1
|
Gandhi UH, Vyas SD, Mane V, Patel SN, Patadiya HH, Kumar S, Haque M. The Effectiveness of Metronidazole as a Localized Drug Delivery System in the Treatment of Periodontal Diseases: A Narrative Review. Cureus 2025; 17:e80547. [PMID: 40091900 PMCID: PMC11907172 DOI: 10.7759/cureus.80547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025] Open
Abstract
Periodontitis is a complex, multifactorial chronic inflammatory condition that impacts the adjacent hard and soft tissues. Microorganisms, especially gram-negative anaerobic pathogens, are a causative factor for periodontal disease. Periodontitis is identified by observing deeper periodontal pockets, clinical attachment loss, and the reduction of alveolar bone, often in conjunction with these indicators. The condition can vary in severity and be classified as mild, moderate, or severe. Scaling and root planing, combined with mechanical debridement, may not adequately reduce the bacterial load; therefore, adding local or systemic antimicrobials is advised as an adjunctive treatment. Commonly utilized local drug delivery agents for patients suffering from periodontitis include tetracycline, metronidazole, minocycline, doxycycline, and chlorhexidine. This system targets the pockets and eliminates the pathogens. Metronidazole is a nitroimidazole compound used commonly against gram-negative anaerobes. Its mechanism lies in four basic steps through which bacterial cell death occurs. A 25% metronidazole gel is used widely in periodontitis patients. The effectiveness of metronidazole as a local drug delivery agent has been evaluated in numerous studies, which have shown improvements in clinical parameters. To achieve favorable clinical outcomes, the non-surgical treatment of peri-implantitis should involve the systemic or local administration of metronidazole. Thus, the role of metronidazole in the emergence of periodontal diseases and its therapeutic uses are investigated in this narrative review.
Collapse
Affiliation(s)
- Utsav H Gandhi
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Shruti D Vyas
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Vaishnavi Mane
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth, Karad, IND
| | - Shirishkumar N Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Hiren H Patadiya
- Department of General Dentistry, My Dental Southbridge PLLC, Southbridge, USA
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
- Department of Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
2
|
Huang Y, Fan X, Xu Y, Chen X. Sensitive and rapid fluorescent detection of metronidazole based on stable light-emitting vinylene-linked covalent organic framework. Food Chem 2024; 467:142284. [PMID: 39642419 DOI: 10.1016/j.foodchem.2024.142284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Development of ultra-sensitive and rapid fluorescent nanoprobe for quantitative and targeted monitoring of metronidazole is of crucial practical significance, but is of great challenge. Herein, a vinyl-linked covalent organic frameworks (sp2-BNTP-COF) was fabricated via integrating the 1,3,5-tris-(4-formylphenyl) triazine with 5,5'-bis(cyanomethyl)-2,2'-bipyridine into the skeleton. As-obtained sp2-BNTP-COF exhibited excellent luminescence characteristics with an absolute fluorescence quantum yield of 8 %. However, fluorescent emission of sp2-BNTP-COF could be sharply quenched via metronidazole based on internal filtration effect. A sensitive fluorescent strategy was built for targeted monitoring of metronidazole. Furthermore, the analysis operation could be accomplished within 20 s, which was desirable for point-of-care monitoring of metronidazole. Therefore, this work not only provides a reliable method for the sensitive, rapid, and quantitative detection of metronidazole residues based on the sp2-BNTP-COF, but also paves the way for exploring stable luminescent vinyl-linked COFs materials as promising fluorescent nanoprobes for targeted monitoring of antibiotic residues.
Collapse
Affiliation(s)
- Yong Huang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xiaobing Fan
- Department of Respiratory and Critical Care Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Yulong Xu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
3
|
Functionalized Nitroimidazole Scaffold Construction and Their Pharmaceutical Applications: A 1950–2021 Comprehensive Overview. Pharmaceuticals (Basel) 2022; 15:ph15050561. [PMID: 35631389 PMCID: PMC9144801 DOI: 10.3390/ph15050561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Nitroimidazole represents one of the most essential and unique scaffolds in drug discovery since its discovery in the 1950s. It was K. Maeda in Japan who reported in 1953 the first nitroimidazole as a natural product from Nocardia mesenterica with antibacterial activity, which was later identified as Azomycin 1 (2-nitroimidazole) and remained in focus until now. This natural antibiotic was the starting point for synthesizing numerous analogs and regio-isomers, leading to several life-saving drugs and clinical candidates against a number of diseases, including infections (bacterial, viral, parasitic) and cancers, as well as imaging agents in medicine/diagnosis. In the present decade, the nitroimidazole scaffold has again been given two life-saving drugs (Delamanid and Pretomanid) used to treat MDR (multi-drug resistant) tuberculosis. Keeping in view the highly successful track-record of the nitroimidazole scaffold in providing breakthrough therapeutic drugs, this comprehensive review focuses explicitly on presenting the activity profile and synthetic chemistry of functionalized nitroimidazole (2-, 4- and 5-nitroimidazoles as well as the fused nitroimidazoles) based drugs and leads published from 1950 to 2021. The present review also presents the miscellaneous examples in each class. In addition, the mutagenic profile of nitroimidazole-based drugs and leads and derivatives is also discussed.
Collapse
|
4
|
Hiregange DG, Rivalta A, Bose T, Breiner-Goldstein E, Samiya S, Cimicata G, Kulakova L, Zimmerman E, Bashan A, Herzberg O, Yonath A. Cryo-EM structure of the ancient eukaryotic ribosome from the human parasite Giardia lamblia. Nucleic Acids Res 2022; 50:1770-1782. [PMID: 35100413 PMCID: PMC8860606 DOI: 10.1093/nar/gkac046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Giardiasis is a disease caused by the protist Giardia lamblia. As no human vaccines have been approved so far against it, and resistance to current drugs is spreading, new strategies for combating giardiasis need to be developed. The G. lamblia ribosome may provide a promising therapeutic target due to its distinct sequence differences from ribosomes of most eukaryotes and prokaryotes. Here, we report the cryo-electron microscopy structure of the G. lamblia (WB strain) ribosome determined at 2.75 Å resolution. The ribosomal RNA is the shortest known among eukaryotes, and lacks nearly all the eukaryote-specific ribosomal RNA expansion segments. In contrast, the ribosomal proteins are typically eukaryotic with some species-specific insertions/extensions. Most typical inter-subunit bridges are maintained except for one missing contact site. Unique structural features are located mainly at the ribosome's periphery. These may be exploited as target sites for the design of new compounds that inhibit selectively the parasite's ribosomal activity.
Collapse
Affiliation(s)
- Disha-Gajanan Hiregange
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Andre Rivalta
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tanaya Bose
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elinor Breiner-Goldstein
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarit Samiya
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Giuseppe Cimicata
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liudmila Kulakova
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20742-4454, USA
| | - Ella Zimmerman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20742-4454, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-4454, USA
| | - Ada Yonath
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Brito CL, Lins RS, Bertotti M, Ferreira EI, La-Scalea MA. Free radical formation evidence from Nimorazole electrochemical reduction in aqueous media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Oxygen levels are key to understanding "Anaerobic" protozoan pathogens with micro-aerophilic lifestyles. Adv Microb Physiol 2021; 79:163-240. [PMID: 34836611 DOI: 10.1016/bs.ampbs.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Publications abound on the physiology, biochemistry and molecular biology of "anaerobic" protozoal parasites as usually grown under "anaerobic" culture conditions. The media routinely used are poised at low redox potentials using techniques that remove O2 to "undetectable" levels in sealed containers. However there is growing understanding that these culture conditions do not faithfully resemble the O2 environments these organisms inhabit. Here we review for protists lacking oxidative energy metabolism, the oxygen cascade from atmospheric to intracellular concentrations and relevant methods of measurements of O2, some well-studied parasitic or symbiotic protozoan lifestyles, their homeodynamic metabolic and redox balances, organism-drug-oxygen interactions, and the present and future prospects for improved drugs and treatment regimes.
Collapse
|
7
|
Loderstädt U, Frickmann H. Antimicrobial resistance of the enteric protozoon Giardia duodenalis - A narrative review. Eur J Microbiol Immunol (Bp) 2021; 11:29-43. [PMID: 34237023 PMCID: PMC8287975 DOI: 10.1556/1886.2021.00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction As therapy-refractory giardiasis is an emerging health issue, this review aimed at summarizing mechanisms of reduced antimicrobial susceptibility in Giardia duodenalis and strategies to overcome this problem. Methods A narrative review on antimicrobial resistance in G. duodenalis was based upon a selective literature research. Results Failed therapeutic success has been observed for all standard therapies of giardiasis comprising nitroimidazoles like metronidazole or tinidazole as first line substances but also benznidazoles like albendazole and mebendazole, the nitrofuran furazolidone, the thiazolide nitazoxanide, and the aminoglycoside paromomycin. Multicausality of the resistance phenotypes has been described, with differentiated gene expression due to epigenetic and post-translational modifications playing a considerable bigger role than mutational base exchanges in the parasite DNA. Standardized resistance testing algorithms are not available and clinical evidence for salvage therapies is scarce in spite of research efforts targeting new giardicidal drugs. Conclusion In case of therapeutic failure of first line nitroimidazoles, salvage strategies including various options for combination therapy exist in spite of limited evidence and lacking routine diagnostic-compatible assays for antimicrobial susceptibility testing in G. duodenalis. Sufficiently powered clinical and diagnostic studies are needed to overcome both the lacking evidence regarding salvage therapy and the diagnostic neglect of antimicrobial resistance.
