1
|
Li P, Zhang T, Song Z, Chen D, Yang Y, He J, Lei X, Tian H, Zhang K. Biomass-based mineralized chitin microsheets for high-efficiency radiative cooling. Int J Biol Macromol 2025; 308:142360. [PMID: 40120917 DOI: 10.1016/j.ijbiomac.2025.142360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
The increasing frequency of extreme heat events under global climate change, combined with high energy consumption and CO2 emissions from conventional cooling systems, threatens both ecological sustainability and human health. While traditional passive radiative cooling materials offer a potential solution, they often lead to pollution and have complex designs with high costs. To address these limitations, we developed Mineralized Chitin-based Composite Microsheets (MCCM), a low-cost, eco-friendly radiative cooling material derived from shrimp shells. By leveraging the natural mineralized multiscale Bouligand structure of shrimp shells, we designed a simple chemical treatment to remove proteins, lipids, and pigments while preserving its multiscale structure. Under solar irradiation, MCCM enables sub-ambient radiative cooling, achieving an average temperature reduction of 4.5 °C, attributed to its high solar reflectance (90.0 %) and mid-infrared emissivity (96.0 %). When applied to building exteriors and rooftops, MCCM significantly enhances annual energy-saving performance (>80 GJ) and effectively reduces CO2 emissions. Additionally, it exhibits excellent thermal stability and flame retardancy and can be recycled as agricultural fertilizer, further enhancing its sustainability. This simple processing method for high-value utilization of waste shrimp shells offers a novel approach to developing low-cost functional materials and recycling biomass waste, demonstrating significant potential for building temperature management.
Collapse
Affiliation(s)
- Pengfei Li
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Tao Zhang
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Zerong Song
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Dong Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yicheng Yang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jiatong He
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Huafeng Tian
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, 100048, People's Republic of China.
| | - Kai Zhang
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Soft-Matter Material and Function Manufacturing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
2
|
Huang Y, Dabbour M, Mintah BK, Pan J, Wu M, Long R, Zhang S, Liu S, Liao H, He R, Ma H. Extraction and characterization of chitin and chitosan from molts and Eupolyphaga sinensis Walker: Influence of chemical and ultrasound-assisted enzymatic processing. Int J Biol Macromol 2025; 309:142804. [PMID: 40185435 DOI: 10.1016/j.ijbiomac.2025.142804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Chitin was extracted from molts and different life-stages of Eupolyphaga sinensis Walker (ESW) using both chemical and ultrasound-assisted enzymolysis (UAE) methods, followed by deacetylation to produce chitosan. The physicochemical and structural properties of extracted chitosan were characterized and compared with commercially available chitosan (CAC), to validate the methods used. Results illustrated changes in chitosan structure, referencing the growth-stages of ESW, with more significant differences observed between UAE and chemical approaches. UAE method remarkably increased the chitin and chitosan yields, particularly in male nymphs (66.42 %-increase in chitin) and adult males (56.42 %-increase in chitosan), with molts showing the highest chitin (30.49 %) and chitosan (17.16 %). FTIR and XRD spectra indicated that the transmission peaks of the extracted chitosan were consistent with CAC, but the UAE-prepared chitosan (UMC) exhibited higher acetylation (81.00 %-81.82 %) and lower viscosity-average molecular weight compared to chemical method. Scanning electron microscopy showed the surface of ESW chitosan had several pores, whereas the CAC had no voids, implying ESW chitosan possessed higher water- and fat-binding capacity. Furthermore, differential scanning calorimetry analysis showed better homogeneity and thermal stability in UMC. This study suggests that ESW could be used as an alternative source for chitosan production, especially following the application of UAE method.
Collapse
Affiliation(s)
- Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Benjamin Kumah Mintah
- CSIR - Food Research Institute, P.O. Box M20, Accra, Ghana; Department of Agro-processing Technology and Food Bio-sciences, CSIR College of Science and Technology (CCST), Accra, Ghana
| | - Jiayin Pan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Minquan Wu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ruiqi Long
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shengqi Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shuixing Liu
- Xinxing Tuyuan Specialized Cooperatives of Huangtang Town, Danyang, Jiangsu 212300, China
| | - Huaijian Liao
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China; College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
3
|
Gong C, Wang W, Ma Y, Zhan X, Peng A, Pu J, Yang J, Yuan X, Wang X. siRNA self-assembled carboxymethyl chitosan and pymetrozine nucleic pesticides for enhanced control of Sogatella furcifera: Bidirectional transduction and detoxification inhibition. Carbohydr Polym 2025; 354:123328. [PMID: 39978910 DOI: 10.1016/j.carbpol.2025.123328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/07/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
Sogatella furcifera (Horváth) is a significant migratory pest in southeast Asia and northern Australia, exhibiting a notable resistance to the conventional insecticides, and RNAi pesticide is a promising approach for managing resistance. However, the poor stability and difficulty in delivery hinders its wide application. Here, we present a self-assembled siRNAs, carboxymethyl chitosan (CMCS) and pymetrozine complex (abbreviated as PM-CMCS/siRNAs micro-complex) to facilitate the control of S. furcifera in rice. When the transcription factors USP and KrH1 were interfered with dsUSP or dsKr-H1, a mortality of 84.4 % ~ 88.9 % was observed at a concentration of 150 μg/mL of pymetrozine, indicating a potential strategy for managing pymetrozine resistance. With the envelope of CMCS, the micro-complex effectively enhances the siRNA stability >96 h, downregulates the expression of USP, KrH1, and CYP6FJ3, leading to a mortality of 100 % at 100 μg/mL pymetrozine. Moreover, the time-dependent disintegration of micro-complex induces the release of lesser PM-CMCS/siRNAs, allowing that more fluorescently labeled complexes were enriched in the phloem of rice via the apoplastic pathway. The integration of PM-CMCS/siRNAs enable precise enrichment in phloem and effective management of pest resistance by silencing their detoxification genes, and promises an environmental-friendly strategy for controlling devastating pest.
Collapse
Affiliation(s)
- Changwei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yanxin Ma
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxu Zhan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 611130, China
| | - Anchun Peng
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Pu
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jizhi Yang
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangyang Yuan
- College of Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Li R, Song W, Huang S, Liu C, Li M, Sun L. Synthesis, Characterization, and Preliminary Analysis of Squid Pen Trypsin Hydrolysates and Chitosan Microcapsules. Int J Mol Sci 2025; 26:2885. [PMID: 40243491 PMCID: PMC11988670 DOI: 10.3390/ijms26072885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Squid pen (SP) was found to contain 64.41% protein and 26.03% chitin. The amino acid composition revealed that Met was the most abundant amino acid in SP, with a concentration of 13.67 g/100 g. To enhance the stability and bioavailability of SP hydrolysates, microcapsules were developed using ultrasonic emulsification techniques with SP trypsin hydrolysates (SPTH) and SP β-chitosan (SPC). The optimal preparation conditions involved using a 2% concentration of SPC, a 4 mg/mL concentration of SPTH, a core-to-wall ratio (v/v) of 1:3 for SPTH/SPC, and subjecting them to ultrasonic treatment for 20 min. These microcapsules had a loading capacity of 58.95% for SPTH under these conditions. The successful encapsulation of SPTH in the SPC complex to form SPC-SPTH microcapsules was confirmed by FTIR, XRD, DSC, and SEM, exhibiting good thermal stability, small particle size, and high encapsulation efficiency. In vitro digestion studies demonstrated a release of 15.61% in simulated gastric fluid and 69.32% in intestinal fluid, achieving targeted release in the intestines. The digested products exhibited superior antioxidant activity compared to free SPTH digests, suggesting that microencapsulation effectively preserves SPTH bioactivity. This study enhances the bioavailability of SPTH and offers a promising delivery system for natural compounds with low bioavailability and stability.
Collapse
Affiliation(s)
- Ruimin Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (R.L.); (S.H.); (M.L.)
| | - Wenkui Song
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Shijia Huang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (R.L.); (S.H.); (M.L.)
| | - Chuyi Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266073, China;
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mingbo Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (R.L.); (S.H.); (M.L.)
| | - Leilei Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (R.L.); (S.H.); (M.L.)
| |
Collapse
|
5
|
Lertjindaporn M, Geng JT, Keratimanoch S, Lee GY, Ryo K, Osako K. Chitin and chitosan from North Pacific krill (Euphausia Pacifica): Comparative study of conventional and microwave-assisted extraction methods and the potential use in chitosan film production. Int J Biol Macromol 2025; 296:139692. [PMID: 39793789 DOI: 10.1016/j.ijbiomac.2025.139692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The characteristics and prospective applications of North Pacific krill chitin and chitosan are currently unexplored, and their conventional isolation method is time- and energy-consuming. In this study, chitin and chitosan were extracted from North Pacific krill using conventional and microwave-assisted methods, followed by comprehensive characterisation and evaluation of chitosan film potential. The extracted chitin was identified as an α-polymorph, and chitosan exhibited a remarkable degree of deacetylation (90 %) in both methods. Microwave-assisted extraction provided comparable chitin and chitosan yields without adversely affecting their properties, and the resulting products also exhibited enhanced crystallinity and thermal stability. Moreover, microwave-assisted-extracted chitosan (MCS) had a significantly lower molecular weight (Mw). Krill chitosan films demonstrated superior performance as food packaging materials compared to films prepared from commercial chitosan, due to their greater extensibility and transparency. Notably, the MCS film exhibited exceptional antioxidant activity and solubility. These findings suggest that North Pacific krill holds promise as a viable source of α-chitin and chitosan, and microwave-assisted extraction is effective in producing low Mw chitosan that has the potential to be used for preparing functional biodegradable film, with a fivefold reduction in treatment time.
Collapse
Affiliation(s)
- Manisin Lertjindaporn
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Jie-Ting Geng
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Sumate Keratimanoch
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Ga-Yang Lee
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Koki Ryo
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Kazufumi Osako
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
6
|
Psarianos M, Aghababaei F, Schlüter OK. Bioactive compounds in edible insects: Aspects of cultivation, processing and nutrition. Food Res Int 2025; 203:115802. [PMID: 40022332 DOI: 10.1016/j.foodres.2025.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/03/2024] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
The increasing interest in edible insects, driven by projected global population growth and environmental concerns, has led to the exploration of their potential in the food sector. Edible insects are abundant in macronutrients, such as proteins, lipids and chitin, as well as micronutrients, such as minerals, vitamins and phenolic compounds. Considering their content of bioactive compounds, they offer a sustainable solution to meet future food demands while providing potential health benefits. This review identifies bioactive peptides, phenolic compounds, chitosan, and vitamins as major bioactive ingredients derived from insects. It discusses their presence in various edible insect species, their primary bioactive properties, and methods for production and isolation. Bioactive compounds sourced from edible insects exhibit antioxidant, antimicrobial, and disease-preventing properties. Insects also serve as rich sources of vitamins A, B2, B6, B12, D, and E, albeit with variations in content among species and life stages. However, the consumption of insects poses risks related to their biological and chemical contaminants, as well as their allergenicity. Managed diets in farm-bred insects ensure controlled nutrient levels, highlighting their potential as sustainable sources of bioactive compounds for human health. Adequate processing and labeling of insect-derived products can reduce the risk of insect consumption. In conclusion, the bioactive compound profile of edible insects complements their nutritional richness and highlights their potential to address future nutrition and food security.
