1
|
Song Y, Liu X, Feng Y, Liu G, Duan Y. Recent insights into Hericium erinaceus polysaccharides: Gastrointestinal, gut microbiota, microbial metabolites, overall health and structure-function correlation. Int J Biol Macromol 2025; 311:144013. [PMID: 40339863 DOI: 10.1016/j.ijbiomac.2025.144013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/14/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Hericium erinaceus polysaccharides (HEPs) have attracted significant interest due to their potential to support gastrointestinal health and modulate gut microbiota. However, while promising findings exist, a comprehensive understanding of the structure-function relationships and the mechanisms by which HEPs influence gut health and microbial metabolites remains limited. This review synthesizes recent advances in HEPs, detailing their bioactivity in gastrointestinal protection mechanisms, modulation of gut microbiota, production of key metabolites, regulation of immune responses, enhancement of intestinal barrier integrity, and interactions within the microbiota-gut-brain axis, thereby improving overall host health. Additionally, we explore the structural diversity of HEPs in relation to their biological functions, as well as advancements in HEP modification and drug delivery systems. As the potential for HEPs in the food and pharmaceutical industries grows, this review provides valuable insights into innovative approaches for utilizing HEPs to support intestinal health and overall well-being. These findings underscore the therapeutic potential of HEPs and their broad-ranging health benefits.
Collapse
Affiliation(s)
- Yating Song
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Xuefeng Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Wei T, Guo J, Hong A, He Q, Chen J, Ren Z, Qin T. Preparation, Characterization, and Immune Activity of Viola philippica Polysaccharide PLGA Nanoparticles. Chem Biodivers 2025; 22:e202402819. [PMID: 39601361 DOI: 10.1002/cbdv.202402819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
Recent pharmacological studies have demonstrated that Viola philippica polysaccharide (VPP) exhibits a modulating effect on immune activity. However, its utilization has been hampered by its large particle size and complex spatial structure. Polylactic-co-glycolic acid (PLGA) copolymer is recognized as an effective drug delivery carrier, exhibiting excellent biochemical properties. In this experiment, VPP was encapsulated with PLGA to form VPP PLGA nanoparticles (VPP-PLGA NPs). The morphological structure and immunomodulatory effects of VPP-PLGA NPs were evaluated. The particle size of VPP-PLGA NPs was reduced compared to VPP, and the optimal preparation conditions were as follows: The ratio of the organic phase to the internal aqueous phase was 8:1, the ratio of the external aqueous phase to the primary emulsion was 7:1, and the concentration of PLGA was 20 mg/mL. Additionally, VPP-PLGA NPs significantly increased the nitric oxide (NO) content, IL-4, and IFN-γ levels in RAW264.7 cells, as well as enhanced their phagocytic activity. Furthermore, VPP-PLGA NPs were found to increase NO content and IFN-γ secretion in bone marrow-derived dendritic cells (BMDCs). These findings suggest that VPP-PLGA NPs could enhance the immune activity and may be utilized as a VPP delivery system for inducing strong immune responses.
Collapse
Affiliation(s)
- Tiantian Wei
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Jinhang Guo
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Ancan Hong
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Qiuyue He
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Jiafa Chen
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Zhe Ren
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| |
Collapse
|
3
|
Luo Q, Bai X, Li X, Liu C. The role and mechanism of selenium in the prevention and progression of hepatocellular carcinoma. Front Oncol 2025; 15:1557233. [PMID: 40182029 PMCID: PMC11965637 DOI: 10.3389/fonc.2025.1557233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Hepatocellular carcinoma (HCC) represents the most prevalent form of liver cancer. Despite notable advancements in therapeutic strategies, HCC continues to pose significant public health challenges due to its rising incidence and high mortality rates worldwide. Selenium is an essential trace element that playing a critical role in human health. Recent studies have highlighted its potential preventive and therapeutic benefits in the context of HCC. However, some in vitro and in vivo investigations have yielded inconsistent results, and the mechanisms by which selenium influences HCC are still not completely clear. This review begins by providing an extensive evaluation of the effects and mechanisms of selenium on the primary risk factors associated with HCC, including viral infections, metabolic abnormalities, and lifestyle factors. Subsequently, we outline the roles and mechanisms by which selenium influences the proliferation, metastasis, and immune microenvironment of HCC. Finally, we emphasize the imperative for further investigation into the optimal dosage and forms of selenium, as well as its effects on the HCC microenvironment, to inform the development of effective clinical strategies. This review thus provides a foundational framework for the potential clinical application of selenium in the treatment of HCC.
Collapse
Affiliation(s)
- Qinying Luo
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaofang Bai
- Department of Ultrasonography, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiaojiao Li
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chang Liu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong, Shanghai, China
| |
Collapse
|
4
|
Niu B, Zhang L, Chen B, Liu X, Yang F, Ren Y, Xiang H, Wang P, Li J. Extraction, purification, structural characteristics, biological activities, modifications, and applications from Hericium erinaceus polysaccharides: A review. Int J Biol Macromol 2025; 291:138932. [PMID: 39706449 DOI: 10.1016/j.ijbiomac.2024.138932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Hericium erinaceus (Bull.) Pers. is a respected medicinal and edible fungus known for its outstanding nutritional profile. In traditional Chinese medicine, it is viewed as a valuable medicinal resource offering various benefits, such as liver protection, spleen fortification, stomach nourishment, and improved digestion. The primary active ingredient, H. erinaceus polysaccharides (HEPs), exhibits diverse biological activities, including immunomodulatory, gastrointestinal protective, regulation of intestinal flora, anti-Alzheimer's, and antioxidant activities. These activities underscore the significant potential of HEPs for treating various diseases and developing HEPs-based pharmaceuticals. For instance, HEPs can exert immunomodulatory effects through the TLR4/NFκB/MyD88/MAPK/PI3K/Akt signaling pathways. Additionally, HEPs achieve immunomodulatory, gastrointestinal protection, and anti-inflammatory and anti-cancer effects by modulating intestinal microbiota. This review systematically summarizes the past five years' research on the extraction, purification, structural characteristics, pharmacological properties, structure-activity relationships, structural modifications, toxicological effects, and potential applications of HEPs. It highlights the diverse biological activities of HEPs in vivo and in vitro and discusses structural modification methods and their broad application prospects in food, medicine, industry, and other fields. These studies will enhance the understanding of HEPs and promote further exploration and innovation in the field of biological activity research and the development of potential applications.
