1
|
Villena R, Safadi MA, Gentile Á, Pujadas M, De la Maza V, George S, Torres JP. Epidemiology of Meningococcal Disease in Four South American Countries and Rationale of Vaccination in Adolescents from the Region: Position Paper of the Latin American Society of Pediatric Infectious Diseases (SLIPE). Vaccines (Basel) 2023; 11:1841. [PMID: 38140244 PMCID: PMC10748232 DOI: 10.3390/vaccines11121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Surveillance of meningococcal disease (MD) is crucial after the implementation of vaccination strategies to monitor their impact on disease burden. Adolescent vaccination could provide direct and indirect protection. Argentina, Brazil, and Chile have introduced meningococcal conjugate vaccines (MCV) into their National Immunization Programs (NIP), while Uruguay has not. Here, we analyze the epidemiology of MD and vaccination experience from these four South American countries to identify needs and plans to improve the current vaccination programs. METHODOLOGY Descriptive study of MD incidence rates, serogroup distribution, case fatality rates (CFR), and MCV uptakes during the period 2010-2021 in Argentina, Brazil, Chile, and Uruguay. Data were extracted from national surveillance programs, reference laboratories, NIPs, and Pubmed. RESULTS MD overall incidence from 2010 to 2021 have a decreasing trend in Argentina (0.37 [IQR = 0.20-0.61]), Brazil (0.59 [IQR = 0.54-1.22]), and Chile (0.45 [IQR = 0.40-0.77]), while a significant increase in Uruguay (0.47 [IQR = 0.33-0.69]) was found from 2016 to 2019. During the COVID-19 pandemic, all countries sharply reduced their MD incidence. The highest incidence rates were observed among infants, followed by children 1-4 years of age. No second peak was evident in adolescents. A reduction in serogroup C, W, and Y cases has occurred in Argentina, Brazil, and Chile after introduction of MCV, serogroup B becoming predominant in all four countries. Median CFR was 9.0%, 21%, 19.9%, and 17.9% in Argentina, Brazil, Chile, and Uruguay, respectively. Median uptake of MCV for Argentina and Brazil were 66.6% and 91.0% for priming in infants; 54.7% and 84.5% for booster in toddlers; and 47.5% and 53% for adolescents; while for Chile, 95.6% for toddlers. CONCLUSIONS Experience after the implementation of MCV programs in South America was successful, reducing the burden of MD due to the vaccine serogroups. High vaccine uptake and the inclusion of adolescents will be crucial in the post-pandemic period to maintain the protection of the population. The increase in the proportion of serogroup B cases emphasizes the importance of continuous surveillance to guide future vaccination strategies.
Collapse
Affiliation(s)
- Rodolfo Villena
- Department of Pediatrics, Hospital de Niños Exequiel González Cortés, Faculty of Medicine, Universidad de Chile, Santiago 8900085, Chile;
| | - Marco Aurelio Safadi
- Department of Pediatrics, School of Medical Sciences, Santa Casa de Sao Paulo, Sao Paulo 01224-001, Brazil;
| | - Ángela Gentile
- Department of Epidemiology, Hospital de Niños Ricardo Gutierrez, Faculty of Medicine, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1121, Argentina;
| | - Mónica Pujadas
- Department of Epidemiology and Pediatrics Infectious Diseases, Hospital Pereira Rossell, Faculty of Medicine, University of the Republic, Montevideo 11400, Uruguay;
| | - Verónica De la Maza
- Department of Pediatrics, Hospital Dr. Luis Calvo Mackenna, Faculty of Medicine, Universidad de Chile, Santiago 7500539, Chile; (V.D.l.M.); (S.G.)
| | - Sergio George
- Department of Pediatrics, Hospital Dr. Luis Calvo Mackenna, Faculty of Medicine, Universidad de Chile, Santiago 7500539, Chile; (V.D.l.M.); (S.G.)
| | - Juan Pablo Torres
- Department of Pediatrics, Hospital Dr. Luis Calvo Mackenna, Faculty of Medicine, Universidad de Chile, Santiago 7500539, Chile; (V.D.l.M.); (S.G.)
| |
Collapse
|
2
|
Ellingson MK, Bednarczyk RA, O’Leary ST, Schwartz JL, Shapiro ED, Niccolai LM. Understanding the Factors Influencing Health Care Provider Recommendations about Adolescent Vaccines: A Proposed Framework. J Behav Med 2023; 46:356-365. [PMID: 35194726 PMCID: PMC8862696 DOI: 10.1007/s10865-022-00296-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Health care provider recommendations are among the most important factors influencing parents' decisions to vaccinate their adolescents. However, delivery of high-quality health care provider recommendations for vaccination is not universal. There is wide variation in the strength, timeliness and consistency of the delivery of recommendations for all adolescent vaccines. The factors that influence health care providers' recommendations are multi-level and can be conceptualized in much the same way as vaccine acceptance among parents. Health care providers are influenced by their own attitudes and beliefs about a vaccine and also by the patient they are treating and by the community in which they practice as well as state and national level vaccine policy. We propose a multi-level framework for understanding the factors that influence health care providers' recommendations at the individual, interpersonal and community level to both develop and adapt interventions to improve providers' recommendations.