Collapse
Affiliation(s)
- Marios Psarianos
- System Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Department de Ciència Animal i dels Aliments, UAB-Campus, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Oliver K Schlüter
- System Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; University of Bologna, Department of Agricultural and Food Sciences, Piazza Goidanich 60, 47521 Cesena, Italy.
| |
Collapse
|
7
|
Das P, Das M, Sahoo SK, Dandapat J, Pradhan J. Characterization of extracellular chitin deacetylase from Aneurinibacillus aneurinilyticus isolated from marine crustacean shell. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100325. [PMID: 39678066 PMCID: PMC11638627 DOI: 10.1016/j.crmicr.2024.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Chitosan is a promising biopolymer with wide range of applications. It is the deacetylated product of chitin. Commercially, it is produced from chitin via a harsh thermochemical process that has several shortcomings and heterogenous deacetylation product. Chitin can be transformed into chitosan through enzymatic deacetylation using chitin deacetylase (CDA), enabling the production of chitosan with a specific degree of deacetylation. CDA is primarily extracted from fungi followed by bacteria and insects. The extraction of CDA from fungus is more complex, possess several health risks for human including skin lesions. Therefore, screening of potent bacterial CDA is the need of the hour. In this study, for the first time we have isolated a bacterial strain Aneurinibacillus aneurinilyticus from the rinsed water of marine crab shell, and it was found to be a potent CDA producer. The extracellular CDA from A. aneurinilyticus has been partially purified and the specific activity of the enzyme was found to be 569.73 U/ mg protein. SDS-PAGE profiling of the purified sample depicts two isomers of CDA with molecular weights of 27 kD and 45 kD. The pH and temperature optima of the purified CDA were found to be 7.4 and 37 °C, respectively. The partially purified enzyme has Km and Vmax values of 98.455 µM and 909.09 µmole/min, for non-chitinous substrate such as p-nitroacetanilide. For chitinous substrates like glycol chitin, N-acetyl glucosamine hexamer and colloidal chitin, the enzyme exhibited Km of 96.96, 111.75 and 127.86 µM, respectively, Vmax for these substrates were 23.31, 10.12 and 10.772 µmole/min, respectively. Metal ions like Mn and Mg considerably boost the production and activity of CDA, whereas Cd and Co strongly inhibit its activity. Insights from this study further substantiate that this enzyme follows Michaelis-Menten equation and has potential for industrial applications.
Collapse
Affiliation(s)
- Poonam Das
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Manisha Das
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Sheela Kumari Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
- Centre of Excellence Integrated Omics and Computational Biology, Utkal University, Bhubaneswar, Odisha, India
| | - Jyotsnarani Pradhan
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| |
Collapse
|
8
|
Keerthika K, Jayakumar M. Extraction, characterization and evaluation of antimicrobial activity of chitosan from adult Zophobas morio (Fabricius, 1776) (Coleoptera: Tenebrionidae). Int J Biol Macromol 2024; 279:135188. [PMID: 39216586 DOI: 10.1016/j.ijbiomac.2024.135188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The increasing demand for chitosan has led to the exploration of alternative sources, including insects. In this study, chitosan was extracted from Zophobas morio beetles with 19.17 % yield. FTIR and Raman Spectroscopy showed similar peaks in Z. morio chitosan (ZC) and commercial chitosan (CC). ZC showed low crystallinity (40.96 %) and high thermal residual mass (42.7 %) than CC. SEM imaging of ZC displayed pores ranging from 10 μm to 0.3 μm. EDX mapping revealed the homogenous presence of C, N and O elements. ZC exhibited low molecular weight (435.95 kDa) and low intrinsic viscosity (317.95 cm3/g) than CC (680.20 kDa and 480.87 cm3/g, respectively). Degree of deacetylation of ZC and CC was 96.24 % and 78.26 %, respectively. ZC showed antimicrobial activity against Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13883), Proteus mirabilis (ATCC 29906), Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212) and Candida albicans (ATCC 90028) with zones of inhibition ranging from 5 mm to 11 mm. The minimum bactericidal concentration of ZC against K. pneumoniae and P. mirabilis was lower than CC. This study suggests the applicability of insect chitosan as an antimicrobial agent in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Kannan Keerthika
- Unit of Applied Entomology, Department of Zoology, University of Madras, Chennai, Tamil Nadu, India
| | - Manickkam Jayakumar
- Unit of Applied Entomology, Department of Zoology, University of Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
9
|
Singh SK, Pawar L, Thomas AJ, Debbarma R, Biswas P, Ningombam A, Devi AG, Waikhom G, Patel AB, Meena DK, Chakraborty G. The current state of research and potential applications of insects for resource recovery and aquaculture feed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62264-62282. [PMID: 37556060 DOI: 10.1007/s11356-023-29068-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
Concerns about fishmeal use and its ecological footprints must be addressed for the aquaculture industry to move on as a sustainable food production sector. Through recent research outcomes, the insect-based meals in fish diets have promise and harnessed promises for commercial applications. In this midst, the efficiency of the selected insects in valorizing biological waste, as well as the nutritional profile of the harvested insects for use in fish diets, will be the driving forces behind such an approach. More extensive research has been published on the suitability of the waste substrate, the nutritional profiling of the meals, the level of substitution, the effects on growth, the immune physiology, and the flesh quality of the animals. Previously, there are only a few reviews available in insect protein applications in aqua feed that focused particularly on the nutritional quality and substitution levels. Considering the dearth of available work, the goal of this review is to provide a more comprehensive account of the resource recovery potential of insects and its derivatives, with a special emphasis on quality as determined by substrate used and processing techniques. Suggestions and policy implications for a sustainable approach to achieving a circular bio-economy of insect farming and its application in aquaculture are discussed for progression and advancement of the existing state of the art.
Collapse
Affiliation(s)
- Soibam Khogen Singh
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India.
| | - Lokesh Pawar
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Akhil Joe Thomas
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Reshmi Debbarma
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Pradyut Biswas
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Arati Ningombam
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, 795004, Manipur, India
| | - Ayam Gangarani Devi
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Tripura West, 799210, India
| | - Gusheinzed Waikhom
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Arun Bhai Patel
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Dharmendra Kumar Meena
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Gunimala Chakraborty
- NITTE University Centre for Science Education & Research, Mangalore, 575018, India
| |
Collapse
|
10
|
Mei Z, Vincent L, Szczepanski CR, Godeau RP, Kuzhir P, Godeau G. Investigation of 9 True Weevil ( Curculionidae Latreille, 1802) Species for Chitin Extraction. Biomimetics (Basel) 2024; 9:608. [PMID: 39451814 PMCID: PMC11505005 DOI: 10.3390/biomimetics9100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Chitin, the second most abundant biopolymer after cellulose, is an important resource for biosourced materials. The global demand for chitin is rapidly increasing, however, the majority of industrial chitin is sourced from crustacean shells, which may be less accessible in regions without seafood waste. Therefore, it is crucial to explore alternative chitin sources, such as those derived from beetles and other arthropods. This study investigated chitin extraction from nine species of Curculionidae (true weevils), which are recognized as crop pests. The extraction process and yields were described, and the isolated chitin was characterized by SEM, IR spectroscopy, elemental analysis, XRD, and ash and water content measurements. This work highlights the potential of Curculionidae as an alternative chitin source.
Collapse
Affiliation(s)
- Zhenying Mei
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
| | - Luc Vincent
- Université Côte d’Azur, CNRS UMR 7272 ICN, Parc Valrose, 06108 Nice, France
| | - Caroline R. Szczepanski
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA;
| | - René-Paul Godeau
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
| | - Pavel Kuzhir
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
| | - Guilhem Godeau
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
- Université Côte d’Azur, IMREDD, 06200 Nice, France
| |
Collapse
|
11
|
Davis D, Umesh M, Santhosh AS, Suresh S, Shanmugam S, Kikas T. Extraction of Fungal Chitosan by Leveraging Pineapple Peel Substrate for Sustainable Biopolymer Production. Polymers (Basel) 2024; 16:2455. [PMID: 39274088 PMCID: PMC11397891 DOI: 10.3390/polym16172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/16/2024] Open
Abstract
The cost-effective production of commercially important biopolymers, such as chitosan, has gained momentum in recent decades owing to its versatile material properties. The seasonal variability in the availability of crustacean waste and fish waste, routinely used for chitosan extraction, has triggered a focus on fungal chitosan as a sustainable alternative. This study demonstrates a cost-effective strategy for cultivating an endophytic fungus isolated from Pichavaram mangrove soil in a pineapple peel-based medium for harvesting fungal biomass. Chitosan was extracted using alkali and acid treatment methods from various combinations of media. The highest chitosan yield (139 ± 0.25 mg/L) was obtained from the pineapple peel waste-derived medium supplemented with peptone. The extracted polymer was characterized by FTIR, XRD, DSC, and TGA analysis. The antioxidant activity of the fungal chitosan was evaluated using DPPH assay and showed an IC50 value of 0.22 mg/L. Subsequently, a transparent chitosan film was fabricated using the extracted fungal chitosan, and its biodegradability was assessed using a soil burial test for 50 days. Biodegradation tests revealed that, after 50 days, a degradation rate of 28.92 ± 0.75% (w/w) was recorded. Thus, this study emphasizes a cost-effective strategy for the production of biopolymers with significant antioxidant activity, which may have promising applications in food packaging if additional investigations are carried out in the future.
Collapse
Affiliation(s)
- Delwin Davis
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Adhithya Sankar Santhosh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Sreehari Suresh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Sabarathinam Shanmugam
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014 Tartu, Estonia
| | - Timo Kikas
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014 Tartu, Estonia
| |
Collapse
|
12
|
Islam SMM, Siddik MAB, Sørensen M, Brinchmann MF, Thompson KD, Francis DS, Vatsos IN. Insect meal in aquafeeds: A sustainable path to enhanced mucosal immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109625. [PMID: 38740231 DOI: 10.1016/j.fsi.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.
