
|
Li Z, Wang X, Guo L, Yin T, Liu D, Liu S, You X, Xia X. Risk of resistance and the metabolic resistance mechanism of Laodelphax striatellus (Fallén) to cyantraniliprole. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105685. [PMID: 38072542 DOI: 10.1016/j.pestbp.2023.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Cyantraniliprole is a highly effective diamide insecticide used to control of Laodelphax striatellus (Fallén). This study aimed to assess the insecticide resistance risk of L. striatellus and its metabolic resistance mechanisms. After 25 continuous generations of selection, the resistance of L. striatellus to cyantraniliprole increased by 17.14-fold. The realistic heritability of resistance was 0.0751. After successive rearing for five generations without exposure to insecticides, the resistance ratio for the resistant strain of L. striatellus decreased by 3.47-fold, and the average resistance decline rate per generation was 0.0266. Cyantraniliprole-resistant strains did not exhibit cross-resistance to triflumezopyrim, pymetrozine, flonicamid, sulfoxaflor, dinotefuran, clothianidin, thiamethoxam, nitenpyram, or imidacloprid. Compared to those of the sensitive strain, the 2nd, 3rd, and 4th instars, nymphal stage durations, total preoviposition period, and average generation time of the resistant strain were markedly reduced. Furthermore, the activity of cytochrome P450 monooxygenase (P450) and carboxylesterase (CarE) were markedly increased. The upregulation of CYP419A1v2 expression was most evident among the P450 genes, with a 6.10-fold increase relative to that in the sensitive strain. The CarE gene LsCarE5 was significantly upregulated by 1.94-fold compared with that in the sensitive strain. With the continuous use of cyantraniliprole, L. striatellus may develop resistance to this insecticide. This resistance may be related to the increase in metabolic enzyme activities regulated by the overexpression of P450 and CarE genes.
Collapse
Affiliation(s)
- Zhaoge Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xueting Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Longzhi Guo
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Tao Yin
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Dongmei Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Shuang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xingmei You
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
26
|
Zhao F, Ding X, Liu Z, Yan X, Chen Y, Jiang Y, Chen S, Wang Y, Kang T, Xie C, He M, Zheng J. Application of CRISPR/Cas9-based genome editing in ecotoxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122458. [PMID: 37633433 DOI: 10.1016/j.envpol.2023.122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Chemicals are widely used and released into the environment, and their degradation, accumulation, migration, and transformation processes in the environment can pose a threat to the ecosystem. The advancement in analytical methods with high-throughput screening of biomolecules has revolutionized the way toxicologists used to explore the effects of chemicals on organisms. CRISPR/Cas is a newly developed tool, widely used in the exploration of basic science and biologically engineered products given its high efficiency and low cost. For example, it can edit target genes efficiently, and save loss of the crop yield caused by environmental pollution as well as gain a better understanding of the toxicity mechanisms from various chemicals. This review briefly introduces the development history of CRISPR/Cas and summarizes the current application of CRISPR/Cas in ecotoxicology, including its application on improving crop yield and drug resistance towards agricultural pollution, antibiotic pollution and other threats. The benefits by applying the CRISPR/Cas9 system in conventional toxicity mechanism studies are fully demonstrated here together with its foreseeable expansions in other area of ecotoxicology. Finally, the prospects and disadvantages of CRISPR/Cas system in the field of ecotoxicology are also discussed.
Collapse
Affiliation(s)
- Fang Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China; School of Public Health, Guizhou Medical University, Guizhou, China
| | - Xiaofan Ding
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zimeng Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| | - Yanzhen Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yaxin Jiang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shunjie Chen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yuanfang Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tingting Kang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chun Xie
- School of Public Health, Guizhou Medical University, Guizhou, China
| | - Mian He
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Jing Zheng
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| |
Collapse
|
27
|
Isbilir S, Catchot B, Catchot L, Musser FR, Ahn SJ. Molecular characterization and expression patterns of a ryanodine receptor in soybean looper, Chrysodeixis includens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22047. [PMID: 37602813 DOI: 10.1002/arch.22047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Diamide insecticides, such as chlorantraniliprole, have been widely used to control insect pests by targeting the insect ryanodine receptor (RyR). Due to the efficacious insecticidal activity of diamides, as well as an increasing number of resistance cases, the molecular structure of RyR has been studied in many economically important insects. However, no research has been conducted on diamide resistance and RyR in the soybean looper, Chrysodeixis includens, a significant crop pest. In this study, we found moderate resistance to chlorantraniliprole in a field population from Puerto Rico and sequenced the full-length cDNA of the C. includens RyR gene, which encodes a 5124 amino acid-long protein. Genomic analysis revealed that the CincRyR gene consists of 113 exons, one of the largest exon numbers reported for RyR. Alternative splicing sites were detected in the cytosolic region. The protein sequence showed high similarity to other noctuid RyRs. Conserved structural features included the selectivity filter motif critical for ryanodine binding and ion conduction, as well as various domains involved in ion transport. Two mutation sites associated with diamide resistance in other insects were screened but not found in the Puerto Rico field populations or in the susceptible lab strain. Gene expression analysis indicated high expression of RyR in the third instar larval stage, particularly in muscle-containing tissues. Furthermore, exposure to a sublethal dose of chlorantraniliprole reduced RyR expression levels after 96 h. This study provides a molecular basis for understanding RyR structure and sheds light on potential mechanisms of diamide resistance in C. includens.
Collapse
Affiliation(s)
- Sena Isbilir
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Beverly Catchot
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Lauren Catchot
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Fred R Musser
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| |
Collapse
|
28
|
Ong'onge MA, Ajene IJ, Runo S, Sokame BM, Khamis FM. Population dynamics and insecticide resistance in Tuta absoluta (Lepidoptera: Gelechiidae), an invasive pest on tomato in Kenya. Heliyon 2023; 9:e21465. [PMID: 38027621 PMCID: PMC10660591 DOI: 10.1016/j.heliyon.2023.e21465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Tuta absoluta feeds on solanaceous plants with preference on tomato. Management of the pest is mostly with chemical insecticides. This study identified insecticide resistant populations and predicted resistance to insecticides. Insecticide resistance development was modelled using system thinking, and system dynamics approaches. The model showed the pest resistance development is alarming with an exponential increase of the resistance strength mostly in recent years. Furthermore, we used seven insecticide-resistance gene markers to resolve the population structure and genetic differentiation of insecticide-resistant populations in Kenya. The genes for resistance (knockdown resistance (kdr) mutations, acetylcholinesterase (AChE) and voltage gated sodium channel (para)) were detected in all populations. Population structure analyses separated T. absoluta populations into three genetic clusters with resistant genes that are interconnected. A better insight on the population dynamics and the genetic structure T. absoluta resistant genes in Kenya will help estimate resistance strength and determine the most effective pest control strategies.
