1
|
Li S, Liu Y, Gao Z, An C, Gu H, Yin H, Fu R, Shi L, Xue W, Fan D, Fei Q. Methane Valorization to Antioxidant Polysaccharides by Methanotrophic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11019-11029. [PMID: 40274597 DOI: 10.1021/acs.jafc.5c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Bioconversion of methane into functional polysaccharides presents a promising strategy for mitigating methane-induced greenhouse gas emissions and addressing the limitations of plant-derived polysaccharide and sugar-based microbial polysaccharides production. In this study, the novel methane-derived polysaccharide (MePS) was obtained from a newly isolated methanotrophic bacterium Alkalicoccus glycogenes WONF2802. Structural characterization found that MePS is a branched-chain glucan with a weight-average molecular weight of 283.2 kDa. Additionally, MePS exhibited considerable antioxidant capacities in both in vitro biochemical assays and the H2O2-induced oxidative stress cell model. This work establishes a potential pathway for polysaccharide production, reducing reliance on plant and sugar-based feedstocks, while offering a new strategy for methane emission reduction.
Collapse
Affiliation(s)
- Shen Li
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuan Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Zixi Gao
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chao An
- Shaanxi Institute of Microbiology, Xi'an 710043, China
| | - Hui Gu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Xi'an Giant Biogene Technology Co., Ltd., Xi'an 710077, China
| | - Liang Shi
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Wenjiao Xue
- Shaanxi Institute of Microbiology, Xi'an 710043, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Qiang Fei
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Fan J, Li Y, Yang S, Yang J, Jin H, Wang Y, Wei F, Ma S. Two polysaccharides from Polygonum multiflorum Thunb. exert anti-aging by regulating P53/P21 pathway and amino acid metabolism. Int J Biol Macromol 2025; 306:141573. [PMID: 40023426 DOI: 10.1016/j.ijbiomac.2025.141573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Polygonum multiflorum Thunb (PM) is known for its potential to extend lifespan. Although the polysaccharides, the primary constituents of PM, remain largely unexplored in terms of their anti-aging effects and underlying mechanisms, this study investigates them in detail. The anti-aging effects of two purified polysaccharides from PM were evaluated: neutral polysaccharide (RPMP-N, weight average molecular weight 245.30 kDa) and acidic polysaccharide (RPMP-A, weight average molecular weight 28.45 kDa), using a D-Galactose-induced (D-Gal) aging mouse model. In the experimental group, RPMP-N and RPMP-A were administered at doses of 50 (low) and 150 mg/kg/day (high). The activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), which are essential for scavenging free radicals and form a key part of the body's antioxidant defense system, was measured in aging mice. The results showed significant improvements following treatment with RPMP-N and RPMP-A. Additionally, both polysaccharides demonstrated the ability to repair and protect against liver and brain injuries. The expression of P16, P21, and P53 proteins, which regulate cellular senescence through distinct mechanisms, was significantly reduced in liver and brain tissues after treatment. Notably, untargeted metabolomics revealed that RPMP-N and RPMP-A exerted significant anti-aging effects in the D-Gal aging mouse model, primarily influencing metabolism pathways related to lysine, sphingolipids, cysteine, and methionine. In conclusion, these findings provide important insights into the anti-aging mechanisms of PM polysaccharides, supporting their potential for clinical applications, drug development, and regulatory science.
Collapse
Affiliation(s)
- Jing Fan
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Yaolei Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 26003, Shandong, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China.
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China.
| | - Shuangcheng Ma
- State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; Chinese Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
3
|
Li Y, Zhong C, Kraithong S, Gong H, Han Z, Zheng X, Liao X, Mok SWF, Huang R, Zhang X. Insights into a novel exopolysaccharide from Mariana Trench-derived Aspergillus versicolor SCAU214: Structure and immune activity. Int J Biol Macromol 2025; 308:142660. [PMID: 40164263 DOI: 10.1016/j.ijbiomac.2025.142660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
A novel exopolysaccharide AVP-214-1was isolated and purified from the metabolites of a Mariana Trench-derived fungus Aspergillus versicolor SCAU214. AVP-214-1 exhibited a heteropolysaccharide architecture composed of mannose, galactose, and glucose residues. The linear backbone adopted α-(1 → 4)-linked d-galactopyranose and d-glucopyranose units with the following sequence: →[4,6)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1]4 → [4)-α-D-Glcp-(1 → 6)-α-D-Glcp-(1 → 3)-α-D-Glcp-(1]3 → [4,6)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1]2 → [4)-α-D-Glcp-(1]19 → [4)-α-D-Glcp-(1 → 4)-α-D-Galp-(1]2→. Structural complexity arose from two distinct branching motifs: single α-d-glucopyranosyl and an α-D-mannopyranosyl, both attached via C-6 positions of the backbone residues 1,4,6-α-D-Glcp. The molecular weight of AVP-214-1 was determined to be 8277 Da. In functional assays, AVP-214-1 was found to significantly enhance the proliferation of RAW 264.7 macrophage cells and promote the secretion of cytokines, such as IL-6, TNF-α and IL-1β. Metabolomic analysis revealed that AVP-214-1 primarily influences pyrimidine metabolism and amino acid-related metabolic pathways, these metabolic pathways were likely related to immune regulation. These results suggest that AVP-214-1 from a Mariana Trench-derived fungus was a novel immune-stimulating polysaccharide, opening up new avenues for the development of bioactive polysaccharides from deep-sea organisms for potential biotechnological applications.
Collapse
Affiliation(s)
- Yaozu Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Cheng Zhong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Supaluck Kraithong
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Haoyu Gong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhuang Han
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, China
| | - Xiaoning Zheng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Simon Wing-Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
4
|
Ektiren D, Güneş S, Vardin H. Determination of physicochemical, functional,and morphological properties of Prosopis farcta (Çeti̇) seed galactomannan as a new hydrocolloid source: Comparison with locust bean gum. Carbohydr Polym 2025; 352:123157. [PMID: 39843062 DOI: 10.1016/j.carbpol.2024.123157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 01/24/2025]
Abstract
The present study investigated the properties of galactomannan, a water-soluble polysaccharide extracted from the Prosopis farcta (Çeti) plant. These properties encompassed its functional characteristics, chemical composition, rheological behavior, and morphological structure. The results were systematically compared with those of the commercially utilized locust bean gum (LBG). Following ethanol precipitation, the yield of Prosopis farcta galactomannan (PFG) was determined to be 22.4 ± 0.5 %. The mannose-to-galactose (M: G) ratios of PFG and LBG were calculated as 1.7:1 and 3.3:1, respectively. The solubility of PFG exhibited a temperature-dependent increase akin to that of LBG. Notably, PFG demonstrated superior emulsion capacity and stability even at low concentrations. Additionally, the X-ray diffraction (XRD) analysis revealed asymmetric broad peaks around the 2θ = 20° diffraction angle, signifying the amorphous nature of PFG. Scanning electron microscopy (SEM) images, obtained after dissolving both PFG and LBG in deionized water and freeze-drying them, displayed a fibrous filament network structure in both samples.
Collapse
Affiliation(s)
- Demet Ektiren
- Dicle University, Diyarbakir Agricultural Vocational School, Food Processing Department, Diyarbakir, Turkey.
| | - Serap Güneş
- Dicle University, Diyarbakir Agricultural Vocational School, Food Processing Department, Diyarbakir, Turkey
| | - Hasan Vardin
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| |
Collapse
|
5
|
Miao W, Li N, Chen JQ, Wu JL. Composition-dependent MRM transitions and structure-indicative elution segments (CMTSES)-based LC-MS strategy for disaccharide profiling and isomer differentiation. Anal Chim Acta 2025; 1337:343562. [PMID: 39800516 DOI: 10.1016/j.aca.2024.343562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/17/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND Carbohydrates exhibit diverse functions and extensive biological activities and are notable in the field of life sciences. However, their inherent diversity and complexity-steaming from variations in isomeric monomers, glycosidic bonds, configurations, etc.-present considerable challenges in structural analysis. Considering these challenges, the disaccharide building blocks with simpler structures could provide more structural information. Although various approaches have been explored, sufficient standards or specialized equipment are required to differentiate and characterize isomers. Therefore, a strategy that addresses these challenges is urgently needed. RESULTS A Composition-dependent MRM Transitions and Structure-indicative Elution Segments (CMTSES)-based liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ-MS) strategy was developed to comprehensively profile disaccharide units and differentiate isomers. First, the composition-related precursor and structure-specific product ions of disaccharides were generated by QQQ-MS. Thereout, MRM transitions were proposed to enable the comprehensive profiling of disaccharides and rapid annotation of their compositions and saccharide types at both termini. Next, the linkage, composition, and configuration isomers of disaccharides were effectively differentiated and presented characteristic LC elution. Furthermore, low-cost and available "location references" (mannose, galactose, and isomaltose) were sought to define structure-indicative elution segments for the identification of isomeric hexose disaccharides. Building on this foundation, the novel CMTSES-based LC-MS strategy was designed, and its feasibility was further verified by successfully differentiating and identifying mixed homogenous and/or heterogenous disaccharide isomers in real samples. Sufficient structural information was obtained even for those consisting of diversified monomer types. SIGNIFICANCE AND NOVELTY This strategy comprehensively profiles both major and minor disaccharides and effectively differentiates multiple types of isomers. The use of readily available "location references" facilitated the identification of isomeric hexose disaccharide with reduced dependence on standards, thereby broadening the applicability of this strategy. However, the characterization of disaccharides with other compositions is challenging. Further in-depth investigations into intramolecular hydrogen bond simulation should provide solutions. Additionally, CMTSES-based LC-MS strategy is promising to analyze complex structures and samples.