Collapse
Affiliation(s)
- S M Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
13
|
Guangorena Zarzosa GI, Kobayashi T. Properties of Chitin and Its Regenerated Hydrogels from the Insect Zophobas morio Fed Citrus Biomass or Polystyrene. Gels 2024; 10:433. [PMID: 39057456 PMCID: PMC11275922 DOI: 10.3390/gels10070433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The potential of insects as a recycling tool has recently attracted attention. In this study, chitin was extracted with 1 M HCl for 24 h at 20 °C, followed by 1 M NaOH for 5 h at 90 °C, and bleached with 2.5% v/v NaOCl for 2 h at 20 °C from Zophobas morio (ZM) insects fed citrus waste biomass (OP) or polystyrene foam (PS). The highest survival rate was found in the OP group. The properties of the resulting chitin material are reported, as well as the preparation of hydrogels using a DMAc/LiCl solvent. All chitins obtained were α-chitin. The degrees of deacetylation, crystallinity, molecular weight, and solubility in DMAc/LiCl were similar between the PS and biomass feeds, and they showed similar viscosities in the DMAc/LiCl solution. All hydrogels obtained had similar properties and viscoelastic behavior, indicating that the resultant chitins and their hydrogels from ZM were similar between those fed with citrus biomass and those fed with PS.
Collapse
Affiliation(s)
| | - Takaomi Kobayashi
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata, Japan;
| |
Collapse
|
14
|
Baykara H, Riofrio A, Garcia-Troncoso N, Cornejo M, Tello-Ayala K, Flores Rada J, Caceres J. Chitosan-Cement Composite Mortars: Exploring Interactions, Structural Evolution, Environmental Footprint and Mechanical Performance. ACS OMEGA 2024; 9:24978-24986. [PMID: 38882135 PMCID: PMC11170641 DOI: 10.1021/acsomega.4c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
The increasing environmental concerns about synthetic polymers as reinforcement in the construction industry have highlighted the need for eco-friendly, biodegradable fibers as potential alternative materials for cementitious composites. This study examines the influence of chitosan particle concentrations on the midterm compressive strength of mortars. Chitosan particles, derived from shrimp shells, were mixed with high early strength hydraulic cement at various percentages (0, 0.05, 0.25, 0.5, 1, and 2 wt %) and silica sand to prepare the mortar samples. The findings indicate that chitosan affects the hydration process through the distribution of chitosan particles within the mortar matrix and slightly improved midterm mechanical properties. A life cycle assessment (LCA) revealed a slight increase in greenhouse gas emissions and embodied energy for chitosan-modified mortars, likely due to the use of chemicals in the chitosan synthesis and purification process. In fact, the addition of 0.25 wt % of chitosan into the mortar only added 1.3% of the global warming potential of the sample when compared to the control sample. Incorporating chitosan into a mortar matrix does not significantly affect the resistance-mechanical properties of the composite. The hydration of the cement mortar appears to be slowed by the inclusion of chitosan particles in the cementitious matrix. This research lays the groundwork as one of the first studies for the development of high-performance, early strength cement using chitosan, contributing to a more sustainable construction industry.
Collapse
Affiliation(s)
- Haci Baykara
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL. Km 30.5 Vía Perimetral, Guayaquil 090112, Ecuador
| | - Ariel Riofrio
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water BAY, Kowloon Hong Kong SAR
- Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL. Km 30.5 Vía Perimetral, Guayaquil 090112, Ecuador
| | - Natividad Garcia-Troncoso
- Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral, ESPOL. Km 30.5 Vía Perimetral, Guayaquil 090112, Ecuador
- Centro de Investigación y Desarrollo de Nanotecnología, Escuela Superior Politécnica del Litoral, ESPOL. Km 30.5 Vía Perimetral, Guayaquil 090112, Ecuador
| | - Mauricio Cornejo
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL. Km 30.5 Vía Perimetral, Guayaquil 090112, Ecuador
- Centro de Investigación y Desarrollo de Nanotecnología, Escuela Superior Politécnica del Litoral, ESPOL. Km 30.5 Vía Perimetral, Guayaquil 090112, Ecuador
| | - Ken Tello-Ayala
- Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral, ESPOL. Km 30.5 Vía Perimetral, Guayaquil 090112, Ecuador
| | - Jorge Flores Rada
- Centro de Innovación Holcim, Holcim Ecuador S.A., Guayaquil 090616, Av. Barcelona y, Avenida José Rodríguez Bonín, Ecuador
| | - Julio Caceres
- Centro de Investigación y Desarrollo de Nanotecnología, Escuela Superior Politécnica del Litoral, ESPOL. Km 30.5 Vía Perimetral, Guayaquil 090112, Ecuador
| |
Collapse
|
15
|
Triunfo M, Guarnieri A, Ianniciello D, Coltelli MB, Salvia R, Scieuzo C, De Bonis A, Falabella P. A comprehensive characterization of Hermetia illucens derived chitosan produced through homogeneous deacetylation. Int J Biol Macromol 2024; 271:132669. [PMID: 38801847 DOI: 10.1016/j.ijbiomac.2024.132669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The increasing demand for chitin and chitosan is driving research to explore alternative sources to crustaceans. Insects, particularly bioconverters as Hermetia illucens, are promising substitutes as they process food industry waste into valuable molecules, including chitin. Chitosan can be produced by chitin deacetylation: hot deacetylation to obtain a heterogeneous chitosan, the commonly produced, and cold deacetylation to obtain a homogeneous chitosan, not widely available. The two different treatments lead to a different arrangement of the amine and acetyl groups in the chitosan structure, affecting its molecular weight, deacetylation degree, and biological activity. This is the first report on the production and chemical-physical and biological characterization of homogenous chitosan derived from H. illucens larvae, pupal exuviae, and adults. This work, in addition to the report on heterogeneous chitosan by our research group, completes the overview of H. illucens chitosan. The yield values obtained for homogeneous chitosan from pupal exuviae (3 and 7 %) are in the range of insect (2-8 %) and crustaceans (4-15 %) chitosan. The evaluation of the antioxidant activity and antimicrobial properties against Gram-negative (Escherichia coli) and Gram-positive (Micrococcus flavus) bacteria confirmed the great versatility of H. illucens chitosan for biomedical and industrial applications and its suitability as an alternative source to crustaceans.
Collapse
Affiliation(s)
- Micaela Triunfo
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Anna Guarnieri
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Dolores Ianniciello
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa - Largo Lucio Lazzarino, 56122 Pisa, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Angela De Bonis
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata - Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
16
|
He Y, Zhang C, Zhang X, Li Y, Zhang Q. Plasma-activated water improves the accessibility of chitinase to chitin by decreasing molecular weight and breaking crystal structure. Carbohydr Res 2024; 540:109144. [PMID: 38733729 DOI: 10.1016/j.carres.2024.109144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Chitooligosaccharides, the hydrolysis products of chitin, have superior biological activities and application value to those of chitin itself; however, the ordered and highly crystalline structure of chitin renders its degradation by chitinase difficult. Herein, the effects of plasma-activated water (PAW) pre-treatment on the physicochemical properties, crystal structure, and enzymatic hydrolysis of chitin were investigated. The hydrolysis of PAW-pre-treated chitin (PAW activation time of 5 min) using chitinase from Vibrio harveyi (VhChit2) yielded 71 % more reducing sugar, compared with that from untreated chitin, with the degree of chitin hydrolysis increasing from 13 % without pre-treatment to 23 % post-treatment. Moreover, the amount of VhChit2 adsorbed by chitin increased from 41.7 to 58.2 mg/g. Fourier transform infrared spectrometry revealed that PAW could break the β-1,4-glycosidic bonds of chitin (but had no effects on the hydrogen and amido bonds), thereby decreasing the molecular weight and crystallinity of the polysaccharide, which caused its structural damage and enhanced its enzymatic hydrolysis by chitinase. Consequently, PAW pre-treatment can be considered a simple, effective, and environmentally-friendly method for the biotransformation of chitin as its easier hydrolysis yields high-value products.
Collapse
Affiliation(s)
- Yuanchang He
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Chenghui Zhang
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Xueying Zhang
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yongcheng Li
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China.
| | - Qiao Zhang
- Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, 542899, China.
| |
Collapse
|
17
|
Mei Z, Kuzhir P, Godeau G. Update on Chitin and Chitosan from Insects: Sources, Production, Characterization, and Biomedical Applications. Biomimetics (Basel) 2024; 9:297. [PMID: 38786507 PMCID: PMC11118814 DOI: 10.3390/biomimetics9050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Insects, renowned for their abundant and renewable biomass, stand at the forefront of biomimicry-inspired research and offer promising alternatives for chitin and chitosan production considering mounting environmental concerns and the inherent limitations of conventional sources. This comprehensive review provides a meticulous exploration of the current state of insect-derived chitin and chitosan, focusing on their sources, production methods, characterization, physical and chemical properties, and emerging biomedical applications. Abundant insect sources of chitin and chitosan, from the Lepidoptera, Coleoptera, Orthoptera, Hymenoptera, Diptera, Hemiptera, Dictyoptera, Odonata, and Ephemeroptera orders, were comprehensively summarized. A variety of characterization techniques, including spectroscopy, chromatography, and microscopy, were used to reveal their physical and chemical properties like molecular weight, degree of deacetylation, and crystallinity, laying a solid foundation for their wide application, especially for the biomimetic design process. The examination of insect-derived chitin and chitosan extends into a wide realm of biomedical applications, highlighting their unique advantages in wound healing, tissue engineering, drug delivery, and antimicrobial therapies. Their intrinsic biocompatibility and antimicrobial properties position them as promising candidates for innovative solutions in diverse medical interventions.
Collapse
Affiliation(s)
- Zhenying Mei
- Université Côte d’Azur, CNRS UMR 7010 Institut de Physique de Nice, 17 rue Julien Laupêtre, 06200 Nice, France
| | - Pavel Kuzhir
- Université Côte d’Azur, CNRS UMR 7010 Institut de Physique de Nice, 17 rue Julien Laupêtre, 06200 Nice, France
| | - Guilhem Godeau
- Université Côte d’Azur, CNRS UMR 7010 Institut de Physique de Nice, 17 rue Julien Laupêtre, 06200 Nice, France
- Université Côte d’Azur, Institut Méditerranéen du Risque de l’Environnement et du Développement Durable, 9 rue Julien Laupêtre, 06200 Nice, France
| |
Collapse
|
18
|
Ilijin L, Nikolić MV, Vasiljević ZZ, Todorović D, Mrdaković M, Vlahović M, Matić D, Tadić NB, Perić-Mataruga V. Sourcing chitin from exoskeleton of Tenebrio molitor fed with polystyrene or plastic kitchen wrap. Int J Biol Macromol 2024; 268:131731. [PMID: 38649081 DOI: 10.1016/j.ijbiomac.2024.131731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
In this work we have characterized and compared chitin sourced from exoskeleton of Tenebrio molitor larvae fed with polystyrene or plastic kitchen wrap combined with bran in the ratio 1: 1 with chitin sourced from larvae exoskeleton fed only with bran. Analysis of the frass by ATR-FTIR showed very similar spectra and confirmed degradation of the plastic feed components, while ATR-FTIR analysis of the exoskeleton verified the absence of any plastic residue. Deproteinization followed by demineralization produced 6.78-5.29 % chitin, showing that plastic (polystyrene or plastic kitchen wrap) in the larvae diet resulted in heavier insect exoskeleton, but yielded slightly less chitin, with the lowest value obtained for plastic kitchen wrap in the insect diet. The deacetylation degree of 98.17-98.61 % was determined from measured ATR-FTIR spectra. XRD analysis confirmed the presence of α-chitin with a crystallinity index of 66.5-62 % and crystallite size 4-5 nm. Thermogravimetric analysis showed similar degradation curves for all chitin samples, with two degradation steps. These results show that chitin sourced from exoskeleton of T. molitor larvae fed with plastic (polystyrene or plastic kitchen wrap) and contributing to significant biodegradation of major polluting materials can be a feasible and alternative source of chitin, further promoting a bio-circular economy.