Collapse
Affiliation(s)
- Mallory K. Ellingson
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, 60 College St, New Haven, CT 06520 USA
| | - Robert A. Bednarczyk
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA USA
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
- Cancer Prevention and Control Program, Winship Cancer Institute, Emory University, Atlanta, GA USA
| | - Sean T. O’Leary
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, CO USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Jason L. Schwartz
- Department of Health Policy and Management, Yale University School of Public Health, New Haven, CT 06520 USA
| | - Eugene D. Shapiro
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, 60 College St, New Haven, CT 06520 USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Linda M. Niccolai
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, 60 College St, New Haven, CT 06520 USA
| |
Collapse
|
3
|
Ricci S, Azzari C, Amodio E, Castiglia P. Immunogenicity and safety of a quadrivalent meningococcal tetanus toxoid-conjugate vaccine (MenACYW-TT): A review of the evidence and expert opinion. Expert Rev Vaccines 2023; 22:447-456. [PMID: 37144288 DOI: 10.1080/14760584.2023.2211162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Serogroups A, B, C, W, X, and Y of Neisseria meningitidis are responsible for almost all cases of invasive meningococcal disease. In Italy, vaccination against serogroup B is recommended at 3-13 months, C at 13-15 months, and A, C, Y and W in adolescents (12-18 years). Four quadrivalent meningococcal conjugate vaccines are available. This review describes the available data on a quadrivalent meningococcal tetanus toxoid-conjugate vaccine (MenACYW-TT; MenQuadfi®; Sanofi). AREAS COVERED We identified articles on quadrivalent meningococcal conjugate vaccines indexed on PubMed since 2000. Of the 524 studies identified, 10 human studies investigating the immunogenicity and safety of MenACYW-TT in toddlers, children aged 2-9 years, and individuals 10-55 or ≥56 years are described in detail. EXPERT OPINION In Italy, pediatric and public health groups recommend amending the current vaccination schedule to include a booster dose between 6 and 9 years and quadrivalent vaccine in young adults (≥19 years), targeting waning protection after childhood vaccination and the age cohort with the highest carrier prevalence (adolescents and young adults). MenACYW-TT is a suitable meningococcal vaccine for current and pending recommendations based on high seroprotection rates and a low incidence of adverse events in these age groups. Moreover, it does not require reconstitution.
Collapse
Affiliation(s)
- Silvia Ricci
- Immunology Division, Section of Pediatrics, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Chiara Azzari
- Immunology Division, Section of Pediatrics, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Emanuele Amodio
- Department of Health Sciences, University of Florence, Florence, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Piazza delle Cliniche, 2 90127 PALERMO (PA) - University of Palermo, Italy
| | - Paolo Castiglia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
4
|
Laboratory diagnosis of bacterial meningitis by direct detection, serotyping and Next Generation Sequencing: How 10 years of testing in New York State has evolved to improve laboratory diagnosis and public health. Mol Cell Probes 2021; 61:101786. [PMID: 34863914 DOI: 10.1016/j.mcp.2021.101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/09/2021] [Accepted: 11/27/2021] [Indexed: 11/23/2022]
Abstract
Since 2005, the Wadsworth Center (WC) has provided molecular testing on cerebrospinal fluid (CSF) and whole blood specimens in close collaboration with epidemiologists in New York State and New York City. In this study, we analyzed 10 years of data to demonstrate the significant value of utilizing molecular methods to assess patient specimens for etiologic agents of bacterial meningitis. A comprehensive molecular testing algorithm to detect and serotype/serogroup bacterial agents known to cause bacterial meningitis (Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae and Streptococcus agalactiae) has evolved, and retrospective specimen testing has been essential for each improvement. Over a ten-year span from 2010 to 2019 the WC received 831 specimens from 634 patients with suspected bacterial meningitis. Real-time PCR was positive for at least one of the agents in 223 (27%) specimens from 183 patients (29%). Of the 223 positives, 146 (66%) were further characterized by real-time PCR into serogroup/serotype. Additionally, examination of 131 paired specimens of CSF and whole blood from the same patients found better detection in CSF, but whole blood is a useful alternative for diagnosis when CSF is not available. For specimens initially PCR-negative, 16S rDNA Sanger sequencing was requested by the submitter for 146 cases resulting in the identification of bacterial agents in an additional 24 (16%) specimens. In a retrospective study, Next Generation Sequencing (NGS) was evaluated for the detection of pathogens in 53 previously tested PCR-negative CSF specimens and identified bacteria in 14 (26%) specimens. This molecular testing algorithm has provided clinicians a diagnosis when culture is negative with the potential to guide therapy. It has also aided public health in determining when antibiotic prophylaxis was needed, augmented surveillance data to yield a fuller picture of community prevalence, and highlighted gaps in the spectrum of agents that cause bacterial meningitis.
Collapse
|
5
|
Al-Sanouri T, Mahdi S, Khader IA, Mahdi A, Dogu A, Amiche A, Iweir S, Qader M, Belbaisi A, AlHilfi R. The epidemiology of meningococcal meningitis: multicenter, hospital-based surveillance of meningococcal meningitis in Iraq. IJID REGIONS 2021; 1:100-106. [PMID: 35757824 PMCID: PMC9216274 DOI: 10.1016/j.ijregi.2021.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/07/2022]
Abstract
Most bacterial meningitis cases in Iraq were due to N. meningitidis infections Meningococcal meningitis was associated with young age, and with the winter Incidence rates were highest in Karbala, and may be linked to mass gatherings there The prevalent serogroups indicate a need for increased vaccination coverage in Iraq
Objectives Outbreaks of Neisseria meningitidis have reached alarming levels due to the pathogen's ability to cause severe complications, presenting as meningitis or septicemia. Our study reports the results of the first wide-scale surveillance of meningococcal meningitis in Iraq. Methods The study included all consecutive cases of clinically suspected meningitis between June 2018 and May 2020 at 18 major hospitals around Iraq (n = 2314). Laboratory analysis of biological samples and real-time polymerase chain reaction tests were conducted to confirm bacterial etiology. Demographical and medical data were collected for statistical analysis. Results In total, 370 patients were confirmed to have bacterial meningitis (215 had N. meningitidis, 154 had Streptococcus pneumoniae, and one case had Haemophilus influenzae type b). The most common N. meningitidis serogroup was B (77.7%), followed by W (18.1%) and X (4.2%). The annual incidence rate of N. meningitidis per 100 000 population was 0.86, with the highest being in Karbala (1.52 per 100 000 population). Cases of meningococcal meningitis were more likely to occur in children younger than 15 (OR = 3.526), and in the winter (OR = 1.474). Conclusions Continuous surveillance of N. meningitidis is necessary in Iraq, and can only be achieved through improved detection methods. The incidence of meningococcal meningitis in Iraq warrants improved vaccination programs.