Collapse
Affiliation(s)
- Ulrike Loderstädt
- 1Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Hagen Frickmann
- 2Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany.,3Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
8
|
Rizwan HM, Abbas H, Sajid MS, Maqbool M, Jones MK, Ullah MI, Ijaz N. Drug Resistance in Protozoal Infections. BIOCHEMISTRY OF DRUG RESISTANCE 2021:95-142. [DOI: 10.1007/978-3-030-76320-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Discovery and Preclinical Development of Antigiardiasis Fumagillol Derivatives. Antimicrob Agents Chemother 2020; 64:AAC.00582-20. [PMID: 32778548 PMCID: PMC7508583 DOI: 10.1128/aac.00582-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022] Open
Abstract
Giardiasis, caused by the intestinal parasite Giardia lamblia, is a severe diarrheal disease, endemic in poverty-stricken regions of the world, and also a common infection in developed countries. The available therapeutic options are associated with adverse effects, and G. lamblia resistance to the standard-of-care drugs is spreading. Fumagillin, an antimicrosporidiosis drug, is a therapeutic agent with potential for the treatment of giardiasis. However, it exhibits considerable, albeit reversible, toxicity when used to treat immunocompromised microsporidiosis patients. Giardiasis, caused by the intestinal parasite Giardia lamblia, is a severe diarrheal disease, endemic in poverty-stricken regions of the world, and also a common infection in developed countries. The available therapeutic options are associated with adverse effects, and G. lamblia resistance to the standard-of-care drugs is spreading. Fumagillin, an antimicrosporidiosis drug, is a therapeutic agent with potential for the treatment of giardiasis. However, it exhibits considerable, albeit reversible, toxicity when used to treat immunocompromised microsporidiosis patients. Fumagillin is also a highly unstable compound. To address these liabilities, we designed and synthesized stable fumagillol derivatives with lower levels of permeation across polarized epithelial Caco-2 cells and better potency against G. lamblia trophozoites than fumagillin. Metronidazole-resistant G. lamblia strains were also susceptible to the new fumagillol derivatives. In addition, these compounds were more potent against the amebiasis-causing parasite Entamoeba histolytica than fumagillin. Two compounds exhibited better thermal and acid stability than fumagillin, which should prolong the drug shelf life and reduce compound degradation in the stomach. Studies with a mouse model of giardiasis with the most stable compound, 4-(((((3R,4S,5S,6R)-5-methoxy-4-((2R,3R)-2-methyl-3-(3-methylbut-2-en-1-yl)oxiran-2-yl)-1-oxaspiro[2.5]octan-6-yl)oxy)carbonyl)amino)benzoic acid (compound 9), revealed that it had better efficacy (effective dose [ED]) than fumagillin at both the fully curative dose (the 100% ED) of 6.6 mg/kg of body weight and a 50% ED of 0.064 mg/kg. Plasma pharmacokinetics revealed the slow absorption of compound 9 through the gut, consistent with the in vitro characterization in Caco-2 cells. An acute-dose study yielded a maximum tolerated dose (MTD) of 1,500 mg/kg, 227-fold higher than the fully curative dose. Thus, along with improved stability, compound 9 also exhibited an excellent therapeutic window.
Collapse
|
10
|
Riches A, Hart CJS, Trenholme KR, Skinner-Adams TS. Anti- Giardia Drug Discovery: Current Status and Gut Feelings. J Med Chem 2020; 63:13330-13354. [PMID: 32869995 DOI: 10.1021/acs.jmedchem.0c00910] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Giardia parasites are ubiquitous protozoans of global importance that impact a wide range of animals including humans. They are the most common enteric pathogen of cats and dogs in developed countries and infect ∼1 billion people worldwide. While Giardia infections can be asymptomatic, they often result in severe and chronic diseases. There is also mounting evidence that they are linked to postinfection disorders. Despite growing evidence of the widespread morbidity associated with Giardia infections, current treatment options are limited to compound classes with broad antimicrobial activity. Frontline anti-Giardia drugs are also associated with increasing drug resistance and treatment failures. To improve the health and well-being of millions, new selective anti-Giardia drugs are needed alongside improved health education initiatives. Here we discuss current treatment options together with recent advances and gaps in drug discovery. We also propose criteria to guide the discovery of new anti-Giardia compounds.
Collapse
Affiliation(s)
- Andrew Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria 3168, Australia
| | - Christopher J S Hart
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Katharine R Trenholme
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4029, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4029, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
11
|
Chromosomal Resistance to Metronidazole in Clostridioides difficile Can Be Mediated by Epistasis between Iron Homeostasis and Oxidoreductases. Antimicrob Agents Chemother 2020; 64:AAC.00415-20. [PMID: 32457109 DOI: 10.1128/aac.00415-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Chromosomal resistance to metronidazole has emerged in clinical Clostridioides difficile isolates, but the genetic mechanisms remain unclear. This is further hindered by the inability to generate spontaneous metronidazole-resistant mutants in the lab to interpret genetic variations in clinical isolates. We therefore constructed a mismatch repair mutator in nontoxigenic ATCC 700057 to survey the mutational landscape for de novo resistance mechanisms. In separate experimental evolutions, the mutator adopted a deterministic path to resistance, with truncation of the ferrous iron transporter FeoB1 as a first-step mechanism of low-level resistance. Deletion of feoB1 in ATCC 700057 reduced the intracellular iron content, appearing to shift cells toward flavodoxin-mediated oxidoreductase reactions, which are less favorable for metronidazole's cellular action. Higher-level resistance evolved from sequential acquisition of mutations to catalytic domains of pyruvate-ferredoxin/flavodoxin oxidoreductase (PFOR; encoded by nifJ), a synonymous codon change to putative xdh (xanthine dehydrogenase; encoded by CD630_31770), likely affecting mRNA stability, and last, frameshift and point mutations that inactivated the iron-sulfur cluster regulator (IscR). Gene silencing of nifJ, xdh, or iscR with catalytically dead Cas9 revealed that resistance involving these genes occurred only when feoB1 was inactivated; i.e., resistance was seen only in the feoB1 deletion mutant and not in the isogenic wild-type (WT) parent. Interestingly, metronidazole resistance in C. difficile infection (CDI)-associated strains carrying mutations in nifJ was reduced upon gene complementation. This observation supports the idea that mutation in PFOR is one mechanism of metronidazole resistance in clinical strains. Our findings indicate that metronidazole resistance in C. difficile is complex, involving multigenetic mechanisms that could intersect with iron-dependent and oxidoreductive metabolic pathways.
Collapse
|
12
|
Hena S, Gutierrez L, Croué JP. Removal of metronidazole from aqueous media by C. vulgaris. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121400. [PMID: 31624001 DOI: 10.1016/j.jhazmat.2019.121400] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/22/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
This current study investigated the removal of metronidazole from aqueous media by C. vulgaris. Two different initial sizes of inoculum (0.05 and 0.5 g L-1) were tested for a wide concentration range of metronidazole (1-50 μM). The effect of metronidazole concentrations on biomass production was studied for 20 days. The exopolymeric substances (EPS) were quantified and correlated with the removal of antibiotics from aqueous media. Specifically, MDZ stimulated the production of EPS in C. vulgaris, which played the major role in the adsorption of this antibiotic. Also, metronidazole significantly influenced the zeta potential of C. vulgaris in the test cultures, indicating a change in surface characteristics. This decrease in surface negative charge caused auto-flocculation phenomena at a stationary phase. Chronic and acute toxicity experiments showed that metronidazole was harmful to C. vulgaris at stationary phase. Results from this study would advance our knowledge on the treatment of metronidazole-contaminated waters with C. vulgaris as a green technology-oriented process.