Collapse
Affiliation(s)
- Wen Miao
- Faculty of Chinese Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Na Li
- Faculty of Chinese Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China.
| | - Jia-Qian Chen
- Faculty of Chinese Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jian-Lin Wu
- Faculty of Chinese Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
6
|
Salehi M, Rashidinejad A. Multifaceted roles of plant-derived bioactive polysaccharides: A review of their biological functions, delivery, bioavailability, and applications within the food and pharmaceutical sectors. Int J Biol Macromol 2025; 290:138855. [PMID: 39701227 DOI: 10.1016/j.ijbiomac.2024.138855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Plant-derived bioactive polysaccharides (PDBPs), versatile polymers originating from various botanical sources, exhibit a spectrum of biological functionalities crucial for human health. This review delves into the multifaceted roles of these bioactive compounds, elucidating their immune-boosting properties, antioxidant prowess, anti-inflammatory capabilities, and contributions to gut health. Amidst their pivotal roles, the efficiency of PDBPs delivery and bioavailability in the human system stands as a central determinant of their efficacy and utilization. This review paper extensively and systematically examines the diverse biological activities, such as immunomodulatory effects, delivery mechanisms like microencapsulation, and promising applications of PDBPs within the realms of both food (functional foods and nutraceuticals) and pharmaceutical (antimicrobial agents and anti-inflammatory drugs) sectors. Additionally, it offers a comprehensive overview of the classification, sources, and structural diversity of these polysaccharides, highlighting various identification techniques and rheological considerations. Moreover, the review addresses critical safety and regulatory concerns alongside global legislation about plant bioactive polysaccharides, envisaging a broader landscape for their utilization. Through this synthesis, we aim to underscore the holistic significance of PDBPs and their potential to revolutionize nutritional and therapeutic paradigms.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Food Sciences, Khazar Institute of Higher Education, Mahmoud Abad, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
7
|
Zhou E, Abula S, Abulizi A, He G, Huang P, Maimaiti M, Liu D, Mai Z, Dong S, Wusiman A. Extraction and immunomodulatory effects of acid Lagenaria siceraria (Molina) Standl. Polysaccharide on chickens. Poult Sci 2024; 103:104113. [PMID: 39146923 PMCID: PMC11379659 DOI: 10.1016/j.psj.2024.104113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Herbal polysaccharides are extensively studied as vaccine adjuvants due to their safety and potent immunoenhancing activity. This study aimed to analyze the structure of Lagenaria siceraria (Molina) Standl polysaccharide (LSP50) and investigate its adjuvant activity for the H9N2 vaccine in broiler chickens. Structural analysis revealed that LSP50 primarily consisted of rhamnose, arabinose, xylose, mannose, glucose, and galactose with molar ratios of 23.12: 12.28: 10.87: 8.26: 2.64: 22.82 respectively. The adjuvant activity of LSP50 was evaluated, which showing significant enhancements compared to the H9N2 group. Parameters including the immune organ index, H9N2 specific IgG level, cytokines contents (IFN-γ, IL-2, IL-4, and IL-5), and the proportion of CD3e+CD8aT+cells were significantly increased in the LSP50 group (P < 0.05). Additionally, sequencing results showed that LSP50 modulates the immune response by regulating PLA2G12B and PTGDS genes involved in the arachidonic acid pathway. These findings were further validated through qPCR analysis to affirm the reliability of the sequencing data. In conclusion, our results demonstrate that LSP50 exhibits potent adjuvant activity, enhancing both cellular and humoral immunity.
Collapse
Affiliation(s)
- En Zhou
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Saifuding Abula
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Alimujiang Abulizi
- Animal Husbandry and Veterinary Station, Shufu County Bureau of Agriculture and Rural Affairs, Kashgar 844100, China
| | - Guangyan He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Peng Huang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Mutailipu Maimaiti
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Dandan Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Shiqi Dong
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China.
| |
Collapse
|
8
|
Tang Z, Huang G, Huang H. Ultrasonic-assisted extraction, analysis and properties of purple mangosteen scarfskin polysaccharide and its acetylated derivative. ULTRASONICS SONOCHEMISTRY 2024; 109:107010. [PMID: 39094265 PMCID: PMC11345888 DOI: 10.1016/j.ultsonch.2024.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Purple mangosteen scarfskin polysaccharide has many important physiological functions, but its preparation method, structure, and function need further exploration. A polysaccharide was obtained from mangosteen scarfskin by ultrasonic-assisted extraction and purified. On this basis, its structure and physicochemical properties were investigated. The Congo red experiment was used to determine whether it has a triple helix conformation. The structure of purple mangosteen scarfskin polysaccharide was further analyzed by infrared spectroscopy and nuclear magnetic analysis. The antioxidant activities of the above three polysaccharides were studied by related experiments. It was found that the monosaccharide composition of purple mangosteen scarfskin polysaccharide mainly contained a large amount of arabinose, a small amount of rhamnoose and a very small amount of galacturonic acid, and its core main chain was composed of 1,4-α-arabinose. It did not have this spatial configuration. After the acetylation of purple mangosteen scarfskin polysaccharide, the acetylated derivative with a degree of substitution of 0.33 was obtained. It was found that they had certain scavenging and inhibiting effects on hydroxyl radicals and lipid peroxidation, and their activities were related to the concentration of polysaccharides. Meanwhile, the antioxidant activity of the polysaccharide was significantly enhanced after the modified treatment of acetylation, which indicated that chemical modification could effectively improve some activities of polysaccharide. The above studies provided some reference value for the further research and development of purple mangosteen scarfskin polysaccharide.
Collapse
Affiliation(s)
- Zhenjie Tang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
9
|
Li D, Chen M, Meng X, Sun Y, Liu R, Sun T. Extraction, purification, structural characteristics, bioactivity and potential applications of polysaccharides from Avena sativa L.: A review. Int J Biol Macromol 2024; 265:130891. [PMID: 38493821 DOI: 10.1016/j.ijbiomac.2024.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Avena sativa L. (A. sativa L.), commonly known as oat, is a significant cereal grain crop with excellent edible and medicinal value. Oat polysaccharides (OPs), the major bioactive components of A. sativa L., have received considerable attention due to their beneficial bioactivities. However, the isolation and purification methods of OPs lack innovation, and the structure-activity relationship remains unexplored. This review emphatically summarized recent progress in the extraction and purification methods, structural characteristics, biological activities, structure-to-function associations and the potential application status of OPs. Different materials and isolation methods can result in the differences in the structure and bioactivity of OPs. OPs are mainly composed of various monosaccharide constituents, including glucose, arabinose and mannose, along with galactose, xylose and rhamnose in different molar ratios and types of glycosidic bonds. OPs exhibited a broad molecular weight distribution, ranging from 1.34 × 105 Da to 4.1 × 106 Da. Moreover, structure-activity relationships demonstrated that the monosaccharide composition, molecular weight, linkage types, and chemical modifications are closely related to their multiple bioactivities, including immunomodulatory activity, antioxidant effect, anti-inflammatory activity, antitumor effects etc. This work can provide comprehensive knowledge, update information and promising directions for future exploitation and application of OPs as therapeutic agents and multifunctional food additives.