Collapse
Affiliation(s)
- Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia.
| | - Maria Vesna Nikolić
- University of Belgrade - Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Zorka Z Vasiljević
- University of Belgrade - Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| | - Dragana Matić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| | - Nenad B Tadić
- University of Belgrade, Faculty of Physics, Studentski trg 12, 11000 Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blv. 142, 11060 Belgrade, Serbia
| |
Collapse
|
19
|
da Rocha RFP, da Costa MPM, da Costa ACA, de Mello Ferreira IL. Study of the degradation in an ultisol of alginate-chitosan complex and its stability and applicability as a soil conditioner. Int J Biol Macromol 2024; 264:130384. [PMID: 38395282 DOI: 10.1016/j.ijbiomac.2024.130384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The present work describes the process of degradation of a polyelectrolytic complex (PEC) based on sodium alginate (ALG) and chitosan (CHI), buried for different time intervals, in a clayey soil (ultisol) collected from the municipality of Campos dos Goytacazes, in the northern region of the state of Rio de Janeiro, Brazil. The influence of PEC on soil moisture was also investigated. The results showed that soil moisture increased with the presence of PEC after 7 days of testing, and remained high until the end of the study. FTIR and Raman spectra showed that the breaking of the glycosidic bond (C-O-C) was responsible for the PEC degradation. Thermogravimetry results revealed that alginate was possibly degraded faster than chitosan. Microscopic analysis of the PEC revealed a fragile and fragmented surface of the samples that were buried, in comparison with those not buried. The microbiological assays of the soil confirmed the biodegradation of the polysaccharides. Chemical analysis of soil indicated that PEC did not significantly influence soil fertility. Therefore, we conclude that the PEC (ALG: CHI), formed only by electrostatic interaction, buried in clayey soil, even being biodegraded, can be a promising soil conditioner for agricultural applications.
Collapse
|
20
|
Gawali PP, Toragall V, Madhurya L, Yannam SK, Ezhil Vendan S. Physicochemical comparison of chitin characteristics in three major stored-product beetle pests: Implications for biofumigant toxicity. Int J Biol Macromol 2024; 265:130759. [PMID: 38493810 DOI: 10.1016/j.ijbiomac.2024.130759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The present study investigates the chitin properties of stored-product insect pests and their association with the fumigant toxicity of garlic essential oil. Chitin isolates of Callosobruchus maculatus, Sitophilus oryzae, and Tribolium castaneum adults were characterized using FT-IR, XRD, EA, SEM-EDS, and NMR techniques. Fumigant toxicity assay was performed under airtight condition in glass vial. The S. oryzae contains highest chitin content (19 %), followed by T. castaneum (10 %) and C. maculatus (8 %). The degree of crystallinity was lower in C. maculatus (67.13 %) than in S. oryzae (77.05 %) and T. castaneum (76.56 %). Morphologically, C. maculatus chitin displayed a flat lamellar surface with pores, while S. oryzae and T. castaneum exhibited densely arranged microfibrils based surfaces. Fumigant toxicity assays revealed varied susceptibility levels, C. maculatus exhibited higher susceptibility (0.27 μL/L air of LC50) compared to S. oryzae and T. castaneum (14.35 and 3.74 μL/L air of LC50, respectively) to garlic essential oil. The higher chitin content, greater crystallinity, and densely arranged structures in S. oryzae might contribute to its tolerance towards fumigant. Additionally, physico-chemical properties and penetration potentiality of the bioactive constituents might be linked to the toxicity in insects. Understanding these relations can enrich knowledge of chitin's role in fumigant toxicity mechanism.
Collapse
Affiliation(s)
- Pratiksha Prabhakar Gawali
- Traditional Foods and Applied Nutrition Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Veeresh Toragall
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India; Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Lokesh Madhurya
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore 570 020, India
| | - Sudheer Kumar Yannam
- Traditional Foods and Applied Nutrition Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Subramanian Ezhil Vendan
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India; Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore 570 020, India.
| |
Collapse
|
21
|
Traynor A, Burns DT, Wu D, Karoonuthaisiri N, Petchkongkaew A, Elliott CT. An analysis of emerging food safety and fraud risks of novel insect proteins within complex supply chains. NPJ Sci Food 2024; 8:7. [PMID: 38245539 PMCID: PMC10799884 DOI: 10.1038/s41538-023-00241-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024] Open
Abstract
Food consumption play a crucial role in human life, yet conventional food production and consumption patterns can be detrimental to the environment. Thus, research and development has been directed towards alternative proteins, with edible insects being promising sources. Edible insects have been recognised for their sustainable benefits providing protein, with less emission of greenhouse gas, land and water usage compared to sources, such as beef, chicken, and dairy products. Among the over 2000 known edible insect species, only four, namely yellow mealworm (Tenebrio molitor), migratory locust/grasshopper (Locusta migratoria), grain mould beetle, also known as lesser mealworm which is a larval form of Alphitobius diaperinus (from the family of Tenebrionidae of darkling beetles) and house cricket (Acheta domesticus), are currently authorised in specific products through specific producers in the EU. The expansion of such foods into Western diets face challenges such as consumer barriers, gaps in microbiological and chemical safety hazard data during production and processing, and the potential for fraudulent supply chain activity. The main aim of this study was to map the supply chain, through interviews with personnel along the supply chain, coupled with searches for relevant publications and governmental documents. Thus, the main potential points of food safety and fraud along the edible insect supply chain were identified. Feed substrate was identified as the main area of concern regarding microbiological and chemical food safety and novel processing techniques were forecast to be of most concern for future fraudulent activity. Despite the on-going authorisation of insect species in many countries there are substantial food safety and authenticity information gaps in this industry that need to be addressed before edible insects can be viewed as a safe and sustainable protein sources by Western consumers.
Collapse
Affiliation(s)
- A Traynor
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, Belfast, BT9 5DL, Northern Ireland, UK
| | - D Thorburn Burns
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, Belfast, BT9 5DL, Northern Ireland, UK
| | - D Wu
- National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | - N Karoonuthaisiri
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, Belfast, BT9 5DL, Northern Ireland, UK
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Pathumthani, 12120, Thailand
- International Joint Research Centre on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
| | - A Petchkongkaew
- International Joint Research Centre on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin road, Khong Luang, Pathum Thani, 12120, Thailand
| | - C T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, Belfast, BT9 5DL, Northern Ireland, UK.
- International Joint Research Centre on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin road, Khong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
22
|
Fernando SS, Jo C, Mudannayake DC, Jayasena DD. An overview of the potential application of chitosan in meat and meat products. Carbohydr Polym 2024; 324:121477. [PMID: 37985042 DOI: 10.1016/j.carbpol.2023.121477] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Chitosan is considered the second most ubiquitous polysaccharide next to cellulose. It has gained prominence in various industries including biomedicine, textile, pharmaceutical, cosmetic, and notably, the food industry over the last few decades. The polymer's continual attention within the food industry can be attributed to the increasing popularity of greener means of packaging and demand for foods incorporated with natural alternatives instead of synthetic additives. Its antioxidant, antimicrobial, and film-forming abilities reinforced by the polymer's biocompatible, biodegradable, and nontoxic nature have fostered its usage in food packaging and preservation. Microbial activity and lipid oxidation significantly influence the shelf-life of meat, resulting in unfavorable changes in nutritional and sensory properties during storage. In this review, the scientific studies published in recent years regarding potential applications of chitosan in meat products; and their effects on shelf-life extension and sensory properties are discussed. The utilization of chitosan in the form of films, coatings, and additives in meat products has supported the extension of shelf-life while inducing a positive impact on their organoleptic properties. The nature of chitosan and its compatibility with various materials make it an ideal biopolymer to be used in novel arenas of food technology.
Collapse
Affiliation(s)
- Sandithi S Fernando
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea.
| | - Deshani C Mudannayake
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| | - Dinesh D Jayasena
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| |
Collapse
|
23
|
Machado SSN, Silva JBAD, Nascimento RQ, Lemos PVF, Assis DDJ, Marcelino HR, Ferreira EDS, Cardoso LG, Pereira JD, Santana JS, Silva MLAD, Souza COD. Insect residues as an alternative and promising source for the extraction of chitin and chitosan. Int J Biol Macromol 2024; 254:127773. [PMID: 37923048 DOI: 10.1016/j.ijbiomac.2023.127773] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
This work aimed to obtain and characterize chitin and chitosan extracted from the rearing residues of Tenebrio molitor, Zophobas morio, and Blaptica dubia insects in different growth stages in the same rearing cycles chitin and chitosan yielded 11.21 %-20.89 % and 6.26 %-7.07 %, respectively. The deacetylation degrees of chitosan ranged from 75.75 %-89.21 %, and the solubilities from 69.88 %-94.39 %. Infrared spectroscopy corroborated the acquisition of chitin and chitosan and can be used as a semi-quantitative technique for determining the degree of chitosan deacetylation. The X-ray diffraction profiles revealed the presence of α-chitin, and the relative crystalline indices ranged from 65.9 %-89.2 %. Typical TG profiles with two thermal events are observed for chitin and chitosan samples with different residue contents from the extraction procedure. The chitosan solutions exhibited pseudoplastic behavior, with apparent viscosities ranging from 195.96 to 249.86 mPa.s. The characterization results of the biopolymers extracted from insect residues were similar to those obtained from conventional sources. The growth stage influenced the chitin yield and crystallinity index. The results of this study reinforce the feasibility of using alternative sources of chitin and chitosan, providing the use of waste from insect farms and contributing to sustainability and a circular economy.