Collapse
Affiliation(s)
- Sufia Hena
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Australia
| | - Leo Gutierrez
- Facultad del Mar y Medio Ambiente, Universidad del Pacifico, Ecuador
| | - Jean-Philippe Croué
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Australia; Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, France.
| |
Collapse
|
13
|
Drug resistance in Giardia: Mechanisms and alternative treatments for Giardiasis. ADVANCES IN PARASITOLOGY 2020; 107:201-282. [PMID: 32122530 DOI: 10.1016/bs.apar.2019.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of chemotherapeutic drugs is the main resource against clinical giardiasis due to the lack of approved vaccines. Resistance of G. duodenalis to the most used drugs to treat giardiasis, metronidazole and albendazole, is a clinical issue of growing concern and yet unknown impact, respectively. In the search of new drugs, the completion of the Giardia genome project and the use of biochemical, molecular and bioinformatics tools allowed the identification of ligands/inhibitors for about one tenth of ≈150 potential drug targets in this parasite. Further, the synthesis of second generation nitroimidazoles and benzimidazoles along with high-throughput technologies have allowed not only to define overall mechanisms of resistance to metronidazole but to screen libraries of repurposed drugs and new pharmacophores, thereby increasing the known arsenal of anti-giardial compounds to some hundreds, with most demonstrating activity against metronidazole or albendazole-resistant Giardia. In particular, cysteine-modifying agents which include omeprazole, disulfiram, allicin and auranofin outstand due to their pleiotropic activity based on the extensive repertoire of thiol-containing proteins and the microaerophilic metabolism of this parasite. Other promising agents derived from higher organisms including phytochemicals, lactoferrin and propolis as well as probiotic bacteria/fungi have also demonstrated significant potential for therapeutic and prophylactic purposes in giardiasis. In this context the present chapter offers a comprehensive review of the current knowledge, including commonly prescribed drugs, causes of therapeutic failures, drug resistance mechanisms, strategies for the discovery of new agents and alternative drug therapies.
Collapse
|
14
|
Emery SJ, Baker L, Ansell BRE, Mirzaei M, Haynes PA, McConville MJ, Svärd SG, Jex AR. Differential protein expression and post-translational modifications in metronidazole-resistant Giardia duodenalis. Gigascience 2018; 7:4931738. [PMID: 29688452 PMCID: PMC5913674 DOI: 10.1093/gigascience/giy024] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/06/2018] [Indexed: 01/20/2023] Open
Abstract
Background Metronidazole (Mtz) is the frontline drug treatment for multiple anaerobic pathogens, including the gastrointestinal protist, Giardia duodenalis. However, treatment failure is common and linked to in vivo drug resistance. In Giardia, in vitro drug-resistant lines allow controlled experimental interrogation of resistance mechanisms in isogenic cultures. However, resistance-associated changes are inconsistent between lines, phenotypic data are incomplete, and resistance is rarely genetically fixed, highlighted by reversion to sensitivity after drug selection ceases or via passage through the life cycle. Comprehensive quantitative approaches are required to resolve isolate variability, fully define Mtz resistance phenotypes, and explore the role of post-translational modifications therein. Findings We performed quantitative proteomics to describe differentially expressed proteins in 3 seminal Mtz-resistant lines compared to their isogenic, Mtz-susceptible, parental line. We also probed changes in post-translational modifications including protein acetylation, methylation, ubiquitination, and phosphorylation via immunoblotting. We quantified more than 1,000 proteins in each genotype, recording substantial genotypic variation in differentially expressed proteins between isotypes. Our data confirm substantial changes in the antioxidant network, glycolysis, and electron transport and indicate links between protein acetylation and Mtz resistance, including cross-resistance to deacetylase inhibitor trichostatin A in Mtz-resistant lines. Finally, we performed the first controlled, longitudinal study of Mtz resistance stability, monitoring lines after cessation of drug selection, revealing isolate-dependent phenotypic plasticity. Conclusions Our data demonstrate understanding that Mtz resistance must be broadened to post-transcriptional and post-translational responses and that Mtz resistance is polygenic, driven by isolate-dependent variation, and is correlated with changes in protein acetylation networks.
Collapse
Affiliation(s)
- Samantha J Emery
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Louise Baker
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Brendan R E Ansell
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, North Ryde, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Paul A Haynes
- Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, North Ryde, NSW, Australia
| | - Malcom J McConville
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Aaron R Jex
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Oliveira AA, Oliveira APA, Franco LL, Ferencs MO, Ferreira JFG, Bachi SMPS, Speziali NL, Farias LM, Magalhães PP, Beraldo H. 5-Nitroimidazole-derived Schiff bases and their copper(II) complexes exhibit potent antimicrobial activity against pathogenic anaerobic bacteria. Biometals 2018; 31:571-584. [DOI: 10.1007/s10534-018-0106-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
|
16
|
Abstract
The 5-nitroimidazole drug metronidazole has remained the drug of choice in the treatment of anaerobic infections, parasitic as well as bacterial, ever since its development in 1959. In contrast to most other antimicrobials, it has a pleiotropic mode of action and reacts with a large number of molecules. Importantly, metronidazole, which is strictly speaking a prodrug, needs to be reduced at its nitro group in order to become toxic. Reduction of metronidazole, however, only takes place under very low concentrations of oxygen, explaining why metronidazole is exclusively toxic to microaerophilic and anaerobic microorganisms. In general, resistance rates amongst the pathogens treated with metronidazole have remained low until the present day. Nevertheless, metronidazole resistance does occur, and for the treatment of some pathogens, especially Helicobacter pylori, metronidazole has become almost useless in some parts of the world. This review will give an account on the current status of research on metronidazole's mode of action, metronidazole resistance in eukaryotes and prokaryotes, and on other 5-nitroimidazoles in use.
Collapse
|
17
|
Mathias F, Kabri Y, Okdah L, Di Giorgio C, Rolain JM, Spitz C, Crozet MD, Vanelle P. An Efficient One-Pot Catalyzed Synthesis of 2,4-Disubstituted 5-Nitroimidazoles Displaying Antiparasitic and Antibacterial Activities. Molecules 2017; 22:molecules22081278. [PMID: 28771219 PMCID: PMC6152245 DOI: 10.3390/molecules22081278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/29/2017] [Indexed: 11/16/2022] Open
Abstract
A one-pot regioselective bis-Suzuki-Miyaura or Suzuki-Miyaura/Sonogashira reaction on 2,4-dibromo-1-methyl-5-nitro-1H-imidazole under microwave heating was developed. This method is applicable to a wide range of (hetero)arylboronic acids and terminal alkynes. Additionally, this approach provides a simple and efficient way to synthesize 2,4-disubstituted 5-nitroimidazole derivatives with antibacterial and antiparasitic properties.
Collapse
Affiliation(s)
- Fanny Mathias
- Aix Marseille University, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin-CS 30064, 13385 Marseille CEDEX 05, France.
| | - Youssef Kabri
- Aix Marseille University, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin-CS 30064, 13385 Marseille CEDEX 05, France.
| | - Liliane Okdah
- IHU Méditerranée Infection, Aix Marseille University, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, URMITE UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine de la Timone, 19-21 Boulevard Jean Moulin, 13005 Marseille, France.
| | - Carole Di Giorgio
- Aix Marseille University, CNRS, IRD, Avignon Université, IMBE UMR 7263, Laboratoire de Mutagénèse Environnementale, 13385 Marseille, France.
| | - Jean-Marc Rolain
- IHU Méditerranée Infection, Aix Marseille University, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, URMITE UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine de la Timone, 19-21 Boulevard Jean Moulin, 13005 Marseille, France.
| | - Cédric Spitz
- Aix Marseille University, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin-CS 30064, 13385 Marseille CEDEX 05, France.
| | - Maxime D Crozet
- Aix Marseille University, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin-CS 30064, 13385 Marseille CEDEX 05, France.
| | - Patrice Vanelle
- Aix Marseille University, Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin-CS 30064, 13385 Marseille CEDEX 05, France.
| |
Collapse
|
18
|
Abstract
BACKGROUND Giardia intestinalis is microaerophilic diarrhoea-causing protozoan common in countries with suboptimal sanitation. Standard treatment is with nitroimidazoles, but a growing number of refractory cases is being reported. Treatment failure has become increasingly prevalent in travellers who contract giardiasis in Asia. Clinicians are increasingly falling back on second-line and less well-known drugs to treat giardiasis. AIMS To review nitroimidazole-refractory G. intestinalis infection, examine the current efficacy of standard therapeutic agents, consider potential resistance mechanisms which could cause treatment failure and describe the practical aspects of managing this emerging clinical problem. SOURCES A PubMed search was conducted using combinations of the following terms: refractory, Giardia, giardiasis, resistance and treatment. Articles on the pharmacotherapy, drug resistance mechanisms and use of alternative agents in nitroimidazole-refractory giardiasis were reviewed. CONTENT We review the standard drugs for giardiasis, including their efficacy in initial treatment, mode of action and documented in vitro and in vivo drug resistance. We assess the efficacy of alternative drugs in nitroimidazole-refractory disease. Existing data suggest a potential advantage of combination treatment. IMPLICATIONS An optimal treatment strategy for refractory giardiasis has still to be determined, so there is no standard treatment regimen for nitroimidazole-refractory giardiasis. Further work on drug resistance mechanisms and the use of drug combinations in this condition is a priority.
