1
|
Biswas UK, Bose A, Ghosh B, Sharma S. An insight into chemically modified chitosan and their biological, pharmaceutical, and medical applications: A review. Int J Biol Macromol 2025; 303:140612. [PMID: 39909251 DOI: 10.1016/j.ijbiomac.2025.140612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/30/2024] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Quaternized chitosan derivatives demonstrated improved antimicrobial activity. Carboxy chitosan derivatives, resulting from carboxylation with glyoxylic acid or chloroalkanoic acid, enhance solubility and are utilized in wound healing and antitumor therapies. Modifications like acylation of chitosan alter hydrophobicity, affecting biocompatibility and drug delivery efficiency. Thiolated chitosan derivatives, with enhanced mucoadhesive properties, are advantageous for mucosal drug delivery. Sulfated chitosan derivatives mimic heparin's functions, showcasing anticoagulant, anti-sclerosis, and antiviral properties. Phosphorylated chitosan derivatives find utility in orthopedics due to their cation-exchange abilities. Heterocyclic chitosan derivatives exhibit antibacterial properties, while Schiff's base and epoxy Schiff's base chitosan derivatives display antimicrobial enhancements and improved drug delivery profiles. Aminosalicylhydrazide cross-linked Schiff's base chitosan derivatives exhibit versatility with heightened antimicrobial and biological activities. Continually exploring novel functional groups highlights the importance of staying current with ongoing research in chitosan modification. Future research should focus on developing innovative chitosan derivatives with enhanced bioactivity, physicochemical properties, and multifunctional capabilities to improve pharmaceutical applications. Additionally, studies on scalability, commercialization, and eco-friendly production methods are essential to ensure industrial viability and sustainability.
Collapse
Affiliation(s)
- Ujjwal Kumar Biswas
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; East India Pharmaceutical Works Limited, 119, Biren Roy Road (West), Kolkata 700061, India
| | - Anindya Bose
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India.
| | - Bhavna Ghosh
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Susrita Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| |
Collapse
|
2
|
Zhu S, Miao Q, Chen Q, Tian L, Dong F, Guo Z, Li Q. Synthesis and antioxidant evaluation of coumarin-functionalised chitosan: A potent, non-toxic free radical scavenging compound. Carbohydr Res 2025; 548:109311. [PMID: 39644713 DOI: 10.1016/j.carres.2024.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
In the present study, we designed to link the coumarin molecule to chitosan via a triazole group and synthesized chitosan-coumarin derivatives, which were further quaternized in one step in order to further improve their solubility to obtain a second series of chitosan-coumarin ammonium salt derivatives. The structures of these chitosan derivatives were verified by FT-IR and 1H NMR. They were tested for their antioxidant activities. The experimental results showed that the derivatives had excellent free radical scavenging ability. The introduction of the coumarin moiety significantly improved the antioxidant activity, and the scavenging capacity was much higher than that of the chitosan feedstock in all three antioxidant tests. Overall, the scavenging capacity of chitosan-coumarin ammonium salt derivatives was slightly higher than that of chitosan-coumarin derivatives, with the highest scavenging rates in all three tests. Compound 8B scavenged 98.74 % (0.01 mg/mL) of superoxide anion radicals, compound 8D scavenged 95.5 % (0.3 mg/mL) of DPPH radicals and compound 8A scavenged 92.97 % (0.2 mg/mL) of hydroxyl radicals. Toxicity assays used L929 cells demonstrated that there was no significant toxicity of the derivatives. The results indicated that the chitosan derivatives described herein were safe and non-toxic and have good antioxidant activity.
Collapse
Affiliation(s)
- Siyu Zhu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China; Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Qin Miao
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Qiuhong Chen
- Jiangsu Ocean University, Lianyungang, 222000, China; Shandong Yinuokang Pharmaceutical Co., Ltd., Dongying, 257091, China
| | - Liguang Tian
- Yantai Agricultural Technology Extension Center, Yantai, 264001, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
3
|
Mu L, Wu L, Wu S, Ye Q, Zhong Z. Progress in chitin/chitosan and their derivatives for biomedical applications: Where we stand. Carbohydr Polym 2024; 343:122233. [PMID: 39174074 DOI: 10.1016/j.carbpol.2024.122233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 08/24/2024]
Abstract
Chitin and its deacetylated form, chitosan, have demonstrated remarkable versatility in the realm of biomaterials. Their exceptional biocompatibility, antibacterial properties, pro- and anticoagulant characteristics, robust antioxidant capacity, and anti-inflammatory potential make them highly sought-after in various applications. This review delves into the mechanisms underlying chitin/chitosan's biological activity and provides a comprehensive overview of their derivatives in fields such as tissue engineering, hemostasis, wound healing, drug delivery, and hemoperfusion. However, despite the wealth of studies on chitin/chitosan, there exists a notable trend of homogeneity in research, which could hinder the comprehensive development of these biomaterials. This review, taking a clinician's perspective, identifies current research gaps and medical challenges yet to be addressed, aiming to pave the way for a more sustainable future in chitin/chitosan research and application.
Collapse
Affiliation(s)
- Lanxin Mu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China; Southwest Hospital of Third Military Medical University (Army Medical University), Department of Plastic Surgery, Chongqing 400038, China
| | - Liqin Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| |
Collapse
|
4
|
Chen J, Yin C, Zhao B, Cheng X. Strategies for preparation of chitosan based water-soluble fluorescent probes to detect Cr 3+ and Cu 2+ ions. Int J Biol Macromol 2024; 276:133915. [PMID: 39019374 DOI: 10.1016/j.ijbiomac.2024.133915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
The low solubility of chitosan (CS) imposes adverse effects on its application. In this work, one of the aims is to improve the water solubility of CS. By introducing water-soluble side chains to CS, this aim was achieved. Besides, fluorescent moieties were incorporated into the side chains, the fluorescent copolymers were endowed with Cr3+ and Cu2+ ions recognition ability. Firstly, a reversible addition-fragmentation chain transfer polymerization (RAFT) reagent with naphthalimide units and CC groups was prepared. Water-soluble monomer methyl acrylic acid (MAA) was employed in the RAFT polymerization. Thus, water-soluble polymer with fluorescent unit and -C ≡ C on both ends of the polymer was obtained. They were introduced into CS, and the CS-based fluorescent copolymers were obtained eventually. The amount of MAA introduced could be tuned to obtain three side chains of different lengths. It was found that the more MAA was introduced, the better the solubility of CS-TP was. The detection limits (LOD) of Cr3+ and Cu2+ were 44.6 nM and 54.5 nM, respectively. The detection of Cr3+ and Cu2+ ions is further combined with a mobile APP to realize real-time, portable, and visual detection. And the application in the logic gate, a new detection platform, is prepared.