Collapse
|
6
|
Niccolai LM, Hansen CE. Suboptimal uptake of meningococcal vaccines among older adolescents: Barriers, solutions, and future research directions. Hum Vaccin Immunother 2020; 16:3208-3212. [PMID: 32614695 PMCID: PMC8641614 DOI: 10.1080/21645515.2020.1754052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/04/2020] [Indexed: 01/25/2023] Open
Abstract
Over the past 15 y, several vaccines have been added to the recommended immunization schedule for adolescents in the United States. In addition to annual influenza vaccination, the Advisory Committee on Immunization Practices recommends tetanus, diphtheria, and pertussis (Tdap), meningococcal conjugate (MenACWY), and human papillomavirus (HPV) vaccine for routine administration at ages 11-12 y, and a second dose of MenACWY at age 16. A vaccine against meningococcal disease caused by serogroup B (MenB) is also available and recommended for shared clinical decision-making. Though notable gains in uptake have been achieved for some adolescent vaccines, coverage varies considerably with lower rates for HPV vaccine and second dose of MenACWY. Coverage for MenB is especially low. While extensive research has focused on barriers to and solutions for higher uptake of HPV vaccine, limited attention has been given to the reasons for lower uptake of meningococcal vaccines among older adolescents. This purpose of this commentary is to discuss barriers to and solutions for higher uptake of meningococcal vaccines among older adolescents, and to identify gaps in knowledge that can inform research efforts going forward.
Collapse
Affiliation(s)
- Linda M. Niccolai
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, USA
| | - Caitlin E. Hansen
- Yale School of Medicine, Department of Pediatrics, New Haven, CT, USA
| |
Collapse
|
7
|
Up-to-date coverage with meningococcal vaccine among adolescents age 17 years: Patterns and correlates in the United States, 2017. Vaccine 2019; 37:5934-5938. [DOI: 10.1016/j.vaccine.2019.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/24/2022]
|
8
|
Cheng WY, Chang R, Novy P, O’Connor C, Duh MS, Hogea CS. Determinants of Meningococcal ACWY vaccination in adolescents in the US: completion and compliance with the CDC recommendations. Hum Vaccin Immunother 2019; 16:176-188. [PMID: 31419168 PMCID: PMC7012109 DOI: 10.1080/21645515.2019.1632679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 10/26/2022] Open
Abstract
Since 2011, the Advisory Committee on Immunization Practices (ACIP) guidelines for routine MenACWY vaccination in the US include a primary dose before age 16 y, preferably at ages 11-12 y, with a booster dose at age 16 y. Data on rates and drivers of meningococcal vaccination completion (receipt of both doses) and compliance with recommendations (receipt of primary dose at ages 11-12 y followed by booster at 16 y) down to state-level are limited.This study evaluated rates and determinants of MenACWY vaccination completion and compliance in adolescents aged 17 y based on data from the annual National Immunization Survey-Teen between 2011 and 2016. Individual- and state-level determinants of completion and compliance were assessed using uni-level and multi-level multivariable regression models. Average national rates were 23.2% and 12.1% for completion and compliance, respectively, with large inter-state variation observed (completion: 8.7-39.7%; compliance: 3.1-26.2%). Beyond the state of residence, factors significantly associated with a higher likelihood of both completion and compliance included being male, up-to-date on other routine vaccines, having private or hospital-based vaccine providers (vs. public) and having >1 child in the household. Factors specifically associated with completion included having >1 annual health-care visit and presence of a booster-dose vaccine mandate, while a history of asthma and high-risk health conditions had a positive association with compliance. State-level determinants of completion and compliance included pediatricians-to-children ratio and the proportion of Immunization Information System use among adolescents, respectively. Outcomes of this study may help guide clinical, policy and educational interventions to further increase MenACWY completion rates and reduce disparities in vaccination.
Collapse
|
9
|
The Brief Case: Meningococcemia Leading to a Diagnosis of Complement Deficiency in a 23-Month-Old. J Clin Microbiol 2019; 57:57/2/e01513-18. [PMID: 30700562 DOI: 10.1128/jcm.01513-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Burman C, Serra L, Nuttens C, Presa J, Balmer P, York L. Meningococcal disease in adolescents and young adults: a review of the rationale for prevention through vaccination. Hum Vaccin Immunother 2018; 15:459-469. [PMID: 30273506 PMCID: PMC6422514 DOI: 10.1080/21645515.2018.1528831] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Invasive meningococcal disease (IMD) caused by Neisseria meningitidis is characterized by high mortality and morbidity. While IMD incidence peaks in both infants and adolescents/young adults, carriage rates are often highest in the latter age groups, increasing IMD risk and the likelihood of transmission. Effective vaccines are available for 5 of 6 disease-causing serogroups. Because adolescents/young adults represent a significant proportion of cases, often have the highest carriage rate, and have characteristically low vaccination adherence, efforts should be focused on educating this population regarding long-term consequences of infection and the importance of meningococcal vaccination in prevention. This review describes the role of adolescents/young adults in meningococcal transmission and the clinical consequences and characteristics of IMD in this population. With a focus on countries with advanced economies that have specific meningococcal vaccination recommendations, the epidemiology of meningococcal disease and vaccination recommendations in adolescents/young adults will also be discussed.