Collapse
Affiliation(s)
- Dan Li
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China
| | - Mengjie Chen
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China
| | - Xianwei Meng
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
10
|
Zhang Y, Xu Q, Wang Y, Zhang C, Xu S, Luo M, Yang S. Caragana sinica (Buc'hoz) Rehd. (jin ji er) polysaccharide regulates the immune function and intestinal microbiota of cyclophosphamide (CTX) induced immunosuppressed mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117551. [PMID: 38081398 DOI: 10.1016/j.jep.2023.117551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caragana sinica (Buc'hoz) Rehd. is a plant widely grown in Yunnan, China, for both medicinal and edible purposes. The "National Compilation of Chinese Herbal Medicine" describes its nature as "slightly temperate and sweet". Caragana sinica is usually medicated with whole herbs, the main function is to replenish the kidneys and stop bleeding. Caragana sinica was used in folk medicine in Chuxiong, Yunnan, to treat deficiency colds, fatigue, fever, cough, hypertension, and other diseases. AIM OF THE STUDY This article investigates the structural characteristics of Caragana sinica polysaccharide (CSP) and explores its immune-regulatory activity and molecular biological mechanisms in cyclophosphamide-induced immunosuppressed mice, as well as its effects on intestinal bacteria. METHODS With the water-extraction and alcohol-precipitation method, Caragana sinica polysaccharide were extracted, obtaining CSP by purification. A variety of methods and techniques have been used to analyze the chemical properties and structural characteristics of CSP. Immunosuppressive mice model was established through intraperitoneal injection of cyclophosphamide (CTX) to study the immune-regulatory effects and mechanisms of CSP. RESULTS The data indicated that CSP is a neutral heteropolysaccharide mainly composed of arabinose and galactose. This article uses immunosuppressive mice induced by cyclophosphamide (CTX) as the model. The results showed that CSP can promote the immune function of CTX treated immunosuppressed mice and regulate the diversity and composition of intestinal microbiota. CSP can increase macrophage phagocytosis, NK cell killing activity, and lymphocyte proliferation activity. It can also repair the index and morphological damage of the thymus and spleen. And by binding to the TLR4 receptor, MyD88 was activated and interacted with TRAF6 to promote the transfer of NF-κB into the nucleus. Thereby promoting cytokine release and increasing the production of IL-1β, IL-6, IL-10, TNF-α, IgA, and IgG in the serum. CSP also effectively alleviated the liver damage caused by CTX through antioxidant activity. Furthermore, CSP can dramatically affect the intestinal microbiota and the body's immunity by boosting the relative presence of Bacteroides and Verrucamicrobiota. CONCLUSIONS Research results indicated that CSP can regulate the immune function of mice, providing a basis for developing CSP as a potential immune modulator and functional food.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Qirui Xu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Yazi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Chenchen Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shan Xu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Manhong Luo
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shuhan Yang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
11
|
Fan X, Xiao X, Yu W, Yu B, He J, Zheng P, Yu J, Luo J, Luo Y, Yan H, Wang J, Wu A, Wang Q, Wang H, Mao X. Yucca schidigera purpurea-sourced arabinogalactan polysaccharides augments antioxidant capacity facilitating intestinal antioxidant functions. Carbohydr Polym 2024; 326:121613. [PMID: 38142074 DOI: 10.1016/j.carbpol.2023.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/25/2023]
Abstract
This study isolated and purified a novel homogeneous arabinogalactan polysaccharide from Yucca schidigera extract (YSE), unveiled its unique structure and explored its antioxidant function. Firstly, the antioxidant potential of YSE was demonstrated in piglet trials. A homogeneous polysaccharide with a molecular weight of 24.2 kDa, designated as Yucca schidigera polysaccharide B (YPB), was isolated and purified from YSE. The monosaccharide composition of YPB was Rha, Araf, Galp, and Glcp, whose molar percentages were 2.8 %, 11.6 %, 45.5 %, and 40.0 %, respectively. Methylation analysis combined with 1D and 2D nuclear magnetic resonance showed that YPB was a complex polysaccharide with a main glycosidic linkage pattern of →2)-α-ʟ-Rha-(1 → 3)-β-ᴅ-Galp-(1→3)-β-ᴅ-Galp-(1 → 3)-β-ᴅ-Galp-(1 → 3)-β-ᴅ-Glcp-(1→, and branched Araf and Galp fragments were connected with the main chain through →3,6)-β-ᴅ-Galp-(1→, →3,4)-β-ᴅ-Glcp-(1→, and →2,4)-α-ʟ-Rha-(1→ linkages. Following the in vitro biochemical assays of bioactive components, YPB should be the contributor to the antioxidant activity in YSE. Based on the establishment of oxidative stress model, YPB exhibited strong antioxidant capacity and activated NRF2 pathway, and then provided protection against the damage induced oxidative stress in IPEC-J2 cells and rats. Further analysis with inhibitors found that this antioxidant effect was attributed to its interaction with epidermal growth factor receptor and mannose receptor, and stimulating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangjun Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Wei Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jiangping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Quyuan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Huifen Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China.
| |
Collapse
|
12
|
Fan J, Wang Y, Yang J, Gu D, Kang S, Liu Y, Jin H, Wei F, Ma S. Anti-aging activities of neutral and acidic polysaccharides from Polygonum multiflorum Thunb in Caenorhabditis elegans. Int J Biol Macromol 2024; 257:128724. [PMID: 38103673 DOI: 10.1016/j.ijbiomac.2023.128724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Polygonum multiflorum Thunb (PM) is used to slow the aging process. Although polysaccharides are a major constituent of PM, their anti-aging properties have not been thoroughly investigated. Therefore, this study aimed to examine the anti-aging effects of polysaccharides extracted from PM using the Caenorhabditis elegans (C. elegans) model. Two types of water-soluble heteropolysaccharides, namely a neutral polysaccharide (RPMP-N) and an acidic polysaccharide (RPMP-A), were obtained from PM. Their structures were elucidated by various methods. The effects of these polysaccharides on the lifespan, levels of antioxidants, and activities of antioxidant-related enzymes in C. elegans were also evaluated. The results showed that RPMP-A had higher GalA content compared with RPMP-N. The average molecular weights of RPMP-N and RPMP-A were 245.30 and 28.45 kDa, respectively. RPMP-N is a α-1,4-linked dextran as the main chain, and contains a small amount of branched dextran with O-6 as the branched linkage site;RPMP-A may be a complex of α-1,4-linked dextran, HG and RG-I. Treatment with RPMP-N and RPMP-A increased the mean lifespan of C. elegans, and significantly regulated oxidative stress. RPMP-A exhibited stronger anti-aging effects compared with RPMP-N. These findings suggest that RPMP-A may be a potent antioxidant and anti-aging component that can be used for developing functional food products and effective dietary supplements.
Collapse
Affiliation(s)
- Jing Fan
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Donglin Gu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuai Kang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yue Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China.