Collapse
Affiliation(s)
- Junyu Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Chuanqi Yin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Bo Zhao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
5
|
Sangeetha K, Albeshr MF, Shoba K, Lavanya G, Prasad PS, Sudha PN. Evaluation of cytocompatibility and cell proliferation of electrospun chitosan/polyvinyl alcohol/montmorillonite clay scaffold with l929 cell lines in skin regeneration activity and in silico molecular docking studies. Int J Biol Macromol 2024; 268:131762. [PMID: 38657925 DOI: 10.1016/j.ijbiomac.2024.131762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
The present investigation describes the development of a novel Chitosan/Polyvinyl Alcohol/Montmorillonite Clay (CS/PVA/MMT) scaffold by adopting an electrospinning method, and their biocompatibility was evaluated in vitro with L929 fibroblast cell line to ascertain its use in wound healing applications. The fabricated scaffold was characterized using analytical techniques. FT-IR measurement exhibited the existence of relevant functional groups and XRD implies scaffolds' amorphous nature. The scaffold's morphology and pore diameter were assessed using TEM and SEM. The pore diameter of the as-prepared scaffold was approximately 125 nm. The antimicrobial assay of the scaffold was evaluated against selected pathogens which demonstrated higher antimicrobial efficacy. The scavenging activity tested using the DPPH assay showed remarkable scavenging capability. The wound healing properties were tested through the Cytotoxicity assay conducted on the L929 assay which proved the scaffold to be a suitable material for cell proliferation. Also, a Molecular docking investigation was carried out for CS/PVA/MMT ligand using human neutrophil elastase (HNE) 1H1B protein as a receptor in the CB-Dock server. Studies conducted in silico revealed strong interaction and high binding energy ratings of CS/PVA/MMT ligand with key residues of human neutrophil elastase (HNE) 1H1B proteins that help in tissue regeneration activity.
Collapse
Affiliation(s)
- K Sangeetha
- Biomaterials Research Lab, Department of Chemistry, DKM College for Women (Autonomous), Vellore, Tamilnadu, India
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - K Shoba
- Department of Biochemistry, DKM College for Women (Autonomous), Vellore, Tamilnadu, India
| | - G Lavanya
- Department of Chemistry, Saveetha Engineering College, Thandalam, Chennai, Tamilnadu, India
| | - P Supriya Prasad
- Department of Chemistry, Muthurangam Govt. Arts College, Vellore, Tamilnadu, India
| | - P N Sudha
- Biomaterials Research Lab, Department of Chemistry, DKM College for Women (Autonomous), Vellore, Tamilnadu, India; Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
6
|
Yang H, Liu Y, Wen F, Yan X, Zhang Y, Zhong Z. Preparation, characterization, antioxidant and antifungal activities of benzoic acid compounds grafted onto chitosan. Int J Biol Macromol 2024; 259:129096. [PMID: 38159699 DOI: 10.1016/j.ijbiomac.2023.129096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The current study created three novel chitosan derivatives named BACS, PIBACS, and MHBACS by grafting benzoic acid (BA), p-isopropyl benzoic acid (PIBA), and m-hydroxybenzoic acid (MHBA) onto chitosan (CS). The structures of the derivatives were investigated using infrared spectroscopy (FT-IR) and nuclear magnetic resonance (13C NMR). The derivatives were discovered to be 45.06 %-60.49 % substituted using elemental analysis (EA). Based on the findings of in vitro antioxidant experiments (hydroxyl radical scavenging activity, superoxide anion radical scavenging activity, and DPPH radical scavenging activity), all of the derivatives had a higher hydroxyl radical scavenging activity than the chitosan raw material. MHBACS scavenged (31.02 ± 0.90)% of hydroxyl radicals at 0.5 mg/mL, 28.69 % more than chitosan raw. The derivatives scavenged more superoxide anion radicals than the chitosan feedstock at a particular concentration. For instance, at a test dose of 0.2 mg/mL, the scavenging rate of MHBACS on superoxide anion radicals was 7.75 % greater than that of chitosan raw materials. DPPH radical scavenging activity, on the other hand, was not as competent as chitosan feedstock. The growth rate approach was used to assess the potential of the three derivatives to inhibit the development of four phytopathogenic fungi. Chitosan derivatives have better antifungal efficacy than chitosan raw materials. PIBACS, MHBACS, BACS, and Wuyiencin inhibited Phytophthora capsici by (98.03 ± 1.95)%, (81.73 ± 1.63)%, (66.38 ± 1.81)%, and (93.01 ± 2.69)%, respectively, at 1.0 mg/mL. PIBACS had a higher inhibitory impact on Phytophthora capsici than the positive control. Based on the evidence presented above, it is reasonable to conclude that the addition of benzoic acid molecules increased the antioxidant and antifungal capabilities of chitosan.
Collapse
Affiliation(s)
- Hehe Yang
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yao Liu
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fang Wen
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xu Yan
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yandong Zhang
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhimei Zhong
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China.
| |
Collapse
|
7
|
Huang X, Ding Z, Feng R, Zheng X, Yang N, Chen Y, Dan N. Balanced chemical reactivity, antimicrobial properties and biocompatibility of decellularized dermal matrices for wound healing. SOFT MATTER 2023; 19:9478-9488. [PMID: 38031429 DOI: 10.1039/d3sm01092a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The prevention of bacterial infection and prompt wound repair are crucial considerations when local skin tissue is compromised by burns, cuts, or similar injuries. Porcine acellular dermal matrix (pADM) is a commonly employed biological material in wound repair due to its inherent natural properties. Nonetheless, the pADM's primary constituent, collagen fibers, lacks antimicrobial properties and is vulnerable to bacterial infection when used in the treatment of incompletely debrided wounds. Meanwhile, conventional antimicrobial agents primarily consist of chemical compounds that exhibit inadequate biocompatibility and biological hazards. This research endeavors to create an antimicrobial collagen scaffold dressing utilizing the Schiff base reaction through the incorporation of oxidized chitosan diquaternary (ODHTCC) salt into the pADM. Compared with the unmodified pADM, ODHTCC-pADM (OD-pA) still retained the three-stranded helical structure of natural collagen. At an ODHTCC cross-linker concentration of 4%, the thermal denaturation temperature of OD-pA was 85 °C. According to the enzymatic degradation resistance test in vitro, the degradation resistance of OD-pA to type I collagenase was significantly improved compared with that of the uncross-linked pADM. In addition, OD-pA exhibited good antibacterial properties, with inhibition rates of 95.6% and 99.9% for E. coli and Staphylococcus aureus, respectively, and a cytotoxicity level 1, meeting the in vitro requirements of national biomedical materials. In vivo experiments showed that the OD-pA scaffold could better promote wound healing and more effectively promote the positive expression of bFGF, PDGF and VEGF. In conclusion, OD-pA has struck a balance between antibacterial properties, chemical reaction properties and biocompatibility, ultimately achieving controllability, and has broad application prospects in the field of antibacterial biomedical materials.