Collapse
Affiliation(s)
- Sinara Silva Neves Machado
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Jania Betânia Alves da Silva
- Center for Exact and Technological Sciences, Faculty of Mechanical Engineering, Federal University of Recôncavo da Bahia, Cruz das Almas, BA, Brazil; Graduate Program in Chemical Engineering, Polytechnic School, Federal University of Bahia, Salvador, BA, Brazil
| | - Renata Quartieri Nascimento
- Doctoral Program in Biotechnology - Northeast Biotechnology Network (RENORBIO), Federal University of Bahia, Salvador, BA, Brazil
| | - Paulo Vitor França Lemos
- Doctoral Program in Biotechnology - Northeast Biotechnology Network (RENORBIO), Federal University of Bahia, Salvador, BA, Brazil
| | - Denílson de Jesus Assis
- Center for Exact and Technological Sciences, Faculty of Mechanical Engineering, Federal University of Recôncavo da Bahia, Cruz das Almas, BA, Brazil; School of Exact and Technological Sciences, Salvador University, Salvador, BA, Brazil
| | | | - Ederlan de Souza Ferreira
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil; College of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Lucas Guimarães Cardoso
- Graduate Program in Chemical Engineering, Polytechnic School, Federal University of Bahia, Salvador, BA, Brazil; School of Exact and Technological Sciences, Salvador University, Salvador, BA, Brazil
| | - Juraci Duarte Pereira
- Graduate Program in Chemical Engineering, Polytechnic School, Federal University of Bahia, Salvador, BA, Brazil
| | | | | | - Carolina Oliveira de Souza
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil; Doctoral Program in Biotechnology - Northeast Biotechnology Network (RENORBIO), Federal University of Bahia, Salvador, BA, Brazil; College of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
24
|
Azelee NIW, Dahiya D, Ayothiraman S, Noor NM, Rasid ZIA, Ramli ANM, Ravindran B, Iwuchukwu FU, Selvasembian R. Sustainable valorization approaches on crustacean wastes for the extraction of chitin, bioactive compounds and their applications - A review. Int J Biol Macromol 2023; 253:126492. [PMID: 37634772 DOI: 10.1016/j.ijbiomac.2023.126492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
The unscientific disposal of the most abundant crustacean wastes, especially those derived from marine sources, affects both the economy and the environment. Strategic waste collection and management is the need of the hour. Sustainable valorization approaches have played a crucial role in solving those issues as well as generating wealth from waste. The shellfishery wastes are rich in valuable bioactive compounds such as chitin, chitosan, minerals, carotenoids, lipids, and other amino acid derivatives. These value-added components possessed pleiotropic applications in different sectors viz., food, nutraceutical, cosmeceutical, agro-industrial, healthcare, and pharmaceutical sectors. The manuscript covers the recent status, scope of shellfishery management, and different bioactive compounds obtained from crustacean wastes. In addition, both sustainable and conventional routes of valorization approaches were discussed with their merits and demerits along with their combinations. The utilization of nano and microtechnology was also included in the discussion, as they have become prominent research areas in recent years. More importantly, the future perspectives of crustacean waste management and other potential valorization approaches that can be implemented on a large scale.
Collapse
Affiliation(s)
- Nur Izyan Wan Azelee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor, Malaysia
| | - Digvijay Dahiya
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, West Godavari Dist, Andhra Pradesh, India
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, West Godavari Dist, Andhra Pradesh, India.
| | - Norhayati Mohamed Noor
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor, Malaysia; UTM Innovation & Commercialisation Centre, Industry Centre, UTM Technovation Park, 81310 Johor Bahru, Johor, Malaysia
| | - Zaitul Iffa Abd Rasid
- UTM Research Ethics Committee, Department of Vice-Chancellor (Research and Innovation), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Science and Technology, University Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia; Bio Aromatic Research Centre of Excellence, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Felicitas U Iwuchukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B 5025, Awka, Nigeria; Department of Industrial Engineering, Clemson University 29631, South Carolina USA
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.
| |
Collapse
|
25
|
Triunfo M, Guarnieri A, Ianniciello D, Coviello L, Vitti A, Nuzzaci M, Salvia R, Scieuzo C, Falabella P. Hermetia illucens, an innovative and sustainable source of chitosan-based coating for postharvest preservation of strawberries. iScience 2023; 26:108576. [PMID: 38162020 PMCID: PMC10755050 DOI: 10.1016/j.isci.2023.108576] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
The ability of chitosan produced from pupal exuviae of Hermetia illucens to retard the decay of the local strawberry (Fragaria x ananassa) cultivar Melissa was investigated for the first time in this paper. The results demonstrated the effectiveness of insect chitosan compared to the commercial polymer in preserving and enhancing, at the same time, some physicochemical parameters (weight loss, pH and soluble solids content) and nutraceutical properties (total polyphenol content, total flavonoid content and total antioxidant activity) of strawberries stored at RT, 4°C and at mixed storage conditions (4°C + RT). Moreover, chitosan from H. illucens was also effective in reducing fungal decay and improving fruit shelf life. The obtained results confirm that insect chitosan, particularly deriving from H. illucens pupal exuviae, can be a viable alternative to crustacean one in safeguarding postharvest fruits.
Collapse
Affiliation(s)
- Micaela Triunfo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Anna Guarnieri
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Dolores Ianniciello
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Leonardo Coviello
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonella Vitti
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
26
|
Li M, Mao C, Li X, Jiang L, Zhang W, Li M, Liu H, Fang Y, Liu S, Yang G, Hou X. Edible Insects: A New Sustainable Nutritional Resource Worth Promoting. Foods 2023; 12:4073. [PMID: 38002131 PMCID: PMC10670618 DOI: 10.3390/foods12224073] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Edible insects are a highly nutritious source of protein and are enjoyed by people all over the world. Insects contain various other nutrients and beneficial compounds, such as lipids, vitamins and minerals, chitin, phenolic compounds, and antimicrobial peptides, which contribute to good health. The practice of insect farming is far more resource-efficient compared to traditional agriculture and animal husbandry, requiring less land, energy, and water, and resulting in a significantly lower carbon footprint. In fact, insects are 12 to 25 times more efficient than animals in converting low-protein feed into protein. When it comes to protein production per unit area, insect farming only requires about one-eighth of the land needed for beef production. Moreover, insect farming generates minimal waste, as insects can consume food and biomass that would otherwise go to waste, contributing to a circular economy that promotes resource recycling and reuse. Insects can be fed with agricultural waste, such as unused plant stems and food scraps. Additionally, the excrement produced by insects can be used as fertilizer for crops, completing the circular chain. Despite the undeniable sustainability and nutritional benefits of consuming insects, widespread acceptance of incorporating insects into our daily diets still has a long way to go. This paper provides a comprehensive overview of the nutritional value of edible insects, the development of farming and processing technologies, and the problems faced in the marketing of edible insect products and insect foods to improve the reference for how people choose edible insects.
Collapse
Affiliation(s)
- Mengjiao Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Chengjuan Mao
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Xin Li
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Lei Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Wen Zhang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Mengying Li
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Huixue Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
27
|
Cocean G, Cocean A, Garofalide S, Pelin V, Munteanu BS, Pricop DA, Motrescu I, Dimitriu DG, Cocean I, Gurlui S. Dual-Pulsed Laser Ablation of Oyster Shell Producing Novel Thin Layers Deposed to Saccharomyces cerevisiae. Polymers (Basel) 2023; 15:3953. [PMID: 37836002 PMCID: PMC10575290 DOI: 10.3390/polym15193953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Dual-pulsed (DPL) laser deposition using oyster shells as targets was studied in order to find out if this method can replace the use of high-power pulsed lasers. Aspects related to changes in the morphological structure of the thin layer but also to the chemical composition of the obtained thin layer were analyzed and compared with the target as well as with the thin layers obtained with a higher power pulsed laser in a single-pulsed (SPL) regime. Orthorhombic structures were noticed with Scanning Electron Microscopy for the thin film obtained in DPL mode compared to the irregular particles obtained in SPL mode. The deacetylation process during ablation was evidenced by Fourier Transform Infrared spectroscopy, resulting in chitosan-based thin films. The effect of the obtained thin films of chitosan on the cells of baker's yeast (Saccharomyces cerevisiae) was studied. Restoration of the yeast paste into initial yeast was noticed mainly when the hemp fabric was used as support for the coating with yeas which was after that coated with chitosan thin film produced by DPL method.
Collapse
Affiliation(s)
- Georgiana Cocean
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Rehabilitation Hospital Borsa, 1 Floare de Colt Street, 435200 Borsa, Romania
| | - Alexandru Cocean
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Laboratory of Applied Meteorology and Climatology, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT AIR), Alexandru Ioan Cuza University of Iasi, A Building, Physics, 11 Carol I, 700506 Iasi, Romania
| | - Silvia Garofalide
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Laboratory of Applied Meteorology and Climatology, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT AIR), Alexandru Ioan Cuza University of Iasi, A Building, Physics, 11 Carol I, 700506 Iasi, Romania
| | - Vasile Pelin
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Laboratory of Applied Meteorology and Climatology, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT AIR), Alexandru Ioan Cuza University of Iasi, A Building, Physics, 11 Carol I, 700506 Iasi, Romania
| | - Bogdanel Silvestru Munteanu
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
| | - Daniela Angelica Pricop
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Laboratory of Astronomy and Astrophysics, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT AIR), Alexandru Ioan Cuza University of Iasi, Astronomical Observatory, 11 Carol I, 700506 Iasi, Romania
| | - Iuliana Motrescu
- Sciences Department & Research Institute for Agriculture and Environment, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania;
| | - Dan Gheorghe Dimitriu
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
| | - Iuliana Cocean
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
| | - Silviu Gurlui
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
| |
Collapse
|
28
|
Tamer TM, Zhou H, Hassan MA, Abu-Serie MM, Shityakov S, Elbayomi SM, Mohy-Eldin MS, Zhang Y, Cheang T. Synthesis and physicochemical properties of an aromatic chitosan derivative: In vitro antibacterial, antioxidant, and anticancer evaluations, and in silico studies. Int J Biol Macromol 2023; 240:124339. [PMID: 37028626 DOI: 10.1016/j.ijbiomac.2023.124339] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
This study was designed to synthesize a functionalized chitosan by coupling the amine groups of chitosan with 2,4,6-Trimethoxybenzaldehyde, producing a chitosan Schiff base (Cs-TMB). The development of Cs-TMB was verified employing FT-IR, 1H NMR, the electronic spectrum, and elemental analysis. Antioxidant assays exhibited significant ameliorations of Cs-TMB, reporting scavenging activities of 69.67 ± 3.48 % and 39.65 ± 1.98 % for ABTS•+ and DPPH, respectively, while native chitosan showed scavenging ratios of 22.69 ± 1.13 % and 8.24 ± 0.4.1 % toward ABTS•+ and DPPH, respectively. Besides, Cs-TMB exerted significant antibacterial activity up to 90 % with remarkable bactericidal capacity against virulent gram-negative and gram-positive bacteria compared to the original chitosan. Furthermore, Cs-TMB exhibited a safe profile against normal fibroblast cells (HFB4). Interestingly, flow cytometric analysis showed that Cs-TMB demonstrated prominent anticancer properties of 52.35 ± 2.99 % against human skin cancer cells (A375), compared to 10.66 ± 0.55 % for Cs-treated cells. Moreover, Python and PyMOL in-house scripts were used to predict the interaction of Cs-TMB with the adenosine A1 receptor and visualized as a protein-ligand system submerged in a lipid membrane. Overall, these findings accentuate that Cs-TMB could be a favorable representative for wound dressing formulations and skin cancer treatment.