Collapse
|
19
|
Click Chemistry-Facilitated Structural Diversification of Nitrothiazoles, Nitrofurans, and Nitropyrroles Enhances Antimicrobial Activity against Giardia lamblia. Antimicrob Agents Chemother 2017; 61:AAC.02397-16. [PMID: 28396548 DOI: 10.1128/aac.02397-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
Giardia lamblia is an important and ubiquitous cause of diarrheal disease. The primary agents in the treatment of giardiasis are nitroheterocyclic drugs, particularly the imidazoles metronidazole and tinidazole and the thiazole nitazoxanide. Although these drugs are generally effective, treatment failures occur in up to 20% of cases, and resistance has been demonstrated in vivo and in vitro Prior work had suggested that side chain modifications of the imidazole core can lead to new effective 5-nitroimidazole drugs that can combat nitro drug resistance, but the full potential of nitroheterocycles other than imidazole to yield effective new antigiardial agents has not been explored. Here, we generated derivatives of two clinically utilized nitroheterocycles, nitrothiazole and nitrofuran, as well as a third heterocycle, nitropyrrole, which is related to nitroimidazole but has not been systematically investigated as an antimicrobial drug scaffold. Click chemistry was employed to synthesize 442 novel nitroheterocyclic compounds with extensive side chain modifications. Screening of this library against representative G. lamblia strains showed a wide spectrum of in vitro activities, with many of the compounds exhibiting superior activity relative to reference drugs and several showing >100-fold increase in potency and the ability to overcome existing forms of metronidazole resistance. The majority of new compounds displayed no cytotoxicity against human cells, and several compounds were orally active against murine giardiasis in vivo These findings provide additional impetus for the systematic development of nitroheterocyclic compounds with nonimidazole cores as alternative and improved agents for the treatment of giardiasis and potentially other infectious agents.
Collapse
|
20
|
Ang CW, Jarrad AM, Cooper MA, Blaskovich MAT. Nitroimidazoles: Molecular Fireworks That Combat a Broad Spectrum of Infectious Diseases. J Med Chem 2017; 60:7636-7657. [PMID: 28463485 DOI: 10.1021/acs.jmedchem.7b00143] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Infectious diseases claim millions of lives every year, but with the advent of drug resistance, therapeutic options to treat infections are inadequate. There is now an urgent need to develop new and effective treatments. Nitroimidazoles are a class of antimicrobial drugs that have remarkable broad spectrum activity against parasites, mycobacteria, and anaerobic Gram-positive and Gram-negative bacteria. While nitroimidazoles were discovered in the 1950s, there has been renewed interest in their therapeutic potential, particularly for the treatment of parasitic infections and tuberculosis. In this review, we summarize different classes of nitroimidazoles that have been described in the literature in the past five years, from approved drugs and clinical candidates to examples undergoing preclinical or early stage development. The relatively "nonspecific" mode of action and resistance mechanisms of nitromidazoles are discussed, and contemporary strategies to facilitate nitroimidazole drug development are highlighted.
Collapse
Affiliation(s)
- Chee Wei Ang
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Angie M Jarrad
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Matthew A Cooper
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Mark A T Blaskovich
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| |
Collapse
|
21
|
Biyogo AM, Curti C, El-Kashef H, Khoumeri O, Terme T, Vanelle P. Mn(OAc)3 catalyzed intermolecular oxidative peroxycyclization of naphthoquinone. RSC Adv 2017. [DOI: 10.1039/c6ra25138b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Manganese(iii) acetate mediated peroxycyclization between 2-hydroxy-3-methylnaphthoquinone and alkenes allowed the synthesis of more than 50 original dihydronaphtho[2,3-c][1,2]dioxine-5,10(3H,10aH)-diones.
Collapse
Affiliation(s)
- Alex Meye Biyogo
- Aix-Marseille Université
- CNRS
- Institut de Chimie Radicalaire ICR
- UMR 7273
- Laboratoire de Pharmaco-Chimie Radicalaire
| | - Christophe Curti
- Aix-Marseille Université
- CNRS
- Institut de Chimie Radicalaire ICR
- UMR 7273
- Laboratoire de Pharmaco-Chimie Radicalaire
| | | | - Omar Khoumeri
- Aix-Marseille Université
- CNRS
- Institut de Chimie Radicalaire ICR
- UMR 7273
- Laboratoire de Pharmaco-Chimie Radicalaire
| | - Thierry Terme
- Aix-Marseille Université
- CNRS
- Institut de Chimie Radicalaire ICR
- UMR 7273
- Laboratoire de Pharmaco-Chimie Radicalaire
| | - Patrice Vanelle
- Aix-Marseille Université
- CNRS
- Institut de Chimie Radicalaire ICR
- UMR 7273
- Laboratoire de Pharmaco-Chimie Radicalaire
| |
Collapse
|
22
|
Desroches J, Kieffer C, Primas N, Hutter S, Gellis A, El-Kashef H, Rathelot P, Verhaeghe P, Azas N, Vanelle P. Discovery of new hit-molecules targeting Plasmodium falciparum through a global SAR study of the 4-substituted-2-trichloromethylquinazoline antiplasmodial scaffold. Eur J Med Chem 2017; 125:68-86. [DOI: 10.1016/j.ejmech.2016.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/21/2023]
|
23
|
Spitz C, Mathias F, Giuglio-Tonolo AG, Terme T, Vanelle P. Practical and Metal-Free Synthesis of Novel Enantiopure Amides Containing the Potentially Bioactive 5-Nitroimidazole Moiety. Molecules 2016; 21:molecules21111472. [PMID: 27827934 PMCID: PMC6273685 DOI: 10.3390/molecules21111472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/02/2022] Open
Abstract
We report here a practical and metal-free synthesis of novel enantiopure amides containing the drug-like 5-nitroimidazole scaffold. The first step was a metal-free diastereoselective addition of 4-(4-(chloromethyl)phenyl)-1,2-dimethyl-5-nitro-1H-imidazole to enantiomerically pure N-tert-butanesulfinimine. Then, the N-tert-butanesulfinyl–protected amine was easily deprotected under acidic conditions. Finally, the primary amine was coupled with different acid chlorides or acids to give the corresponding amides. The mild reaction conditions and high tolerance for various substitutions make this approach attractive for constructing pharmacologically interesting 5-nitroimidazoles.
Collapse
Affiliation(s)
- Cédric Spitz
- Aix-Marseille Université, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS 30064, 13385 Marseille CEDEX 05, France.
| | - Fanny Mathias
- Aix-Marseille Université, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS 30064, 13385 Marseille CEDEX 05, France.
| | - Alain Gamal Giuglio-Tonolo
- Aix-Marseille Université, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS 30064, 13385 Marseille CEDEX 05, France.
| | - Thierry Terme
- Aix-Marseille Université, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS 30064, 13385 Marseille CEDEX 05, France.
| | - Patrice Vanelle
- Aix-Marseille Université, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS 30064, 13385 Marseille CEDEX 05, France.
| |
Collapse
|
24
|
Hajri M, Esteve MA, Khoumeri O, Abderrahim R, Terme T, Montana M, Vanelle P. Synthesis and evaluation of in vitro antiproliferative activity of new ethyl 3-(arylethynyl)quinoxaline-2-carboxylate and pyrido[4,3-b]quinoxalin-1(2H)-one derivatives. Eur J Med Chem 2016; 124:959-966. [PMID: 27770736 DOI: 10.1016/j.ejmech.2016.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023]
Abstract
We report a novel series of quinoxaline derivatives from which agents with antiproliferative activity have been identified. Two ethyl 3-(arylethynyl)quinoxaline-2-carboxylates demonstrated substantial antiproliferative activity against both human non-small cell lung carcinoma (A549) and glioblastoma (U87-MG) cell lines. Pyrido[4,3-b]quinoxalin-1(2H)-ones demonstrated poor activity against A549 and U87-MG cell lines. Three of the derivatives in ethyl 3-(arylethynyl)quinoxaline-2-carboxylate series demonstrated substantial antiproliferative activity. The arylethynyl derivative 2a and 2d proved to be the most cytotoxic with an IC50 value of 3.3 μM for both A549 and U87-MG cell lines.
Collapse
Affiliation(s)
- Majdi Hajri
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Physics of Lamellaires Materials and Hybrids Nanomaterials, Zarzouna 7021, Bizerte, Tunisia
| | - Marie-Anne Esteve
- Aix-Marseille Université, INSERM, CRO2, UMR_S911, 13385 Marseille, France; AP-HM, Hôpital Timone, Pharmacie, 13005 Marseille, France
| | - Omar Khoumeri
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille, France
| | - Raoudha Abderrahim
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Physics of Lamellaires Materials and Hybrids Nanomaterials, Zarzouna 7021, Bizerte, Tunisia
| | - Thierry Terme
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille, France
| | - Marc Montana
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille, France
| | - Patrice Vanelle
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille, France.
| |
Collapse
|
25
|
Velázquez-Olvera S, Salgado-Zamora H, Jiménez-Cardoso E, Campos-Aldrete ME, Pérez-González C, Ben Hadda T. In vitro anti-Giardia lamblia activity of 2-aryl-3-hydroxymethyl imidazo[1,2-a]pyridines and -pyrimidines, individually and in combination with albendazole. Acta Trop 2016; 155:6-10. [PMID: 26657313 DOI: 10.1016/j.actatropica.2015.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 08/09/2015] [Accepted: 11/20/2015] [Indexed: 02/02/2023]
Abstract
Giardiasis is a major diarrheal disease found throughout the world, the causative agent being the flagellate protozoan Giardia intestinalis. Infection is more common in children than in adults. The appearance of drug resistance has complicated the treatment of several parasitic diseases, including giardiasis. Thus, the aim of this investigation was to make an in vitro evaluation of the antigiardia response of synthetic derivatives 2-aryl-3-hydroxymethylimidazo[1,2-a]pyridines 1 and -pyrimidines 2 against trophozoites of Giardia lamblia WB, in comparison with the reference drug, albendazole. Additionally, the synergistic action of albendazole in combination with each of the most active 2-aryl-3-hydroxymethyl imidazo[1,2-a]pyridines and pyrimidines was also assessed. Based on the IC50 values obtained, the best anti-Giardia activity was provided by the 3-hydroxymethyl-4-fluorophenylimidazo[1,2-a]pyrimidine derivative 2c and the corresponding imidazo[1,2-a]pyrimidine with the p-tolyl substituent 2d, followed by 2a and 2b. These four compounds showed effectiveness at a concentration similar to that of albendazole. Regarding synergism, the IC50 of the combination of albendazole with 2a, 2b or 2c gave the best anti-Giardia action, showing greater efficacy than albendazole alone. Hence, G. lamblia WB showed high susceptibility to some 2-aryl-3-hydroxymethyl imidazo[1,2-a] pyrimidines, which acted synergistically when used in combination with albendazole.