Collapse
Affiliation(s)
- Xuantao Huang
- National Engineering Research Centre of Clean Technology in Leather Industry, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Chengdu 610065, P. R. China.
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhuang Ding
- National Engineering Research Centre of Clean Technology in Leather Industry, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Chengdu 610065, P. R. China.
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Rongxin Feng
- National Engineering Research Centre of Clean Technology in Leather Industry, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Chengdu 610065, P. R. China.
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xin Zheng
- National Engineering Research Centre of Clean Technology in Leather Industry, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Chengdu 610065, P. R. China.
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Na Yang
- National Engineering Research Centre of Clean Technology in Leather Industry, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Chengdu 610065, P. R. China.
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yining Chen
- National Engineering Research Centre of Clean Technology in Leather Industry, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Chengdu 610065, P. R. China.
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Nianhua Dan
- National Engineering Research Centre of Clean Technology in Leather Industry, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Chengdu 610065, P. R. China.
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
8
|
Limbachiya P, Patel V, Rami G, Vora J. Chitosan-dibenzylideneacetone based Schiff base: Evaluation of antimicrobial activity and in-vitro cytotoxicity on MCF-7 and L-132. Int J Biol Macromol 2023; 250:126268. [PMID: 37567544 DOI: 10.1016/j.ijbiomac.2023.126268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
This study holds significant importance as it explores the synthesis and characterization of two chitosan dibenzylideneacetone Schiff bases. Various analytical techniques, such as UV-visible spectroscopy, FTIR, XRD, TGA, DSC, SEM, and elemental analysis, were employed to thoroughly examine these derivatives. The antimicrobial activity of the chitosan derivatives was evaluated against a range of bacterial and fungal strains, while cytotoxicity tests were conducted on MCF-7, L-132, and VERO cell lines. In the antimicrobial tests, the chitosan derivatives exhibited remarkable antibacterial properties against S. aureus, E. coli, and Pseudomonas aeruginosa, as well as potent antifungal properties against Candida albicans and Aspergillus fumigatus. The cytotoxicity assessment revealed that the dibenzylideneacetone chitosan Schiff base (CHDBA) showed significant effectiveness against the L-132 cell line, surpassing the efficacy of doxorubicin by 2.44 times. Moreover, it exhibited substantial activity against the L-132 and MCF-7 cell lines, with IC50 values of 55.29 μg/mL and 185.8 μg/mL, respectively. Notably, none of the chitosan derivatives demonstrated cytotoxicity towards the normal cell line, indicating their non-toxic nature and safe usability. Based on these findings, it is evident that CHDBA holds promise for further development as a potential treatment option for breast cancer and lung cancer.
Collapse
Affiliation(s)
- Pruthviraj Limbachiya
- Department of Chemistry, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India.
| | - Vipul Patel
- Sanjivani College of Pharmaceutical Education and Research, Kopargaon 423603, Maharashtra, India
| | - Gaurang Rami
- Department of Chemistry, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India
| | - Jabali Vora
- Department of Chemistry, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India
| |
Collapse
|
9
|
Preparation of cationic chitooligosaccharide derivatives bearing N-halogenated benzyl pyridinium and assessment of their antimicrobial activities. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Antifungal Activity of Amphiphilic Perylene Bisimides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206890. [PMID: 36296485 PMCID: PMC9609932 DOI: 10.3390/molecules27206890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Perylene-based compounds, either naturally occurring or synthetic, have shown interesting biological activities. In this study, we report on the broad-spectrum antifungal properties of two lead amphiphilic perylene bisimides, compounds 4 and 5, which were synthesized from perylene-3,4,9,10-tetracarboxylic dianhydride by condensation with spermine and an ammonium salt formation. The antifungal activity was evaluated using a collection of fungal strains and clinical isolates from patients with onychomycosis or sporotrichosis. Both molecules displayed an interesting antifungal profile with MIC values in the range of 2–25 μM, being as active as several reference drugs, even more potent in some particular strains. The ammonium trifluoroacetate salt 5 showed the highest activity with a MIC value of 2.1 μM for all tested Candida spp., two Cryptococcus spp., two Fusarium spp., and one Neoscytalidium spp. strain. Therefore, these amphiphilic molecules with the perylene moiety and cationic ammonium side chains represent important structural features for the development of novel antifungals.
Collapse
|
11
|
Tan W, Zhang J, Mi Y, Li Q, Guo Z. Synthesis and characterization of α-lipoic acid grafted chitosan derivatives with antioxidant activity. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Mi Y, Chen Y, Tan W, Zhang J, Li Q, Guo Z. The influence of bioactive glyoxylate bearing Schiff base on antifungal and antioxidant activities to chitosan quaternary ammonium salts. Carbohydr Polym 2022; 278:118970. [PMID: 34973785 DOI: 10.1016/j.carbpol.2021.118970] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023]
Abstract
In this study, to investigate the influence of glyoxylate bearing Schiff base on bioactivity to chitosan quaternary ammonium salts, different chitosan derivatives were synthesized by ion exchange of glyoxylate bearing Schiff base with chitosan quaternary ammonium salts (TMCI and HACC). For this purpose, glyoxylate was prepared by Schiff base reaction of glyoxylic acid and amino heterocycles and it was further ionization to substitute iodide ions and chloride ions. After structural characterization by FTIR and 1H NMR, the antifungal and antioxidant activities were measured. Results indicated that glyoxylate bearing Schiff base could improve the bioactivity of TMCI and HACC obviously. Specifically, anionic TMCI with Schiff base of amino pyridines possessed best antioxidant activity >92.40% at 1.6 mg/mL against DPPH radicals. Meanwhile, they showed antifungal activity >84.88% at 1.0 mg/mL against G. cingulate. Furthermore, the cytotoxicity was evaluated, and all samples showed good cell viability >80.14% at 1000 μg/mL.
Collapse
Affiliation(s)
- Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Yan D, Li Y, Liu Y, Li N, Zhang X, Yan C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021; 26:7136. [PMID: 34885715 PMCID: PMC8659174 DOI: 10.3390/molecules26237136] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antibiotics played an important role in controlling the development of enteric infection. However, the emergence of antibiotic resistance and gut dysbiosis led to a growing interest in the use of natural antimicrobial agents as alternatives for therapy and disinfection. Chitosan is a nontoxic natural antimicrobial polymer and is approved by GRAS (Generally Recognized as Safe by the United States Food and Drug Administration). Chitosan and chitosan derivatives can kill microbes by neutralizing negative charges on the microbial surface. Besides, chemical modifications give chitosan derivatives better water solubility and antimicrobial property. This review gives an overview of the preparation of chitosan, its derivatives, and the conjugates with other polymers and nanoparticles with better antimicrobial properties, explains the direct and indirect mechanisms of action of chitosan, and summarizes current treatment for enteric infections as well as the role of chitosan and chitosan derivatives in the antimicrobial agents in enteric infections. Finally, we suggested future directions for further research to improve the treatment of enteric infections and to develop more useful chitosan derivatives and conjugates.