Collapse
Affiliation(s)
- Maureen Adhiambo Ong'onge
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Inusa Jacob Ajene
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Steven Runo
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | | | | |
Collapse
|
29
|
Mei W, Zuo Y, Su T, Yuan J, Wu Y, Yang Y. The ryanodine receptor mutation I4728M confers moderate-level resistance to diamide insecticides in Spodoptera litura. PEST MANAGEMENT SCIENCE 2023; 79:3693-3699. [PMID: 37184302 DOI: 10.1002/ps.7550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The common cutworm, Spodoptera litura (Fabricius), is one of the most widespread and destructive polyphagous pests in tropical and subtropical Asia. S. litura has evolved resistance to different insecticides, including diamide insecticides. Here, we identified a ryanodine receptor (RyR) mutation (I4728M) associated with target site resistance to diamides in a field-collected population of S. litura. The contribution of this mutation to diamide resistance was investigated through establishing a near-isogenic resistant strain of S. litura. RESULTS The ND21 population of S. litura, collected from Ningde, Fujian province of China in 2021, exhibited 130.6-fold resistance to chlorantraniliprole compared to the susceptible NJ-S strain. S. litura RyR mutation I4728M, corresponding to Plutella xylostella RyR I4790M, was identified in the ND21 population. SlRyR I4728M mutation of ND21 was introgressed into a susceptible background strain (NJ-S) with marker-assisted backcrossing. The introgressed strain named ND21-R, which was homozygous for the mutant 4728M allele, shared about 94% of the genetic background with the NJ-S strain. ND21-R strain showed moderate levels of resistance to two anthranilic diamides (19.1-fold to chlorantraniliprole, 19.7-fold to cyantraniliprole) and the phthalic diamide flubendiamide (23.4-fold). Genetic analysis showed that chlorantraniliprole resistance was autosomal, incompletely recessive and tightly linked with SlRyR I4728M mutation in the introgressed ND21-R strain of S. litura. CONCLUSION Identification of the I4728M mutation and its contribution to diamide resistance in S. litura will help develop allelic discrimination assays for resistance monitoring and guide resistance management practices for diamides in S. litura. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenjuan Mei
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ting Su
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jing Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Gong Y, Li T, Hussain A, Xia X, Shang Q, Ali A. Editorial: The side effects of insecticides on insects and the adaptation mechanisms of insects to insecticides. Front Physiol 2023; 14:1287219. [PMID: 37811494 PMCID: PMC10557070 DOI: 10.3389/fphys.2023.1287219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
- Youhui Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Li
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Xiaoming Xia
- The College of Plant Protection, Shangdong Agricultural University, Taian, China
| | - Qiangli Shang
- College of Plant Science, Jilin University, Changchun, China
| | - Asad Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
31
|
Sun Y, Liu ST, Ling Y, Wang L, Ni H, Guo D, Dong BB, Huang Q, Long LP, Zhang S, Wu SF, Gao CF. Insecticide resistance monitoring of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and its mechanism to chlorantraniliprole. PEST MANAGEMENT SCIENCE 2023; 79:3290-3299. [PMID: 37127919 DOI: 10.1002/ps.7512] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/30/2023] [Accepted: 05/02/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The rice leaffolder, Cnaphalocrocis medinalis (Guenée), has become an increasingly occurring pest in Asia in recent years. Chemical control remains the most efficient and primary tool for controlling this pest. In this study, we report the resistance status of C. medinalis in China to multiple insecticides including chlorantraniliprole and the main resistance mechanism. RESULTS Significant variations among field populations of C. medinalis in their resistance to 10 insecticides were observed during 2019-2022. Most of the tested field populations have developed low-to-moderate levels of resistance to abamectin (RR = 2.4-22.2), emamectin benzoate (RR = 1.9-40.3) and spinetoram (RR = 4.2-24.8). Some field populations have developed low resistance to chlorpyrifos (RR = 0.9-6.8). Indoxacarb, metaflumizone, methoxenozide and Bacillus thuringiensis (Bt) potency against all tested populations remained similar. For diamides, significantly higher levels of resistance to chlorantraniliprole (RR = 64.9-113.7) were observed in 2022, whereas all tested field populations in 2019-2021 exhibited susceptible or moderate resistance level to chlorantraniliprole (RR = 1.3-22.1). Cross-resistance between chlorantraniliprole and tetraniliprole was significant. Analysis of ryanodine receptor (RyR) mutations showed that mutation of I4712M was present in resistant populations of C. medinalis with different levels of chlorantraniliprole resistance and was the main mechanism conferring diamide resistance. Mutation of Y4621D also was detected in one tested population. Resistance management strategies for the control of C. medinalis are discussed. CONCLUSION C. medinalis has developed high level of resistance to chlorantraniliprole. RyR mutations were deemed as the mechanism. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Si-Tong Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Yunnan Agricultural Reclamation Industry Research Institute Co., Ltd., Kunming, China
| | - Yan Ling
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Li Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huan Ni
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Di Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bei-Bei Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qian Huang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Li-Ping Long
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Shuai Zhang
- Ministry of Agriculture, National Agro-tech Extension and Service Center, Beijing, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
32
|
Han C, Rahman MM, Shin J, Kim JH, Lee SH, Kwon M, Timm AE, Ramasamy S, Lee Y, Kang S, Park S, Kim J. Exaptation of I4760M mutation in ryanodine receptor of Spodoptera exigua (Lepidoptera: Noctuidae): Lessons from museum and field samples. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105579. [PMID: 37666604 DOI: 10.1016/j.pestbp.2023.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
Since 2007, diamide insecticides have been widely used in Korea to control various types of lepidopteran pests including Spodoptera exigua. For nearly a decade, diamide resistance in field populations of S. exigua across 18 localities has been monitored using bioassays. Despite their short history of use, resistance to diamide insecticides has emerged. Based on the LC50 values, some field populations showed a higher level of resistance to chlorantraniliprole, a diamide insecticide, compared to that of the susceptible strain, although regional and temporal variations were observed. To investigate resistance at a molecular level, we examined three mutations (Y4701C, I4790M, and G4946E) in the ryanodine receptor (RyR), which is the primary mechanism underlying diamide insecticide resistance. DNA sequencing showed that only the I4790M mutation was found in most field populations. As resistance levels varied significantly despite the uniform presence of the I4790M mutation, we considered the presence of another resistance factor. Further, the I4790M mutation was also found in S. exigua specimens collected prior to the commercialization of diamide insecticides in Korea as well as in other countries, such as the USA. This finding led us to hypothesize that the I4790M mutation were predisposed in field populations owing to selection factors other than diamide use. For further clarification, we conducted whole-genome sequencing of S. exigua (449.83 Mb) and re-sequencing of 18 individual whole genomes. However, no additional non-synonymous mutations were detected in the RyR-coding region. Therefore, we concluded that the high level of diamide insecticide resistance in Korean S. exigua is not caused by mutations at the target site, RyR, but is attributed to other factors that need to be investigated in future studies.