Collapse
Affiliation(s)
- Ben Niu
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Lei Zhang
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bodong Chen
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xianglong Liu
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Feng Yang
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yongyong Ren
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Honglu Xiang
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Peilin Wang
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jin Li
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
5
|
Bao A, Wei Z, Bai M, Liu S, Wang S, Li L, Song S, Kong W, Zhang J, Wang T, Wang J. Covalent Modification of Selenium in Polysaccharide Enhances Immunoregulation Activity via the TLR4-Mediated MAPK/NF-κB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1874-1891. [PMID: 39740202 DOI: 10.1021/acs.jafc.4c06364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Selenium (Se) is a crucial trace element that demonstrates significant immunomodulatory effects, which are attributed to the variability in its valence states and metabolic pathways. To investigate the Se-related immunoregulatory effects, locust bean gum (LBG), a typical galactomannan, was selenized by employing deep eutectic solvents (DESs) as high-efficiency solvents to obtain Se-covalent modified LBG (SeLBGs) with similar molecular mass and different Se contents (SeLBGL, 1049.57 and SeLBGH, 4926.54 μg/g). After introducing selenite into LBG, SeLBGs display greater immunomodulatory activities by activating MAPKs and NF-κB signaling pathways compared with LBG and Se compounds (Se-Met, Na2SeO3, and SeNPs) at the same Se equivalent, which are confirmed by their higher cell viability, phagocytic activity, secretion of cytokines, and protein expression. In addition, molecular docking and molecular dynamics suggest that SeLBG has the potential to induce dimerization of subunits and activate toll-like receptors (TLRs). By employing the specific receptor inhibitors strategy, it is confirmed that the combination of Se and LBG enhances TLR2/4 recognition according to the results of cytokine secretion and MAPKs/NF-κB pathway-related protein expression. These findings underscore the role of Se in pattern receptor recognition and the potential of Se-enriched ingredients in various functions.
Collapse
Affiliation(s)
- Aijuan Bao
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Zhangkun Wei
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Meiting Bai
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Shuang Liu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Shiping Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Li Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
- Gansu Provincial Hospital, Lanzhou 730000, People's Republic of China
| | - Shen Song
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
- Functional Food Technology Innovation Center of Gansu Province, Lanzhou 730070, People's Republic of China
| | - Weibao Kong
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
- Functional Food Technology Innovation Center of Gansu Province, Lanzhou 730070, People's Republic of China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
- Functional Food Technology Innovation Center of Gansu Province, Lanzhou 730070, People's Republic of China
| | - Tao Wang
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, People's Republic of China
- Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou 730050, People's Republic of China
| | - Junlong Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
- Functional Food Technology Innovation Center of Gansu Province, Lanzhou 730070, People's Republic of China
| |
Collapse
|
6
|
Hu Y, Cao Y, Shen Y, Shan Y, Liu J, Song Y, Yang Y, Zhao J. Research progress of edible mushroom polysaccharide-metal trace element complexes. Food Chem X 2024; 24:101711. [PMID: 39310894 PMCID: PMC11414690 DOI: 10.1016/j.fochx.2024.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
Metal trace elements are crucial for human health, and the complexes of edible mushroom polysaccharides with metal trace elements are currently a research hotspot in the field of food science. This article reviews the preparation methods, structural characterization, and physiological activities of edible mushroom polysaccharide-metal trace element complexes, including iron, selenium, and zinc. Research has shown that iron complexes obtained through Co-thermal synthesis of the FeCl3 method exhibit excellent antioxidant and anti-anemia functions; selenium complexes prepared via selenium-enriched cultivation significantly enhance immunological and anti-cancer properties; zinc complexes improve lipid-lowering, liver protection, and antioxidant capabilities. However, there is an imbalance in research among different metal elements, particularly with a high density of studies on selenium complexes. These studies provide a foundation for the future development of edible mushroom polysaccharide-metal trace element complexes.
Collapse
Affiliation(s)
- Yanbo Hu
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yi Cao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yuzhu Shen
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yakun Shan
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, 130012, China
| | - Yudi Song
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yue Yang
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Jun Zhao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| |
Collapse
|
7
|
Zheng YY, Tong XY, Zhang DY, Ouyang JM. Enhancement of Antioxidative and Anti-Inflammatory Activities of Corn Silk Polysaccharides After Selenium Modification. J Inflamm Res 2024; 17:7965-7991. [PMID: 39502937 PMCID: PMC11537195 DOI: 10.2147/jir.s467665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/07/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study aimed to study the effect of selenium modification on the bioactivity of corn silk polysaccharides, particularly its antioxidant and anti-inflammatory functions. Methods HNO3-NaSeO3 was used to selenize degraded corn silk polysaccharides (DCSP). The structure and physicochemical properties of DCSP and selenized corn silk polysaccharides (Se-DCSP) were characterized by inductively coupled plasma emission spectroscopy, Fourier-transform infrared, ultraviolet-visible spectroscopy, nuclear magnetic resonance, nanometer, scanning electron microscopy, and thermogravimetric analysis. The protective effects of DCSP and Se-DCSP on HK-2 cells damaged by nano-calcium oxalate and the changes of inflammatory factors were detected by laser confocal microscopy, flow cytometry, and fluorescence microscopy. Results The selenium content of DCSP and Se-DCSP were 19.5 and 1226.7 μg/g, respectively. Compared with DCSP, Se-DCSP showed significantly improved biological activity, including the scavenging ability of various free radicals (increased by about 2-3 times), the intracellular reactive oxygen content (decreased by about 1.5 times), and the mitochondrial membrane potential (decreased by about 2.5 times). Moreover, cell viability and morphological recovery ability were improved. Compared with DCSP, Se-DCSP significantly down-regulated HK-2 cell inflammatory factors MCP-1 (about 1.7 times), NLRP3, and NO (about 1.5 times). Conclusion The antioxidant activity and the ability to down-regulate the expression of inflammatory factors of Se-DCSP were significantly enhanced compared with DCSP, and Se-DCSP can better protect HK-2 cells from oxidative damage, indicating that Se-DCSP has a stronger potential ability to inhibit kidney stone formation.