Collapse
Affiliation(s)
- Stephanía Velázquez-Olvera
- Departamento Química Orgánica, Escuela Nacional Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, 11340 México City, Mexico.
| | - Héctor Salgado-Zamora
- Departamento Química Orgánica, Escuela Nacional Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, 11340 México City, Mexico.
| | - Enedina Jiménez-Cardoso
- Laboratorio de Investigación en Parasitología, Hospital Infantil de Mexico "Federico Gomez", SS, Dr. Marquez No. 162, Col. Doctores, 06720 Mexico City, Mexico.
| | - Maria-Elena Campos-Aldrete
- Departamento Química Orgánica, Escuela Nacional Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, 11340 México City, Mexico.
| | - Cuauhtémoc Pérez-González
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, 04960 Mexico City, Mexico.
| | - Taibi Ben Hadda
- Laboratoire Chimie Matériaux, Département de Chimie, Faculté des Sciences, Université Mohamed 1ER, 60000 Oujda, Morocco.
| |
Collapse
|
26
|
Abstract
The world health organization currently recognizes diarrhoeal diseases as a significant cause of death in children globally. Protozoan parasites such as Giardia and Entamoeba that thrive in the oxygen-deprived environment of the human gut are common etiological agents of diarrhoea. In the urogenital tract of humans, the anaerobic protozoan parasite Trichomonas vaginalis is notorious as the most common non-viral, sexually transmitted pathogen. Even with high medical impact, our understanding of anaerobic parasite physiology is scarce and as a result, treatment choices are limited. Fluorescent proteins (FPs) are invaluable tools as genetically encoded protein tags for advancing knowledge of cellular function. These FP tags emit fluorescent colours and once attached to a protein of interest, allow tracking of parasite proteins in the dynamic cellular space. Application of green FPs-like FPs in anaerobic protozoans is hindered by their oxygen dependency. In this review, we examine aspects of anaerobic parasite biology that clash with physio-chemical properties of FPs and limit their use as live-parasite protein tags. We expose novel FPs, such as miniSOG that do not require oxygen for signal production. The potential use of novel FPs has the opportunity to leverage the anaerobe parasitologist toolkit to that of aerobe parasitologist.
Collapse
|
27
|
Miyamoto Y, Eckmann L. Drug Development Against the Major Diarrhea-Causing Parasites of the Small Intestine, Cryptosporidium and Giardia. Front Microbiol 2015; 6:1208. [PMID: 26635732 PMCID: PMC4652082 DOI: 10.3389/fmicb.2015.01208] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022] Open
Abstract
Diarrheal diseases are among the leading causes of morbidity and mortality in the world, particularly among young children. A limited number of infectious agents account for most of these illnesses, raising the hope that advances in the treatment and prevention of these infections can have global health impact. The two most important parasitic causes of diarrheal disease are Cryptosporidium and Giardia. Both parasites infect predominantly the small intestine and colonize the lumen and epithelial surface, but do not invade deeper mucosal layers. This review discusses the therapeutic challenges, current treatment options, and drug development efforts against cryptosporidiosis and giardiasis. The goals of drug development against Cryptosporidium and Giardia are different. For Cryptosporidium, only one moderately effective drug (nitazoxanide) is available, so novel classes of more effective drugs are a high priority. Furthermore, new genetic technology to identify potential drug targets and better assays for functional evaluation of these targets throughout the parasite life cycle are needed for advancing anticryptosporidial drug design. By comparison, for Giardia, several classes of drugs with good efficacy exist, but dosing regimens are suboptimal and emerging resistance begins to threaten clinical utility. Consequently, improvements in potency and dosing, and the ability to overcome existing and prevent new forms of drug resistance are priorities in antigiardial drug development. Current work on new drugs against both infections has revealed promising strategies and new drug leads. However, the primary challenge for further drug development is the underlying economics, as both parasitic infections are considered Neglected Diseases with low funding priority and limited commercial interest. If a new urgency in medical progress against these infections can be raised at national funding agencies or philanthropic organizations, meaningful and timely progress is possible in treating and possibly preventing cryptosporidiosis and giardiasis.
Collapse
Affiliation(s)
- Yukiko Miyamoto
- Department of Medicine, University of California at San Diego, La Jolla CA, USA
| | - Lars Eckmann
- Department of Medicine, University of California at San Diego, La Jolla CA, USA
| |
Collapse
|
28
|
Abstract
The microaerophilic parasite Giardia lamblia is a causative agent of dysentery affecting hundreds of millions of people around the globe every year. The symptoms of the disease, commonly referred to as giardiasis, are diarrhea, nausea, and malabsorption. Treatment of giardiasis is exclusively based on chemotherapy with antigiardial drugs, including metronidazole, albendazole, and nitazoxanide. In this review, all drugs currently used in the treatment of Giardia infections are discussed with a special emphasis on treatment failure and drug resistance.
Collapse
|
29
|
Ansell BRE, McConville MJ, Ma'ayeh SY, Dagley MJ, Gasser RB, Svärd SG, Jex AR. Drug resistance in Giardia duodenalis. Biotechnol Adv 2015; 33:888-901. [PMID: 25922317 DOI: 10.1016/j.biotechadv.2015.04.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 02/07/2023]
Abstract
Giardia duodenalis is a microaerophilic parasite of the human gastrointestinal tract and a major contributor to diarrheal and post-infectious chronic gastrointestinal disease world-wide. Treatment of G. duodenalis infection currently relies on a small number of drug classes. Nitroheterocyclics, in particular metronidazole, have represented the front line treatment for the last 40 years. Nitroheterocyclic-resistant G. duodenalis have been isolated from patients and created in vitro, prompting considerable research into the biomolecular mechanisms of resistance. These compounds are redox-active and are believed to damage proteins and DNA after being activated by oxidoreductase enzymes in metabolically active cells. In this review, we explore the molecular phenotypes of nitroheterocyclic-resistant G. duodenalis described to date in the context of the protist's unusual glycolytic and antioxidant systems. We propose that resistance mechanisms are likely to extend well beyond currently described resistance-associated enzymes (i.e., pyruvate ferredoxin oxidoreductases and nitroreductases), to include NAD(P)H- and flavin-generating pathways, and possibly redox-sensitive epigenetic regulation. Mechanisms that allow G. duodenalis to tolerate oxidative stress may lead to resistance against both oxygen and nitroheterocyclics, with implications for clinical control. The present review highlights the potential for systems biology tools and advanced bioinformatics to further investigate the multifaceted mechanisms of nitroheterocyclic resistance in this important pathogen.
Collapse
Affiliation(s)
- Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia.
| | - Malcolm J McConville
- Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Showgy Y Ma'ayeh
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Michael J Dagley
- Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia
| |
Collapse
|
30
|
Bahadur V, Mastronicola D, Singh AK, Tiwari HK, Pucillo LP, Sarti P, Singh BK, Giuffrè A. Antigiardial activity of novel triazolyl-quinolone-based chalcone derivatives: when oxygen makes the difference. Front Microbiol 2015; 6:256. [PMID: 25904901 PMCID: PMC4389562 DOI: 10.3389/fmicb.2015.00256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/16/2015] [Indexed: 01/25/2023] Open
Abstract
Giardiasis is a common diarrheal disease worldwide caused by the protozoan parasite Giardia intestinalis. It is urgent to develop novel drugs to treat giardiasis, due to increasing clinical resistance to the gold standard drug metronidazole (MTZ). New potential antiparasitic compounds are usually tested for their killing efficacy against G. intestinalis under anaerobic conditions, in which MTZ is maximally effective. On the other hand, though commonly regarded as an ‘anaerobic pathogen,’ G. intestinalis is exposed to relatively high O2 levels in vivo, living attached to the mucosa of the proximal small intestine. It is thus important to test the effect of O2 when searching for novel potential antigiardial agents, as outlined in a previous study [Bahadur et al. (2014) Antimicrob. Agents Chemother. 58, 543]. Here, 45 novel chalcone derivatives with triazolyl-quinolone scaffold were synthesized, purified, and characterized by high resolution mass spectrometry, 1H and 13C nuclear magnetic resonance and infrared spectroscopy. Efficacy of the compounds against G. intestinalis trophozoites was tested under both anaerobic and microaerobic conditions, and selectivity was assessed in a counter-screen on human epithelial colorectal adenocarcinoma cells. MTZ was used as a positive control in the assays. All the tested compounds proved to be more effective against the parasite in the presence of O2, with the exception of MTZ that was less effective. Under anaerobiosis eighteen compounds were found to be as effective as MTZ or more (up to three to fourfold); the same compounds proved to be up to >100-fold more effective than MTZ under microaerobic conditions. Four of them represent potential candidates for the design of novel antigiardial drugs, being highly selective against Giardia trophozoites. This study further underlines the importance of taking O2 into account when testing novel potential antigiardial compounds.