Collapse
Affiliation(s)
- Changhee Han
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon 24341, Republic of Korea.
| | - Md-Mafizur Rahman
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh.
| | - Jiyeong Shin
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Ju Hyeon Kim
- Department of Tropical Medicine and Parasitology, Seoul National University, Seoul 03080, Republic of Korea.
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Alicia E Timm
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | - Youngsu Lee
- Gyeonggi Provincial Agricultural Research and Extension Services, Republic of Korea.
| | - Sera Kang
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, Republic of Korea.
| | - Suhyeong Park
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, Republic of Korea.
| | - Juil Kim
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon 24341, Republic of Korea; Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Plant Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
33
|
Grant C, Singh KS, Hayward A, Hunt BJ, Troczka BJ, Pym A, Ahn SJ, Zeng B, Gao CF, Leroux A, Daum E, Süess P, Souza D, Elias J, Ffrench-Constant RH, Vontas J, Roditakis E, Bielza P, Zimmer CT, Bass C. Overexpression of the UDP-glycosyltransferase UGT34A23 confers resistance to the diamide insecticide chlorantraniliprole in the tomato leafminer, Tuta absoluta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103983. [PMID: 37380137 DOI: 10.1016/j.ibmb.2023.103983] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
The tomato leafminer, Tuta absoluta, is an invasive crop pest that has evolved resistance to many of the insecticides used for its control. To facilitate the investigation of the underpinning mechanisms of resistance in this species we generated a contiguous genome assembly using long-read sequencing data. We leveraged this genomic resource to investigate the genetic basis of resistance to the diamide insecticide chlorantraniliprole in Spanish strains of T. absoluta that exhibit high levels of resistance to this insecticide. Transcriptomic analyses revealed that, in these strains, resistance is not associated with previously reported target-site mutations in the diamide target-site, the ryanodine receptor, but rather is associated with the marked overexpression (20- to >100-fold) of a gene encoding a UDP-glycosyltransferase (UGT). Functional expression of this UGT, UGT34A23, via ectopic expression in Drosophila melanogaster demonstrated that it confers strong and significant resistance in vivo. The genomic resources generated in this study provide a powerful resource for further research on T. absoluta. Our findings on the mechanisms underpinning resistance to chlorantraniliprole will inform the development of sustainable management strategies for this important pest.
Collapse
Affiliation(s)
- Charles Grant
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Kumar Saurabh Singh
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Angela Hayward
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Benjamin J Hunt
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Bartlomiej J Troczka
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Adam Pym
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Bin Zeng
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK; College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Alicia Leroux
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, CH4332, Switzerland
| | - Eve Daum
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, CH4332, Switzerland
| | - Philip Süess
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, CH4332, Switzerland; Department of Zoology, Stockholm University, 11418, Stockholm, Sweden
| | - Dariane Souza
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, CH4332, Switzerland
| | - Jan Elias
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, CH4332, Switzerland
| | - Richard H Ffrench-Constant
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Crete, Greece; Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Emmanouil Roditakis
- Department of Agriculture, Hellenic Mediterranean University, Heraklion, Crete, Greece
| | - Pablo Bielza
- Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Spain
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, CH4332, Switzerland.
| | - Chris Bass
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
| |
Collapse
|
34
|
Pandey M, Bhattarai N, Pandey P, Chaudhary P, Katuwal DR, Khanal D. A review on biology and possible management strategies of tomato leaf miner, Tuta absoluta (Meyrick), Lepidoptera: Gelechiidae in Nepal. Heliyon 2023; 9:e16474. [PMID: 37303528 PMCID: PMC10248037 DOI: 10.1016/j.heliyon.2023.e16474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), Tomato Leaf Miner (TLM) moth, is one of the notorious oligophagous pests of solanaceous crops that mines primarily on mesophyll of leaves as well bore tomato fruits. In Nepal, T. absoluta, the pest that has a potential to create loss up to 100%, was detected in 2016 in a commercial tomato farm at Kathmandu. So, the farmers and researchers must heed for effective management contrivance to improve the yield of tomato in Nepal. The devastating nature of T. absoluta causes its unusual proliferation so that it needs dire study of its host range, potential damage and sustainable management strategies. We discussed the data and information on T. absoluta available in several research papers comprehensively and provided succinct information on occurrence of T. absoluta in the world, its biology, life cycle, host plants, yield loss due to T. absoluta and several novel control tactics which helps farmers, researchers, policy makers to sustainably rise the tomato production in Nepal as well as in global context to attain food security. Sustainable pest management strategies such as Integrated Pests Management (IPM) approaches incorporating and prioritizing biological control methods with usage of chemical pesticides with less toxic active ingredient can be encouraged to the farmers for controlling the pests sustainably.