Collapse
Affiliation(s)
- Yu-Yun Zheng
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xin-Yi Tong
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Da-Ying Zhang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
8
|
Shen M, Li Z, Wang J, Xiang H, Xie Q. Traditional Chinese herbal medicine: harnessing dendritic cells for anti-tumor benefits. Front Immunol 2024; 15:1408474. [PMID: 39364399 PMCID: PMC11446781 DOI: 10.3389/fimmu.2024.1408474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Chinese Herbal Medicine (CHM) is being more and more used in cancer treatment because of its ability to regulate the immune system. Chinese Herbal Medicine has several advantages over other treatment options, including being multi-component, multi-target, and having fewer side effects. Dendritic cells (DCs) are specialized antigen presenting cells that play a vital part in connecting the innate and adaptive immune systems. They are also important in immunotherapy. Recent evidence suggests that Chinese Herbal Medicine and its components can positively impact the immune response by targeting key functions of dendritic cells. In this review, we have summarized the influences of Chinese Herbal Medicine on the immunobiological feature of dendritic cells, emphasized an anti-tumor effect of CHM-treated DCs, and also pointed out deficiencies in the regulation of DC function by Chinese Herbal Medicine and outlined future research directions.
Collapse
Affiliation(s)
- Mengyi Shen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhen Li
- School of Preventive Medicine Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Hongjie Xiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
9
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Wang W, Zhao B, Zhang Z, Kikuchi T, Li W, Jantrawut P, Feng F, Liu F, Zhang J. Natural polysaccharides and their derivatives targeting the tumor microenvironment: A review. Int J Biol Macromol 2024; 268:131789. [PMID: 38677708 DOI: 10.1016/j.ijbiomac.2024.131789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Polysaccharides have gained attention as valuable supplements and natural medicinal resources, particularly for their anti-tumor properties. Their low toxicity and potent anti-tumor effects make them promising candidates for cancer prevention and treatment. The tumor microenvironment is crucial in tumor development and offers potential avenues for novel cancer therapies. Research indicates that polysaccharides can positively influence the tumor microenvironment. However, the structural complexity of most anti-tumor polysaccharides, often heteropolysaccharides, poses challenges for structural analysis. To enhance their pharmacological activity, researchers have modified the structure and properties of natural polysaccharides based on structure-activity relationships, and they have discovered that many polysaccharides exhibit significantly enhanced anti-tumor activity after chemical modification. This article reviews recent strategies for targeting the tumor microenvironment with polysaccharides and briefly discusses the structure-activity relationships of anti-tumor polysaccharides. It also summarises the main chemical modification methods of polysaccharides and discusses the impact of chemical modifications on the anti-tumor activity of polysaccharides. The review aims to lay a theoretical foundation for the development of anti-tumor polysaccharides and their derivatives.
Collapse
Affiliation(s)
- Wenli Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Bin Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhongtao Zhang
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China; Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China
| | - Takashi Kikuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - FuLei Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China; Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China.
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
11
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|
12
|
Xiong H, Han X, Cai L, Zheng H. Natural polysaccharides exert anti-tumor effects as dendritic cell immune enhancers. Front Oncol 2023; 13:1274048. [PMID: 37876967 PMCID: PMC10593453 DOI: 10.3389/fonc.2023.1274048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
With the development of immunotherapy, the process of tumor treatment is also moving forward. Polysaccharides are biological response modifiers widely found in plants, animals, fungi, and algae and are mainly composed of monosaccharides covalently linked by glycosidic bonds. For a long time, polysaccharides have been widely used clinically to enhance the body's immunity. However, their mechanisms of action in tumor immunotherapy have not been thoroughly explored. Dendritic cells (DCs) are a heterogeneous population of antigen presenting cells (APCs) that play a crucial role in the regulation and maintenance of the immune response. There is growing evidence that polysaccharides can enhance the essential functions of DCs to intervene the immune response. This paper describes the research progress on the anti-tumor immune effects of natural polysaccharides on DCs. These studies show that polysaccharides can act on pattern recognition receptors (PRRs) on the surface of DCs and activate phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), Dectin-1/Syk, and other signalling pathways, thereby promoting the main functions of DCs such as maturation, metabolism, antigen uptake and presentation, and activation of T cells, and then play an anti-tumor role. In addition, the application of polysaccharides as adjuvants for DC vaccines, in combination with adoptive immunotherapy and immune checkpoint inhibitors (ICIs), as well as their co-assembly with nanoparticles (NPs) into nano drug delivery systems is also introduced. These results reveal the biological effects of polysaccharides, provide a new perspective for the anti-tumor immunopharmacological research of natural polysaccharides, and provide helpful information for guiding polysaccharides as complementary medicines in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongtai Xiong
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinpu Han
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liu Cai
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Lin YR, Guan QY, Li LY, Tang ZM, Zhang Q, Zhao XH. In Vitro Immuno-Modulatory Potentials of Purslane ( Portulaca oleracea L.) Polysaccharides with a Chemical Selenylation. Foods 2021; 11:foods11010014. [PMID: 35010140 PMCID: PMC8750528 DOI: 10.3390/foods11010014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023] Open
Abstract
The soluble polysaccharides from a non-conventional and edible plant purslane (Portulaca oleracea L.), namely PSPO, were prepared by the water extraction and ethanol precipitation methods in this study. The obtained PSPO were selenylated using the Na2SeO3-HNO3 method to successfully prepare two selenylated products, namely SePSPO-1 and SePSPO-2, with different selenylation extents. The assay results confirmed that SePSPO-1 and SePSPO-2 had respective Se contents of 753.8 and 1325.1 mg/kg, while PSPO only contained Se element about 80.6 mg/kg. The results demonstrated that SePSPO-1 and SePSPO-2 had higher immune modulation than PSPO (p < 0.05), when using the two immune cells (murine splenocytes and RAW 264.7 macrophages) as two cell models. Specifically, SePSPO-1 and SePSPO-2 were more active than PSPO in the macrophages, resulting in higher cell proliferation, greater macrophage phagocytosis, and higher secretion of the immune-related three cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. Meanwhile, SePSPO-1 and SePSPO-2 were more potent than PSPO in the concanavalin A- or lipopolysaccharide-stimulated splenocytes in cell proliferation, or more able than PSPO in the splenocytes to promote interferon-γ secretion but suppress IL-4 secretion, or more capable of enhancing the ratio of T-helper (CD4+) cells to T-cytotoxic (CD8+) cells for the T lymphocytes than PSPO. Overall, the higher selenylation extent of the selenylated PSPO mostly caused higher immune modulation in the model cells, while a higher polysaccharide dose consistently led to the greater regulation effect. Thus, it is concluded that the employed chemical selenylation could be used in the chemical modification of purslane or other plant polysaccharides, when aiming to endow the polysaccharides with higher immuno-modulatory effect on the two immune cells.