Collapse
Affiliation(s)
| | | | | | | | | | - Chen Yan
- The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (D.Y.); (Y.L.); (Y.L.); (N.L.); (X.Z.)
| |
Collapse
|
14
|
Zomorodian K, Veisi H, Yazdanpanah S, Najafi S, Iraji A, Hemmati S, Karmakar B, Veisi H. Design and in vitro antifungal activity of Nystatin loaded chitosan-coated magnetite nanoparticles for targeted therapy. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1977821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Veisi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanpanah
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saba Hemmati
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, Gobardanga, India
| | - Hojat Veisi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
15
|
Qian Y, Zhang L, Gu X, Wei L, Wang J, Wang Y. Biological Synergy and Antimicrobial Mechanism of Hydroxypropyltrimethyl Ammonium Chloride Chitosan with Benzalkonium Chloride. Chem Pharm Bull (Tokyo) 2021; 69:612-619. [PMID: 34193710 DOI: 10.1248/cpb.c20-00995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preservatives in eye drops have always been the focus of people's attention. Benzalkonium chloride (BAC) is one of the most frequently used bacteriostatic agents in eye drops, which has broad-spectrum and efficient bactericidal ability. However, the inappropriate dosage of BAC may lead to high cytotoxicity. Therefore, adding low-toxic hydroxypropyltrimethyl ammonium chloride chitosan (HACC) can not only achieve antimicrobial effect, but also have the advantages of moisturizing and biocompatibility. In this paper, the minimum inhibitory concentrations (MICs) of HACC and BAC were evaluated against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Diphtheroid bacillus and Candida albicans. Based on the MIC of each antimicrobial agent, an antimicrobial assay was performed to investigate the antimicrobial ability of disinfectant solution. Besides, cytotoxicity had also been assessed. When the HACC/BAC solution at weight ratio of 150/1 showed a highest antimicrobial efficiency and the cell proliferation rates were the highest in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Furthermore, the cell leakage was examined by UV absorption, indicating the great synergistic antimicrobial effect between HACC and BAC. What is more, the results of micromorphology research suggested that as the result of repulsive force between the two molecules, the average particle size of HACC would decrease. Finally, the impedance experiment showed that with the addition of BAC, current density would increase significantly, suggesting that more positive charge group was exposed to aqueous solution, leading the the increase of antimicrobial ability. Based on these results, HACC-BAC combination solution might be a promising novel antimicrobial group for biomedical applications.
Collapse
Affiliation(s)
- Yu Qian
- School of Chemistry and Chemical Engineering, Southeast University
| | - Lu Zhang
- School of Chemistry and Chemical Engineering, Southeast University
| | - Xinxin Gu
- School of Chemistry and Chemical Engineering, Southeast University
| | - Lai Wei
- School of Chemistry and Chemical Engineering, Southeast University
| | - Jialin Wang
- School of Chemistry and Chemical Engineering, Southeast University
| | - Yihong Wang
- School of Chemistry and Chemical Engineering, Southeast University
| |
Collapse
|
16
|
Wei L, Zhang J, Tan W, Wang G, Li Q, Dong F, Guo Z. Antifungal activity of double Schiff bases of chitosan derivatives bearing active halogeno-benzenes. Int J Biol Macromol 2021; 179:292-298. [PMID: 33652045 DOI: 10.1016/j.ijbiomac.2021.02.184] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
In this study, a series of chitosan derivatives bearing active halogenated aromatic imines were successfully synthesized via Schiff bases with the high degrees of substitution. Detailed structural characterization was carried out using Fourier transform infrared (FTIR) spectroscopy, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, and elemental analysis. Besides, the antifungal activity against three common plant pathogenic fungi, including Botrytis cinerea, Fusarium oxysporum f. sp. cucumerinum, and Fusarium oxysporum f. sp. niveum, was investigated using in vitro hyphal measurements. The results showed that double Schiff bases of chitosan derivatives exhibited enhanced antifungal activity compared with chitosan, especially at 1.0 mg/mL. The double Schiff bases of chitosan bearing halogeno-benzenes showed >95% inhibitory indices at 1.0 mg/mL against Botrytis cinereal since halogens had the stronger electron-withdrawing property. The higher degree of substitution was another positive effect to improve the antifungal activity. This study provides a practical strategy to synthesize new double Schiff bases of chitosan derivatives bearing halogeno-benzenes, which could be developed into stronger antifungal agents.
Collapse
Affiliation(s)
- Lijie Wei
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Weifang Inspection and Testing Center, Shandong, Weifang 261000, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Gang Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Chen C, Guo Y, Long L, Chen K, Hu X, Xue Y. Biodegradable chitosan-ethylene glycol hydrogel effectively adsorbs nitrate in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32762-32769. [PMID: 32519097 DOI: 10.1007/s11356-020-09438-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Nitrate, existing as inorganic anions in water, possesses high water-solubility and has caused lots of contaminations around the world. It is thus extremely urgent to develop an effective method to effectively remove nitrate from water in a sustainable way. In this study, chitosan-ethylene glycol hydrogel (CEGH) was synthesized using the repeated freezing-thawing procedure. A range of batch sorption experiments were conducted to evaluate CEGH as a nitrate sorbent. The adsorption isotherms of nitrate onto CEGH followed the Langmuir model with coefficient of determination of 0.98 and a maximum Langmuir adsorption capacity of 49.04 mg/g, which is higher than that of other adsorbents. The adsorption of nitrate onto CEGH was affected by pH value and temperature. The results indicate that the main removal mechanism was polarity of CEGH molecules given by functional group O-H and N-H and hydrogen bond interaction between CEGH and nitrate molecules under acidic conditions. Therefore, CEGH, a biodegradable carbon-rich adsorbent, can be widely applied to remove nitrate in wastewater treatment and water body remediation.
Collapse
Affiliation(s)
- Changhong Chen
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Yiwei Guo
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Keyan Chen
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Xiaolan Hu
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Yingwen Xue
- School of Civil Engineering, Wuhan University, Wuhan, China.
| |
Collapse
|
18
|
Advancement on modification of chitosan biopolymer and its potential applications. Int J Biol Macromol 2020; 152:681-702. [DOI: 10.1016/j.ijbiomac.2020.02.196] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
|
19
|
Novel Quaternary Ammonium Derivatives of 4-Pyrrolidino Pyridine: Synthesis, Structural, Thermal, and Antibacterial Studies. CRYSTALS 2020. [DOI: 10.3390/cryst10050339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Six novel quaternary ammonium derivatives of 4-pyrrolidino pyridine were prepared and isolated via a facile one-pot synthesis and a simple purification procedure. The purity and the molecular structure of the 4-pyrrolidino pyridine derivatives were confirmed with 1H and 13C NMR spectroscopy and powder X-ray diffraction techniques. The crystal structures of the compounds were characterized by single crystal X-ray diffraction (SCXRD) and their thermal properties were studied by Differential Scanning Calorimetry (DSC) analyses. The antibacterial properties of the title compounds against five bacterial strains were evaluated using Kirby–Bauer disk diffusion susceptibility test. The compounds crystallize in the monoclinic or orthorhombic crystal systems (space groups: P21/c, P21/n, or P212121) and their crystal structures are stabilized by a combination of intra- and intermolecular halogen bonding interactions, short contacts and π-π interactions. Above interactions, they contribute to the thermal stability and lack of phase transition effects up to 350 °C. Two of the compounds possess antibacterial effect against E. coli or S. aureus bacterial strains—similar or better than the kanamycin reference.