Collapse
Affiliation(s)
- Meena Pandey
- Paklihawa Campus, Institute of Agriculture and Animal Science, Tribhuvan University, Bhairahawa, Rupandehi, Nepal
| | - Natasha Bhattarai
- Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur, Nepal
| | - Prashamsa Pandey
- Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur, Nepal
| | - Prashant Chaudhary
- Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur, Nepal
| | - Dharma Raj Katuwal
- Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur, Nepal
| | - Dipak Khanal
- Paklihawa Campus, Institute of Agriculture and Animal Science, Tribhuvan University, Bhairahawa, Rupandehi, Nepal
| |
Collapse
|
35
|
Shi P, Shen XJ, Chen JC, Zhang YJ, Cao LJ, Pang BS, Liu LH, Zhang MM, Hoffmann AA, Wei SJ. KASP genotyping and semi-quantitation of G275E mutation in the α6 subunit of Thrips palmi nAChR gene conferring spinetoram resistance. PEST MANAGEMENT SCIENCE 2023; 79:1777-1782. [PMID: 36627758 DOI: 10.1002/ps.7353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pesticide resistance is a long-standing and growing problem in the chemical control of invertebrate pests. Molecular diagnostic methods can facilitate pesticide resistance management by accurately and efficiently detecting resistant mutations and their frequency. In this study, the kompetitive allele specific PCR (KASP) approach, a technology for high-throughput single nucleotide polymorphism (SNP) genotyping, is validated as a useful method for characterizing genotypes at a pesticide-resistance locus for the first time. We focus on the spinetoram resistance mutation of G275E in the nicotinic acetylcholine receptor alpha 6 (nAChR α6) subunit gene of Thrips palmi. RESULTS Of the 341 individuals of Thrips palmi tested, 98.24% were successfully genotyped, with 100% concordance with Sanger sequencing results. We then quantitatively mixed genomic DNA of known genotypes to establish 21 DNA mixtures with a resistant allele frequency ranging from 0 to 100% at steps of 5%. The linear discriminant analysis (LDA) showed that 75.8% of original grouped cases were correctly classified; six groups had no overlap in membership (resistant allele frequency: 0%, 5%, 10-75%, 80-85%, 90-95%, and 100%). When we chose 11 pooled samples with 10% steps for LDA, 84.4% of original grouped cases were correctly classified; seven groups had no overlap in membership (0%, 10%, 20-30%, 40-70%, 80%, 90%, 100%). The results indicated that KASP applied to pooled samples may provide a semi-quantitative estimate of resistance. CONCLUSIONS Our study points to the suitability of KASP for high-throughput genotyping of genotypes affecting pesticide resistance and semi-quantitative assessments of resistance allele frequencies in populations. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pan Shi
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yu-Jie Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin-Shuang Pang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Hua Liu
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ming-Ming Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
36
|
KIMURA M, SHODA A, MURATA M, HARA Y, YONOICHI S, ISHIDA Y, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, HOSHI N. Neurotoxicity and behavioral disorders induced in mice by acute exposure to the diamide insecticide chlorantraniliprole. J Vet Med Sci 2023; 85:497-506. [PMID: 36858584 PMCID: PMC10139785 DOI: 10.1292/jvms.23-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Diamide insecticides activate ryanodine receptors expressed in lepidopteran skeletal muscle and promote Ca2+ release in the sarcoplasmic reticulum, causing abnormal contractions and paralysis, leading to death of the pest. Although they had been thought not to act on nontarget organisms, including mammals, adverse effects on vertebrates were recently reported, raising concerns about their safety in humans. We investigated the neurotoxicity of the acute no-observed-adverse-effect level of chlorantraniliprole (CAP), a diamide insecticide, in mice using clothianidin (CLO), a neonicotinoid insecticide, as a positive control. The CLO-administered group showed decreased locomotor activities, increased anxiety-like behaviors, and abnormal human-audible vocalizations, while the CAP-administered group showed anxiety-like behaviors but no change in locomotor activities. The CAP-administered group had greater numbers of c-fos-immunoreactive cells in the hippocampal dentate gyrus, and similar to the results in a CLO-administered group in our previous study. Blood corticosterone levels increased in the CLO-administered group but did not change in the CAP-administered group. Additionally, CAP was found to decreased 3-Methoxytyramine and histamine in mice at the time to maximum concentration. These results suggest that CAP-administered mice are less vulnerable to stress than CLO-administered mice, and the first evidence that CAP exposure increases neuronal activity and induces anxiety-like behavior as well as neurotransmitter disturbances in mammals.
Collapse
Affiliation(s)
- Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science,
Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Tetsushi HIRANO
- Life Science Research Center, University of Toyama, Toyama,
Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental
Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido,
Japan
- Water Research Group, Unit for Environmental Sciences and
Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| |
Collapse
|
37
|
Gong Y, Li T, Xiu X, Desneux N, Hou M. Lack of Known Target-Site Mutations in Field Populations of Ostrinia furnacalis in China from 2019 to 2021. TOXICS 2023; 11:332. [PMID: 37112559 PMCID: PMC10146737 DOI: 10.3390/toxics11040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera; Pyralidae), is one of the most destructive insect pests of corn, for which chemical insecticides have been the primary method of control, especially during outbreaks. Little information is currently available on the status of insecticide resistance and associated mechanisms in O. furnacalis field populations. Invasions and outbreaks of Spodoptera frugiperda in China in recent years have increased chemical application in corn fields, which adds to the selection pressure on O. furnacalis. This study was conducted to estimate the risk of insecticide resistance by investigating the frequency of insecticide resistant alleles associated with target site insensitivity in field populations of O. furnacalis. Using the individual-PCR genotype sequencing analysis, none of the six target-site insecticide resistant mutations were detected in O. furnacalis field populations collected from 2019 to 2021 in China. These investigated insecticide resistance alleles are common in resistant Lepidoptra pests and are responsible for resistance to pyrethroids, organophosphorus, carbamates, diamide, and Cry1Ab. Our results support the low insecticide resistance status in field O. furnacalis populations and betokens the unlikely development of high resistance mediated by the common target-site resistance alleles. Additionally, the findings would serve as references for further efforts toward the sustainable management of O. furnacalis.