Collapse
Affiliation(s)
- Ya-Ru Lin
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
| | - Qing-Yun Guan
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
| | - Ling-Yu Li
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
| | - Zhi-Mei Tang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qiang Zhang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Correspondence:
| |
Collapse
|
14
|
Chong PS, Poon CH, Roy J, Tsui KC, Lew SY, Phang MWL, Tan RJY, Cheng PG, Fung ML, Wong KH, Lim LW. Neurogenesis-dependent antidepressant-like activity of Hericium erinaceus in an animal model of depression. Chin Med 2021; 16:132. [PMID: 34876186 PMCID: PMC8650354 DOI: 10.1186/s13020-021-00546-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022] Open
Abstract
Background Depression is a severe neuropsychiatric disorder that affects more than 264 million people worldwide. The efficacy of conventional antidepressants are barely adequate and many have side effects. Hericium erinaceus (HE) is a medicinal mushroom that has been reported to have therapeutic potential for treating depression. Methods Animals subjected to chronic restraint stress were given 4 weeks HE treatment. Animals were then screened for anxiety and depressive-like behaviours. Gene and protein assays, as well as histological analysis were performed to probe the role of neurogenesis in mediating the therapeutic effect of HE. Temozolomide was administered to validate the neurogenesis-dependent mechanism of HE. Results The results showed that 4 weeks of HE treatment ameliorated depressive-like behaviours in mice subjected to 14 days of restraint stress. Further molecular assays demonstrated the 4-week HE treatment elevated the expression of several neurogenesis-related genes and proteins, including doublecortin, nestin, synaptophysin, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), phosphorylated extracellular signal-regulated kinase, and phosphorylated cAMP response element-binding protein (pCREB). Increased bromodeoxyuridine-positive cells were also observed in the dentate gyrus of the hippocampus, indicating enhanced neurogenesis. Neurogenesis blocker temozolomide completely abolished the antidepressant-like effects of HE, confirming a neurogenesis-dependent mechanism. Moreover, HE induced anti-neuroinflammatory effects through reducing astrocyte activation in the hippocampus, which was also abolished with temozolomide administration. Conclusion HE exerts antidepressant effects by promoting neurogenesis and reducing neuroinflammation through enhancing the BDNF-TrkB-CREB signalling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00546-8.
Collapse
Affiliation(s)
- Pit Shan Chong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Chi Him Poon
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Ka Chun Tsui
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Sze Yuen Lew
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Michael Weng Lok Phang
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rachael Julia Yuenyinn Tan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Poh Guat Cheng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,Ganofarm R&D SDN BHD, 01-01, SKYPOD SQUARE, Persiaran Puchong Jaya Selatan, Bandar Puchong Jaya, 47100, Puchong, Selangor, Malaysia
| | - Man-Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | - Kah Hui Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China. .,Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China.
| |
Collapse
|
15
|
Li M, Wen J, Huang X, Nie Q, Wu X, Ma W, Nie S, Xie M. Interaction between polysaccharides and toll-like receptor 4: Primary structural role, immune balance perspective, and 3D interaction model hypothesis. Food Chem 2021; 374:131586. [PMID: 34839969 DOI: 10.1016/j.foodchem.2021.131586] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Various structural types of polysaccharides are recognized by toll-like receptor 4 (TLR4). However, the mechanism of interaction between the polysaccharides with different structures and TLR4 is unclarified. This review summarized the primary structure of polysaccharides related to TLR4, mainly including molecular weight, monosaccharide composition, glycosidic bonds, functional groups, and branched-chain structure. The optimal primary structure for interacting with TLR4 was obtained by the statistical analysis. Besides, the dual-directional regulation of TLR4 signaling cascade by polysaccharides was also elucidated from an immune balance perspective. Finally, the 3D interaction model of polysaccharides to TLR4-myeloid differentiation factor 2 (MD2) complex was hypothesized according to the LPS-TLR4-MD2 dimerization model and the polysaccharides solution conformation. The essence of polysaccharides binding to TLR4-MD2 complex is a multivalent non-covalent bond interaction. All the arguments summarized in this review are intended to provide some new insights into the interaction between polysaccharides and TLR4.
Collapse
Affiliation(s)
- Mingzhi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiajia Wen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
| | - Xincheng Wu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Wanning Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
16
|
Zhao X, Thijssen S, Chen H, Garssen J, Knippels LMJ, Hogenkamp A. Selenium Modulates the Allergic Response to Whey Protein in a Mouse Model for Cow's Milk Allergy. Nutrients 2021; 13:2479. [PMID: 34444651 PMCID: PMC8400770 DOI: 10.3390/nu13082479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Cow's milk allergy is a common food allergy in infants, and is associated with an increased risk of developing other allergic diseases. Dietary selenium (Se), one of the essential micronutrients for humans and animals, is an important bioelement which can influence both innate and adaptive immune responses. However, the effects of Se on food allergy are still largely unknown. In the current study it was investigated whether dietary Se supplementation can inhibit whey-induced food allergy in an animal research model. Three-week-old female C3H/HeOuJ mice were intragastrically sensitized with whey protein and cholera toxin and randomly assigned to receive a control, low, medium or high Se diet. Acute allergic symptoms, allergen specific immunoglobulin (Ig) E levels and mast cell degranulation were determined upon whey challenge. Body temperature was significantly higher in mice that received the medium Se diet 60 min after the oral challenge with whey compared to the positive control group, which is indicative of impaired anaphylaxis. This was accompanied by reductions in antigen-specific immunoglobulins and reduced levels of mouse mast cell protease-1 (mMCP-1). This study demonstrates that oral Se supplementation may modulate allergic responses to whey by decreasing specific antibody responses and mMCP-1 release.
Collapse
Affiliation(s)
- Xiaoli Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.Z.); (H.C.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands; (S.T.); (J.G.); (L.M.J.K.)