Collapse
Affiliation(s)
- Cynthia Burman
- a Pfizer Vaccine Medical Development, Scientific & Clinical Affairs , Collegeville , PA , USA
| | - Lidia Serra
- a Pfizer Vaccine Medical Development, Scientific & Clinical Affairs , Collegeville , PA , USA
| | - Charles Nuttens
- b Pfizer Vaccines, Medical Development, Scientific & Clinical Affairs , Paris , France
| | - Jessica Presa
- c Pfizer Vaccines, Medical & Scientific Affairs , Collegeville , PA , USA
| | - Paul Balmer
- a Pfizer Vaccine Medical Development, Scientific & Clinical Affairs , Collegeville , PA , USA
| | - Laura York
- a Pfizer Vaccine Medical Development, Scientific & Clinical Affairs , Collegeville , PA , USA
| |
Collapse
|
11
|
Serra LC, York LJ, Balmer P, Webber C. Meningococcal Group A, C, W, and Y Tetanus Toxoid Conjugate Vaccine: A Review of Clinical Data in Adolescents. J Adolesc Health 2018; 63:269-279. [PMID: 30236996 DOI: 10.1016/j.jadohealth.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/09/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023]
Abstract
MenACWY-TT (Nimenrix) is a quadrivalent meningococcal vaccine containing polysaccharides from serogroups A, C, W, and Y conjugated to a tetanus toxoid carrier protein. MenACWY-TT is licensed in some countries as a three-dose primary series in individuals as young as 6 weeks of age and as a single dose in individuals ≥12 months of age. MenACWY-TT use is supported by long-term immunogenicity and safety across age groups, including data from several phase 2, 3, and 4 clinical studies in adolescents and young adults. Adolescents are an important population in the epidemiology, transmission, and prevention of invasive meningococcal disease, with this age-based population having the highest risk for carriage and transmission as well as one of the highest risks of disease. This age group is emerging as a target population in meningococcal vaccination programs globally, as vaccinating adolescents and young adults could potentially not only decrease disease rates directly for those vaccinated but also indirectly for unvaccinated individuals by decreasing carriage and eliciting herd protection. This review will consider available data for MenACWY-TT in adolescents, including safety and immunogenicity, booster and memory responses, persistence, and coadministration with other vaccines, with an emphasis on the rationale for use of MenACWY-TT and other quadrivalent meningococcal vaccines in adolescents to address the changing epidemiology of meningococcal disease.
Collapse
Affiliation(s)
- Lidia C Serra
- Pfizer Global Medical Development and Scientific/Clinical Affairs, Vaccines, Pfizer Inc, Collegeville, Pennsylvania.
| | - Laura J York
- Pfizer Global Medical Development and Scientific/Clinical Affairs, Vaccines, Pfizer Inc, Collegeville, Pennsylvania.
| | - Paul Balmer
- Pfizer Global Medical Development and Scientific/Clinical Affairs, Vaccines, Pfizer Inc, Collegeville, Pennsylvania.
| | - Chris Webber
- Pfizer Vaccine Clinical Research and Development, Pearl River, New York.
| |
Collapse
|
12
|
Tadesse BT, Foster BA, Shibeshi MS, Dangiso HT. Empiric Treatment of Acute Meningitis Syndrome in a Resource-Limited Setting: Clinical Outcomes and Predictors of Survival or Death. Ethiop J Health Sci 2018; 27:581-588. [PMID: 29487467 PMCID: PMC5811937 DOI: 10.4314/ejhs.v27i6.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Bacterial meningitis is a significant cause of morbidity and mortality in the developing world. However, limited research has focused on the diagnosis and management of meningitis in resource-limited settings. Methods We designed a prospective case series of children admitted to a large, academic referral hospital with acute meningitis syndrome. Data were collected on age, time of presentation, prior antibiotics, cerebrospinal fluid (CSF) parameters, antibiotic and steroid prescription, and clinical outcome. Results Data on 99 patients were collected and analyzed. Most of the patients were males, n=69 (70%), and were from a rural area, n=83 (84%). Incomplete vaccination was common, n=36 (36%) and many have evidence of malnutrition, n=25 (38%). Most patients, n=64 (72%), had received antibiotics prior to admission with a mean duration of symptoms of 4.9 days prior to admission. The CSF white blood cell (WBC) count was higher in those who had not received prior antibiotics though it was elevated in both groups. The CSF WBC count was not associated with survival; malnutrition and length of symptoms prior to admission were both associated with decreased survival. Conclusions While use of antibiotics prior to obtaining CSF in patients with acute meningitis syndrome may decrease their CSF WBC count, it is not clinically significant. Many patients had a significant delay in presentation that had an effect on survival, This is a potentially modifiable risk factor despite the resourcelimited setting.
Collapse
Affiliation(s)
- Birkneh Tilahun Tadesse
- Department of Child Health, Hawassa University College of Health Sciences, Hawassa, Ethiopia
| | | | - Mulugeta Sitot Shibeshi
- Department of Child Health, Hawassa University College of Health Sciences, Hawassa, Ethiopia
| | - Henok Tadele Dangiso
- Department of Child Health, Hawassa University College of Health Sciences, Hawassa, Ethiopia
| |
Collapse
|
13
|
Potts CC, Joseph SJ, Chang HY, Chen A, Vuong J, Hu F, Jenkins LT, Schmink S, Blain A, MacNeil JR, Harrison LH, Wang X. Population structure of invasive Neisseria meningitidis in the United States, 2011-15. J Infect 2018; 77:427-434. [PMID: 29964139 DOI: 10.1016/j.jinf.2018.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Meningococcal conjugate vaccines (MenACWY) were licensed in the United States in 2005. We assessed the population structure of invasive Neisseria meningitidis (Nm) ten years after recommended use of MenACWY among adolescents. METHODS Meningococcal isolates obtained through Active Bacterial Core surveillance (ABCs) from 2000-05, 2006-10, and 2011-15 underwent whole genome or Sanger sequencing. Genome phylogenies were completed using maximum likelihood methods; and distribution of multilocus sequence typing (MLST) sequence type (ST) and clonal complex (CC), and PorA and FetA types were assessed. RESULTS Prevalent serogroups (B, C, Y and W), CCs, and PorA and FetA types were detected in all three time periods, but dynamic changes were observed. The proportion of serogroup W CC11 isolates increased in 2011-15 and were most related to South American strains. Changes in CC distribution were also observed in serogroup C and serogroup Y. Phylogenetic analysis showed that U.S. serogroup W CC11s are closely related to a subset of U.S. serogroup C isolates; combined global analysis demonstrated that some CCs, including CC11, exhibit regional clustering. CONCLUSIONS Overall, the Nm population structure has remained stable after MenACWY introduction. Dynamic changes in genotypes, unlikely related to vaccination, also occurred, highlighting the need for continued whole genome-based surveillance.