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
13
|
Liu S, Li M, Liu W, Zhang Z, Wang X, Dong H. Structure and properties of acidic polysaccharides isolated from Massa Medicata Fermentata: Neuroprotective and antioxidant activity. Int J Biol Macromol 2024; 259:129128. [PMID: 38176512 DOI: 10.1016/j.ijbiomac.2023.129128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Massa Medicata Fermentata (MMF) is a fermented food with therapeutic effects. Previous studies suggested that after stir-frying, the uronic acid content in MMF crude polysaccharides increases, and the pH value decreases, which is caused by the change in acidic polysaccharides. However, the detailed physicochemical properties and structure-activity correlation of the acidic polysaccharides in MMF have not been fully explored. In this study, two acidic polysaccharides (SMMFAP and CMMFAP) were isolated from the MMF and its stir-fried product, respectively. Their structural characteristics and bioactivities were comparatively studied, and the structure-activity correlation was examined. Our findings revealed that the SMMFAP had a higher average Mw and higher Gal and Man content than the CMMFAP. Both the SMMFAP and CMMFAP were mainly composed of Xyl, Man, and Gal residues, whereas the CMMFAP had fewer linkage types. Additionally, the CMMFAP exhibited stronger neuroprotective activity than the SMMFAP owing to its higher content of 1,6-linked-Galp, while the SMMFAP exhibited better antioxidant activity, which might be related to its higher average Mw. Our findings suggest that acidic polysaccharides may be the active substances that cause differences in effectiveness between the sheng and chao MMF. Furthermore, the research qualified the SMMFAP and CMMFAP with different potential applications.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Meng Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenwen Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Zhe Zhang
- College of pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
14
|
Zhang T, Xie Y, Li T, Deng Y, Wan Q, Bai T, Zhang Q, Cai Z, Chen M, Zhang J. Phytochemical analysis and hepatotoxicity assessment of braised Polygoni Multiflori Radix (Wen-He-Shou-Wu). Biomed Chromatogr 2024; 38:e5768. [PMID: 38087457 DOI: 10.1002/bmc.5768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 01/26/2024]
Abstract
Polygoni Multiflori Radix (PMR) is a medicinal herb commonly used in China and Eastern Asia. Recently, the discovery of hepatotoxicity in PMR has received considerable attention from scientists. Processing is a traditional Chinese medicine technique used for the effective reduction of toxicity. One uncommon technique is the braising method-also known as 'Wen-Fa' in Chinese-which is used to prepare tonics or poisonous medications. Braised PMR (BPMR)-also known as 'Wen-He-Shou-Wu'-is one of the processed products of the braising method. However, the non-volatile components of BPMR have not been identified and examined in detail, and therefore, the hepatotoxic advantage of BPMR remains unknown. In this study, we compared the microscopic characteristics of different samples in powder form using scanning electron microscopy (SEM), investigated the non-volatile components, assessed the effects of different processed PMR products on the liver, and compared the differences between BPMR and PMR Praeparata recorded in the Chinese Pharmacopoeia (2020 edition). We found that the hepatotoxicity of BPMR was dramatically decreased, which may be related to an increase in polysaccharide content and a decrease in toxic substances. The present study provides an important foundation for future investigations of the processing mechanisms of BPMR.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yating Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Tao Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yaling Deng
- Department of Pharmacy, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Quan Wan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Tingting Bai
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qing Zhang
- Jianchangbang Pharmaceutical Co., Ltd., Nanchang, China
- Key Laboratory of Traditional Chinese Medicine Processing (Braising Method), Nanchang, China
| | - Zhongxi Cai
- Jianchangbang Pharmaceutical Co., Ltd., Nanchang, China
- Key Laboratory of Traditional Chinese Medicine Processing (Braising Method), Nanchang, China
| | - Mingxia Chen
- Jianchangbang Pharmaceutical Co., Ltd., Nanchang, China
- Key Laboratory of Traditional Chinese Medicine Processing (Braising Method), Nanchang, China
- Beijing Scrianen Pharmaceutical Co., Ltd., Beijing, China
| | - Jinlian Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
15
|
The prepared and characterized polysaccharide polymer in Saposhnikovia divaricata(Trucz.) Schischk effectively controls the course of rheumatoid arthritis via TLR4/TRAF6–NF-κB/IκB-α signaling pathway. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
16
|
Comparisons of physicochemical features and hepatoprotective potentials of unprocessed and processed polysaccharides from Polygonum multiflorum Thunb. Int J Biol Macromol 2023; 235:123901. [PMID: 36871693 DOI: 10.1016/j.ijbiomac.2023.123901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
The raw and processed Polygonum multiflorum Thunb (PM) are used to treat different diseases, and PM has also been reported to have hepatotoxic effects. Moreover, mounting evidence indicates that processed PM is less toxic than raw PM. The changes in efficacy and toxicity of PM during the processing are closely related to the changes in chemical composition. Previous studies have mainly focused on the changes of anthraquinone and stilbene glycosides during process. Polysaccharides, as main components of PM, showed many pharmacological effects, but its changes in the processing has been neglected for a long time. In this study, the polysaccharides of PM in the raw (RPMPs) and processed products (PPMPs) were determined and the liver injury model induced by acetaminophen was utilized to evaluate the impact of polysaccharides on the liver. Results showed that the heteropolysaccharides RPMPs and PPMPs both comprised Man, Rha, GlcA, GalA, Glc, Ara and Xyl, but markedly differed in polysaccharide yield, molar ratio of monosaccharide composition and Mw. In vivo analysis, results showed that demonstrated that RPMPs and PPMPs both exerted hepatoprotective effects by upregulating antioxidant enzymes and repressing lipid peroxidation. It is noteworthy that the polysaccharide yield of processed PM was seven-fold higher than that of raw PM, so it is speculated that processed PM has better hepatoprotective effects at the same dose of decoction. The present work provides an important foundation for studying the polysaccharide activity of PM and further revealing the processing mechanism of PM. This study also proposed a new hypothesis that the significant increase of polysaccharide content in processed PM may be another reason that the product PM causes less liver injury.
Collapse
|
17
|
Shao C, Zhong J, Liu J, Yang Y, Li M, Yang Yu, Xu Y, Wang L. Preparation, characterization and bioactivities of selenized polysaccharides from Lonicera caerulea L. fruits. Int J Biol Macromol 2023; 225:484-493. [PMID: 36403769 DOI: 10.1016/j.ijbiomac.2022.11.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/18/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
Native polysaccharide was obtained from Lonicera caerulea L. fruits (PLP). Two selenized polysaccharides (PSLP-1 and PSLP-2) were synthesized by the microwave-assisted HNO3-Na2SeO3 method, where the selenium (Se) contents were 228 ± 24 and 353 ± 36 μg/g, respectively. The molecular weights of PLP, PSLP-1, and PSLP-2 were 5.9 × 104, 5.6 × 104, and 5.1 × 104 kDa, respectively. PSLP-1 and PSLP-2 contained the same type of monosaccharides as PLP but with different molar ratios. The main chain structure of the native polysaccharide was not changed after selenization. PLP, PSLP-1, and PSLP-2 contained the same six types of glycosidic bonds. Bioactivity assays revealed that the two selenized polysaccharides possessed better antioxidant activities than PLP, but their bile acid-binding abilities and inhibitory activities on acetylcholinesterase (AChE) had weakened. In summary, PLP, PSLP-1, and PSLP-2 may be promising Se supplements in functional foods and inhibitors for the treatment of AChE.
Collapse
Affiliation(s)
- Chuntian Shao
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jingwei Zhong
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Junwen Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yiyan Yang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Meilin Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yaqin Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Libo Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
18
|
Zhang ZL, Li YZ, Wu GQ, Zhang DD, Deng C, Wang ZM, Song XM, Wang W. A comprehensive review of traditional uses, phytochemistry and pharmacology of Reynoutria genus. J Pharm Pharmacol 2022; 74:1718-1742. [DOI: 10.1093/jpp/rgac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
The genus Reynoutria belonging to the family Polygonaceae is widely distributed in the north temperate zone and used in folk medicine. It is administered as a sedative, tonic and digestive, also as a treatment for canities and alopecia. Herein, we reported a review on traditional uses, phytochemistry and pharmacology reported from 1985 up to early 2022. All the information and studies concerning Reynoutria plants were summarized from the library and digital databases (e.g. ScienceDirect, SciFinder, Medline PubMed, Google Scholar, and CNKI).
Key findings
A total of 185 articles on the genus Reynoutria have been collected. The phytochemical investigations of Reynoutria species revealed the presence of more than 277 chemical components, including stilbenoids, quinones, flavonoids, phenylpropanoids, phospholipids, lactones, phenolics and phenolic acids. Moreover, the compounds isolated from the genus Reynoutria possess a wide spectrum of pharmacology such as anti-atherosclerosis, anti-inflammatory, antioxidative, anticancer, neuroprotective, anti-virus and heart protection.
Summary
In this paper, the traditional uses, phytochemistry and pharmacology of genus Reynoutria were reviewed. As a source of traditional folk medicine, the Reynoutria genus have high medicinal value and they are widely used in medicine. Therefore, we hope our review can help genus Reynoutria get better development and utilization.
Collapse
Affiliation(s)
- Zi-Long Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Yu-Ze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Guo-Qing Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Dong-Dong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Zhi-Min Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , BeiJing 100700 , China
| | - Xiao-Mei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| |
Collapse
|
19
|
Gu D, Wang Y, Jin H, Kang S, Liu Y, Zan K, Fan J, Wei F, Ma S. Changes of Physicochemical Properties and Immunomodulatory Activity of Polysaccharides During Processing of Polygonum multiflorum Thunb. Front Pharmacol 2022; 13:934710. [PMID: 35784754 PMCID: PMC9243645 DOI: 10.3389/fphar.2022.934710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The roots of Polygonum multiflorum Thunb (PM) have a long history of usage in traditional Chinese medicine and are still widely utilized today. PM in raw or processed form has different biological activities and is commonly used to treat different diseases. Polysaccharides are the main component of PM, and it is unclear whether their physicochemical properties and activities change after processing. In this study, the polysaccharides from thirty-one raw PM (RPMPs) and nine processed PM (PPMPs) were extracted, and the physicochemical properties and immunomodulatory activity in vitro of polysaccharide samples were evaluated. Results showed that RPMPs and PPMPs had significant differences in physicochemical properties. RPMPs and PPMPs were both composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, and arabinose. However, RPMPs and PPMPs had significant differences in their yields, molecular weight (Mw), and the molar ratio of Glc/GalA (p < 0.05), which can be used to distinguish raw and processed PM. The fingerprint of monosaccharide composition was analyzed by chemometrics, and it was further demonstrated that Glc and GalA could be used as differential markers. The immunomodulatory activity assays indicated that RPMPs and PPMPs could significantly enhance phagocytosis and mRNA expression of cytokines in RAW 264.7 cells. In addition, the immunomodulatory activity of PPMPs with lower Mw was significantly better than that of RPMPs. This study furthers the understanding of the polysaccharides from raw and processed PM and provides a reference for improving the quality standard of PM.