- School of Food Science Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands; (S.T.); (J.G.); (L.M.J.K.)
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.Z.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands; (S.T.); (J.G.); (L.M.J.K.)
- Danone/Nutricia Research, Global Centre of Excellence Immunology, 3584 CT Utrecht, The Netherlands
| | - Leon M. J. Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands; (S.T.); (J.G.); (L.M.J.K.)
- Danone/Nutricia Research, Global Centre of Excellence Immunology, 3584 CT Utrecht, The Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands; (S.T.); (J.G.); (L.M.J.K.)
| |
Collapse
|
17
|
Guo Y, Chen X, Gong P. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus. Int J Biol Macromol 2021; 183:1753-1773. [PMID: 34048833 PMCID: PMC8144117 DOI: 10.1016/j.ijbiomac.2021.05.139] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
The deficiency of chemical-synthesized antiviral drugs when applied in clinical therapy, such as drug resistance, and the lack of effective antiviral drugs to treat some newly emerging virus infections, such as COVID-19, promote the demand of novelty and safety anti-virus drug candidate from natural functional ingredient. Numerous studies have shown that some polysaccharides sourcing from edible and medicinal fungus (EMFs) exert direct or indirect anti-viral capacities. However, the internal connection of fungus type, polysaccharides structural characteristics, action mechanism was still unclear. Herein, our review focus on the two aspects, on the one hand, we discussed the type of anti-viral EMFs and the structural characteristics of polysaccharides to clarify the structure-activity relationship, on the other hand, the directly or indirectly antiviral mechanism of EMFs polysaccharides, including virus function suppression, immune-modulatory activity, anti-inflammatory activity, regulation of population balance of gut microbiota have been concluded to provide a comprehensive theory basis for better clinical utilization of EMFs polysaccharides as anti-viral agents.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Product Processing Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
18
|
Niego AG, Rapior S, Thongklang N, Raspé O, Jaidee W, Lumyong S, Hyde KD. Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. J Fungi (Basel) 2021; 7:397. [PMID: 34069721 PMCID: PMC8161071 DOI: 10.3390/jof7050397] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Macrofungi production and economic value have been increasing globally. The demand for macrofungi has expanded rapidly owing to their popularity among consumers, pleasant taste, and unique flavors. The presence of high quality proteins, polysaccharides, unsaturated fatty acids, minerals, triterpene sterols, and secondary metabolites makes macrofungi an important commodity. Macrofungi are well known for their ability to protect from or cure various health problems, such as immunodeficiency, cancer, inflammation, hypertension, hyperlipidemia, hypercholesterolemia, and obesity. Many studies have demonstrated their medicinal properties, supported by both in vivo and in vitro experimental studies, as well as clinical trials. Numerous bioactive compounds isolated from mushrooms, such as polysaccharides, proteins, fats, phenolic compounds, and vitamins, possess strong bioactivities. Consequently, they can be considered as an important source of nutraceuticals. Numerous edible mushrooms have been studied for their bioactivities, but only a few species have made it to the market. Many species remain to be explored. The converging trends and popularity of eastern herbal medicines, natural/organic food product preference, gut-healthy products, and positive outlook towards sports nutrition are supporting the growth in the medicinal mushroom market. The consumption of medicinal mushrooms as functional food or dietary supplement is expected to markedly increase in the future. The global medicinal mushroom market size is projected to increase by USD 13.88 billion from 2018 to 2022. The global market values of promising bioactive compounds, such as lentinan and lovastatin, are also expected to rise. With such a market growth, mushroom nutraceuticals hold to be very promising in the years to come.
Collapse
Affiliation(s)
- Allen Grace Niego
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Iloilo Science and Technology University, La Paz, Iloilo 5000, Philippines
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, CEFE, CNRS, University Montpellier, EPHE, IRD, CS 14491, 15 Avenue Charles Flahault, CEDEX 5, 34093 Montpellier, France;
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Olivier Raspé
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|
19
|
Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083717] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.
Collapse
|
20
|
Ren Z, Luo Y, Meng Z, Zhang J, Yu R, Sun M, Xu T, Li J, Ma Y, Huang Y, Qin T. Multi-walled carbon nanotube polysaccharide modified Hericium erinaceus polysaccharide as an adjuvant to extend immune responses. Int J Biol Macromol 2021; 182:574-582. [PMID: 33798583 DOI: 10.1016/j.ijbiomac.2021.03.180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/28/2021] [Indexed: 12/15/2022]
Abstract
In recent years, the utilization of CS-MWCNT as targeted drug carriers has attracted considerable attention. Hericium erinaceus polysaccharide (HEP) has been reported as an immunostimulant to improve immune responses. This study was focussed on developing CS-MWCNT encapsulating HEP (CS-MWCNT-HEP). Using in mice peritoneal macrophages, we found the immune response could be effectively regulated by CS-MWCNT-HEP, promoted the expression of the MHCII, CD86, F4/80 and gp38. Moreover, the mice immunized with CS-MWCNT-HEP nanoparticles significantly extended PCV2-specific IgG immune response and the levels of cytokines. The results demonstrated that CS-MWCNT-HEP may be a promising drug delivery system for immuno-enhancement.