Collapse
Affiliation(s)
- Caelin C Potts
- National Center for Immunization and Respiratory Disease, CDC, Atlanta, GA, USA
| | - Sandeep J Joseph
- National Center for Immunization and Respiratory Disease, CDC, Atlanta, GA, USA
| | - How-Yi Chang
- National Center for Immunization and Respiratory Disease, CDC, Atlanta, GA, USA
| | - Alexander Chen
- National Center for Immunization and Respiratory Disease, CDC, Atlanta, GA, USA
| | - Jeni Vuong
- National Center for Immunization and Respiratory Disease, CDC, Atlanta, GA, USA
| | - Fang Hu
- National Center for Immunization and Respiratory Disease, CDC, Atlanta, GA, USA
| | - Laurel T Jenkins
- National Center for Immunization and Respiratory Disease, CDC, Atlanta, GA, USA
| | - Susanna Schmink
- National Center for Immunization and Respiratory Disease, CDC, Atlanta, GA, USA
| | - Amy Blain
- National Center for Immunization and Respiratory Disease, CDC, Atlanta, GA, USA
| | - Jessica R MacNeil
- National Center for Immunization and Respiratory Disease, CDC, Atlanta, GA, USA
| | - Lee H Harrison
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xin Wang
- National Center for Immunization and Respiratory Disease, CDC, Atlanta, GA, USA.
| |
Collapse
|
14
|
Hao L, Holden MTG, Wang X, Andrew L, Wellnitz S, Hu F, Whaley M, Sammons S, Knipe K, Frace M, McNamara LA, Liberator P, Anderson AS. Distinct evolutionary patterns of Neisseria meningitidis serogroup B disease outbreaks at two universities in the USA. Microb Genom 2018; 4. [PMID: 29616896 PMCID: PMC5989579 DOI: 10.1099/mgen.0.000155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neisseria meningitidis serogroup B (MnB) was responsible for two independent meningococcal disease outbreaks at universities in the USA during 2013. The first at University A in New Jersey included nine confirmed cases reported between March 2013 and March 2014. The second outbreak occurred at University B in California, with four confirmed cases during November 2013. The public health response to these outbreaks included the approval and deployment of a serogroup B meningococcal vaccine that was not yet licensed in the USA. This study investigated the use of whole-genome sequencing(WGS) to examine the genetic profile of the disease-causing outbreak isolates at each university. Comparative WGS revealed differences in evolutionary patterns between the two disease outbreaks. The University A outbreak isolates were very closely related, with differences primarily attributed to single nucleotide polymorphisms/insertion-deletion (SNP/indel) events. In contrast, the University B outbreak isolates segregated into two phylogenetic clades, differing in large part due to recombination events covering extensive regions (>30 kb) of the genome including virulence factors. This high-resolution comparison of two meningococcal disease outbreaks further demonstrates the genetic complexity of meningococcal bacteria as related to evolution and disease virulence.
Collapse
Affiliation(s)
- Li Hao
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | | | - Xin Wang
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Lubomira Andrew
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Sabine Wellnitz
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Fang Hu
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Melissa Whaley
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Scott Sammons
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Kristen Knipe
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Mike Frace
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Lucy A McNamara
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Paul Liberator
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Annaliesa S Anderson
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| |
Collapse
|
15
|
Retchless AC, Kretz CB, Chang HY, Bazan JA, Abrams AJ, Norris Turner A, Jenkins LT, Trees DL, Tzeng YL, Stephens DS, MacNeil JR, Wang X. Expansion of a urethritis-associated Neisseria meningitidis clade in the United States with concurrent acquisition of N. gonorrhoeae alleles. BMC Genomics 2018; 19:176. [PMID: 29499642 PMCID: PMC5834837 DOI: 10.1186/s12864-018-4560-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/20/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Increased reports of Neisseria meningitidis urethritis in multiple U.S. cities during 2015 have been attributed to the emergence of a novel clade of nongroupable N. meningitidis within the ST-11 clonal complex, the "U.S. NmNG urethritis clade". Genetic recombination with N. gonorrhoeae has been proposed to enable efficient sexual transmission by this clade. To understand the evolutionary origin and diversification of the U.S. NmNG urethritis clade, whole-genome phylogenetic analysis was performed to identify its members among the N. meningitidis strain collection from the Centers for Disease Control and Prevention, including 209 urogenital and rectal N. meningitidis isolates submitted by U.S. public health departments in eleven states starting in 2015. RESULTS The earliest representatives of the U.S. NmNG urethritis clade were identified from cases of invasive disease that occurred in 2013. Among 209 urogenital and rectal isolates submitted from January 2015 to September 2016, the clade accounted for 189/198 male urogenital isolates, 3/4 female urogenital isolates, and 1/7 rectal isolates. In total, members of the clade were isolated in thirteen states between 2013 and 2016, which evolved from a common ancestor that likely existed during 2011. The ancestor contained N. gonorrhoeae-like alleles in three regions of its genome, two of which may facilitate nitrite-dependent anaerobic growth during colonization of urogenital sites. Additional gonococcal-like alleles were acquired as the clade diversified. Notably, one isolate contained a sequence associated with azithromycin resistance in N. gonorrhoeae, but no other gonococcal antimicrobial resistance determinants were detected. CONCLUSIONS Interspecies genetic recombination contributed to the early evolution and subsequent diversification of the U.S. NmNG urethritis clade. Ongoing acquisition of N. gonorrhoeae alleles by the U.S. NmNG urethritis clade may facilitate the expansion of its ecological niche while also increasing the frequency with which it causes urethritis.