Collapse
Affiliation(s)
- Donglin Gu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuai Kang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Zan
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jing Fan
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Shuangcheng Ma,
| |
Collapse
|
20
|
Cheng J, Song J, Wang Y, Wei H, He L, Liu Y, Ding H, Huang Q, Hu C, Huang X, Jiang Y, Wu Y. Conformation and anticancer activity of a novel mannogalactan from the fruiting bodies of Sanghuangporus sanghuang on HepG2 cells. Food Res Int 2022; 156:111336. [PMID: 35651086 DOI: 10.1016/j.foodres.2022.111336] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022]
Abstract
A novel water-soluble mannogalactan (SSPS1) with an average molecular weight of 2.04 × 104 Da was obtained from the fruiting bodies of the Sanghuangporus sanghuang. It revealed that SSPS1 was composed of d-galactose, d-mannose, l-fucose, 3-O-methylgalactose and d-glucose in a ratio of 6.2:3.9:3.1:2.1:1.0. The structural elucidation of SSPS1 consisted of 1, 6-linked α-D-Galp, 1, 6-linked α-D-Manp and 1, 6-linked 3-O-methyl-α-D-Galp backbone with branching at O-2 of 1, 6-α-D-mannosyl residues by α-L-Fucp and α-D-Glcp units. The conformational parameters suggested that a flexible chain conformation of SSPS1 in solution based on light scattering and atomic force microscopy imaging. Intriguingly, it presented potent anticancer activity on HepG2 cell with Rq and Ra values increased dramatically up to 73.93 nm and 53.92 nm compared with the control. The analysis of flow cytometry indicated SSPS1 could induce the apoptosis of HepG2 cells and arrest them via S phase. Western blot assay further uncovered that apoptosis process was triggered by SSPS1 via a mitochondria-mediated signaling pathway, which was evidenced by an increased ratio of Bax/Bcl-2, the release of cytochrome c and the strong activation of caspase-3 and 9. Taken together, these results suggested that SSPS1 might be applied in functional food as an anticancer agent.
Collapse
Affiliation(s)
- Junwen Cheng
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Jiling Song
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Yanbin Wang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Hailong Wei
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Liang He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Yu Liu
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongmei Ding
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Chuanjiu Hu
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Xubo Huang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Yihan Jiang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China; Zhejiang A & F University, Hangzhou 311300, China
| | - Youliang Wu
- Characteristic Plantation Technology Extension Center of Jiangshan, Zhejiang 324199, China.
| |
Collapse
|
21
|
Current emerging trends in antitumor activities of polysaccharides extracted by microwave- and ultrasound-assisted methods. Int J Biol Macromol 2022; 202:494-507. [PMID: 35045346 DOI: 10.1016/j.ijbiomac.2022.01.088] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 01/13/2023]
Abstract
This overview highlighted the in vitro and in vivo antitumor effects of polysaccharides extracted by ultrasound- and microwave-assisted solvent extraction methods. The polysaccharide fragments with stronger antiproliferation, antitumoral, and anticarcinoma effects can be identified through purification, fractionation, and bio-analytical assessments. Most of the extracted glucan-based polysaccharides in a dose-dependent manner inhibited the growth of human cancer cell types with cell death-associated morphological changes. Glucans, glucogalactans, and pectins without any cytotoxicity on normal cells showed the antitumor potential by the apoptosis induction and the inhibition of their tumorigenesis, metastasis, and transformation. There is a significantly high association among antiproliferative activities, structural features (e.g., molecular weight, monosaccharide compositions, and contents of sulfate, selenium, and uronic acid), and other bio-functionalities (e.g., antiradical and antioxidant) of isolated polysaccharides. The evaluation of structure-activity relationships of antitumor polysaccharides is an intriguing step forward to develop highly potent anticancer pharmaceuticals and foods without any side effects.
Collapse
|
22
|
Hussain HR, Bashir S, Mahmood A, Sarfraz M, Kanwal M, Ahmad N, Shah HS, Nazir I. Fenugreek seed mucilage grafted poly methacrylate pH-responsive hydrogel: A promising tool to enhance the oral bioavailability of methotrexate. Int J Biol Macromol 2022; 202:332-344. [PMID: 35041883 DOI: 10.1016/j.ijbiomac.2022.01.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to develop the Fenugreek seed mucilage-based pH-responsive hydrogel system in order to improve the oral bioavailability of methotrexate (MTX). Fenugreek seed mucilage (FSM) was extracted from Trigonella foenum-graecum seeds. F1-F9 formulations of pH-responsive hydrogels were prepared using various FSM ratios, methacrylic acid (MAA), and methylene bis acrylamide (MBA) via free radical polymerization technique. Swelling behavior and in vitro drug release studies of prepared hydrogels were evaluated. Toxicity studies of prepared hydrogels were performed on normal cells and on Wistar rats (n = 6). Moreover, in vivo pharmacokinetics parameters were studied on albino rabbits. Hydrogels formation was confirmed by FTIR analysis, thermal analysis and SEM studies. The maximum swelling of hydrogel was found to be 384.7% at pH 7.4. MTX-loaded hydrogel showed the controlled release of MTX up to 24 h following Super Case II transport. Prepared hydrogels exhibited no toxicity in normal cells as well as in experimental subjects. MTX loaded hydrogels exhibited less inhibition compared to free MTX on Hela cells. In Vivo studies revealed 7.5-fold improved oral bioavailability of MTX with higher Cmax (928 ng/mL). These results indicate that the pH-responsive hydrogel system based on FSM is a promising tool for the controlled delivery of MTX.
Collapse
Affiliation(s)
| | - Sajid Bashir
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan.
| | - Asif Mahmood
- Department of Pharmacy, University of Lahore, Lahore 54000, Pakistan.
| | - Muhammad Sarfraz
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan.
| | - Misbah Kanwal
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Nadeem Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences (UVAS), Lahore 54000, Pakistan.
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
23
|
Taoerdahong H, Zhou K, Yang F, Dong CX. Structure, immunostimulatory activity, and the effect of ameliorating airway inflammation of polysaccharides from Pyrus sinkiangensis Yu. Int J Biol Macromol 2022; 195:246-254. [PMID: 34863838 DOI: 10.1016/j.ijbiomac.2021.11.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/26/2022]
Abstract
Purified acid polysaccharides PSAP-1 and PSAP-2 with apparent molecular weights of 64.6 and 38.9 kDa, respectively, were isolated from Pyrus sinkiangensis Yu. through combined techniques of ion-exchange and gel permeation chromatography. Both polysaccharides were composed of predominant amounts of GalA and small amounts of Ara, Rha, and Gal. They are deduced to be native pectin-type polysaccharides containing the HG backbone consisting of α-1,4-GalAp and methyl-esterified α-1,4-GalAp residues by IR, GC-MS and NMR spectra analyses. The immunoregulatory activity test showed that PSAP-1 and PSAP-2 could increase the cell viability and the release of NO, IL-6, and TNF-α on the RAW264.7 macrophage. It indicated that PSAP-1 and PSAP-2 could increase macrophage-mediated immunostimulatory activity. The airway inflammation test of antiasthmatic mice showed that PSAP-1 could decrease the contents of IL-4, IL-5, and IL-13 and the number of inflammatory cells in BALF and improve the pathological changes in lung tissue. PSAP-1 could also decrease the amount of mucus secreted by goblet cells and the expression levels of NF-κB p65, IκBα, IKK, ERK, JNK, P38, and Muc5ac mRNA and increase the expression levels of TLR2 and TLR4 mRNA in lung tissues. This suggested that PSAP-1 may resist airway inflammation in mice. PSAP-1 and PSAP-2 had potential clinical application value.
Collapse
Affiliation(s)
| | - Kai Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Fei Yang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Cai-Xia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, College of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
24
|
Xiong F, Liang HX, Zhang ZJ, Mahmud T, Chan ASC, Li X, Lan WJ. Characterization, Antioxidant and Antitumor Activities of Oligosaccharides Isolated from Evodia lepta (Spreng) Merr. by Different Extraction Methods. Antioxidants (Basel) 2021; 10:antiox10111842. [PMID: 34829713 PMCID: PMC8614670 DOI: 10.3390/antiox10111842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
Evodia lepta (E. lepta) is a traditional Chinese herbal medicine with various biological activities. One of the active components of this widely used medicinal plant is believed to be an oligosaccharide. The extraction yields, structural characteristics, antioxidant, and antitumor activities of four oligosaccharide extracts obtained by hot water extraction (HEO), ultrasound-assisted extraction (UEO), enzyme-assisted (EEO), and microwave-assisted extraction (MEO) were investigated. Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS), X-ray diffraction (XRD), and Scanning electron microscopy (SEM) results indicated that the extraction methods had a difference on the molecular mass distribution, structure, and morphology of the EOs. In addition, HEO and MEO showed strong antioxidant activities, which might be related to their uronic acid and protein contents. More interestingly, MEO was more active toward MDA-MB-231 cells compared to other cells, and cell growth inhibition was proposed to occur through apoptosis. Overall, microwave-assisted extraction is a promising technique for the extraction of high quality EO.