Collapse
|
20
|
Varlamov VP, Il'ina AV, Shagdarova BT, Lunkov AP, Mysyakina IS. Chitin/Chitosan and Its Derivatives: Fundamental Problems and Practical Approaches. BIOCHEMISTRY (MOSCOW) 2020; 85:S154-S176. [PMID: 32087058 DOI: 10.1134/s0006297920140084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we present the data on the natural occurrence of chitin and its partially or fully deacetylated derivative chitosan, as well as their properties, methods of modification, and potential applications of derivatives with bactericidal, fungicidal, and antioxidant activities. The structure and physicochemical characteristics of the polymers, their functions, and features of chitin microbial synthesis and degradation, including the processes occurring in nature, are described. New data on the hydrolytic microorganisms capable of chitin degradation under extreme conditions are presented. Special attention is focused on the effect of physicochemical characteristics of chitosan, including molecular weight, degree of deacetylation, polydispersity index, and number of amino group derivatives (quaternized, succinyl, etc.) on the antimicrobial and antioxidant properties of modified polymers that can be of particular interest for biotechnology, medicine, and agriculture. Analysis of the available literature data confirms the importance of fundamental research to broaden our knowledge on the occurrence of chitin and chitosan in nature, their role in global biosphere cycles, and prospects of applied research aimed at using chitin, chitosan, and their derivatives in various aspects of human activity.
Collapse
Affiliation(s)
- V P Varlamov
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia.
| | - A V Il'ina
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - B Ts Shagdarova
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - A P Lunkov
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - I S Mysyakina
- Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| |
Collapse
|
21
|
Qin Y, Li P, Guo Z. Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications. Carbohydr Polym 2020; 236:116002. [PMID: 32172836 DOI: 10.1016/j.carbpol.2020.116002] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022]
Abstract
The increasing resistance of pathogen fungi poses a global public concern. There are several limitations in current antifungals, including few available fungicides, severe toxicity of some fungicides, and drug resistance. Therefore, there is an urgent need to develop new antifungals with novel targets. Chitosan has been recognized as a potential antifungal substance due to its good biocompatibility, biodegradability, non-toxicity, and availability in abundance, but its applications are hampered by the low charge density results in low solubility at physiological pH. It is believed that enhancing the positive charge density of chitosan may be the most effective approach to improve both its solubility and antifungal activity. Hence, this review mainly focuses on the structural optimization strategy of cationic chitosan and the potential antifungal applications. This review also assesses and comments on the challenges, shortcomings, and prospect of cationic chitosan derivatives as antifungal therapy.
Collapse
Affiliation(s)
- Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
22
|
Sun X, Zhang J, Chen Y, Mi Y, Tan W, Li Q, Dong F, Guo Z. Synthesis, Characterization, and the Antioxidant Activity of Carboxymethyl Chitosan Derivatives Containing Thiourea Salts. Polymers (Basel) 2019; 11:polym11111810. [PMID: 31689968 PMCID: PMC6918197 DOI: 10.3390/polym11111810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
A new class of chitosan derivatives possessing thiourea salts were synthesized to improve the solubility and the antioxidant activity of chitosan. Firstly, chitosan was modified to carboxymethyl chitosan, combining carboxymethyl chitosan with thiourea salts that have different structures to form new chitosan derivatives. The chitosan and chitosan derivatives were characterized by FT-IR, 13C NMR, TGA, and elemental analyses. The new peaks of thiourea salts could be clearly observed at about 1240 cm-1 in the IR spectra, and the peak of C=S was clearly observed at around 180 ppm in the 13C NMR. IR spectra and 13C NMR of the structural units of these polymers validated the chitosan derivatives possessing thiourea salts were successfully synthesized. Their antioxidant properties were tested, including DPPH-radical scavenging ability, superoxide-radical scavenging ability, and hydroxyl-radical scavenging ability. Our results suggested the increase of thiourea salt groups in chitosan derivatives promotes the scavenging effect. The scavenging activity of 4TMCMCS, TMCMCS. 4,4DCMCS, and 4ACMCS against DPPH-radical and superoxide-radical were more than 90% at 1.6 mg/mL, respectively. In the cytotoxicity assay, no cytotoxicity was observed for the L929 cells with chitosan and its derivatives at all testing concentrations. These results demonstrated that the combination of chitosan and thiourea salt groups improved the antioxidant activity of chitosan, and the antioxidants or free radical scavengers based on natural polymers and thiourea salts showed potential applications.
Collapse
Affiliation(s)
- Xueqi Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuan Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Karpova NV, Shagdarova BT, Lyalina TS, Il’ina AV, Tereshina VM, Varlamov VP. Influence of the Main Characteristics of Low Weight Chitosan on the Growth of the Plant Pathogenic Fungus Botrytis сinerea. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819040069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Ranganathan S, Balagangadharan K, Selvamurugan N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int J Biol Macromol 2019; 133:354-364. [DOI: 10.1016/j.ijbiomac.2019.04.115] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/06/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022]
|
25
|
Novel Inulin Derivatives Modified with Schiff Bases: Synthesis, Characterization, and Antifungal Activity. Polymers (Basel) 2019; 11:polym11060998. [PMID: 31167475 PMCID: PMC6631190 DOI: 10.3390/polym11060998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
In this paper, we report chemical modifications of inulin by seven kinds of aromatic Schiff bases, which are different from their substituent groups. The obtained inulin derivatives were confirmed by FTIR, 1H NMR, and 13C NMR. Then, we studied their antifungal activity against four kinds of plant pathogens involving Botrytis cinerea, Fusarium oxysporum f. sp. cucumerium Owen, Fusarium oxysporum f. sp. niveum, and Phomopsis asparagi by the mycelium growth rate method. The results revealed that all inulin derivatives were endowed with significant antifungal activity compared to inulin. Among them, 6-amino-(N-4-chlorobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin (4CBSAIL) and 6-amino-(N-3,4-dichlorobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin (3,4DCBSAIL), which were synthesized from p-chlorobenzaldehyde and 3,4-dichlorobenzaldehyde, could completely inhibit the growth of the test fungi at 1.0 mg/mL. The inhibitory indices of the inulin derivatives were related to the type, position, and number of substituent groups (halogens) on the Schiff bases. The results confirmed that it was feasible to chemically modify inulin with Schiff bases to confer high antifungal activity to inulin. The products described in this paper have great potential as alternatives to some harmful pesticides used for plant disease control.