Collapse
Affiliation(s)
- Adam C. Retchless
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Cécilia B. Kretz
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
- Present address: Division of Scientific Education and Professional Development, Center for Surveillance, Epidemiology and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - How-Yi Chang
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Jose A. Bazan
- Division of Infectious Diseases, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH USA
- Sexual Health Clinic, Columbus Public Health, Columbus, OH USA
| | - A. Jeanine Abrams
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Abigail Norris Turner
- Division of Infectious Diseases, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH USA
| | - Laurel T. Jenkins
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - David L. Trees
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA USA
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - Jessica R. MacNeil
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Xin Wang
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
16
|
Bloch D, Murray K, Peterson E, Ngai S, Rubinstein I, Halse TA, Ezeoke I, Miller L, Arakaki L, Ramautar A, Antwi M, Del Rosso P, Dorsinville M, Clark S, Halbrook M, Kennedy J, Braunstein S, Weiss D. Sex Difference in Meningococcal Disease Mortality, New York City, 2008–2016. Clin Infect Dis 2018; 67:760-769. [DOI: 10.1093/cid/ciy183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Danielle Bloch
- New York City Department of Health and Mental Hygiene, Queens
| | - Kenya Murray
- New York City Department of Health and Mental Hygiene, Queens
| | - Eric Peterson
- New York City Department of Health and Mental Hygiene, Queens
| | - Stephanie Ngai
- New York City Department of Health and Mental Hygiene, Queens
| | | | - Tanya A Halse
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Ifeoma Ezeoke
- New York City Department of Health and Mental Hygiene, Queens
| | - Laura Miller
- New York City Department of Health and Mental Hygiene, Queens
| | - Lola Arakaki
- New York City Department of Health and Mental Hygiene, Queens
| | | | - Mike Antwi
- New York City Department of Health and Mental Hygiene, Queens
| | - Paula Del Rosso
- New York City Department of Health and Mental Hygiene, Queens
| | | | - Sandhya Clark
- New York City Department of Health and Mental Hygiene, Queens
| | - Megan Halbrook
- New York City Department of Health and Mental Hygiene, Queens
| | - Joseph Kennedy
- New York City Department of Health and Mental Hygiene, Queens
| | | | - Don Weiss
- New York City Department of Health and Mental Hygiene, Queens
| |
Collapse
|
17
|
Winthrop KL, Mariette X, Silva JT, Benamu E, Calabrese LH, Dumusc A, Smolen JS, Aguado JM, Fernández-Ruiz M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors). Clin Microbiol Infect 2018; 24 Suppl 2:S21-S40. [PMID: 29447987 DOI: 10.1016/j.cmi.2018.02.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The present review is part of the ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies. AIMS To review, from an Infectious Diseases perspective, the safety profile of agents targeting interleukins, immunoglobulins and complement factors and to suggest preventive recommendations. SOURCES Computer-based MEDLINE searches with MeSH terms pertaining to each agent or therapeutic family. CONTENT Patients receiving interleukin-1 (IL-1) -targeted (anakinra, canakinumab or rilonacept) or IL-5-targeted (mepolizumab) agents have a moderate risk of infection and no specific prevention strategies are recommended. The use of IL-6/IL-6 receptor-targeted agents (tocilizumab and siltuximab) is associated with a risk increase similar to that observed with anti-tumour necrosis factor-α agents. IL-12/23-targeted agents (ustekinumab) do not seem to pose a meaningful risk of infection, although screening for latent tuberculosis infection may be considered and antiviral prophylaxis should be given to hepatitis B surface antigen-positive patients. Therapy with IL-17-targeted agents (secukinumab, brodalumab and ixekizumab) may result in the development of mild-to-moderate mucocutaneous candidiasis. Pre-treatment screening for Strongyloides stercoralis and other geohelminths should be considered in patients who come from areas where these are endemic who are receiving IgE-targeted agents (omalizumab). C5-targeted agents (eculizumab) are associated with a markedly increased risk of infection due to encapsulated bacteria, particularly Neisseria spp. Meningococcal vaccination and chemoprophylaxis must be administered 2-4 weeks before initiating eculizumab. Patients with high-risk behaviours and their partners should also be screened for gonococcal infection. IMPLICATIONS Preventive strategies are particularly encouraged to minimize the occurrence of neisserial infection associated with eculizumab.
Collapse
Affiliation(s)
- K L Winthrop
- Division of Infectious Diseases, Oregon Health and Science University, Portland, OR, USA.