Collapse
Affiliation(s)
- Feng Xiong
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (F.X.); (H.-X.L.); (Z.-J.Z.); (A.S.C.C.)
| | - Hui-Xian Liang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (F.X.); (H.-X.L.); (Z.-J.Z.); (A.S.C.C.)
| | - Zhi-Jing Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (F.X.); (H.-X.L.); (Z.-J.Z.); (A.S.C.C.)
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Albert S. C. Chan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (F.X.); (H.-X.L.); (Z.-J.Z.); (A.S.C.C.)
| | - Xia Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guiling 541004, China;
| | - Wen-Jian Lan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (F.X.); (H.-X.L.); (Z.-J.Z.); (A.S.C.C.)
- Correspondence: ; Tel.: +86-020-3994-3042
| |
Collapse
|
25
|
Screening of uric acid-lowering active components of corn silk polysaccharide and its targeted improvement on renal excretory dysfunction in hyperuricemia mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
26
|
Klein OI, Kulikova NA, Konstantinov AI, Zykova MV, Perminova IV. A Systematic Study of the Antioxidant Capacity of Humic Substances against Peroxyl Radicals: Relation to Structure. Polymers (Basel) 2021; 13:3262. [PMID: 34641078 PMCID: PMC8512611 DOI: 10.3390/polym13193262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/11/2023] Open
Abstract
Humic substances (HS) are natural supramolecular systems of high- and low-molecular-weight compounds with distinct immunomodulatory and protective properties. The key beneficial biological activity of HS is their antioxidant activity. However, systematic studies of the antioxidant activity of HS against biologically relevant peroxyl radicals are still scarce. The main objective of this work was to estimate the antioxidant capacity (AOC) of a broad set of HS widely differing in structure using an oxygen radical absorption capacity (ORAC) assay. For this purpose, 25 samples of soil, peat, coal, and aquatic HS and humic-like substances were characterized using elemental analysis and quantitative 13C solution-state NMR. The Folin-Ciocalteu method was used to quantify total phenol (TP) content in HS. The determined AOC values varied in the range of 0.31-2.56 μmol Trolox eqv. mg-1, which is close to the values for ascorbic acid and vitamin E. Forward stepwise regression was used to reveal the four main factors contributing to the AOC value of HS: atomic C/N ratio, content of O-substituted methine and methoxyl groups, and TP. The results obtained clearly demonstrate the dependence of the AOC of HS on both phenolic and non-phenolic moieties in their structure, including carbohydrate fragments.
Collapse
Affiliation(s)
- Olga I. Klein
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, pr. Leninskiy 33, 119071 Moscow, Russia;
| | - Natalia A. Kulikova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, pr. Leninskiy 33, 119071 Moscow, Russia;
- Department of Soil Science, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119991 Moscow, Russia
| | - Andrey I. Konstantinov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.I.K.); (I.V.P.)
| | - Maria V. Zykova
- Department of Chemistry, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Irina V. Perminova
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.I.K.); (I.V.P.)
| |
Collapse
|
27
|
Srinivasa UM, Naidu MM. Selective extraction of galactomannan from fenugreek (Trigonella foenum-graecum L.) seed husk and its enzyme inhibitory potential associated with hyperglycaemia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4751-4759. [PMID: 33502752 DOI: 10.1002/jsfa.11121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/16/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fenugreek seeds host various bioactive compounds, and galactomannan (GM) is a significant soluble fibre. In this study, selective extraction is adapted to extract fenugreek seed GM to improvise the yield recovery. The seeds are fractionated, separated and classified as husk and cotyledons. Comparative studies have been performed to evaluate the crude and pure GM yield between different groups such as the whole seed, and the classified fractions. Characterization is done using Fourier transform infrared, differential scanning calorimetry, scanning electron microscopy, monosaccharide composition and optical density, and the structure is elucidated through nuclear magnetic resonance. The GM obtained through extraction is used to study its enzyme inhibitory property associated with hyperglycaemia. RESULTS GM yield extracted from the husk is highly significant compared to other groups. Crude GM and pure GM yield was 2 and 3.25 times higher than that obtained through whole seed samples. The characterization of the pure GM is on a par with the existing reports. The purified GM inhibited α-amylase and α-glucosidase enzymes in vitro, with an IC50 of 21.08 ± 0.085 and 67.17 ± 5.15 μg mL-1 , respectively. CONCLUSION Selective extraction prompts enhancement in the recovery of the bioactive compound, minimal use of resources, and promotes industrial viability. Characterization of the compound confirms the structure. Its enzyme inhibitory property makes GM a valuable compound in diabetic prevention/treatment. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Uma Maheshwari Srinivasa
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Spices and Flavour Sciences, CSIR-CFTRI, Mysuru, India
| | - Madeneni Madhava Naidu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Spices and Flavour Sciences, CSIR-CFTRI, Mysuru, India
| |
Collapse
|
28
|
Byun EB, Song HY, Kim WS, Han JM, Seo HS, Park SH, Kim K, Byun EH. Protective Effect of Polysaccharides Extracted from Cudrania tricuspidata Fruit against Cisplatin-Induced Cytotoxicity in Macrophages and a Mouse Model. Int J Mol Sci 2021; 22:ijms22147512. [PMID: 34299130 PMCID: PMC8304288 DOI: 10.3390/ijms22147512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
Although cisplatin is one of most effective chemotherapeutic drugs that is widely used to treat various types of cancer, it can cause undesirable damage in immune cells and normal tissue because of its strong cytotoxicity and non-selectivity. This study was conducted to investigate the cytoprotective effects of Cudrania tricuspidata fruit-derived polysaccharides (CTPS) against cisplatin-induced cytotoxicity in macrophages, lung cancer cell lines, and a mouse model, and to explore the possibility of application of CTPS as a supplement for anticancer therapy. Both cisplatin alone and cisplatin with CTPS induced a significant cytotoxicity in A549 and H460 lung cancer cells, whereas cytotoxicity was suppressed by CTPS in cisplatin-treated RAW264.7 cells. CTPS significantly attenuated the apoptotic and necrotic population, as well as cell penetration in cisplatin-treated RAW264.7 cells, which ultimately inhibited the upregulation of Bcl-2-associated X protein (Bax), cytosolic cytochrome c, poly (adenosine diphosphateribose) polymerase (PARP) cleavage, and caspases-3, -8, and -9, and the downregulation of B cell lymphoma-2 (Bcl-2). The CTPS-induced cytoprotective action was mediated with a reduction in reactive oxygen species production and mitochondrial transmembrane potential loss in cisplatin-treated RAW264.7 cells. In agreement with the results obtained above, CTPS induced the attenuation of cell damage in cisplatin-treated bone marrow-derived macrophages (primary cells). In in vivo studies, CTPS significantly inhibited metastatic colonies and bodyweight loss as well as immunotoxicity in splenic T cells compared to the cisplatin-treated group in lung metastasis-induced mice. Furthermore, CTPS decreased the level of CRE and BUN in serum. In summation, these results suggest that CTPS-induced cytoprotective action may play a role in alleviating the side effects induced by chemotherapeutic drugs.
Collapse
Affiliation(s)
- Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (E.-B.B.); (H.-Y.S.); (J.M.H.); (H.S.S.)
| | - Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (E.-B.B.); (H.-Y.S.); (J.M.H.); (H.S.S.)
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea;
| | - Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (E.-B.B.); (H.-Y.S.); (J.M.H.); (H.S.S.)
| | - Ho Seong Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (E.-B.B.); (H.-Y.S.); (J.M.H.); (H.S.S.)
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan 32439, Korea; (S.-H.P.); (K.K.)
| | - Kwangwook Kim
- Department of Food Science and Technology, Kongju National University, Yesan 32439, Korea; (S.-H.P.); (K.K.)
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan 32439, Korea; (S.-H.P.); (K.K.)