Collapse
Affiliation(s)
- Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yang Luo
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhen Meng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Junwen Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ruihong Yu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Mengke Sun
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ting Xu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jian Li
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yufang Ma
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yifan Huang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
21
|
Li R, Qin X, Liu S, Zhang X, Zeng X, Guo H, Wang T, Zhang Y, Zhang J, Zhang J, Wang J. [HNMP]HSO4 catalyzed synthesis of selenized polysaccharide and its immunomodulatory effect on RAW264.7 cells via MAPKs pathway. Int J Biol Macromol 2020; 160:1066-1077. [DOI: 10.1016/j.ijbiomac.2020.05.261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
|
22
|
Yuan P, Aipire A, Yang Y, Wei X, Fu C, Zhou F, Mahabati M, Li J, Li J. Comparison of the structural characteristics and immunostimulatory activities of polysaccharides from wild and cultivated Pleurotus feruleus. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
Preparation and activities of selenium polysaccharide from plant such as Grifola frondosa. Carbohydr Polym 2020; 242:116409. [DOI: 10.1016/j.carbpol.2020.116409] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
|
24
|
Designing selenium polysaccharides-based nanoparticles to improve immune activity of Hericium erinaceus. Int J Biol Macromol 2019; 143:393-400. [PMID: 31830456 DOI: 10.1016/j.ijbiomac.2019.12.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/28/2019] [Accepted: 12/07/2019] [Indexed: 01/17/2023]
Abstract
In previous researches, the results showed that selenium Hericium erinaceus polysaccharide and Hericium erinaceus polysaccharide-loaded poly (lactic-co-glycolic acid) nanoparticles enhanced immune responses. In order to further enhance the immune adjuvant activity and phagocytosis of the nanoparticles, two way of combination (selenium-HEP loaded PLGA nanoparticles and selenium modified HEP-PLGA nanoparticles) were prepared to investigate the effects on macrophages in vitro. After treatment with the nanoparticles, the effects of phagocytosis, co-stimulatory molecules expression, nitric oxide (NO), and cytokines secretion were evaluated. The results showed that the particle size, PDI and zeta potential of the selenium-HEP loaded PLGA nanoparticles (Se-HEP-PLGA) and selenium modifified HEP-PLGA nanoparticles (HEP-PLGA-Se) were presented. Se-HEP-PLGA and HEP-PLGA-Se nanoparticles significantly stimulated phagocytic activity, CD40 and CD86 expression of macrophages. In addition, the levels of NO, TNF-α, IL-1β and IL-6 were enhanced in the peritoneal macrophages by stimulation with Se-HEP-PLGA and HEP-PLGA-Se nanoparticles. Among them, Se-HEP-PLGA showed the best effects on the expression of co-stimulatory molecules, secretions of NO and cytokines. These results indicated that Se-HEP-PLGA could enhance the activation of macrophages, and it could be potentially used as an HEP delivery system for the induction of strong immune responses.
Collapse
|
25
|
Preparation, characterization and controlled-release property of CS crosslinked MWCNT based on Hericium erinaceus polysaccharides. Int J Biol Macromol 2019; 153:1310-1318. [PMID: 31758997 DOI: 10.1016/j.ijbiomac.2019.10.266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/01/2019] [Accepted: 10/28/2019] [Indexed: 01/17/2023]
Abstract
In present study, the optimal condition of prepared drug was determined by response surface methodology. In addition, their physicochemical properties, drug release and uptake ability of CS-MWCNT-HEP were studied, and the distribution of the drug in ICR mice and the sites of action were further evaluated. Under the optimal condition, the mean experimental loaded efficiency 68.55 ± 1.47% was corresponded well with the predicted value of 68.28%. The results of in vitro experiments proved that a release of the drug in a pH-dependent behavior. Flow cytometry and inverted microscope showed that the uptake of CS-MWCNT-HEP in Raw264.7 cells increased significantly as the time increased. In vivo experiment proved that the HEP and CS-MWCNT-HEP were mainly accumulated in the kidney, shown the characteristics of kidney metabolism. On the other hand, the extended retention of CS-MWCNT-HEP in the mice could enhance the immune function. CS-MWCNT-HEP has high loaded efficiency and pH-responsive drug released, which could significantly improved the body's immunity and enhance the body's ability to absorbed drugs. These findings proposed a well characterized novel CS-MWCNT-HEP formulation as drug delivery system, and its mechanism and application will be further investigated in our undergoing studies.
Collapse
|
26
|
Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action. Int J Biol Macromol 2019; 132:970-977. [DOI: 10.1016/j.ijbiomac.2019.03.213] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 11/19/2022]
|
27
|
Wang H, Yu Q, Ding X, Hu X, Hou K, Liu X, Nie S, Xie M. RNA-seq based elucidation of mechanism underlying Ganoderma atrum polysaccharide induced immune activation of murine myeloid-derived dendritic cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Li J, Shen B, Nie S, Duan Z, Chen K. A combination of selenium and polysaccharides: Promising therapeutic potential. Carbohydr Polym 2019; 206:163-173. [DOI: 10.1016/j.carbpol.2018.10.088] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022]
|
29
|
Cheng L, Wang Y, He X, Wei X. Preparation, structural characterization and bioactivities of Se-containing polysaccharide: A review. Int J Biol Macromol 2018; 120:82-92. [DOI: 10.1016/j.ijbiomac.2018.07.106] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
|
30
|
Wang XY, Zhang DD, Yin JY, Nie SP, Xie MY. Recent developments in Hericium erinaceus polysaccharides: extraction, purification, structural characteristics and biological activities. Crit Rev Food Sci Nutr 2018; 59:S96-S115. [DOI: 10.1080/10408398.2018.1521370] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiao-Yin Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Duo-duo Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Zhong M, Zhong C, Hu P, Cui W, Wang G, Gao H, Liu C, Liu Z, Li Z, Li C, Gohda E. Restoration of stemness-high tumor cell-mediated suppression of murine dendritic cell activity and inhibition of tumor growth by low molecular weight oyster polysaccharide. Int Immunopharmacol 2018; 65:221-232. [PMID: 30321818 DOI: 10.1016/j.intimp.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/24/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) play key regulatory roles in tumor immunity: increased activity of DCs infiltrating tumor tissues leads to enhancement of tumor immunity. Functions of DCs are also modulated by tumor cell-derived factors. Here, we investigated the effects of low molecular weight oyster polysaccharide (LMW-OPS) on differentiation and function of bone marrow-derived DCs (BMDCs) exposed to a conditioned medium (CM) obtained from spheres of stemness-high colorectal cancer cell lines CMT93 and CT26. The CM containing a detectable level of TGF-β1 was found to down-regulate the surface expression of major histocompatibility complex class II of BMDCs and to inhibit the potency of BMDCs to stimulate T cells. Those suppressions were partly restored and completely restored by addition of anti-TGF-β1 and LMW-OPS, respectively. Production of IFN-γ during allogeneic T cell responses was inhibited by the CM, whereas production of TGF-β1 was augmented by the CM. The IFN-γ profile was also reversed by addition of LMW-OPS. Nuclear translocation of β-catenin, but not that of NF-κB p65, was induced by TGF-β1. NF-κB p65 nuclear translocation, but not β-catenin nuclear translocation, was induced by LMW-OPS. Intraperitoneal injection of LMW-OPS significantly suppressed tumor growth in syngeneic tumor models using CMT93 and CT26 sphere cells, whereas it had no inhibitory effect on the proliferation of either cell line. The results demonstrated that LMW-OPS relieved stemness-high tumor cell-mediated suppression of BMDC function and indicated the in vivo anti-tumor activity of LMW-OPS in which re-stimulation of the activity of DCs infiltrating tumor tissues is presumed to be involved.