Collapse
Affiliation(s)
- Vijay Bahadur
- Bio-Organic Laboratory, Department of Chemistry, University of Delhi Delhi, India
| | - Daniela Mastronicola
- CNR Institute of Molecular Biology and Pathology Rome, Italy ; Department of Biochemical Sciences and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | - Amit K Singh
- Bio-Organic Laboratory, Department of Chemistry, University of Delhi Delhi, India
| | - Hemandra K Tiwari
- Bio-Organic Laboratory, Department of Chemistry, University of Delhi Delhi, India
| | - Leopoldo P Pucillo
- L. Spallanzani National Institute for Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Paolo Sarti
- CNR Institute of Molecular Biology and Pathology Rome, Italy ; Department of Biochemical Sciences and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | - Brajendra K Singh
- Bio-Organic Laboratory, Department of Chemistry, University of Delhi Delhi, India
| | | |
Collapse
|
31
|
El-Taweel HA. Understanding drug resistance in human intestinal protozoa. Parasitol Res 2015; 114:1647-59. [DOI: 10.1007/s00436-015-4423-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 03/05/2015] [Indexed: 01/07/2023]
|
32
|
Uzlikova M, Nohynkova E. The effect of metronidazole on the cell cycle and DNA in metronidazole-susceptible and -resistant Giardia cell lines. Mol Biochem Parasitol 2015; 198:75-81. [PMID: 25681616 DOI: 10.1016/j.molbiopara.2015.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 01/29/2023]
Abstract
Metronidazole (MTZ) is used as the drug of choice to treat Giardia infections. It is believed that the prodrug is transformed intracellularly into toxic intermediates that interact with cellular components, leading to cell death. The present study aimed to describe the effects of MTZ treatment on DNA and cell cycle progression in MTZ-sensitive and in vitro-derived MTZ-resistant cell lines. Detection of the phosphorylated form of histone H2A in cell nuclei together with electrophoresis of genomic DNA, flow cytometry analysis and incubation of cells with other drugs (albendazole or neomycin) demonstrated that DNA damage in MTZ-treated cells is clearly conditioned by the presence of this drug. The flow cytometry analysis and a BrdU labeling assay showed that the sublethal drug concentration affects the replication phase of the cell cycle. Cells incubated with lethal drug concentration exhibit unchanged DNA profile, only about 50% of cells are positive for γH2A and lose an ability to attach to a surface after few hours of incubation. It is likely that the early reaction of cells to lethal concentration of MTZ is not primarily initiated by the reaction to DNA damage but rather by the immediate interaction of MTZ with biomolecules where activated MTZ is generated. Interestingly, in MTZ-resistant lines incubated in the presence of the drug, about 40% of cells remain permanently positive for γH2A without any effects on the cell cycle progression suggesting that DNA damage caused by MTZ treatment persists in these cells. Accelerated mutagenesis caused by MTZ-induced DNA damage may therefore be a new factor contributing to the development of natural resistance.
Collapse
Affiliation(s)
- Magdalena Uzlikova
- Department of Tropical Medicine, First Faculty of Medicine, Charles University in Prague, Studnickova 7, Prague 2 128 00, Czech Republic.
| | - Eva Nohynkova
- Department of Tropical Medicine, First Faculty of Medicine, Charles University in Prague, Studnickova 7, Prague 2 128 00, Czech Republic.
| |
Collapse
|
33
|
Nadji-Boukrouche AR, Khoumeri O, Terme T, Liacha M, Vanelle P. TDAE strategy in the benzoxazolone series: synthesis and reactivity of a new benzoxazolinonic anion. Molecules 2015; 20:1262-76. [PMID: 25594341 PMCID: PMC6272611 DOI: 10.3390/molecules20011262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/08/2015] [Indexed: 11/16/2022] Open
Abstract
We describe an original pathway to produce new 5-substituted 3-methyl-6-nitro-benzoxazolones by the reaction of aromatic carbonyl and α-carbonyl ester derivatives with a benzoxazolinonic anion formed exclusively via the TDAE strategy.
Collapse
Affiliation(s)
| | - Omar Khoumeri
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille 13385, France.
| | - Thierry Terme
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille 13385, France.
| | - Messaoud Liacha
- Laboratoire de Synthèse et de Biocatalyse Organique (LSBO), Faculté des Sciences, Université Badji Mokhtar-Annaba, BP 12 El-Hadjar, Annaba 23000, Algeria.
| | - Patrice Vanelle
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille 13385, France.
| |
Collapse
|
34
|
First single electron transfer reaction on propargylic chloride in 5-nitroimidazole series. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Martínez-González E, Frontana C. Inner reorganization limiting electron transfer controlled hydrogen bonding: intra- vs. intermolecular effects. Phys Chem Chem Phys 2014; 16:8044-50. [PMID: 24653999 DOI: 10.1039/c3cp55106g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates. Electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level for metronidazole, including the solvent effect by the Cramer/Truhlar model, suggested that the minimum energy conformer is stabilized by intramolecular hydrogen bonding. In this structure, the inner reorganization energy, λi,j, contributes significantly (0.5 eV) to the total reorganization energy of electron transfer, thus leading to a diminishment of the experimental k.
Collapse
Affiliation(s)
- Eduardo Martínez-González
- Centro de Investigación y Desarrollo Tecnológico en Electroquimica, S. Parque Tecnologico Queretaro Sanfandila Pedro Escobedo, Queretaro 76703, Mexico.
| | | |
Collapse
|
36
|
Carvalho TBD, Oliveira-Sequeira TCG, Guimarães S. In vitro antigiardial activity of the cysteine protease inhibitor E-64. Rev Inst Med Trop Sao Paulo 2014; 56:43-7. [PMID: 24553607 PMCID: PMC4085827 DOI: 10.1590/s0036-46652014000100006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 05/16/2013] [Indexed: 12/03/2022] Open
Abstract
The quest for new antiparasitic alternatives has led researchers to base
their studies on insights into biology, host-parasite interactions and pathogenesis.
In this context, proteases and their inhibitors are focused, respectively, as
druggable targets and new therapy alternatives. Herein, we proposed to evaluate the
in vitro effect of the cysteine protease inhibitor E-64 on
Giardia trophozoites growth, adherence and viability.
Trophozoites (105) were exposed to E-64 at different final concentrations,
for 24, 48 and 72 h at 37 °C. In the growth and adherence assays, the number of
trophozoites was estimated microscopically in a haemocytometer, whereas cell
viability was evaluated by a dye-reduction assay using MTT. The E-64 inhibitor showed
effect on growth, adherence and viability of trophozoites, however, its better
performance was detected in the 100 µM-treated cultures. Although metronidazole was
more effective, the E-64 was shown to be able to inhibit growth, adherence and
viability rates by ≥ 50%. These results reveal that E-64 can interfere in some
crucial processes to the parasite survival and they open perspectives for future
investigations in order to confirm the real antigiardial potential of the protease
inhibitors.
Collapse
Affiliation(s)
- Thaís Batista de Carvalho
- Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil, Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Teresa Cristina Goulart Oliveira-Sequeira
- Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil, Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Semíramis Guimarães
- Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil, Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
37
|
O(2)-dependent efficacy of novel piperidine- and piperazine-based chalcones against the human parasite Giardia intestinalis. Antimicrob Agents Chemother 2013; 58:543-9. [PMID: 24217695 DOI: 10.1128/aac.00990-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Giardia intestinalis is the most frequent protozoan agent of intestinal diseases worldwide. Though commonly regarded as an anaerobic pathogen, it preferentially colonizes the fairly oxygen-rich mucosa of the proximal small intestine. Therefore, when testing new potential antigiardial drugs, O2 should be taken into account, since it also reduces the efficacy of metronidazole, the gold standard drug against giardiasis. In this study, 46 novel chalcones were synthesized by microwave-assisted Claisen-Schmidt condensation, purified, characterized by high-resolution mass spectrometry, (1)H and (13)C nuclear magnetic resonance, and infrared spectroscopy, and tested for their toxicity against G. intestinalis under standard anaerobic conditions. As a novel approach, compounds showing antigiardial activity under anaerobiosis were also assayed under microaerobic conditions, and their selectivity against parasitic cells was assessed in a counterscreen on human epithelial colorectal adenocarcinoma cells. Among the tested compounds, three [30(a), 31(e), and 33] were more effective in the presence of O2 than under anaerobic conditions and killed the parasite 2 to 4 times more efficiently than metronidazole under anaerobiosis. Two of them [30(a) and 31(e)] proved to be selective against parasitic cells, thus representing potential candidates for the design of novel antigiardial drugs. This study highlights the importance of testing new potential antigiardial agents not only under anaerobic conditions but also at low, more physiological O2 concentrations.