| | - X Mariette
- Department of Rheumatology, Hôpitaux Universitaire Paris-Sud, Université Paris-Sud, INSERM U1184, Paris, France
| | - J T Silva
- Department of Infectious Diseases, University Hospital of Badajoz, Fundación para La Formación e Investigación de Los Profesionales de La Salud (FundeSalud), Badajoz, Spain
| | - E Benamu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - L H Calabrese
- Department of Rheumatic and Immunological Diseases, Cleveland Clinic Foundation, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Case Western University, Cleveland, OH, USA
| | - A Dumusc
- Department of Rheumatology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - J S Smolen
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - J M Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - M Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr Opin Infect Dis 2018; 29:319-29. [PMID: 27257797 DOI: 10.1097/qco.0000000000000279] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Eculizumab inhibits complement effector functions and has significantly impacted the treatment of paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. However, the risks of potentially life-threatening infections, notably with Neisseria spp. in addition to its cost, are major challenges in clinical practice. In this review, we characterize and summarize the infectious complications reported with the use of eculizumab in the context of its typical and expanding indications. RECENT FINDINGS Use of eculizumab is rapidly extending to the fields of transplantation and neurology. Eculizumab has been primarily associated with an increased risk of meningococcal infections. Immunization against its commonest serotypes (ABCWY) is now possible with the advent of the meningococcal B vaccine. A combined ABCWY vaccine is underway. Preventive strategies against breakthrough Neisseria infections should also include chemoprophylaxis. Less is known about the association of eculizumab with other infections as recently reported. Surrogate markers of complement blockade, notably CH50, and eculizumab efficacy may help in the risk assessment of infection. SUMMARY Eculizumab has opened new horizons in the treatment of complement-mediated disorders. Prophylactic and immunization strategies against the risk of Nesseria spp. infections are sound and feasible. The use of eculizumab is expanding beyond complement-mediated diseases to transplantation and neurological disorders. Further research is needed to better define and stratify the risk of infection and prevention strategies in patients with the latter indications.
Collapse
|
19
|
Batista RS, Gomes AP, Dutra Gazineo JL, Balbino Miguel PS, Santana LA, Oliveira L, Geller M. Meningococcal disease, a clinical and epidemiological review. ASIAN PAC J TROP MED 2017; 10:1019-1029. [PMID: 29203096 DOI: 10.1016/j.apjtm.2017.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/29/2017] [Accepted: 09/28/2017] [Indexed: 11/29/2022] Open
Abstract
Meningococcal disease is the acute infection caused by Neisseria meningitidis, which has humans as the only natural host. The disease is widespread around the globe and is known for its epidemical potential and high rates of lethality and morbidity. The highest number of cases of the disease is registered in the semi-arid regions of sub-Saharan Africa. In Brazil, it is endemic with occasional outbreaks, epidemics and sporadic cases occurring throughout the year, especially in the winter. The major epidemics of the disease occurred in Brazil in the 70's caused by serogroups A and C. Serogroups B, C and Y represent the majority of cases in Europe, the Americas and Australia. However, there has been a growing increase in serogroup W in some areas. The pathogen transmission happens for respiratory route (droplets) and clinically can lead to meningitis and sepsis (meningococcemia). The treatment is made with antimicrobial and supportive care. For successful prevention, we have some measures like vaccination, chemoprophylaxis and droplets' precautions. In this review, we have described and clarify clinical features of the disease caused by N. meningitidis regarding its relevance for healthcare professionals.
Collapse
Affiliation(s)
- Rodrigo Siqueira Batista
- Laboratório de Agentes Patogênicos, Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Curso de Medicina, Faculdade Dinâmica do Vale do Piranga, Ponte Nova, MG, Brazil.
| | - Andréia Patrícia Gomes
- Laboratório de Agentes Patogênicos, Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Jorge Luiz Dutra Gazineo
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Sérgio Balbino Miguel
- Laboratório de Agentes Patogênicos, Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Luiz Alberto Santana
- Laboratório de Agentes Patogênicos, Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Lisa Oliveira
- Curso de Medicina, Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis, RJ, Brazil
| | - Mauro Geller
- School of Medicine, New York University - NYU, New York, USA; Departamento de Genética Médica, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Gianchecchi E, Piccini G, Torelli A, Rappuoli R, Montomoli E. An unwanted guest:Neisseria meningitidis– carriage, risk for invasive disease and the impact of vaccination with insight on Italy incidence. Expert Rev Anti Infect Ther 2017; 15:689-701. [DOI: 10.1080/14787210.2017.1333422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Giulia Piccini
- VisMederi Srl, Siena, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Alessandro Torelli
- VisMederi Srl, Siena, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Emanuele Montomoli
- VisMederi Srl, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
21
|
Janowski A, Newland J. Of the Phrensy: an update on the epidemiology and pathogenesis of bacterial meningitis in the pediatric population. F1000Res 2017; 6. [PMID: 28184287 PMCID: PMC5288681 DOI: 10.12688/f1000research.8533.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 01/23/2023] Open
Abstract
In the past century, advances in antibiotics and vaccination have dramatically altered the incidence and clinical outcomes of bacterial meningitis. We review the shifting epidemiology of meningitis in children, including after the implementation of vaccines that target common meningitic pathogens and the introduction of intrapartum antibiotic prophylaxis offered to mothers colonized with
Streptococcus agalactiae. We also discuss what is currently known about the pathogenesis of meningitis. Recent studies of the human microbiome have illustrated dynamic relationships of bacterial and viral populations with the host, which may potentiate the risk of bacterial meningitis.