Collapse
Affiliation(s)
- Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Hongyan Zhou
- Department of Neurology, Hospital of Sun Yat-sen University, Guangdong 510080, China.
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Sergey Shityakov
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Smaher M Elbayomi
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta City, Damietta 34517, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Yongcheng Zhang
- Department of Breast Care Surgery, Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong 510080, China.
| | - Tuckyun Cheang
- Department of Neurosurgery, Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong 510080, China.
| |
Collapse
|
29
|
Hou F, Gong Z, Jia F, Cui W, Song S, Zhang J, Wang Y, Wang W. Insights into the relationships of modifying methods, structure, functional properties and applications of chitin: A review. Food Chem 2023; 409:135336. [PMID: 36586263 DOI: 10.1016/j.foodchem.2022.135336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Chitin as the second plentiful polysaccharide has arouse widely attention due to its remarkable availability and biocompatibility. While the strong inter/intra molecular hydrogen bonds and crystallinity severely restrict its applications. Recently, multiple emerging technologies are increasingly used to modify chitin structure for the sake of obtaining excellent functional properties, as well as broadening the corresponding applications. Firstly, this review systematically outlines the features of single and combined methods for chitin modification. Then, the impacts of various modifying methods on the structural characteristics of chitin, including molecular weight, degree of acetylation and functional groups, are further summarized. In addition, the effects of these structural characteristics on the functional properties as well as its potential related applications are illustrated. The conclusion of this review provides better understanding of the relationships among the modifying methods, structure, properties and applications, contributing to chitin modification for the targeted purpose in the future study.
Collapse
Affiliation(s)
- Furong Hou
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhiqing Gong
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fengjuan Jia
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenjia Cui
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shasha Song
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jian Zhang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yansheng Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenliang Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
30
|
Shinu KP, John H, Gopalakrishnan J. Chitin/deacetylated chitin nanocomposite film for effective adsorption of organic pollutant from aqueous solution. Int J Biol Macromol 2023:125038. [PMID: 37245754 DOI: 10.1016/j.ijbiomac.2023.125038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/13/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Cross-linked chitin/deacetylated chitin nanocomposite films can be considered as a potential industrial adsorbent for the removal of organic pollutants for water purification. Chitin (C) and deacetylated chitin (dC) nanofibers were extracted from raw chitin and characterized using FTIR, XRD and TGA techniques. The TEM image confirmed the formation of chitin nanofibers with a diameter range of 10-45 nm. The deacetylated chitin nanofibers (DDA-46 %) having 30 nm diameter was evidenced using FESEM. Further, the C/dC nanofibers were prepared at different ratios (80/20, 70/30, 60/40 & 50/50 ratios) and cross-linked. The highest tensile strength of 40 MPa and Young's modulus of 3872 MPa was exhibited by 50/50C/dC. The DMA studies revealed that the storage modulus enhanced by 86 % for 50/50C/dC (9.06 GPa) in comparison to 80/20C/dC nanocomposite. Further, the 50/50C/dC exhibited a maximum adsorption capacity of 30.8 mg/g at pH = 4 in 30 mg/L of Methyl Orange (MO) dye within 120 min. The experimental data agreed with pseudo-second-order model indicating chemisorption process. The adsorption isotherm data was best described by Freundlich model. The nanocomposite film is an effective adsorbent can be regenerated and recycled for five adsorption-desorption cycle.
Collapse
Affiliation(s)
| | - Honey John
- Dept. of Polymer Science and Rubber Technology, CUSAT, Kochi 22, India; Interuniversity Centre for Nanomaterials and Devices, CUSAT, Kochi 22, India
| | - Jayalatha Gopalakrishnan
- Dept. of Polymer Science and Rubber Technology, CUSAT, Kochi 22, India; Interuniversity Centre for Nanomaterials and Devices, CUSAT, Kochi 22, India.
| |
Collapse
|
31
|
Kim H, Kim H, Ahn Y, Hong KB, Kim IW, Choi RY, Suh HJ, Han SH. The Preparation and Physiochemical Characterization of Tenebrio molitor Chitin Using Alcalase. Molecules 2023; 28:3254. [PMID: 37050017 PMCID: PMC10096241 DOI: 10.3390/molecules28073254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Chitin is mostly produced from crustaceans, but it is difficult to supply raw materials due to marine pollution, and the commonly used chemical chitin extraction method is not environmentally friendly. Therefore, this study aims to establish a chitin extraction process using enzymes and to develop edible insect-derived chitin as an eco-friendly new material. The response surface methodology (RSM) was used to determine the optimal conditions for enzymatic hydrolysis. The optimal conditions for enzymatic hydrolysis by RSM were determined to be the substrate concentration (7.5%), enzyme concentration (80 μL/g), and reaction time (24 h). The solubility and DDA of the mealworm chitosan were 45% and 37%, respectively, and those of the commercial chitosan were 61% and 57%, respectively. In regard to the thermodynamic properties, the exothermic peak of mealworm chitin was similar to that of commercial chitin. In the FT-IR spectrum, a band was observed in mealworm chitin corresponding to the C=O of the NHCOCH3 group at 1645 cm-1, but this band showed low-intensity C=O in the mealworm chitosan due to deacetylation. Collectively, mealworm chitosan shows almost similar physical and chemical properties to commercial chitosan. Therefore, it is shown that an eco-friendly process can be introduced into chitosan production by using enzyme-extracted mealworms for chitin/chitosan production.
Collapse
Affiliation(s)
- Hyemi Kim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea; (H.K.); (H.K.); (Y.A.); (H.J.S.)
| | - Hyeongyeong Kim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea; (H.K.); (H.K.); (Y.A.); (H.J.S.)
| | - Yejin Ahn
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea; (H.K.); (H.K.); (Y.A.); (H.J.S.)
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea;
| | - In-Woo Kim
- National Institute of Agriculture Science, Wanju 55365, Republic of Korea; (I.-W.K.)
| | - Ra-Yeong Choi
- National Institute of Agriculture Science, Wanju 55365, Republic of Korea; (I.-W.K.)
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea; (H.K.); (H.K.); (Y.A.); (H.J.S.)
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Sung Hee Han
- Institute of Human Behavior & Genetics, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
32
|
Feng H, Wang Z, Sajab MS, Abdul PM, Ding G. A novel chitinous nanoparticles prepared and characterized with black soldier fly (Hermetia illucens L.) using steam flash explosion treatment. Int J Biol Macromol 2023; 230:123210. [PMID: 36639077 DOI: 10.1016/j.ijbiomac.2023.123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
This is the first report of the use of steam flash explosion (SFE) to prepare chitinous nanoparticles from black soldier fly (BSF). SFE treatment was performed at a steam pressure of 0.45 to 1.60 MPa with a holding time of 60 s. As the pressure increased, the particle size of the chitinous particles decreased. Under SFE at 1.60 MPa, chitinous nanoparticles with sizes ranging from 59 to 162 nm were produced. SEM, AFM, Raman spectroscopy, FT-IR spectroscopy, 1H NMR, TGA, and DSC were used to characterize the BSF chitin materials. It was demonstrated that SFE treatment deacetylated chitin to obtain chitosan with 91.24 % deacetylation. In addition, the polymer backbone was maintained, and the degree of polymerization of chitosan nanoparticles was reduced. The activity of the cationic groups of chitosan nanoparticles was improved, thereby enhancing the temperature sensitivity of the polymeric material. It can be concluded that the SFE one-step processing method is a simple and efficient way to prepare homogeneous biomaterial nanoparticles. This study has implications for the development of chitosan nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Haiyue Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou 730030, PR China; Gausu Tech Innovation Center of Animal, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou 730030, PR China
| | - Mohd Shaiful Sajab
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Peer Mohamed Abdul
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Gongtao Ding
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou 730030, PR China; Gausu Tech Innovation Center of Animal, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou 730030, PR China.
| |
Collapse
|
33
|
Extraction and characterization of chitosan from Eupolyphaga sinensis Walker and its application in the preparation of electrospinning nanofiber membranes. Colloids Surf B Biointerfaces 2023; 222:113030. [PMID: 36455363 DOI: 10.1016/j.colsurfb.2022.113030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Due to its capabilities for wound healing, antimicrobial defense, hemostasis, and biodegradation, chitosan has seen increased use in biomedical disciplines in recent years. In the meantime, efforts have been made to develop and use insect chitosan as a source to address the seasonal, irritating, and regional shortcomings of traditional shrimp and crab chitosan. In this study, a new type of insect chitosan (DCS) was first extracted from Eupolyphaga sinensis Walker by a low-temperature intermittent method and was compared with commercially available pharmaceutical chitosan (CS). Firstly, the degree of deacetylation and molecular weight of DCS were determined, and DCS was characterized by FT-IR, 1H NMR, XRD, and TGA-DTG. On this basis, DCS was mixed with PVA and PEO to create a novel electrospun nanofiber membrane. The air permeability, antibacterial properties, and biocompatibility of the nanofiber membrane were evaluated, as well as the membrane's shape, structure, and mechanical characteristics. Finally, the activity of nanofiber membranes in promoting wound healing was verified with a rat full-thickness skin defect model, hoping to provide a reference for the development of new drug delivery carriers and wound dressings.