Collapse
|
38
|
Hernández-Alcántara G, Torres-Larios A, Enríquez-Flores S, García-Torres I, Castillo-Villanueva A, Méndez ST, de la Mora-de la Mora I, Gómez-Manzo S, Torres-Arroyo A, López-Velázquez G, Reyes-Vivas H, Oria-Hernández J. Structural and functional perturbation of Giardia lamblia triosephosphate isomerase by modification of a non-catalytic, non-conserved region. PLoS One 2013; 8:e69031. [PMID: 23894402 PMCID: PMC3718800 DOI: 10.1371/journal.pone.0069031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We have previously proposed triosephosphate isomerase of Giardia lamblia (GlTIM) as a target for rational drug design against giardiasis, one of the most common parasitic infections in humans. Since the enzyme exists in the parasite and the host, selective inhibition is a major challenge because essential regions that could be considered molecular targets are highly conserved. Previous biochemical evidence showed that chemical modification of the non-conserved non-catalytic cysteine 222 (C222) inactivates specifically GlTIM. The inactivation correlates with the physicochemical properties of the modifying agent: addition of a non-polar, small chemical group at C222 reduces the enzyme activity by one half, whereas negatively charged, large chemical groups cause full inactivation. RESULTS In this work we used mutagenesis to extend our understanding of the functional and structural effects triggered by modification of C222. To this end, six GlTIM C222 mutants with side chains having diverse physicochemical characteristics were characterized. We found that the polarity, charge and volume of the side chain in the mutant amino acid differentially alter the activity, the affinity, the stability and the structure of the enzyme. The data show that mutagenesis of C222 mimics the effects of chemical modification. The crystallographic structure of C222D GlTIM shows the disruptive effects of introducing a negative charge at position 222: the mutation perturbs loop 7, a region of the enzyme whose interactions with the catalytic loop 6 are essential for TIM stability, ligand binding and catalysis. The amino acid sequence of TIM in phylogenetic diverse groups indicates that C222 and its surrounding residues are poorly conserved, supporting the proposal that this region is a good target for specific drug design. CONCLUSIONS The results demonstrate that it is possible to inhibit species-specifically a ubiquitous, structurally highly conserved enzyme by modification of a non-conserved, non-catalytic residue through long-range perturbation of essential regions.
Collapse
Affiliation(s)
- Gloria Hernández-Alcántara
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Alfredo Torres-Larios
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Enríquez-Flores
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Itzhel García-Torres
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Adriana Castillo-Villanueva
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Sara T. Méndez
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | | | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Angélica Torres-Arroyo
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Gabriel López-Velázquez
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Horacio Reyes-Vivas
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
- * E-mail: (JOH); (HRV)
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
- * E-mail: (JOH); (HRV)
| |
Collapse
|
39
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 502] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Müller J, Schildknecht P, Müller N. Metabolism of nitro drugs metronidazole and nitazoxanide in Giardia lamblia: characterization of a novel nitroreductase (GlNR2). J Antimicrob Chemother 2013; 68:1781-9. [PMID: 23580565 DOI: 10.1093/jac/dkt106] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The protozoan parasite Giardia lamblia causes giardiasis, a persistent diarrhoea. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for the treatment of giardiasis. Nitroreductases may play a role in activating these drugs. G. lamblia contains two nitroreductases, GlNR1 and GlNR2. The aim of this work was to elucidate the role of GlNR2. METHODS Expression of GlNR2 was analysed by reverse transcription PCR. Recombinant GlNR2 was overexpressed in G. lamblia and drug susceptibility was analysed. Recombinant GlNR2 was subjected to functional assays. Escherichia coli expressing full-length or truncated GlNR1 and GlNR2 were grown in the presence of nitro compounds. Using E. coli reporter strains for nitric oxide and DNA damage responses, we analysed whether GlNR1 and GlNR2 elicited the respective responses in the presence, or absence, of the drugs. RESULTS G. lamblia trophozoites overexpressing GlNR2 were less susceptible to both nitro drugs as compared with control trophozoites. GlNR2 was a functional nitroreductase when expressed in E. coli. E. coli expressing GlNR1 was more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions. E. coli expressing GlNR2 was not susceptible to either drug. In reporter strains, GlNR1, but not GlNR2, elicited nitric oxide and DNA repair responses, even in the absence of nitro drugs. CONCLUSIONS These findings suggest that GlNR2 is an active nitroreductase with a mode of action different from that of GlNR1. Thus, susceptibility to nitro drugs may depend not only on activation, but also on inactivation of the drugs by specific nitroreductases.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
| | | | | |
Collapse
|
41
|
A reprofiled drug, auranofin, is effective against metronidazole-resistant Giardia lamblia. Antimicrob Agents Chemother 2013; 57:2029-35. [PMID: 23403423 DOI: 10.1128/aac.01675-12] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Giardiasis is one of the most common causes of diarrheal disease worldwide. Treatment is primarily with 5-nitro antimicrobials, particularly metronidazole. Resistance to metronidazole has been described, and treatment failures can occur in up to 20% of cases, making development of alternative antigiardials an important goal. To this end, we have screened a chemical library of 746 approved human drugs and 164 additional bioactive compounds for activity against Giardia lamblia. We identified 56 compounds that caused significant inhibition of G. lamblia growth and attachment. Of these, 15 were previously reported to have antigiardial activity, 20 were bioactive but not approved for human use, and 21 were drugs approved for human use for other indications. One notable compound of the last group was the antirheumatic drug auranofin. Further testing revealed that auranofin was active in the low (4 to 6)-micromolar range against a range of divergent G. lamblia isolates representing both human-pathogenic assemblages A and B. Most importantly, auranofin was active against multiple metronidazole-resistant strains. Mechanistically, auranofin blocked the activity of giardial thioredoxin oxidoreductase, a critical enzyme involved in maintaining normal protein function and combating oxidative damage, suggesting that this inhibition contributes to the antigiardial activity. Furthermore, auranofin was efficacious in vivo, as it eradicated infection with different G. lamblia isolates in different rodent models. These results indicate that the approved human drug auranofin could be developed as a novel agent in the armamentarium of antigiardial drugs, particularly against metronidazole-resistant strains.
Collapse
|
42
|
Reconstruction of Sugar Metabolic Pathways of Giardia lamblia. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:980829. [PMID: 23119161 PMCID: PMC3483818 DOI: 10.1155/2012/980829] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/18/2012] [Accepted: 09/23/2012] [Indexed: 11/20/2022]
Abstract
Giardia lamblia is an “important” pathogen of humans, but as a diplomonad excavate it is evolutionarily distant from other eukaryotes and relatively little is known about its core metabolic pathways. KEGG, the widely referenced site for providing information of metabolism, does not yet include many enzymes from Giardia species. Here we identify Giardia's core sugar metabolism using standard bioinformatic approaches. By comparing Giardia proteomes with known enzymes from other species, we have identified enzymes in the glycolysis pathway, as well as some enzymes involved in the TCA cycle and oxidative phosphorylation. However, the majority of enzymes from the latter two pathways were not identifiable, indicating the likely absence of these functionalities. We have also found enzymes from the Giardia glycolysis pathway that appear more similar to those from bacteria. Because these enzymes are different from those found in mammals, the host organisms for Giardia, we raise the possibility that these bacteria-like enzymes could be novel drug targets for treating Giardia infections.
Collapse
|
43
|
Zink L, Neildé K, Crozet MD, Vanelle P. Unexpected palladium catalyzed O-arylation occurring in 4-(4-fluoro-3-nitrophenyl)-1,2-dimethyl-5-nitro-1H-imidazole series. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.07.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Dunn LA, Tan KSW, Vanelle P, Juspin T, Crozet MD, Terme T, Upcroft P, Upcroft JA. Development of metronidazole-resistant lines of Blastocystis sp. Parasitol Res 2012; 111:441-50. [PMID: 22362365 DOI: 10.1007/s00436-012-2860-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 02/07/2012] [Indexed: 01/22/2023]
Abstract
Metronidazole (MTR) is frequently used for the treatment of Blastocystis infections, but with variable effectiveness, and often with treatment failures as a possible result of drug resistance. We have developed two Blastocystis MTR-resistant (MTR(R)) subtype 4 WR1 lines (WR1-M4 and WR1-M5), with variable susceptibility to a panel of anti-protozoal agents including various 5-nitroimidazoles, nitazoxanide and furazolidone. WR1-M4 and WR1-M5 were developed and assessed over an 18-month period and displayed persistent MTR resistance, being more than 2.5-fold less susceptible to MTR than the parent isolate. The MTR(R) lines grew with a similar g time to WR1, but were morphologically less consistent with a mixture of size. All Blastocystis isolates and the MTR(R) lines were most susceptible to the 5-nitroimidazole drug ronidazole. WR1-M5 was apparently cross-resistant to satranidazole and furazolidone, and WR1-M4 was cross-resistant to nitazoxanide. These MTR(R) lines now provide a valuable tool for the continued assessment of the efficacy and mechanism of action of new and established drugs against a range of Blastocystis sp. subtypes, in order to identify a universally effective drug and to facilitate understanding of the mechanisms of drug action and resistance in Blastocystis.