Collapse
Affiliation(s)
- Andrew Janowski
- Division of Pediatric Infectious Diseases, Washington University in St Louis, St. Louis, MO, USA
| | - Jason Newland
- Division of Pediatric Infectious Diseases, Washington University in St Louis, St. Louis, MO, USA
| |
Collapse
|
22
|
Robertson CA, Greenberg DP, Hedrick J, Pichichero M, Decker MD, Saunders M. Safety and immunogenicity of a booster dose of meningococcal (groups A, C, W, and Y) polysaccharide diphtheria toxoid conjugate vaccine. Vaccine 2016; 34:5273-5278. [PMID: 27642132 DOI: 10.1016/j.vaccine.2016.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/04/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Quadrivalent meningococcal conjugate vaccines (MenACWY) were developed to offer long-term protection against invasive disease caused by serogroups A, C, W, and Y. Reduced MenACWY effectiveness within 5 years after primary vaccination (likely due to declining bactericidal antibody titers) has been described, particularly with respect to C and Y disease in the United States. We evaluated the safety and immunogenicity of a single booster dose of quadrivalent meningococcal polysaccharide diphtheria toxoid conjugate vaccine (MenACWY-D) in adolescents and adults who received a previous dose 4-6 years earlier. METHODS This phase 2, open-label, multicenter study of 834 persons was conducted in the United States. Participants received a single 0.5-mL booster dose of MenACWY-D. Serogroup-specific bactericidal antibody geometric mean titers (GMTs) were measured with a serum bactericidal antibody assay using human complement (hSBA). Proportions of participants achieving antibody titers of ⩾1:8 for each vaccine serogroup on Days 6 and 28 were determined. Rates of adverse events (AEs), including serious adverse events (SAEs), were also assessed. RESULTS Before booster vaccination, 38.7-68.5% of participants had an hSBA titer ⩾1:8, depending on vaccine serogroup. By Day 6 post-vaccination, 98.2-99.1% of participants had hSBA titers ⩾1:8. By Day 28, >99% of participants achieved this threshold and the primary hypothesis (lower limit of the one-sided 95% confidence limit ⩾85% for each serogroup) was met. The GMT ratios (post-vaccination divided by pre-vaccination) at Day 28 ranged from 47.2 (serogroup A) to 209.1 (serogroup Y). Rates of AEs, including SAEs, were similar to those observed among adolescents and adults who received a primary dose of MenACWY-D in previous studies. There were no study discontinuations due to an AE and no deaths. CONCLUSIONS Booster vaccination with MenACWY-D was safe and induced robust bactericidal antibody responses, consistent with immune memory, among adolescents and adults 4-6 years after primary vaccination. ClinicalTrials.gov registration: NCT01442675.
Collapse
Affiliation(s)
- Corwin A Robertson
- Scientific and Medical Affairs Department, Sanofi Pasteur Inc., Discovery Drive, Swiftwater, PA 18370, USA.
| | - David P Greenberg
- Scientific and Medical Affairs Department, Sanofi Pasteur Inc., Discovery Drive, Swiftwater, PA 18370, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - James Hedrick
- Kentucky Pediatric/Adult Research, 201 South 5th Street, Bardstown, KY 40004, USA.
| | - Michael Pichichero
- Legacy Pediatrics, 1815 South Clinton Avenue, Suite 360, Rochester, NY 14618, USA.
| | - Michael D Decker
- Scientific and Medical Affairs Department, Sanofi Pasteur Inc., Discovery Drive, Swiftwater, PA 18370, USA; Department of Health Policy, Vanderbilt University School of Medicine, Nashville, TN 37212, USA.
| | - Martha Saunders
- Huguenot Pediatrics, 1407 Huguenot Road, Midlothian, VA 23113, USA.
| |
Collapse
|
23
|
Vossen M, Mitteregger D, Steininger C. Meningococcal pneumonia. Vaccine 2016; 34:4364-70. [PMID: 27443594 DOI: 10.1016/j.vaccine.2016.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
Neisseria meningitidis remains the most important cause of bacterial meningitis worldwide, particularly in children and young adults. The second most common and a potentially severe end-organ manifestation of invasive meningococcal disease (excluding systemic sepsis) is meningococcal pneumonia. It occurs in between 5% and 15% of all patients with invasive meningococcal disease and is thus the second most common non-systemic end-organ manifestation. To establish the diagnosis requires a high level of clinical awareness - the incidence is therefore very likely underreported and underestimated. This review of 344 meningococcal pneumonia cases reported in the Americas, Europe, Australia, and Asia between 1906 and 2015 presents risk factors, pathogenesis, clinical manifestations, diagnostic approaches, treatment, and prognosis of meningococcal pneumonia.
Collapse
Affiliation(s)
- Matthias Vossen
- Department of Medicine I, Div. of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Dieter Mitteregger
- Department of Laboratory Medicine, Div. of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Christoph Steininger
- Department of Medicine I, Div. of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Abstract
Neisseria meningitidis, a gram-negative diplococcal bacterium, is a common asymptomatic nasopharyngeal colonizer that may infrequently lead to invasive disease in the form of meningitis or bacteremia. Six serogroups (A, B, C, W, X and Y) are responsible for the majority of invasive infections. Increased risk of disease occurs in specific population groups including infants, adolescents, those with asplenia or complement deficiencies, and those residing in crowded living conditions such as in college dormitories. The incidence of invasive meningococcal disease varies geographically with some countries (e.g., in the African meningitis belt) having both high endemic disease rates and ongoing epidemics, with annual rates reaching 1000 cases per 100,000 persons. Given the significant morbidity and mortality associated with meningococcal disease, it remains a major global health threat best prevented by vaccination. Several countries have implemented vaccination programs with the selection of specific vaccine(s) based on locally prevalent serogroup(s) of N. meningitidis and targeting population groups at highest risk. Polysaccharide meningococcal vaccines became available over 40 years ago, but are limited by their inability to produce immunologic memory responses, poor immunogenicity in infants/children, hyporesponsiveness after repeated doses, and lack of efficacy against nasopharyngeal carriage. In 1999, the first meningococcal conjugate vaccines were introduced and have been successful in overcoming many of the shortcomings of polysaccharide vaccines. The implementation of meningococcal conjugate vaccination programs in many areas of the world (including the massive campaign in sub-Saharan Africa using a serogroup A conjugate vaccine) has led to dramatic reductions in the incidence of meningococcal disease by both individual and population protection. Progressive advances in vaccinology have led to the recent licensure of two effective vaccines against serogroup B [MenB-4C (Bexsero) and MenB-FHbp (Trumenba)]. Overall, the evolution of novel meningococcal vaccines and the effective implementation of targeted vaccination programs has led to a substantial decrease in the burden of disease worldwide representing a major public health accomplishment.
Collapse
Affiliation(s)
- Nancy Crum-Cianflone
- Infectious Diseases, Scripps Mercy Hospital, San Diego, CA, USA.
- Naval Medical Center San Diego, San Diego, CA, USA.
| | - Eva Sullivan
- Infectious Diseases, Scripps Mercy Hospital, San Diego, CA, USA
| |
Collapse
|