Collapse
|
26
|
Oyervides‐Muñoz E, Avérous L, Sosa‐Santillán GDJ, Pollet E, Pérez‐Aguilar NV, Rojas‐Caldera CM, Fuentes‐Avilés JG, García‐Astrain C. EDC‐Mediated Grafting of Quaternary Ammonium Salts onto Chitosan for Antibacterial and Thermal Properties Improvement. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ernesto Oyervides‐Muñoz
- Facultad de Ciencias QuímicasUniversidad Autónoma de Coahuila Blvd. V. Carranza y J. Cárdenas V. SaltilloCoahuila Z. C. 25280 México
| | - Luc Avérous
- BioTeam/ICPEES—ECPMUMR CNRS 7515, Université de Strasbourg 25 rue Becquerel, Cedex 2 Strasbourg 67087 France
| | - Gerardo de Jesús Sosa‐Santillán
- Facultad de Ciencias QuímicasUniversidad Autónoma de Coahuila Blvd. V. Carranza y J. Cárdenas V. SaltilloCoahuila Z. C. 25280 México
| | - Eric Pollet
- BioTeam/ICPEES—ECPMUMR CNRS 7515, Université de Strasbourg 25 rue Becquerel, Cedex 2 Strasbourg 67087 France
| | - Nancy Verónica Pérez‐Aguilar
- Facultad de Ciencias QuímicasUniversidad Autónoma de Coahuila Blvd. V. Carranza y J. Cárdenas V. SaltilloCoahuila Z. C. 25280 México
| | - Claudia Maribel Rojas‐Caldera
- Facultad de Ciencias QuímicasUniversidad Autónoma de Coahuila Blvd. V. Carranza y J. Cárdenas V. SaltilloCoahuila Z. C. 25280 México
| | - José Guadalupe Fuentes‐Avilés
- Facultad de Ciencias QuímicasUniversidad Autónoma de Coahuila Blvd. V. Carranza y J. Cárdenas V. SaltilloCoahuila Z. C. 25280 México
| | - Clara García‐Astrain
- BioTeam/ICPEES—ECPMUMR CNRS 7515, Université de Strasbourg 25 rue Becquerel, Cedex 2 Strasbourg 67087 France
| |
Collapse
|
27
|
Tan W, Dong F, Zhang J, Zhao X, Li Q, Guo Z. Physical and Antioxidant Properties of Edible Chitosan Ascorbate Films. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2530-2539. [PMID: 30767531 DOI: 10.1021/acs.jafc.8b04567] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chitosan ascorbates with different substitution degrees were synthesized on the basis of salification of chitosan and ascorbic acid at various molar ratios in water and were successfully used to prepare antioxidative films by casting for the first time. Fourier transform infrared and 1H nuclear magnetic resonance spectra recorded the structural characteristics of all chitosan ascorbates; meanwhile, physicochemical property and antioxidant activity of the produced chitosan ascorbate films were characterized, with chitosan acetate film serving as the control, and these properties were also measured for comparison. The results revealed that salification of chitosan with ascorbic acid not only improved the total color difference, chroma, opacity, capacity for blocking ultraviolet-visible light, and water solubility of chitosan-based films but also decreased water content, swelling degree, and water vapor permeability compared to chitosan acetate film. Also, as was expected, the antioxidant activity assays showed that incorporation of ascorbate into the chitosan matrix effectively enhanced the scavenging activity against the DPPH radical and reducing power. Cs2Vc8 and Cs2Vc6 especially exhibited the strongest scavenging capacities against the DPPH radical (EC50 < 0.025 mg/mL). These findings offered a suggestion that the prepared chitosan ascorbate films can be applied as novel green oxidation-resistant materials in the food packaging industry.
Collapse
Affiliation(s)
- Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai , Shandong 264003 , People's Republic of China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai , Shandong 264003 , People's Republic of China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai , Shandong 264003 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Xiang Zhao
- College of Chemistry and Chemical Engineering , Yantai University , Yantai , Shandong 264005 , People's Republic of China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai , Shandong 264003 , People's Republic of China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai , Shandong 264003 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
28
|
Investigation of the properties of N-[(2-hydroxy-3-trimethylammonium) propyl] chloride chitosan derivatives. Int J Biol Macromol 2019; 124:994-1001. [DOI: 10.1016/j.ijbiomac.2018.11.209] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 11/20/2022]
|
29
|
Wang Y, Dang Q, Liu C, Yu D, Pu X, Wang Q, Gao H, Zhang B, Cha D. Selective Adsorption toward Hg(II) and Inhibitory Effect on Bacterial Growth Occurring on Thiosemicarbazide-Functionalized Chitosan Microsphere Surface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40302-40316. [PMID: 30365882 DOI: 10.1021/acsami.8b14893] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The work presented here aims to fabricate dual-purpose adsorbent with adsorption selectivity for Hg(II) and antibacterial activity. TSC-PGMA-MACS microspheres were first constructed via esterification of malic acid (MA) with chitosan (CS) and through successively grafting glycidyl methacrylate (GMA) and thiosemicarbazide (TSC) onto MACS microsphere surfaces. Fourier transform infrared spectroscopy, elemental analysis, energy-dispersive X-ray spectrometry, X-ray diffraction, differential scanning calorimetry, thermogravimetry, differential thermogravimetry, scanning electron microscopy, and Brunauer-Emmett-Teller results provided ample evidence that new mesoporous adsorbent, with 35.340 m2 g-1 of specific surface area and abundant -NH2 and C═S, was successfully fabricated and had loose crystalline, thermodynamically stable, and well-defined architectures, beneficial for Hg(II) adsorption and bacterial cell killing. Optimal adsorption parameters were determined via varying pH, time, concentrations, and temperatures, and pH 6.0 was chosen as an optimal pH for Hg(II) adsorption. Adsorption behavior, described well by pseudo-second-order kinetic and Langmuir isotherm models, and thermodynamic parameters implied a chemical, monolayer, endothermic, and spontaneous adsorption process, and the maximum adsorption capacity for Hg(II) was 242.7 mg g-1, higher than most of the available adsorbents. Competitive adsorption exhibited excellent adsorption selectivity for Hg(II) in binary-metal solutions. Besides, TSC-PGMA-MACS microspheres had outstanding reusability even after five times recycling, with adsorption capability loss <14%. Several potential adsorption sites and bonding modes were proposed. Notably, TSC-PGMA-MACS microspheres before and after adsorption were of high antibacterial activity against Escherichia coli and Staphylococcus aureus (MICs, 2 and 0.25 mg mL-1), superior to CS powders, and possible antibacterial mechanisms were also summarized. Altogether, dual-purpose TSC-PGMA-MACS microspheres might be promising adsorbent for contaminated water scavenging.