Collapse
Affiliation(s)
- L A Dunn
- Queensland Institute of Medical Research, PO Royal Brisbane Hospital, 4029, Herston, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Giardiosis is a neglected parasitic disease that produces diarrhoea and different degrees of malabsorption in humans and animals. Its treatment is based on derivatives of 5-nitroimidazoles, benzimidazoles, nitrofuranes, acridine and nitrotiazoles. These drugs produce undesirable secondary effects, ranging from a metallic taste in the mouth to genetic damage and the selection of resistant strains; therefore, it is necessary to develop new therapeutic alternatives. We demonstrated that a 2-h treatment with 2·87 μg ml(-1) of fraction 6 of Lippia graveolens (F-6) was sufficient to kill half of an experimental Giardia intestinalis (Syn. G. duodenalis, G. lamblia) population, based on the reduction of MTT-tetrazolium salt levels. F-6 breaks the nuclear envelope and injures the ventral suckling disc. The major compounds of F-6 were characterized as naringenin, thymol, pinocembrin and traces of compounds not yet identified. The results suggest that Lippia is a potential source to obtain compounds with anti-Giardia activity. This knowledge is an important starting point to develop new anti-giardial drugs. Future studies will be required to establish the efficacy of F-6 in vivo using an animal model.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Giardiasis is one of the most common causes of diarrheal disease worldwide, yet existing antimicrobial therapies are not always effective and drug resistance occurs in vivo and in vitro. The review focuses on recent advances in the development of new antigiardial drug candidates. RECENT FINDINGS Modification of existing drug leads is a major strategy to develop new high-potency drugs. Complex derivatives of 5-nitroimidazole, the core structure of the most commonly used antigiardial drug, metronidazole, have shown significantly improved activities against Giardia and the ability to overcome metronidazole resistance. Derivatives of benzimidazole, the structural core of the effective antigiardial albendazole, are also exhibiting promising new activities. Beyond lead modifications, several new classes of antigiardial drug candidates have recently been identified by high-throughput screening of large compound libraries, and first efforts have been reported on the development of drugs tailored to known molecular targets in Giardia. SUMMARY The pipeline of new antigiardial drug candidates has significantly expanded over the last few years, but this expansion has so far not been accompanied by demonstration of efficacy in animal models or by a clear understanding of the action mechanisms, particularly in regard to new nitro antimicrobials. Many challenges are still to be expected before clinical utility of new antigiardial drugs can be established.
Collapse
|
47
|
|
48
|
Impaired parasite attachment as fitness cost of metronidazole resistance in Giardia lamblia. Antimicrob Agents Chemother 2011; 55:4643-51. [PMID: 21825286 DOI: 10.1128/aac.00384-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Infections with the diarrheagenic protozoan pathogen Giardia lamblia are most commonly treated with metronidazole (Mz). Treatment failures with Mz occur in 10 to 20% of cases and Mz resistance develops in the laboratory, yet clinically, Mz-resistant (Mz(r)) G. lamblia has rarely been isolated from patients. To understand why clinical Mz(r) isolates are rare, we questioned whether Mz resistance entails fitness costs to the parasite. Our studies employed several newly generated and established isogenic Mz(r) cell lines with stable, high-level resistance to Mz and significant cross-resistance to tinidazole, nitazoxanide, and furazolidone. Oral infection of suckling mice revealed that three of five Mz(r) cell lines could not establish infection, while two Mz(r) cell lines infected pups, albeit with reduced efficiencies. Failure to colonize resulted from a diminished capacity of the parasite to attach to the intestinal mucosa in vivo and to epithelial cells and plastic surfaces in vitro. The attachment defect was related to impaired glucose metabolism, since the noninfectious Mz(r) lines consumed less glucose, and glucose promoted ATP-independent parasite attachment in the parental lines. Thus, resistance of Giardia to Mz is accompanied by a glucose metabolism-related attachment defect that can interfere with colonization of the host. Because glucose-metabolizing pathways are important for activation of the prodrug Mz, it follows that a fitness trade-off exists between diminished Mz activation and reduced infectivity, which may explain the observed paucity of clinical Mz(r) isolates of Giardia. However, the data also caution that some forms of Mz resistance do not markedly interfere with in vivo infectivity.
Collapse
|
49
|
Leitsch D, Burgess AG, Dunn LA, Krauer KG, Tan K, Duchêne M, Upcroft P, Eckmann L, Upcroft JA. Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. J Antimicrob Chemother 2011; 66:1756-65. [PMID: 21602576 PMCID: PMC3133484 DOI: 10.1093/jac/dkr192] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/12/2011] [Accepted: 04/16/2011] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The mechanism of action of, and resistance to, metronidazole in the anaerobic (or micro-aerotolerant) protozoan parasite Giardia lamblia has long been associated with the reduction of ferredoxin (Fd) by the enzyme pyruvate:ferredoxin oxidoreductase (PFOR) and the subsequent activation of metronidazole by Fd to toxic radical species. Resistance to metronidazole has been associated with down-regulation of PFOR and Fd. The aim of this study was to determine whether the PFOR/Fd couple is the only pathway involved in metronidazole activation in Giardia. METHODS PFOR and Fd activities were measured in extracts of highly metronidazole-resistant (MTR(r)) lines and activities of recombinant G. lamblia thioredoxin reductase (GlTrxR) and NADPH oxidase were assessed for their involvement in metronidazole activation and resistance. RESULTS We demonstrated that several lines of highly MTR(r) G. lamblia have fully functional PFOR and Fd indicating that PFOR/Fd-independent mechanisms are involved in metronidazole activation and resistance in these cells. Flavin-dependent GlTrxR, like TrxR of other anaerobic protozoa, reduces 5-nitroimidazole compounds including metronidazole, although expression of TrxR is not decreased in MTR(r) Giardia. However, reduction of flavins is suppressed in highly MTR(r) cells, as evidenced by as much as an 80% decrease in NADPH oxidase flavin mononucleotide reduction activity. This suppression is consistent with generalized impaired flavin metabolism in highly MTR(r) Trichomonas vaginalis. CONCLUSIONS These data add to the mounting evidence against the dogma that PFOR/Fd is the only couple with a low enough redox potential to reduce metronidazole in anaerobes and point to the multi-factorial nature of metronidazole resistance.
Collapse
Affiliation(s)
- David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anita G. Burgess
- Molecular Genetics Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Qld 4006, Australia
| | - Linda A. Dunn
- Molecular Genetics Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Qld 4006, Australia
| | - Kenia G. Krauer
- Molecular Genetics Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Qld 4006, Australia
| | - Kevin Tan
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117596, Singapore
| | - Michael Duchêne
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Upcroft
- Molecular Genetics Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Qld 4006, Australia
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jacqueline A. Upcroft
- Molecular Genetics Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Qld 4006, Australia
| |
Collapse
|
50
|
Nillius D, Müller J, Müller N. Nitroreductase (GlNR1) increases susceptibility of Giardia lamblia and Escherichia coli to nitro drugs. J Antimicrob Chemother 2011; 66:1029-35. [PMID: 21393225 DOI: 10.1093/jac/dkr029] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The protozoan parasite Giardia lamblia causes the intestinal disease giardiasis, which may lead to acute and chronic diarrhoea in humans and various animal species. For treatment of this disease, several drugs such as the benzimidazole albendazole, the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are currently in use. Previously, a G. lamblia nitroreductase 1 (GlNR1) was identified as a nitazoxanide-binding protein. The aim of the present project was to elucidate the role of this enzyme in the mode of action of the nitro drugs nitazoxanide and metronidazole. METHODS Recombinant GlNR1 was overexpressed in both G. lamblia and Escherichia coli (strain BL21). The susceptibility of the transfected bacterial and giardial cell lines to nitazoxanide and metronidazole was analysed. RESULTS G. lamblia trophozoites overexpressing GlNR1 had a higher susceptibility to both nitro drugs. E. coli were fully resistant to nitazoxanide under both aerobic and semi-aerobic growth conditions. When grown semi-aerobically, bacteria overexpressing GlNR1 became susceptible to nitazoxanide. CONCLUSIONS These findings suggest that GlNR1 activates nitro drugs via reduction yielding a cytotoxic product.
Collapse
Affiliation(s)
- Dorothea Nillius
- Institute of Parasitology, University of Berne, Berne, Switzerland
| | | | | |
Collapse
|