Collapse
Affiliation(s)
- Ming Zhong
- Institute of Tumor Pharmacology, Jining Medical College, Rizhao, China.
| | - Cheng Zhong
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Pei Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wen Cui
- Institute of Tumor Pharmacology, Jining Medical College, Rizhao, China
| | - Guanghui Wang
- Institute of Tumor Pharmacology, Jining Medical College, Rizhao, China
| | - Huijei Gao
- Institute of Tumor Pharmacology, Jining Medical College, Rizhao, China
| | - Chao Liu
- Institute of Tumor Pharmacology, Jining Medical College, Rizhao, China
| | - Zhiqiang Liu
- Institute of Tumor Pharmacology, Jining Medical College, Rizhao, China
| | - Zhihua Li
- Institute of Tumor Pharmacology, Jining Medical College, Rizhao, China
| | - Chunxia Li
- Institute of Tumor Pharmacology, Jining Medical College, Rizhao, China
| | - Eiichi Gohda
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
32
|
Constantinescu-Aruxandei D, Frîncu RM, Capră L, Oancea F. Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients. Nutrients 2018; 10:E1466. [PMID: 30304813 PMCID: PMC6213372 DOI: 10.3390/nu10101466] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
Selenium is essential for humans and the deficit of Se requires supplementation. In addition to traditional forms such as Se salts, amino acids, or selenium-enriched yeast supplements, next-generation selenium supplements, with lower risk for excess supplementation, are emerging. These are based on selenium forms with lower toxicity, higher bioavailability, and controlled release, such as zerovalent selenium nanoparticles (SeNPs) and selenized polysaccharides (SPs). This article aims to focus on the existing analytical systems for the next-generation Se dietary supplement, providing, at the same time, an overview of the analytical methods available for the traditional forms. The next-generation dietary supplements are evaluated in comparison with the conventional/traditional ones, as well as the analysis and speciation methods that are suitable to reveal which Se forms and species are present in a dietary supplement. Knowledge gaps and further research potential in this field are highlighted. The review indicates that the methods of analysis of next-generation selenium supplements should include a step related to chemical species separation. Such a step would allow a proper characterization of the selenium forms/species, including molecular mass/dimension, and substantiates the marketing claims related to the main advantages of these new selenium ingredients.
Collapse
Affiliation(s)
- Diana Constantinescu-Aruxandei
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Rodica Mihaela Frîncu
- INCDCP-ICECHIM Calarasi Subsidiary, 7A Nicolae Titulescu St., 915300 Lehliu Gara, Romania.
| | - Luiza Capră
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Florin Oancea
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| |
Collapse
|
33
|
Optimization of Hericium erinaceus polysaccharide-loaded Poly (lactic-co-glycolicacid) nanoparticles by RSM and its absorption in Caco-2 cell monolayers. Int J Biol Macromol 2018; 118:932-937. [DOI: 10.1016/j.ijbiomac.2018.06.169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/31/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022]
|
34
|
Fiorito S, Epifano F, Preziuso F, Taddeo VA, Genovese S. Selenylated plant polysaccharides: A survey of their chemical and pharmacological properties. PHYTOCHEMISTRY 2018; 153:1-10. [PMID: 29803859 DOI: 10.1016/j.phytochem.2018.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Polysaccharides from plants and fungi are considered nowadays as powerful pharmacological tools with a great therapeutic potential. In the meantime, efforts have been addressed to set up effective chemical modifications of naturally occurring polysaccharides to improve their biological effects as well as to positively modify some key parameters like solubility, bioavailability, pharmacokinetic, and similar. To this concern much attention has been focused during the last decade to the selenylation of natural polysaccharides from plants, algae, and fungi, the use of which is already encoded in ethnomedical traditions. The aim of this review article is to provide a detailed survey of the in so far reported literature data and a deeper knowledge about the state of the art on the chemical and pharmacological properties of selenylated polysaccharides of plant, algal, and fungal origin in terms of anti-oxidant, anti-cancer, anti-diabetic, and immunomodulatory activities. In all cases, literature data revealed that selenylation greatly improved such properties respect to the parent polysaccharides, indicating that selenylation is a valid, alternative, and effective chemical modification of naturally occurring carbohydrates.
Collapse
Affiliation(s)
- Serena Fiorito
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy; Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 06123, Perugia, Italy
| | - Francesco Epifano
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy.
| | - Francesca Preziuso
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Vito Alessandro Taddeo
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Salvatore Genovese
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| |
Collapse
|
35
|
Kikete S, Luo L, Jia B, Wang L, Ondieki G, Bian Y. Plant-derived polysaccharides activate dendritic cell-based anti-cancer immunity. Cytotechnology 2018; 70:1097-1110. [PMID: 29556897 PMCID: PMC6081929 DOI: 10.1007/s10616-018-0202-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/05/2018] [Indexed: 02/07/2023] Open
Abstract
Today, cancers pose a major public health burden. Although a myriad of cancer treatments are available, only a few have achieved clinical efficacy. This is partly attributed to cancers capability to evade host immunity by converting dendritic cells (DCs) from potent stimulators to negative modulators of immunity. Dendritic cell-based immunotherapy attempts to resolve this problem by manipulating the functional characteristics of DCs. Plant-derived polysaccharides (PDPs) can stimulate the maturation of DCs conferring on them the capacity to present internalised tumorigenic antigens to naïve T cells and subsequently priming T cells to eliminate tumours. PDPs have been used as immune modulators and later as anti-cancer agents by Traditional Chinese Medicine practitioners for centuries. They are abundant in nature and form a large group of heterogeneous though structurally related macromolecules that exhibit diverse immunological properties. They can induce antigen pulsed DCs to acquire functional characteristics in vitro which can subsequently be re-introduced into cancer patients. They can also be used as adjuvants in DC-based vaccines or independently for their intrinsic anti-tumour activities. Clinically, some in vitro generated DCs have been shown to be both safe and immunogenic although their clinical application is limited in part by unsatisfactory functional maturation as well as impaired migration to draining lymph nodes where T cells reside. We review the relative potencies of individual PDPs to induce both phenotypic and functional maturation in DCs, their relative abilities to activate anti-cancer immunity, the possible mechanisms by which they act and also the challenges surrounding their clinical application.