Collapse
Affiliation(s)
- Yan Wang
- College of Marine Life Sciences , Ocean University of China , 5 Yushan Road , Qingdao 266003 , P. R. China
| | - Qifeng Dang
- College of Marine Life Sciences , Ocean University of China , 5 Yushan Road , Qingdao 266003 , P. R. China
| | - Chengsheng Liu
- College of Marine Life Sciences , Ocean University of China , 5 Yushan Road , Qingdao 266003 , P. R. China
| | - Dejun Yu
- Qingdao Marine Biomedical Research Institute , 23 Hong Kong East Road , Qingdao 266071 , P. R. China
| | - Xiaoying Pu
- College of Marine Life Sciences , Ocean University of China , 5 Yushan Road , Qingdao 266003 , P. R. China
| | - Qiongqiong Wang
- College of Marine Life Sciences , Ocean University of China , 5 Yushan Road , Qingdao 266003 , P. R. China
| | - Hong Gao
- College of Marine Life Sciences , Ocean University of China , 5 Yushan Road , Qingdao 266003 , P. R. China
| | - Bainian Zhang
- Qingdao Aorun Biotechnology Co., Ltd. , Room 602, Century Mansion, 39 Donghaixi Road , Qingdao 266071 , P. R. China
| | - Dongsu Cha
- The Graduate School of Biotechnology , Korea University , Seoul 136-701 , South Korea
| |
Collapse
|
30
|
Mi Y, Tan W, Zhang J, Wei L, Chen Y, Li Q, Dong F, Guo Z. Synthesis, Characterization, and Antifungal Property of Hydroxypropyltrimethyl Ammonium Chitosan Halogenated Acetates. Mar Drugs 2018; 16:E315. [PMID: 30189609 PMCID: PMC6165101 DOI: 10.3390/md16090315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 01/03/2023] Open
Abstract
Hydroxypropyltrimethyl ammonium chitosan halogenated acetates were successfully synthesized from six different haloacetic acids and hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with high substitution degree, which are hydroxypropyltrimethyl ammonium chitosan bromacetate (HACBA), hydroxypropyltrimethyl ammonium chitosan chloroacetate (HACCA), hydroxypropyltrimethyl ammonium chitosan dichloroacetate (HACDCA), hydroxypropyltrimethyl ammonium chitosan trichloroacetate (HACTCA), hydroxypropyltrimethyl ammonium chitosan difluoroacetate (HACDFA), and hydroxypropyltrimethyl ammonium chitosan trifluoroacetate (HACTFA). These chitosan derivatives were synthesized by two steps: first, the hydroxypropyltrimethyl ammonium chloride chitosan was synthesized by chitosan and 3-chloro-2-hydroxypropyltrimethyl ammonium chloride. Then, hydroxypropyltrimethyl ammonium chitosan halogenated acetates were synthesized via ion exchange. The structures of chitosan derivatives were characterized by Fourier transform infrared spectroscopy (FTIR), ¹H Nuclear magnetic resonance spectrometer (¹H NMR), 13C Nuclear magnetic resonance spectrometer (13C NMR), and elemental analysis. Their antifungal activities against Colletotrichum lagenarium, Fusarium graminearum, Botrytis cinerea, and Phomopsis asparagi were investigated by hypha measurement in vitro. The results revealed that hydroxypropyltrimethyl ammonium chitosan halogenated acetates had better antifungal activities than chitosan and HACC. In particular, the inhibitory activity decreased in the order: HACTFA > HACDFA > HACTCA > HACDCA > HACCA > HACBA > HACC > chitosan, which was consistent with the electron-withdrawing property of different halogenated acetates. This experiment provides a potential idea for the preparation of new antifungal drugs by chitosan.
Collapse
Affiliation(s)
- Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lijie Wei
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuan Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Zhang J, Tan W, Mi Y, Luan F, Wei L, Li Q, Dong F, Guo Z. Synthesis and Characterization of Inulin Derivatives Bearing Urea Groups with Promising Antifungal Activity. STARCH-STARKE 2018. [DOI: 10.1002/star.201800058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization; Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai 264003 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization; Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai 264003 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization; Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai 264003 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Fang Luan
- Key Laboratory of Coastal Biology and Bioresource Utilization; Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai 264003 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Lijie Wei
- Key Laboratory of Coastal Biology and Bioresource Utilization; Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai 264003 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization; Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai 264003 China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization; Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai 264003 China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization; Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai 264003 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
32
|
Zhang J, Tan W, Luan F, Yin X, Dong F, Li Q, Guo Z. Synthesis of Quaternary Ammonium Salts of Chitosan Bearing Halogenated Acetate for Antifungal and Antibacterial Activities. Polymers (Basel) 2018; 10:E530. [PMID: 30966564 PMCID: PMC6415387 DOI: 10.3390/polym10050530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/30/2022] Open
Abstract
In this paper, quaternary ammonium salts of chitosan bearing halogenated acetate, including N,N,N-trimethyl chitosan chloroacetate (TMCSC), N,N,N-trimethyl chitosan dichloroacetate (TMCSDC), N,N,N-trimethyl chitosan trichloroacetate (TMCSTC), and N,N,N-trimethyl chitosan trifluoroacetate (TMCSTF), were prepared via N,N,N-trimethyl chitosan iodide (TMCSI). The obtained chitosan derivatives were characterized by FT-IR, ¹H NMR spectra, 13C NMR spectra, and elemental analysis. Their antifungal property against Fusarium oxysporum f. sp. cucumebrium Owen (F. oxysporum f. sp. cucumebrium Owen), Botrytis cinerea (B. cinerea), and Phomopsis asparagi (P. asparagi) were evaluated by hyphal measurement method at concentrations ranging from 0.08 mg/mL to 0.8 mg/mL. Meanwhile, two common bacteria, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), were selected as the model Gram-negative and Gram-positive bacteria to evaluate the antibacterial property of the chitosan derivatives by agar well diffusion method. The results showed that TMCSC, TMCSDC, TMCSTC, and TMCSTF had better antifungal and antibacterial activities than chitosan and TMCSI. In particular, a rule showed that the inhibitory activity decreased in the order: TMCSTF > TMCSTC > TMCSDC > TMCSC > TMCSI > chitosan, which was consistent with the electron-withdrawing property of different halogenated acetate. Apparently, the quaternary ammonium salts of chitosan with stronger electron withdrawing ability possessed relatively greater antifungal and antibacterial activities. This experiment provides a potentially feasible method for the further utilization of chitosan in fields of antifungal and antibacterial biomaterials.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fang Luan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiuli Yin
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Synthesis, characterization, and the antifungal activity of chitosan derivatives containing urea groups. Int J Biol Macromol 2018; 109:1061-1067. [DOI: 10.1016/j.ijbiomac.2017.11.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/06/2017] [Accepted: 11/14/2017] [Indexed: 01/28/2023]
|
34
|
Hamdi M, Hajji S, Affes S, Taktak W, Maâlej H, Nasri M, Nasri R. Development of a controlled bioconversion process for the recovery of chitosan from blue crab (Portunus segnis) exoskeleton. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Fan Z, Qin Y, Liu S, Xing R, Yu H, Chen X, Li K, Li P. Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives. Carbohydr Polym 2018; 190:1-11. [PMID: 29628225 DOI: 10.1016/j.carbpol.2018.02.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 10/18/2022]
Abstract
Botrytis cinerea, Phytophthora capsici Leonian, and Fusarium solani are important plant pathogenic fungi which can cause great crop losses worldwide, but their control methods are limited. It is necessary to develop efficient and green fungicides from abundant marine resources. Chitosan is a non-toxic, biodegradable, biocompatible marine polysaccharide which has prospective applications in agriculture. In this paper, to increase the antifungal activity of chitosan for application, novel water-soluble functional chitosan derivatives were synthesized by grafting polyaminoethyl and diethoxyphosphoryl groups in accordance with a strategy of improving protonation potential. The derivatives were characterized by FTIR, NMR, XRD, SEM, Gaussian 09 and elemental analysis. The antifungal activities against the three fungi and the cytotoxicity were estimated in vitro. The results showed that the derivatives had better antifungal activities and water solubility than chitosan, and had good biocompatibility. They confirmed that these chitosan derivatives can be developed as antifungal agents for plant protection purposes.