Collapse
|
34
|
Xue X, Wan L, Li W, Tan X, Du X, Tong Y. A Self-Healing Gel Polymer Electrolyte, Based on a Macromolecule Cross-Linked Chitosan for Flexible Supercapacitors. Gels 2022; 9:gels9010008. [PMID: 36661776 PMCID: PMC9857939 DOI: 10.3390/gels9010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Gel polymer electrolytes with a satisfied ionic conductivity have attracted interest in flexible energy storage technologies, such as supercapacitors and rechargeable batteries. However, the poor mechanical strength inhibits its widespread application. One of the most significant ways to avoid the drawbacks of the gel polymer electrolytes without compromising their ion transportation capabilities is to create a self-healing structure with the cross-linking segment. Herein, a new kind of macromolecule chemical cross-linked network ionic gel polymer electrolyte (MCIGPE) with superior electrochemical characteristics, a high flexibility, and an excellent self-healing ability were designed, based on chitosan and dibenzaldehyde-terminated poly (ethylene glycol) (PEGDA) via dynamic imine bonds. The ionic conductivity of the MCIGPE-65 can achieve 2.75 × 10-2 S cm-1. A symmetric all-solid-state supercapacitor employing carbon cloth as current collectors, activated a carbon film as electrodes, and MCIGPE-65 as a gel polymer electrolyte exhibits a high specific capacitance of 51.1 F g-1 at 1 A g-1, and the energy density of 7.1 Wh kg-1 at a power density of 500.2 W kg-1. This research proves the enormous potential of incorporating, environmentally and economically, chitosan into gel polymer electrolytes for supercapacitors.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongfen Tong
- Correspondence: ; Tel.: +86-791-8395-3377; Fax: +86-791-8395-3373
| |
Collapse
|
35
|
Saheed IO, Azeez SO, Suah FBM. Imidazolium based ionic liquids modified polysaccharides for adsorption and solid-phase extraction applications: A review. Carbohydr Polym 2022; 298:120138. [DOI: 10.1016/j.carbpol.2022.120138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
|
36
|
Physicochemical Properties and Functional Characteristics of Ecologically Extracted Shrimp Chitosans with Different Organic Acids during Demineralization Step. Molecules 2022; 27:molecules27238285. [PMID: 36500378 PMCID: PMC9740848 DOI: 10.3390/molecules27238285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The current study aims to develop eco-friendly and economical chitosans with a wide range of applications using organic acids for shrimp shells demineralization. Chitosan samples were extracted from shrimp (Parapenaeus longirostris) shells and the demineralization step was performed with three organic acids (citric, acetic, and lactic) and two mineral acids (hydrochloric and sulfuric). The chitosans were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The chitosans’ physicochemical properties were also determined. The characteristic bands and functional groups of the chitosans were identified by FTIR spectra. The chitosans’ crystallinity order was as follows: ChHCl > ChCitric > ChH2SO4 > ChLactic > ChAcetic. The chitosans’ morphological characteristics revealed a smooth surface and fibrous structures with pores. Chitosans extracted by organic acids showed the highest extraction yields. ChHCl and ChCitric had higher degrees of deacetylation values; 83.67% and 81.47%, respectively. The solubility was proportional to the degree of deacetylation. Furthermore, ChH2SO4 and ChCitric had lower molecular weight values; 149 kDa and 183 kDa, respectively. Organic acids are as effective as mineral acids for shrimp shells demineralization. The developed process opens up possibilities to produce chitin and chitosan in a more eco-friendly way and at a lower cost in many industrial sectors.
Collapse
|
37
|
Sheng Z, Guo A, Wang J, Chen X. Preparation, physicochemical properties and antimicrobial activity of chitosan from fly pupae. Heliyon 2022; 8:e11168. [PMID: 36303907 PMCID: PMC9593200 DOI: 10.1016/j.heliyon.2022.e11168] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/14/2022] [Accepted: 08/05/2022] [Indexed: 11/06/2022] Open
Abstract
As an alternative chitosan source, edible insects have been proposed as an unconventional but viable option. Taking fly pupae as an example, this work performed chitosan extraction through a traditional chemical method with some modifications, and investigated its physicochemical properties and antimicrobial activity. The results showed that adding 0.5% sodium sulfite (Na2SO3, w/w, Na2SO3/fly pupae) synergized with sodium hydroxide (NaOH) for deproteinization was more effective than lye alone. Acid leaching was applied for desalination, and the optimal concentration of hydrochloric acid (HCl) was determined as 2 mol/L by ash content. For decoloration, the optimal decolorization oxidant was sodium hypochlorite (NaClO) with a concentration of 1.0%. For the deacetylation of chitin to chitosan, both the yield and degree of deacetylation (DD) using segmented treatment with alkali-NaOH were higher than those of traditional one-time deacetylation. The established physicochemical properties corresponded with the typical characteristics of chitosan. The determination of antimicrobial activity of chitosan by the turbidimetric method showed that chitosan exhibited notable activity in the order of Staphylococcus aureus > Escherichia coli > Saccharomyces cerevisiae, and this effect decreased with the increase in viscosity-average molecular weight (Mη). These results proved the viability of our improved method for the preparation of chitosan, a valuable antimicrobial agent, using an alternative natural source.
Collapse
Affiliation(s)
- Zhicun Sheng
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, 225300, China
- Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ainan Guo
- Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, 225300, China
| | - Xiaolan Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, 225300, China
| |
Collapse
|
38
|
Alturki AM. Facile synthesis route for chitosan nanoparticles doped with various concentrations of the biosynthesized copper oxide nanoparticles: Electrical conductivity and antibacterial properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Psarianos M, Ojha S, Schneider R, Schlüter OK. Chitin Isolation and Chitosan Production from House Crickets ( Acheta domesticus) by Environmentally Friendly Methods. Molecules 2022; 27:molecules27155005. [PMID: 35956955 PMCID: PMC9370203 DOI: 10.3390/molecules27155005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Alternative methods were evaluated for chitin isolation from Acheta domesticus. Chemical demineralization was compared to fermentation with Lactococcus lactis, citric acid treatment, and microwave treatment, leading to a degree of demineralization of 91.1 ± 0.3, 97.3 ± 0.8, 70.5 ± 3.5, and 85.8 ± 1.3%, respectively. Fermentation with Bacillus subtilis, a deep eutectic solvent, and enzymatic digestion were tested for chitin isolation, generating materials with less than half the chitin content when compared to alkaline deproteinization. Chitosan was produced on a large scale by deacetylation of the chitinous material obtained from two selected processes: the chemical treatment and an alternative process combining L. lactis fermentation with bromelain deproteinization. The chemical and alternative processes resulted in similar chitosan content (81.9 and 88.0%), antioxidant activity (59 and 49%), and degree of deacetylation (66.6 and 62.9%), respectively. The chitosan products had comparable physical properties. Therefore, the alternative process is appropriate to replace the chemical process of chitin isolation for industrial applications.
Collapse
Affiliation(s)
- Marios Psarianos
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Shikha Ojha
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
- Correspondence: ; Tel.: +49-(0)-331-5699-616
| | - Roland Schneider
- Department of Bioengineering, Leibniz-Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany
| | - Oliver K. Schlüter
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
40
|
The first insight into black soldier fly meal in brown trout nutrition as an environmentally sustainable fish meal replacement. Animal 2022; 16:100516. [PMID: 35468507 DOI: 10.1016/j.animal.2022.100516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
Insect meals are considered among the most promising feed materials in fish nutrition due to their sustainability and possibility of fish meal replacement. The present study is the first application of full-fat black soldier fly larvae (BSFL) meal in brown trout (Salmo trutta m. fario) diets. Two experiments were performed on 240 brown trout fingerlings (average body mass 4.85 g) distributed into four groups (12 tanks for the growth performance experiment, 10 fish/tank; and 12 metabolic tanks for the digestibility test, 10 fish/tank). The experimental group design was conducted as follows: control diet, with no BSFL and 35% fish meal, and experimental diets: BSFL5 - with 5% BSFL full-fat meal and 32.5% fish meal; BSFL10 - with 10% BSFL full-fat meal and 30% fish meal; and BSFL20 - with 20% BSFL full-fat meal and 25% fish meal. No effects were recorded in the case of growth performance and feed utilization parameters. The environmental sustainability of the usage of insect meals in fish diets was proven - due to the lower fish meal inclusion, the fish-in-fish-out ratio decreased by 31% in BSFL20. In the case of the viscerosomatic index, increases in BSFL5 and BSFL20 were reported. In all experimental groups, decreases in hepatosomatic index values were observed. Crude protein digestibility decreased in BSFL5 and BSFL20, while crude fat digestibility decreased only in the BSFL20 group. The effect of including BSFL full-fat meal in a brown trout diet on serum biochemical parameters was reported. The aspartate transaminase concentration increased in BSFL10 and BSFL20, while the gamma-glutamyl transpeptidase values decreased in BSFL20. In the case of total cholesterol, higher values were observed in BSFL10 and BSFL20. The albumin content decreased in the BSFL20 group, while globulin showed the highest values in the control group. The microbiota composition was not affected by insect meal inclusion. In conclusion, the results of the present study showed the high potential of BSFL full-fat meal application of up to 20% in a brown trout diet.
Collapse
|
41
|
Triunfo M, Tafi E, Guarnieri A, Salvia R, Scieuzo C, Hahn T, Zibek S, Gagliardini A, Panariello L, Coltelli MB, De Bonis A, Falabella P. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci Rep 2022; 12:6613. [PMID: 35459772 PMCID: PMC9033872 DOI: 10.1038/s41598-022-10423-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their properties and applications, the growing demand for chitin and chitosan has stimulated the market to find more sustainable alternatives to the current commercial source (crustaceans). Bioconverter insects, such as Hermetia illucens, are the appropriate candidates, as chitin is a side stream of insect farms for feed applications. This is the first report on production and characterization of chitin and chitosan from different biomasses derived from H. illucens, valorizing the overproduced larvae in feed applications, the pupal exuviae and the dead adults. Pupal exuviae are the best biomass, both for chitin and chitosan yields and for their abundance and easy supply from insect farms. Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscope analysis revealed the similarity of insect-derived polymers to commercial ones in terms of purity and structural morphology, and therefore their suitability for industrial and biomedical applications. Its fibrillary nature makes H. illucens chitin suitable for producing fibrous manufacts after conversion to chitin nanofibrils, particularly adults-derived chitin, because of its high crystallinity. A great versatility emerged from the evaluation of the physicochemical properties of chitosan obtained from H. illucens, which presented a lower viscosity-average molecular weight and a high deacetylation degree, fostering its putative antimicrobial properties.