Collapse
Affiliation(s)
- Youhui Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ting Li
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Xiaojian Xiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nicolas Desneux
- Université Côte d’Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
38
|
Du S, Hu X. Comprehensive Overview of Diamide Derivatives Acting as Ryanodine Receptor Activators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3620-3638. [PMID: 36791236 DOI: 10.1021/acs.jafc.2c08414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The world's hunger is continuously rising due to conflicts, climate change, pandemics (such as the recent COVID-19), and crop pests and diseases. It is widely accepted that zero hunger is impossible without using agrochemicals to control crop pests and diseases. Diamide insecticides are one of the widely used green insecticides developed in recent years and play important roles in controlling lepidopteran pests. Currently, eight diamine insecticides have been commercialized, which target the insect ryanodine receptors. This review summarizes the development and optimization processes of diamide derivatives acting as ryanodine receptor activators. The review also discusses pest resistance to diamide derivatives and possible solutions to overcome the limitations posed by the resistance. Thus, with reference to structural biology, this study provides an impetus for designing and developing diamide insecticides with improved insecticidal activities.
Collapse
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
39
|
Lin L, Jiang H, Hadiatullah H, Ma R, Korza H, Gu Y, Yuchi Z. Calmodulin Modulation of Insect Ryanodine Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16156-16163. [PMID: 36524829 DOI: 10.1021/acs.jafc.2c07519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ryanodine receptor (RyR) is a giant calcium release channel located on the membrane of the endoplasmic reticulum (ER). Here, we report the regulation of RyRs from two major agricultural pests, diamondback moth and fall armyworm, by insect calmodulin (CaM). The recombinantly expressed full-length insect RyR could be pulled down by insect CaM in the presence of Ca2+, but the efficiency is lower compared to rabbit RyR1 and insect RyR with the CaM-binding domain (CaMBD) replaced by rabbit RyR1 sequence. Interestingly, the enhanced binding of CaM in the mutant insect RyR resulted in an increased sensitivity to the diamide insecticide chlorantraniliprole (CHL), suggesting that this CaM-CaMBD interface could be targeted by potential synergists acting as molecular glue. The thermodynamics of the binding between insect CaM and CaMBD was characterized by isothermal titration calorimetry, and the key residues responsible for the insect-specific regulation were identified through mutagenesis studies.
Collapse
Affiliation(s)
- Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, China
| | - Heng Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, China
| | - Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, China
| | - Ruifang Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, China
| | - Henryk Korza
- Syngenta Jealott's Hill International Research Centre, Bracknell, BerkshireRG42 6EY, UK
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, BerkshireRG42 6EY, UK
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, China
- College of Life Sciences, Gannan Normal University, Ganzhou341000, China
- Department of Molecular Pharmacology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin300072, China
| |
Collapse
|
40
|
Yu Z, Meng F, Ren J, Gao W, Liu X, Xiong L, Yang N, Li Y, Li Z, Fan Z. 3D-QSAR Directed Discovery of Novel Halogenated Phenyl 3-Trifluoroethoxypyrazole Containing Ultrahigh Active Insecticidal Anthranilic Diamides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15665-15681. [PMID: 36503247 DOI: 10.1021/acs.jafc.2c05738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pests are one of the major factors causing crop damage and food security problems worldwide. Based on our previous studies on the discovery of insecticidal leads targeting the ryanodine receptors (RyRs), a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established to design and synthesize a series of anthranilic diamides containing a halogenated phenyl 3-trifluoroethoxypyrazole moiety. The preliminary bioassays disclosed that IIb, IIIb, and IIIf against Mythimna separata showed comparable activity to chloranthraniliprole (LC50: 0.16, 0.16, 0.14, and 0.13 mg·L-1, respectively). More than half of the target compounds displayed good activity against Plutella xylostella, where IIIf was the most active compound, 25 times more active than chloranthraniliprole (LC50: 6.0 × 10-6 versus 1.5 × 10-4 mg·L-1). For Spodoptera frugiperda, IIIf displayed slightly inferior potency to chlorantraniliprole (LC50: 0.47 versus 0.31 mg·L-1). For RyR mutants of S. frugiperda (G4891E, I4734M), compound IIIf could show higher affinity than chlorantraniliprole according to the binding mode and energy in molecular docking experiments. Calcium imaging technique, molecular docking, density functional theory calculations, and electrostatic potential studies validated that the RyR was the target of the most active candidate IIIf, which deserves further development.