Collapse
Affiliation(s)
- Zhaoqian Fan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Xiaolin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
36
|
Novel cationic chitosan derivative bearing 1,2,3-triazolium and pyridinium: Synthesis, characterization, and antifungal property. Carbohydr Polym 2018; 182:180-187. [DOI: 10.1016/j.carbpol.2017.11.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/24/2017] [Accepted: 11/05/2017] [Indexed: 12/18/2022]
|
37
|
Design, synthesis of novel chitosan derivatives bearing quaternary phosphonium salts and evaluation of antifungal activity. Int J Biol Macromol 2017; 102:704-711. [DOI: 10.1016/j.ijbiomac.2017.04.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/27/2017] [Accepted: 04/09/2017] [Indexed: 01/01/2023]
|
38
|
Preparation and Characterization of Novel Cationic Chitosan Derivatives Bearing Quaternary Ammonium and Phosphonium Salts and Assessment of Their Antifungal Properties. Molecules 2017; 22:molecules22091438. [PMID: 28858241 PMCID: PMC6151502 DOI: 10.3390/molecules22091438] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023] Open
Abstract
Chitosan is an abundant and renewable polysaccharide, its derivatives exhibit attractive bioactivities and the wide applications in various biomedical fields. In this paper, two novel cationic chitosan derivatives modified with quaternary phosphonium salts were successfully synthesized via trimethylation, chloride acetylation, and quaternization with tricyclohexylphosphine and triphenylphosphine. The structures and properties of synthesized products in the reactions were characterized by FTIR spectroscopy, 1H-NMR, 31P-NMR, elemental and thermogravimetric analysis. The antifungal activities of chitosan derivatives against four kinds of phytopathogens, including Phomopsis asparagi, Watermelon fusarium, Colletotrichum lagenarium, and Fusarium oxysporum were tested using the radial growth assay in vitro. The results revealed that the synthesized cationic chitosan derivatives showed significantly improved antifungal efficiency compared to chitosan. It was reasonably suggested that quaternary phosphonium groups enabled the obviously stronger antifungal activity of the synthesized chitosans. Especially, the triphenylphosphonium-functionalized chitosan derivative inhibited the growth of Phomopsis asparagi most effectively, with inhibitory indices of about 80% at 0.5 mg/mL. Moreover, the data demonstrated that the substituted groups with stronger electron-withdrawing ability relatively possessed greater antifungal activity. The results suggest the possibility that cationic chitosan derivatives bearing quaternary phosphonium salts could be effectively employed as novel antifungal biomaterials for application in the field of agriculture.
Collapse
|
39
|
Synthesis, characterization, and antifungal evaluation of novel 1,2,3-triazolium-functionalized starch derivative. Int J Biol Macromol 2017; 101:845-851. [DOI: 10.1016/j.ijbiomac.2017.03.171] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/19/2017] [Accepted: 03/29/2017] [Indexed: 01/04/2023]
|
40
|
Novel Amino-Pyridine Functionalized Chitosan Quaternary Ammonium Derivatives: Design, Synthesis, and Antioxidant Activity. Molecules 2017; 22:molecules22010156. [PMID: 28106807 PMCID: PMC6155944 DOI: 10.3390/molecules22010156] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/17/2022] Open
Abstract
Chemical modification of chitosan is increasingly studied for its potential of providing new applications of chitosan. Here, a group of novel chitosan quaternary ammonium derivatives containing pyridine or amino-pyridine were designed and successfully synthesized through chemical modification of chitosan. Pyridine and amino-pyridine were used as functional groups to improve the antifungal activity of chitosan derivatives. The chitosan derivatives' antioxidant activity against hydroxyl-radical and 1,1-Diphenyl-2-picrylhydrazyl (DPPH)-radical was tested in vitro. The results showed that chitosan derivatives had better water solubility and stronger antioxidant activity compared with chitosan in all assays. Especially, compounds 3C and 3E (with 3-amino pyridine and 2,3-diamino pyridine as substitute respectively) exhibited stronger hydroxyl-radical and DPPH-radical scavenging ability than other synthesized compounds. These data demonstrated that the synergistic effect of the amino group and pyridine would improve the antioxidant activity of chitosan derivatives, and the position of the amino group on pyridine could influence the antioxidant property of chitosan derivatives.
Collapse
|
41
|
Balagangadharan K, Dhivya S, Selvamurugan N. Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 2016; 104:1372-1382. [PMID: 27993655 DOI: 10.1016/j.ijbiomac.2016.12.046] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Bone tissue engineering involves biomaterials, cells and regulatory factors to make biosynthetic bone grafts with efficient mineralization for regeneration of fractured or damaged bones. Out of all the techniques available for scaffold preparation, electrospinning is given priority as it can fabricate nanostructures. Also, electrospun nanofibers possess unique properties such as the high surface area to volume ratio, porosity, stability, permeability and morphological similarity to that of extra cellular matrix. Chitosan (CS) has a significant edge over other materials and as a graft material, CS can be used alone or in combination with other materials in the form of nanofibers to provide the structural and biochemical cues for acceleration of bone regeneration. Hence, this review was aimed to provide a detailed study available on CS and its composites prepared as nanofibers, and their associated properties found suitable for bone tissue engineering.
Collapse
Affiliation(s)
- K Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - S Dhivya
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|