- Correspondence: ; Tel.: +82-413-301-481; Fax: +82-413-301-489
| |
Collapse
|
29
|
Zhang M, Yang R, Yu S, Zhao W. A novel α‐glucosidase inhibitor polysaccharide from
Sargassum fusiforme. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mengqing Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| |
Collapse
|
30
|
Mahmoudi M, Abdellaoui R, Feki E, Boughalleb F, Zaidi S, Nasri N. Analysis of Polygonum Aviculare and Polygonum Maritimum for Minerals by Flame Atomic Absorption Spectrometry (FAAS), Polyphenolics by High-Performance Liquid Chromatography-Electrospray Ionization – Mass Spectrometry (HPLC-ESI-MS), and Antioxidant Properties by Spectrophotometry. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1906267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Maher Mahmoudi
- Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis, Tunisia
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Raoudha Abdellaoui
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Eya Feki
- Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Fayçal Boughalleb
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Slah Zaidi
- Advanced Analysis Platform, Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Nizar Nasri
- Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| |
Collapse
|
31
|
Characterization and inhibitory activities on α-amylase and α-glucosidase of the polysaccharide from blue honeysuckle berries. Int J Biol Macromol 2020; 163:414-422. [DOI: 10.1016/j.ijbiomac.2020.06.267] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 01/06/2023]
|
32
|
Hao Y, Sun H, Zhang X, Wu L, Zhu Z. A novel acid polysaccharide from fermented broth of Pleurotus citrinopileatus: Hypoglycemic activity in vitro and chemical structure. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Hao Y, Sun H, Zhang X, Wu L, Zhu Z. A novel polysaccharide from Pleurotus citrinopileatus mycelia: Structural characterization, hypoglycemic activity and mechanism. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
XIA YG, ZHU RJ, SHEN Y, LIANG J, KUANG HX. A high methyl ester pectin polysaccharide from the root bark of Aralia elata: Structural identification and biological activity. Int J Biol Macromol 2020; 159:1206-1217. [DOI: 10.1016/j.ijbiomac.2020.05.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 01/05/2023]
|
35
|
Isolation, physical, structural characterization and in vitro prebiotic activity of a galactomannan extracted from endosperm splits of Chinese Sesbania cannabina seeds. Int J Biol Macromol 2020; 162:1217-1226. [PMID: 32574735 DOI: 10.1016/j.ijbiomac.2020.06.177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to identify and determine the physical and structural characterization of the water-soluble galactomannan extracted from endosperm splits of Chinese S. cannabina seeds. The Sesbania galactomannan (SP) was extracted and purified using a novel method with a high yield (40.3 ± 7.2%). The molecular structure of SP was determined by monosaccharide composition, FTIR and NMR spectroscopy. The structural data showed that SP was galactomannan which composed by a β-(1/4)-linked mannose backbone with galactopyranosyl residues attached through α-(1/6) linkages. The constant mannose/galactose (M/G) ratio and average molecular weight (Mw) of SP was 1.6:1 and 2.16 × 105 g/mol, respectively. The physical results revealed that SP had many branches on the backbone and existed as a random coil state in aqueous solution. SP was a good biopolymer which had smooth and clearer surface with homogeneous composition, and had some degree of crystallinity and prebiotic activity. As a consequence, SP could be a potential prebiotic and was expected to be suitable for applications in food, pharmaceutical, biomedical or cosmetic industries as a promising new biomaterial.
Collapse
|
36
|
Zeng F, Chen W, He P, Zhan Q, Wang Q, Wu H, Zhang M. Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels. Carbohydr Polym 2020; 246:116551. [PMID: 32747236 DOI: 10.1016/j.carbpol.2020.116551] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/26/2020] [Accepted: 05/30/2020] [Indexed: 12/20/2022]
Abstract
Chinese water chestnut peels are a kind of vegetable processing waste containing many active components such as polysaccharides, the structure of which remains unknown. To elucidate the structure of polysaccharides from Chinese water chestnut peels, two polysaccharides named WVP-1 and WVP-2 were isolated. WVP-1 (3.16 kDa) consisted of mannose (1.75 %), glucose (84.69 %), galactose (6.32 %), and arabinose (7.24 %), while WVP-2 (56.97 kDa) was composed of mannose (3.18 %), rhamnose (1.52 %), glucuronic acid (1.42 %), galacturonic acid (4.83 %), glucose (11.51 %), galactose (36.02 %), and arabinose (41.53 %). Linkage and NMR data indicated that WVP-1 was composed mainly of →4)-α-d-Glcp(1→ and a certain proportion of →3)-β-d-Glcp-(1→, including linear and branched polysaccharides simultaneously. WVP-2 was a pectin-like polysaccharide with →4)-α-d-GalpA6Me-(1→ units and the branch points of →3,4)-α-l-Arap-(1→, →3,6)-β-d-Galp-(1→. WVP-2 exhibited stronger potential antioxidant and immunomodulatory activities than WVP-1 in vitro. These results provide a foundation for the further study of polysaccharides from Chinese water chestnut peels.
Collapse
Affiliation(s)
- Fanke Zeng
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Wenbo Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Ping He
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Qiping Zhan
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Qian Wang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
| | - Mengmeng Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
| |
Collapse
|
37
|
Dong XD, Feng YY, Liu YN, Ji HY, Yu SS, Liu A, Yu J. A novel polysaccharide from Castanea mollissima Blume: Preparation, characteristics and antitumor activities in vitro and in vivo. Carbohydr Polym 2020; 240:116323. [PMID: 32475583 DOI: 10.1016/j.carbpol.2020.116323] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
A new water-soluble polysaccharide, CMP90, with a molecular weight of 23.9 kDa was isolated from Castanea mollissima Blume and the preliminary structural characteristics and antitumor effects of CMP90 in vitro and in vivo were investigated in the research. CMP90 consists of arabinose, galactose, glucose, xylose and mannose (molar ratio: 0.08:0.11:5.14:0.12:0.08) with α- and β-anomeric units. The results of in vitro experiments indicated that CMP90 exhibited a significant inhibitory effect on the proliferation of HL-60 cells with typical apoptotic characteristics by inducing cell cycle arrested at G1/M phase. Additionally, the results in vivo suggested CMP90 was able to inhibit the growth of S180 solid tumors via protecting immune organs, improving the levels of serum cytokines (TNF-α, IL-2 and IFN-γ), enhancing the activities of immune cells (macrophages, lymphocytes and NK cells) and inducing cell apoptosis or death. Taken together, these combined data clearly indicated that CMP90 may be used as a potential candidate agent for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Dan Dong
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Ying-Ying Feng
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Yi-Ning Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Hai-Yu Ji
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Sha-Sha Yu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Anjun Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Juan Yu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
38
|
Ullah S, Khalil AA, Shaukat F, Song Y. Sources, Extraction and Biomedical Properties of Polysaccharides. Foods 2019; 8:E304. [PMID: 31374889 PMCID: PMC6723881 DOI: 10.3390/foods8080304] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 12/14/2022] Open
Abstract
In the recent era, bioactive compounds from plants have received great attention because of their vital health-related activities, such as antimicrobial activity, antioxidant activity, anticoagulant activity, anti-diabetic activity, UV protection, antiviral activity, hypoglycemia, etc. Previous studies have already shown that polysaccharides found in plants are not likely to be toxic. Based on these inspirational comments, most research focused on the isolation, identification, and bioactivities of polysaccharides. A large number of biologically active polysaccharides have been isolated with varying structural and biological activities. In this review, a comprehensive summary is provided of the recent developments in the physical and chemical properties as well as biological activities of polysaccharides from a number of important natural sources, such as wheat bran, orange peel, barely, fungi, algae, lichen, etc. This review also focused on biomedical applications of polysaccharides. The contents presented in this review will be useful as a reference for future research as well as for the extraction and application of these bioactive polysaccharides as a therapeutic agent.
Collapse
Affiliation(s)
- Samee Ullah
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Faryal Shaukat
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
39
|
Purification of an acidic polysaccharide from Suaeda salsa plant and its anti-tumor activity by activating mitochondrial pathway in MCF-7 cells. Carbohydr Polym 2019; 215:99-107. [DOI: 10.1016/j.carbpol.2019.03.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/09/2019] [Accepted: 03/15/2019] [Indexed: 11/23/2022]
|
40
|
Xu Y, Liu N, Fu X, Wang L, Yang Y, Ren Y, Liu J, Wang L. Structural characteristics, biological, rheological and thermal properties of the polysaccharide and the degraded polysaccharide from raspberry fruits. Int J Biol Macromol 2019; 132:109-118. [DOI: 10.1016/j.ijbiomac.2019.03.180] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/27/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
|
41
|
Li R, Jia X, Wang Y, Li Y, Cheng Y. The effects of extrusion processing on rheological and physicochemical properties of sesbania gum. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Lycium barbarum polysaccharides grafted with doxorubicin: An efficient pH-responsive anticancer drug delivery system. Int J Biol Macromol 2019; 121:964-970. [DOI: 10.1016/j.ijbiomac.2018.10.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/28/2018] [Accepted: 10/14/2018] [Indexed: 12/19/2022]
|
43
|
Wang Z, Zhao X, Liu X, Lu W, Jia S, Hong T, Li R, Zhang H, Peng L, Zhan X. Anti-diabetic activity evaluation of a polysaccharide extracted from Gynostemma pentaphyllum. Int J Biol Macromol 2018; 126:209-214. [PMID: 30590141 DOI: 10.1016/j.ijbiomac.2018.12.231] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/09/2018] [Accepted: 12/23/2018] [Indexed: 12/25/2022]
Abstract
In current study, a polysaccharide (GPP) was successfully extracted from Gynostemma pentaphyllum herb. Monosaccharide composition of GPP was rhamnose, arabinose, galactose, glucose, xylose, mannose, galacturonic acid and glucuronic acid in a molar ratio of 4.11: 7.34: 13.31: 20.99: 1.07: 0.91: 4.75: 0.36. Molecular weight and polydispersity (Mw/Mn) of GPP were 4.070 × 104 Da and 1.037, respectively. Primary structure features of GPP were determined to be a polysaccharide by FT-IR and NMR. Fasting blood sugar of diabetic mice decreased from 17.56 mmol/L to 7.42 mmol/L by orally administration of 0.5 mL GPP (1 mg/mL) for 30 days. GPP exhibited a dose-dependent inhibition effect on α-glucosidase activity. Moreover, GPP could inhibit the glucose absorption and affect the protein expression of GLUT2, but not the protein expression of SGLT1. These results indicated GPP could be used as an effective ingredient to prevent and cure diabetes.