Collapse
Affiliation(s)
- Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Fanfei Meng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jinzhou Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xiaoyu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Lixia Xiong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhengming Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
41
|
Hadiatullah H, Zhang Y, Samurkas A, Xie Y, Sundarraj R, Zuilhof H, Qiao J, Yuchi Z. Recent progress in the structural study of ion channels as insecticide targets. INSECT SCIENCE 2022; 29:1522-1551. [PMID: 35575601 DOI: 10.1111/1744-7917.13032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 06/15/2023]
Abstract
Ion channels, many expressed in insect neural and muscular systems, have drawn huge attention as primary targets of insecticides. With the recent technical breakthroughs in structural biology, especially in cryo-electron microscopy (cryo-EM), many new high-resolution structures of ion channel targets, apo or in complex with insecticides, have been solved, shedding light on the molecular mechanism of action of the insecticides and resistance mutations. These structures also provide accurate templates for structure-based insecticide screening and rational design. This review summarizes the recent progress in the structural studies of 5 ion channel families: the ryanodine receptor (RyR), the nicotinic acetylcholine receptor (nAChR), the voltage-gated sodium channel (VGSC), the transient receptor potential (TRP) channel, and the ligand-gated chloride channel (LGCC). We address the selectivity of the channel-targeting insecticides by examining the conservation of key coordinating residues revealed by the structures. The possible resistance mechanisms are proposed based on the locations of the identified resistance mutations on the 3D structures of the target channels and their impacts on the binding of insecticides. Finally, we discuss how to develop "green" insecticides with a novel mode of action based on these high-resolution structures to overcome the resistance.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yongliang Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Arthur Samurkas
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Yunxuan Xie
- Department of Environmental Science, Tianjin University, Tianjin, China
| | - Rajamanikandan Sundarraj
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Han Zuilhof
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
42
|
Functional Characterization of the Ryanodine Receptor Gene in Diaphorina citri. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122005. [PMID: 36556370 PMCID: PMC9785964 DOI: 10.3390/life12122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
The Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) is a major citrus pest spread around the world. It is also a vector of the bacterium 'Candidatus Liberibacter asiaticus', considered the cause of the fatal citrus disease huanglongbing (HLB). Insect ryanodine receptors (RyRs) are the primary target sites of diamide insecticides. In this study, full-length RyR cDNA from D. citri (named DcRyR) was isolated and identified. The 15,393 bp long open reading frame of DcRyR encoded a 5130 amino acid protein with a calculated molecular weight of 580,830 kDa. This protein had a high sequence identity (76-79%) with other insect homologs and a low sequence identity (43-46%) with mammals. An MIR domain, two RIH domains, three SPRY domains, four RyR repeat domains, an RIH-associated domain at the N-terminus, two consensus calcium-binding EF-hands, and six transmembrane domains were among the characteristics that DcRyR shared with insect and vertebrate RyRs. In expression analysis, the DcRyR gene displayed transcript abundance in all tissues and developmental stages as well as gene-differential and stage-specific patterns. In addition, diagnostic PCR experiments revealed that DcRyR had three potential alternative splice variants and that splicing events might have contributed to the various functions of DcRyR. However, diamide resistance-related amino acid residue mutations I4790M/K and G4946E were not found in DcRyR. These results can serve as the basis for further investigation into the target-based diamide pesticide resistance of D. citri.
Collapse
|
43
|
Zang LS, Akhtar ZR, Ali A, Tariq K, Campos MR. Flubendiamide Resistance and Its Mode of Inheritance in Tomato Pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). INSECTS 2022; 13:1023. [PMID: 36354846 PMCID: PMC9693368 DOI: 10.3390/insects13111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is the major pest of tomato crops in Pakistan. Insecticides are commonly used for the management of this insect-pest. To develop a better insecticide resistance management strategy and evaluate the risk of resistance evolution, a field collected population of the tomato pinworm was selected with flubendiamide in the laboratory. We investigated the genetics of flubendiamide resistance and concentration-mortality response to other insecticides by selecting a field strain of tomato pinworm with commercial flubendiamide formulation. Tuta absoluta was reciprocally crossed with resistant strain (Fluben-R) and was selected up to 13 generations, while F1 progeny was back-crossed with resistant parent (Fluben-R). The results of LC50 and Resistance Ratio (RR) demonstrated a higher resistance developed in field and laboratory-selected strains (G2 and G13, respectively). Field-collected and laboratory-selected (Fluben-R) strains demonstrated higher intensity of concentration-mortality response against chlorantraniliprole, thiamethoxam, permethrin, abamectin and tebufenozide compared to susceptible ones. Based on the overlapping of 95% FL, it demonstrated significant differences, revealing that it was not sex linked (autosomal) with no maternal effects. The backcross analysis of the F1´ resistant parent resulting in significant differences at all concentrations suggests that resistance is controlled by more than one factor; the null hypothesis was rejected and inheritance was under polygenic control. Resistance progression from 38 to 550 folds demonstrated that T. absoluta can develop a higher level of resistance to flubendiamide. Concentration-mortality response experiments demonstrated that the LC50 of some tested insecticides was higher for field-collected and laboratory-selected strains, suggesting that resistance mechanisms should be studied at a molecular level for better understanding. These results could be helpful to design resistance management strategies against the tomato pinworm.
Collapse
Affiliation(s)
- Lian-Sheng Zang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China
| | - Zunnu Raen Akhtar
- Department of Entomology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Asad Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Kaleem Tariq
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | |
Collapse
|
44
|
Sarmah N, Kaldis A, Kalampokis I, Aliferis KA, Voloudakis A, Perdikis D. Metabolomic and Genomic Approach to Study Defense Induction by Nesidiocoris tenuis against Tuta absoluta and Tetranychus urticae in Tomato Plants. Metabolites 2022; 12:metabo12090838. [PMID: 36144242 PMCID: PMC9504375 DOI: 10.3390/metabo12090838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
The phytophagy of the predator Nesidiocoris tenuis (Hemiptera: Miridae) can trigger defense responses in tomato plants against pests, such as two spotted spider mite Tetranychus urticae (Acari: Tetranychidae) and South American leaf miner Tuta absoluta (Lepidoptera: Gelechiidae). The expression of genes governing Jasmonic Acid (JA) biosynthesis pathway and fluctuations in the levels of underlying metabolites have been rarely studied in mirid-infested plants. In the present study, fifteen 3rd instar nymphs of N.tenuis were caged on each top and lower leaf of tomato plants for 4 d to induce plant defense; after this period the predators were removed. With regard to T. absoluta, oviposition preference; larval period; and pupal weight were significantly reduced in N. tenuis-punctured plants. T. urticae adults exhibited a significantly higher escape tendency and reduced survival on punctured plants. Metabolomics confirmed such observations revealing substantial differences between N. tenuis-punctured and unpunctured (control) plants. Metabolites directly associated with the activation of the JA defense pathway, such as the precursor α-linolenic acid, had increased concentrations. The expression of the defense-related genes PI-II, MYC2, VSP2, and HEL was increased in the top leaves and only VSP2 and MBP2 in the lower leaves; interestingly, in the middle (unpunctured) leaves VSP2, HEL, and MBP2 were also upregulated, indicating systemic signaling. Collectively, phytophagy of N. tenuis caused adverse effects on T. absoluta and T. urticae, whereas the multi-omics approach (phenomics, metabolomics, and genomics) offered valuable insights into the nature of the plant defense responses and provided useful evidence for future applications in integrated pest management, plausibly resulting in the reduction in the required pesticide volumes.