Collapse
Affiliation(s)
- Siambi Kikete
- Tianjin University of Traditional Chinese Medicine, No. 88, Yuquan Road, Nan Kai District, Tianjin, 300193, People's Republic of China
| | - Li Luo
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830000, People's Republic of China
| | - Beitian Jia
- Tianjin University of Traditional Chinese Medicine, No. 88, Yuquan Road, Nan Kai District, Tianjin, 300193, People's Republic of China
| | - Li Wang
- Tianjin Second People's Hospital, Nan Kai District, Tianjin, 300192, People's Republic of China
| | - Gregory Ondieki
- Tianjin University of Traditional Chinese Medicine, No. 88, Yuquan Road, Nan Kai District, Tianjin, 300193, People's Republic of China
| | - Yuhong Bian
- Tianjin University of Traditional Chinese Medicine, No. 88, Yuquan Road, Nan Kai District, Tianjin, 300193, People's Republic of China.
| |
Collapse
|
36
|
Blagodatski A, Yatsunskaya M, Mikhailova V, Tiasto V, Kagansky A, Katanaev VL. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget 2018; 9:29259-29274. [PMID: 30018750 PMCID: PMC6044372 DOI: 10.18632/oncotarget.25660] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Medicinal mushrooms have been used throughout the history of mankind for treatment of various diseases including cancer. Nowadays they have been intensively studied in order to reveal the chemical nature and mechanisms of action of their biomedical capacity. Targeted treatment of cancer, non-harmful for healthy tissues, has become a desired goal in recent decades and compounds of fungal origin provide a vast reservoir of potential innovational drugs. Here, on example of four mushrooms common for use in Asian and Far Eastern folk medicine we demonstrate the complex and multilevel nature of their anticancer potential, basing upon different groups of compounds that can simultaneously target diverse biological processes relevant for cancer treatment, focusing on targeted approaches specific to malignant tissues. We show that some aspects of fungotherapy of tumors are studied relatively well, while others are still waiting to be fully unraveled. We also pay attention to the cancer types that are especially susceptible to the fungal treatments.
Collapse
Affiliation(s)
- Artem Blagodatski
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation.,Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Margarita Yatsunskaya
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, Russia
| | - Valeriia Mikhailova
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Vladlena Tiasto
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Vladimir L Katanaev
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation.,Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Chen GT, Fu YX, Yang WJ, Hu QH, Zhao LY. Effects of polysaccharides from the base of Flammulina Velutipes stipe on growth of murine RAW264.7, B16F10 and L929 cells. Int J Biol Macromol 2018; 107:2150-2156. [DOI: 10.1016/j.ijbiomac.2017.10.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 12/28/2022]
|
38
|
Wu Y, Jiang H, Zhu E, Li J, Wang Q, Zhou W, Qin T, Wu X, Wu B, Huang Y. Hericium erinaceus polysaccharide facilitates restoration of injured intestinal mucosal immunity in Muscovy duck reovirus-infected Muscovy ducklings. Int J Biol Macromol 2018; 107:1151-1161. [DOI: 10.1016/j.ijbiomac.2017.09.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
|
39
|
Ren Z, Qin T, Qiu F, Song Y, Lin D, Ma Y, Li J, Huang Y. Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macrophages RAW264.7. Int J Biol Macromol 2017; 105:879-885. [DOI: 10.1016/j.ijbiomac.2017.07.104] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 11/29/2022]
|
40
|
Diling C, Tianqiao Y, Jian Y, Chaoqun Z, Ou S, Yizhen X. Docking Studies and Biological Evaluation of a Potential β-Secretase Inhibitor of 3-Hydroxyhericenone F from Hericium erinaceus. Front Pharmacol 2017; 8:219. [PMID: 28553224 PMCID: PMC5427148 DOI: 10.3389/fphar.2017.00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/07/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder, affecting approximately more than 5% of the population worldwide over the age 65, annually. The incidence of AD is expected to be higher in the next 10 years. AD patients experience poor prognosis and as a consequence new drugs and therapeutic strategies are required in order to improve the clinical responses and outcomes of AD. The purpose of the present study was to screen a certain number of potential compounds from herbal sources and investigate their corresponding mode of action. In the present study, the learning and memory effects of ethanol:water (8:2) extracts from Hericium erinaceus were evaluated on a dementia rat model. The model was established by intraperitoneal injection of 100 mg/kg/d D-galactose in rats. The results indicated that the extracts can significantly ameliorate the learning and memory abilities. Specific active ingredients were screened in vivo assays and the results were combined with molecular docking studies. Potential receptor–ligand interactions on the BACE1-inhibitor namely, 3-Hydroxyhericenone F (3HF) were investigated. The isolation of a limited amount of 3HF from the fruit body of H. erinaceus by chemical separation was conducted, and the mode of action of this compound was verified in NaN3-induced PC12 cells. The cell-based assays demonstrated that 3HF can significantly down-regulate the expression of BACE1 (p < 0.01), while additional AD intracellular markers namely, p-Tau and Aβ1-42 were further down-regulated (p < 0.05). The data further indicate that 3HF can ameliorate certain mitochondrial dysfunction conditions by the reversal of the decreasing level of mitochondrial respiratory chain complexes, the calcium ion levels ([Ca2+]), the inhibiton in the production of ROS, the increase in the mitochondrial membrane potential and ATP levels, and the regulation of the expression levels of the genes encoding for the p21, COX I, COX II, PARP1, and NF-κB proteins. The observations suggest the use of H. erinaceus in traditional medicine for the treatment of various neurological diseases and render 3HF as a promising naturally occurring chemical constituent for the treatment of AD via the inhibition of the β-secretase enzyme.
Collapse
Affiliation(s)
- Chen Diling
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Yong Tianqiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Yang Jian
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Zheng Chaoqun
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China.,College of Chinese Material Medical, Guangzhou University of Chinese MedicineGuangzhou, China
| | - Shuai Ou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Xie Yizhen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| |
Collapse
|