Collapse
Affiliation(s)
- Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoxiao Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoying Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wenbo Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shutong Jia
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Tingting Hong
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lin Peng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
44
|
Xu N, Lu Y, Hou J, Liu C, Sun Y. A Polysaccharide Purified from Morchella conica Pers. Prevents Oxidative Stress Induced by H₂O₂ in Human Embryonic Kidney (HEK) 293T Cells. Int J Mol Sci 2018; 19:ijms19124027. [PMID: 30551572 PMCID: PMC6320779 DOI: 10.3390/ijms19124027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
Morchella conica Pers. (M. conica) has been used both as a medical and edible mushroom and possesses antimicrobial properties and antioxidant activities. However, the antioxidant properties of polysaccharides purified from M. conica have not been studied. The aim of this study was to investigate the in vitro antioxidant properties of a polysaccharide NMCP-2 (neutral M. conica polysaccharides-2) purified from M. conica, as determined by radical scavenging assay and H₂O₂-induced oxidative stress in HEK 293T cells. Results showed that NMCP-2 with an average molecular weight of 48.3 kDa possessed a much stronger chelating ability on ferrous ions and a higher ability to scavenge radical scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) than the other purified fraction of NMCP-1 from M. conica. Moreover, 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetra-zolium bromide (MTT) assay showed that NMCP-2 dose-dependently preserved cell viability of H₂O₂-induced cells. The NMCP-2 pretreated group reduced the generation of reactive oxygen species (ROS) content and increased the mitochondria membrane potential (MMP) levels. In addition, Hoechst 33342 staining revealed cells treated with NMCP-2 declined nuclear condensation. Ultrastructural observation revealed that NMCP-2 pretreatment alleviated the ruptured mitochondria when exposed to H₂O₂. Furthermore, western blot analysis showed that NMCP-2 prevented significant downregulation of the protein expression of Bax, cleaved caspases 3, and upregulated Bcl-2 levels. These results suggest the protective effects of NMCP-2 against H₂O₂-induced injury in HEK 293T cells. NMCP-2 could be used as a natural antioxidant of functional foods and natural drugs.
Collapse
Affiliation(s)
- Na Xu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yi Lu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China.
| | - Jumin Hou
- College of Food Science and Engineering, Changchun University, Changchun 130028, China.
| | - Chao Liu
- School of Food Engineering, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Yonghai Sun
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
45
|
Anticancer Activity of Polysaccharides Produced from Glycerol and Crude Glycerol by an Endophytic Fungus Chaetomium globosum CGMCC 6882 on Human Lung Cancer A549 Cells. Biomolecules 2018; 8:biom8040171. [PMID: 30544990 PMCID: PMC6315677 DOI: 10.3390/biom8040171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/23/2022] Open
Abstract
Two polysaccharides were produced by Chaetomium globosum CGMCC 6882 from glycerol (GCP-1) and crude glycerol (GCP-2). Chemical characteristics results showed GCP-1 and GCP-2 were similar polysaccharides, but the molecular weights of GCP-1 and GCP-2 were 5.340 × 104 Da and 3.105 × 104 Da, respectively. Viabilities of A549 cells after treatment with GCP-1 and GCP-2 were 49% and 39% compared to the control group. Meanwhile, flow cytometry results indicated that GCP-1 and GCP-2 could induce 17.79% and 24.28% of A549 cells to apoptosis with 200 μg/mL concentration treated for 24 h. RT-PCR results suggested that GCP-1 and GCP-2 could be used as potential and effective apoptosis inducers on A549 cells by increasing BAX, CASPASE-3, CASPASE-9, TIMP-1, TIMP-2 expression and decreasing BCL-2 expression. This research provided an innovative approach to using a byproduct of biodiesel production (crude glycerol) to produce polysaccharides of potential medicinal benefit.
Collapse
|
46
|
Wang Z, Cai T, He X. Characterization, sulfated modification and bioactivity of a novel polysaccharide from Millettia dielsiana. Int J Biol Macromol 2018; 117:108-115. [DOI: 10.1016/j.ijbiomac.2018.05.147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 12/12/2022]
|
47
|
Sun J, Wen X, Liu J, Kan J, Qian C, Wu C, Jin C. Protective effect of an arabinogalactan from black soybean against carbon tetrachloride-induced acute liver injury in mice. Int J Biol Macromol 2018; 117:659-664. [PMID: 29852225 DOI: 10.1016/j.ijbiomac.2018.05.203] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/10/2018] [Accepted: 05/27/2018] [Indexed: 12/21/2022]
Abstract
In vivo hepatoprotective effect of a novel arabinogalactan (AG) from black soybean on carbon tetrachloride (CCl4)-induced acute liver injury was evaluated for the first time. Our results showed that administration of AG could significantly attenuate the increase in the levels of alkaline phosphatase, alanine transaminase and aspartate transaminase in the serum caused by CCl4 treatment. AG treatment not only significantly elevated the levels of antioxidant enzymes including superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase; but also increased the levels of non-enzyme antioxidants (glutathione and total antioxidant capacity in liver tissues) when compared with CCl4-induced acute liver injury model. In addition, AG significantly reduced lipid peroxidation levels in liver tissues. The hepatoprotective effect of high-dose of AG was comparable to that of silymarin, which served as a positive standard. This study indicated that AG had a protective effect on CCl4-induced acute liver injury.
Collapse
Affiliation(s)
- Jian Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Xiaoyuan Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chunsen Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
48
|
Optimization of an aqueous two-phase extraction method for the selective separation of sulfated polysaccharides from a crude natural mixture. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Structure characterization of two functional polysaccharides from Polygonum multiflorum and its immunomodulatory. Int J Biol Macromol 2018; 113:195-204. [DOI: 10.1016/j.ijbiomac.2018.02.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/02/2018] [Accepted: 02/11/2018] [Indexed: 11/19/2022]
|
50
|
Liu Y, Wang Q, Yang J, Guo X, Liu W, Ma S, Li S. Polygonum multiflorum Thunb.: A Review on Chemical Analysis, Processing Mechanism, Quality Evaluation, and Hepatotoxicity. Front Pharmacol 2018; 9:364. [PMID: 29713283 PMCID: PMC5912012 DOI: 10.3389/fphar.2018.00364] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/28/2018] [Indexed: 01/14/2023] Open
Abstract
Polygonum multiflorum Thunb. and its processed products have been used in China for centuries due to their multiple beneficial effects to human body. Currently, liver injuries caused by taking P. multiflorum have been reported worldwide, but the potential toxic components and possible mechanism that caused hepatotoxicity remain unclear. It is worth noting that the processing procedure could significantly decrease the toxicity of raw P. multiflorum and the processed products of P. multiflorum are considered to be relatively safe. However, the processing mechanism is still ambiguous, and there is the lack of a scientific approach to control the quality of P. multiflorum praeparata. This study is the first review that summarizes the recently advances (from 2007 to 2017) in the chemical analysis of P. multiflorum, and provides comprehensive information on the quantitative and qualitative analysis of P. multiflorum as well as its related species. In addition, the processing mechanism and quality evaluation of processed P. multiflorum are discussed. Moreover, the toxicity of P. multiflorum is analyzed from the perspectives of exploration of the proposed toxic ingredients, metabolite identification, metabolomics studies, and exogenous contaminant determination. Furthermore, trends and perspectives for future research of this medicine are discussed.
Collapse
Affiliation(s)
- Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Qi Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaohan Guo
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Wenxi Liu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shaoping Li
- State Key Laboratory for Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|