Collapse
Affiliation(s)
- Nomi Sarmah
- Laboratory of Agricultural Zoology and Entomology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Ioannis Kalampokis
- Laboratory of Pesticide Science, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Department of Plant Science, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Dionysios Perdikis
- Laboratory of Agricultural Zoology and Entomology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: ; Tel.: +30-210-529-4581
| |
Collapse
|
45
|
Teng H, Zuo Y, Yuan J, Fabrick JA, Wu Y, Yang Y. High frequency of ryanodine receptor and cytochrome P450 CYP9A186 mutations in insecticide-resistant field populations of Spodoptera exigua from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105153. [PMID: 35973775 DOI: 10.1016/j.pestbp.2022.105153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The beet armyworm, Spodoptera exigua is a global agricultural pest that is polyphagous, highly dispersive, and often difficult to control due to resistance to many insecticides. Previous studies showed that a target site mutation in the S. exigua ryanodine receptor (SeRyR) corresponding to I4743M contributes approximately 20-fold resistance to chlorantraniliprole, whereas a mutation in the cytochrome P450 enzyme CYP9A186 corresponding to F116V confers 200-fold to emamectin benzoate through enhanced metabolic detoxification. Here, high frequencies of mutations were found among six China S. exigua field populations collected from 2016 to 2019 resulting in SeRyR I4743M and CYP9A186 F116V substitutions, with some populations having high levels of resistance to chlorantraniliprole and emamectin benzoate, respectively. Whereas we found a significant correlation between emamectin benzoate resistance level and the allele frequency of CYP9A186 F116V, no significant correlation was found between chlorantraniliprole resistance level and SeRyR I4743M allele frequency in the six field populations. These results suggest that CYP9A186 F116V is a major resistance mechanism for emamectin benzoate in the tested field populations, whereas it is likely that resistance mechanisms other than SeRyR I4743M are responsible for resistance to chlorantraniliprole in the six China field populations. Because of the growing resistance to these two insecticides by S. exigua in China, the use of insecticidal compounds with different modes of action and/or other integrated pest management strategies are needed to further delay the evolution of insecticide resistance and effectively manage S. exigua in China.
Collapse
Affiliation(s)
- Haiyuan Teng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
46
|
Okuma DM, Cuenca A, Nauen R, Omoto C. Large-Scale Monitoring of the Frequency of Ryanodine Receptor Target-Site Mutations Conferring Diamide Resistance in Brazilian Field Populations of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). INSECTS 2022; 13:626. [PMID: 35886802 PMCID: PMC9323691 DOI: 10.3390/insects13070626] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
Fall armyworm (FAW), Spodoptera frugiperda, is an important lepidopteran pest in the Americas, and recently invaded the Eastern Hemisphere. In Brazil, FAW is considered the most destructive pest of corn and cotton. FAW has evolved resistance to many insecticides and Bacillus thuringiensis (Bt) proteins. Here, a large-scale monitoring was performed between 2019 and 2021 to assess diamide insecticide susceptibility in more than 65 FAW populations sampled in corn and cotton. We did not detect a significant shift in FAW susceptibility to flubendiamide, but a few populations were less affected by a discriminating rate. F2 screen results of 31 selected FAW populations across regions confirmed that the frequency of diamide resistance alleles remained rather stable. Two laboratory-selected strains exhibited high resistance ratios against flubendiamide, and cross-resistance to anthranilic diamides. Reciprocal crosses indicated that resistance is autosomal and (incompletely) recessive in both strains. F1 backcrosses suggested monogenic resistance, supported by the identification of an I4734M/K target-site mutation in the ryanodine receptor (RyR). Subsequent genotyping of field-collected samples employing a TaqMan-based allelic discrimination assay, revealed a low frequency of RyR I4790M/K mutations significantly correlated with phenotypic diamide resistance. Our findings will help to sustainably employ diamides in FAW resistance management strategies across crops.
Collapse
Affiliation(s)
- Daniela M. Okuma
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP)-Piracicaba, São Paulo 13418-900, Brazil;
- Bayer SA, Agronomic Solutions, Av. Dr. Roberto Moreira, 5005, EAE, Sao Paulo 13148-914, Brazil;
| | - Ana Cuenca
- Bayer SA, Agronomic Solutions, Av. Dr. Roberto Moreira, 5005, EAE, Sao Paulo 13148-914, Brazil;
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, Alfred Nobel Str. 50, 40789 Monheim am Rhein, Germany
| | - Celso Omoto
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP)-Piracicaba, São Paulo 13418-900, Brazil;
| |
Collapse
|
47
|
Li MY, Gong CW, Zhang YZ, Zhao X, Jia Y, Pu J, Liu XM, Xu X, Wang XG. Differences in susceptibility to chlorantraniliprole between Chilo suppressalis (Lepidoptera: Crambidae) and two dominant parasitic wasps collected from Sichuan Province, China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 185:105150. [PMID: 35772843 DOI: 10.1016/j.pestbp.2022.105150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Chilo suppressalis Walker (Lepidoptera: Crambidae) is one of the most destructive pests occurring in the rice-growing regions of Asia. Parasitoids, mainly egg parasitoids, have been of interest for several years even with practical used cases. Therefore, the potential impact of insecticides on natural enemies needs great attention. In this study, chlorantraniliprole was evaluated for its impact on C. suppressalis and two dominant parasitic wasps. Bioassays showed that chlorantraniliprole had negligible toxicity to Eriborus terebrans but was significantly toxic to Chelonus munakatae; the mortality exceeded 50% when the concentration reached 46.83 ng/cm2. Enzyme assays suggested that the significantly different carboxylesterase activity may be involved in the high-level detoxification metabolism of E. terebrans. According to the results of enzyme gene correlation analysis, P450s may be the dominant factor in the detoxification metabolism of C. munakatae. In addition, the ryanodine receptor C-terminus of C. suppressalis (CsRyR), C. munakatae (CmRyR) and E. terebrans (EtRyR) were successfully cloned. Different amino acids at resistance mutation I4758 M between susceptible C. suppressalis (I) and parasitic wasps (M) may be related to susceptibility differences. Simulated docking showed that CsRyR and CmRyR can interact with chlorantraniliprole but not EtRyR. More interaction forces were formed between CsRyR and chlorantraniliprole than CmRyR. Furthermore, a Pi-Pi T-shape formed between 73PHE in CsRyR and the benzene ring in chlorantraniliprole. These results indicated that both detoxification metabolism and the target site could mediate the susceptibility difference between C. suppressalis and its parasitic wasps.
Collapse
Affiliation(s)
- Ming-Yang Li
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Chang-Wei Gong
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun-Zheng Zhang
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xia Zhao
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Jia
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Pu
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue-Mei Liu
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Xu
- Plant Protection Station, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Xue-Gui Wang
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
48
|
Xu H, Pan Y, Li J, Yang F, Chen X, Gao X, Wen S, Shang Q. Chemosensory proteins confer adaptation to the ryanoid anthranilic diamide insecticide cyantraniliprole in Aphis gossypii glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105076. [PMID: 35715031 DOI: 10.1016/j.pestbp.2022.105076] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 06/15/2023]
Abstract
Chemosensory proteins (CSPs) are a class of small transporter proteins expressed only in arthropods with various functions beyond chemoreception. Previous studies have been reported that CSPs are involved in the insecticide resistance. In this study, we found that AgoCSP1, AgoCSP4, and AgoCSP5 were constitutively overexpressed in an insecticide-resistant strain of Aphis gossypii and showed higher expression in broad body tissue (including fat bodies) than in the midgut but without tissue specificity. However, the function of these three upregulated AgoCSPs remains unknown. Here, we investigated the function of AgoCSPs in resistance to the diamide insecticide cyantraniliprole. Suppression of AgoCSP1, AgoCSP4 and AgoCSP5 transcription by RNAi significantly increased the sensitivity of resistant aphids to cyantraniliprole. Molecular docking and competitive binding assays indicated that these AgoCSPs bind moderate with cyantraniliprole. Transgenic Drosophila melanogaster expressing these AgoCSPs in the broad body or midgut showed higher tolerance to cyantraniliprole than control flies with the same genetic background; AgoCSP4 was more effective in broad body tissue, and AgoCSP1 and AgoCSP5 were more effective in the midgut, indicating that broad body and midgut tissues may be involved in the insecticide resistance mediated by the AgoCSPs examined. The present results strongly indicate that AgoCSPs participate in xenobiotic detoxification by sequestering and masking toxic insecticide molecules, providing insights into new factors involved in resistance development in A. gossypii.
Collapse
Affiliation(s)
- Hongfei Xu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Shuyuan Wen
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
49
|
Tan QM, Chen WW, Li HH, Liao SC, Yi GQ, Mei Y, Luo J, Tan HH, Li XS. Adipokinetic hormone signaling regulates cytochrome P450-mediated chlorantraniliprole sensitivity in Spodoptera frugiperda (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2022; 78:2618-2628. [PMID: 35355392 DOI: 10.1002/ps.6896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fall armyworm (FAW, Spodoptera frugiperda) is one of the most destructive and invasive pests worldwide and causes significant economic losses. Intensive and frequent use of insecticides has led to the development of resistance in FAW. Adipokinetic hormone (AKH) have been proven to be involved in insecticide resistance in insects. However, the molecular mechanism underlying chlorantraniliprole resistance mediated by AKH signaling in FAW remains unclear. RESULTS The expression of SpfAKHR was highest in male adults and lowest in 1st instar larvae. SpfAKH was expressed the highest in eggs and the lowest in 6th instar larvae. AKH signaling was involved in the sensitivity of FAW to chlorantraniliprole through a toxicological bioassay, and the combination of chlorantraniliprole and bithionol (an inhibitor of key enzymes in the AKH pathway) significantly increased the mortality of FAW. Chlorantraniliprole significantly induced the expression of ten P450s, SpfAKH and SpfAKHR in FAW. RNA interference against SpfAKHR significantly decreased the P450 content, downregulated the expression of three P450 genes (SpfCYP6B50, SpfCYP321A9 and SpfCYP9A58) and inhibited the resistance of FAW to chlorantraniliprole. The topical application of AKH peptide significantly increased the P450 content, upregulated the expression of five P450 genes (SpfCYP321A9, SpfCY321A8, SpfCYP321A10, SpfCYP321A7 and SpfCYP6AB12), and enhanced the survival of FAW against chlorantraniliprole. CONCLUSIONS AKH plays an important role in enhancing chlorantraniliprole resistance in FAW by exerting a positive influence on P450 gene expression and P450 content. These results provide valuable insights into insecticide resistance regulation and FAW control strategies. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi-Mei Tan
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Wei-Wei Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Hong-Hong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Shu-Cheng Liao
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Guo-Qiang Yi
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Yong Mei
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Jie Luo
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Hui-Hua Tan
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Xue-Sheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
50
|
Hadiatullah H, He Z, Yuchi Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front Pharmacol 2022; 13:897494. [PMID: 35677449 PMCID: PMC9168041 DOI: 10.3389/fphar.2022.897494] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
The ryanodine receptors (RyRs) are large cation-selective ligand-gated channels that are expressed in the sarcoplasmic reticulum (SR) membrane. They mediate the controlled release of Ca2+ from SR and play an important role in many cellular processes. The mutations in RyRs are associated with several skeletal muscle and cardiac conditions, including malignant hyperthermia (MH), central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). Recent breakthroughs in structural biology including cryo-electron microscopy (EM) and X-ray crystallography allowed the determination of a number of near-atomic structures of RyRs, including wildtype and mutant structures as well as the structures in complex with different modulating molecules. This allows us to comprehend the physiological gating and regulatory mechanisms of RyRs and the underlying pathological mechanisms of the disease-causing mutations. In this review, based on the insights gained from the available high-resolution structures of RyRs, we address several questions: 1) what are the gating mechanisms of different RyR isoforms; 2) how RyRs are regulated by multiple channel modulators, including ions, small molecules, and regulatory proteins; 3) how do disease-causing mutations affect the structure and function of RyRs; 4) how can these structural information aid in the diagnosis of the related diseases and the development of pharmacological therapies.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao He
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhiguang Yuchi,
| |
Collapse
|