Collapse
Affiliation(s)
- Micaela Triunfo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Elena Tafi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Anna Guarnieri
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy
| | - Thomas Hahn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | | | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | | | - Angela De Bonis
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| |
Collapse
|
42
|
Li J, Fu J, Tian X, Hua T, Poon T, Koo M, Chan W. Characteristics of chitosan fiber and their effects towards improvement of antibacterial activity. Carbohydr Polym 2022; 280:119031. [PMID: 35027133 DOI: 10.1016/j.carbpol.2021.119031] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/27/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
We selected eight kinds of chitosan fibers to characterize and analyze their composition, surface morphology, and mechanical properties. Crucially, we investigated their antibacterial activity against Escherichia coli, Staphylococcus aureus and Candida albicans and the dependence on the molecular weight (Mw) and the degree of deacetylation (DD). On that basis, the relationship between antibacterial activity and Mw and DD can be established. Finally, the antibacterial mechanism of chitosan fiber was obtained. The results show that the inhibition rate of samples I, K, L, and M against Staphylococcus aureus first increased and then decreased with the increase of Mw, and their bactericidal activity against Escherichia coli decreased with the increase of Mw when the DD was similar. This study provides an effective strategy for characterizing the chitosan fiber and the resultant relationship between antibacterial property and structural parameters that may benefit the enhancement of antibacterial activity and application in antibacterial textiles.
Collapse
Affiliation(s)
- Jianhui Li
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Jimin Fu
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Xiao Tian
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Tao Hua
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| | - Tszyin Poon
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Mingkin Koo
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Wingming Chan
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| |
Collapse
|
43
|
Psarianos M, Dimopoulos G, Ojha S, Cavini ACM, Bußler S, Taoukis P, Schlüter OK. Effect of pulsed electric fields on cricket (Acheta domesticus) flour: Extraction yield (protein, fat and chitin) and techno-functional properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Godeau XY, Andrianandrasana FJ, Volkova O, Szczepanski CR, Zenerino A, Montreuil O, Godeau RP, Kuzhir P, Godeau G. Investigation on dung beetle's (Heliocopris Hope, 1838) chitosan valorisation for hydrogel 3D printing. Int J Biol Macromol 2021; 199:172-180. [PMID: 34971640 DOI: 10.1016/j.ijbiomac.2021.12.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
Biopolymers and their derivatives are materials with increasing interest for industry and especially for sustainable engineering development. Among such kind of materials, carbohydrate polymer like highly deacetylated chitin (chitosan) is widely used for a wide range of applications, including material and biomedical developments. The majority of industrially produced chitosan is based on chitin extracted from crustacean exoskeleton. However, with increase of interest on this material, chitosan's production will rapidly become insufficient and other species should be investigated as new sources of chitosan. In the present work, we focus on the preparation of chitosan from giant dung beetles (Genus Heliocopris, Hope, 1838). This genus was chosen to show the possibility to take animals that develop and leave near dejection and valuate them for material applications. This work includes all the chitosan extraction procedures, chitosan characterisation IR, SEM, NMR, ash content, and deacetylation degree. Finally, the prepared carbohydrate polymer is used to form hydrogel. The prepared gel has been characterised and used for 3D printing, to show the compatibility of extracted chitosan with biomaterial application.
Collapse
Affiliation(s)
| | - Freddy Jocelyne Andrianandrasana
- Université Côte d'Azur, IMREDD, 06200 Nice, France; Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France
| | - Olga Volkova
- Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France
| | - Caroline R Szczepanski
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | | | - Olivier Montreuil
- UMR 7179 MNHN/CNRS, MECADEV, Muséum National d'Histoire Naturelle, Entomologie, CP 50, 45 rue Buffon, 75231 Paris cedex 05, France
| | - René-Paul Godeau
- Université Côte d'Azur, IMREDD, 06200 Nice, France; Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France
| | - Pavel Kuzhir
- Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France
| | - Guilhem Godeau
- Université Côte d'Azur, IMREDD, 06200 Nice, France; Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France.
| |
Collapse
|
45
|
Zhao M, Wang CY, Sun L, He Z, Yang PL, Liao HJ, Feng Y. Edible Aquatic Insects: Diversities, Nutrition, and Safety. Foods 2021; 10:3033. [PMID: 34945584 PMCID: PMC8700862 DOI: 10.3390/foods10123033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023] Open
Abstract
Edible insects have great potential to be human food; among them, aquatic insects have unique characteristics and deserve special attention. Before consuming these insects, the nutrition and food safety should always be considered. In this review, we summarized the species diversity, nutrition composition, and food safety of edible aquatic insects, and also compared their distinguished characteristics with those of terrestrial insects. Generally, in contrast with the role of plant feeders that most terrestrial edible insect species play, most aquatic edible insects are carnivorous animals. Besides the differences in physiology and metabolism, there are differences in fat, fatty acid, limiting/flavor amino acid, and mineral element contents between terrestrial and aquatic insects. Furthermore, heavy metal, pesticide residue, and uric acid composition, concerning food safety, are also discussed. Combined with the nutritional characteristics of aquatic insects, it is not recommended to eat the wild resources on a large scale. For the aquatic insects with large consumption, it is better to realize the standardized cultivation before they can be safely eaten.
Collapse
Affiliation(s)
- Min Zhao
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China; (M.Z.); (C.-Y.W.); (L.S.); (Z.H.); (P.-L.Y.)
| | - Cheng-Ye Wang
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China; (M.Z.); (C.-Y.W.); (L.S.); (Z.H.); (P.-L.Y.)
| | - Long Sun
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China; (M.Z.); (C.-Y.W.); (L.S.); (Z.H.); (P.-L.Y.)
| | - Zhao He
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China; (M.Z.); (C.-Y.W.); (L.S.); (Z.H.); (P.-L.Y.)
| | - Pan-Li Yang
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China; (M.Z.); (C.-Y.W.); (L.S.); (Z.H.); (P.-L.Y.)
| | - Huai-Jian Liao
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ying Feng
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China; (M.Z.); (C.-Y.W.); (L.S.); (Z.H.); (P.-L.Y.)
| |
Collapse
|
46
|
Nurfikari A, de Boer W. Chitin Determination in Residual Streams Derived From Insect Production by LC-ECD and LC-MS/MS Methods. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.795694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chitin, a biopolymer present in fungi and arthropods, is a compound of interest for various applications, such as in the agricultural and medical fields. With the recently growing interest in the development of insect farming, the availability of chitin-containing residual streams, particularly the molting skins (exuviae), is expected to increase in the near future. For application purposes, accurate quantification of chitin in these insect sources is essential. Previous studies on chitin extraction and quantification often overlooked the purity of the extracted chitin, making the outcomes inconsistent and prone to overestimation. The present study aims to determine chitin content in the exuviae of three insect species mass-reared worldwide: black soldier fly (BSF), mealworm, and house cricket. Chitin was chemically extracted using acid and alkali treatments to remove minerals and proteins. The purity of extracted chitin was evaluated by hydrolyzing the chitin into glucosamine, followed by quantitative determination of the latter using two liquid chromatography methods: electrochemical detection (ECD) and tandem mass spectrometry (MS/MS). Both methods proved accurate and precise, without the need for labor-intensive derivatization steps. Pearson's correlation and Bland-Altman plots showed that the glucosamine determination results obtained by the two methods were comparable, and there is no consistent bias of one approach vs. the other. The chitin content in extracted residues ranged between 7.9 and 18.5%, with the highest amount found in BSF puparium. In summary, the study demonstrated that (1) the residual streams of the insect farming industry have a great potential for utilization as an alternative chitin source, and (2) both LC-ECD and LC-MS/MS are reliable for the quantitative determination of glucosamine in insect chitin.
Collapse
|
47
|
Errico S, Spagnoletta A, Verardi A, Moliterni S, Dimatteo S, Sangiorgio P. Tenebrio molitor as a source of interesting natural compounds, their recovery processes, biological effects, and safety aspects. Compr Rev Food Sci Food Saf 2021; 21:148-197. [PMID: 34773434 DOI: 10.1111/1541-4337.12863] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Nowadays, it is urgent to produce in larger quantities and more sustainably to reduce the gap between food supply and demand. In a circular bioeconomy vision, insects receive great attention as a sustainable alternative to satisfy food and nutritional needs. Among all insects, Tenebrio molitor (TM) is the first insect approved by the European Food Safety Authority as a novel food in specific conditions and uses, testifying its growing relevance and potential. This review holistically presents the possible role of TM in the sustainable and circular solution to the growing needs for food and nutrients. We analyze all high value-added products obtained from TM (powders and extracts, oils and fatty acids, proteins and peptides, and chitin and chitosan), their recovery processes (evaluating the best ones in technical and environmental terms), their nutritional and economical values, and their biological effects. Safety aspects are also mentioned. TM potential is undoubted, but some aspects still need to be discussed, including the health effects of substances and microorganisms in its body, the optimal production conditions (that affect product quality and safety), and TM capacity to convert by-products into new products. Environmental, economic, social, and market feasibility studies are also required to analyze the new value chains. Finally, to unlock the enormous potential of edible insects as a source of nutritious and sustainable food, it will be necessary to overcome the cultural, psychological, and regulatory barriers still present in Western countries.
Collapse
Affiliation(s)
- Simona Errico
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Anna Spagnoletta
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Alessandra Verardi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Stefania Moliterni
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Salvatore Dimatteo
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Paola Sangiorgio
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| |
Collapse
|
48
|
Ma J, Faqir Y, Tan C, Khaliq G. Terrestrial insects as a promising source of chitosan and recent developments in its application for various industries. Food Chem 2021; 373:131407. [PMID: 34715633 DOI: 10.1016/j.foodchem.2021.131407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023]
Abstract
Chitosan is a deacetylated form of chitin and increasingly important amino-polysaccharide used in many various sectors including agriculture, food, and biomedicine. However, chitosan from marine sources has several adverse effects, including allergenic components harmful to human health. Furthermore, marine resources are seasonal, and availability is limited due to dependency on environmental conditions and climate change. In addition, shell infection in crustaceans and environmental contamination make the harvesting of chitin and chitosan problematic. In recent years, chitosan from terrestrial insects has attracted considerable interest. The discoveries show insect chitosan is more advantageous compared to crustacean chitosan. In addition, we were unable to find any literature about the adverse effects of insect chitosan thus far. This review aims to reveal information regarding crustacean and terrestrial insect chitosan and recent advances in chitosan sources. Applications from specific insect orders and perspectives for further study will also be highlighted, including medical and sensing applications.
Collapse
Affiliation(s)
- Jiahua Ma
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yahya Faqir
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chengjia Tan
- School of Life Science and Technology, Mianyang Teachers' College, Mianyang 621000, China
| | - Ghulam Khaliq
- Department of Horticulture, Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| |
Collapse
|
49
|
Jiang X, Li Y, Tang X, Jiang J, He Q, Xiong Z, Zheng H. Biopolymer-based flocculants: a review of recent technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46934-46963. [PMID: 34263401 PMCID: PMC8279699 DOI: 10.1007/s11356-021-15299-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Biopolymer-based flocculants have become a potential substitute for inorganic coagulants and synthetic organic flocculants due to their wide natural reserves, environmental friendliness, easy natural degradation, and high material safety. In recent years, with more and more attention to clean technologies, a lot of researches on the modification and application of biopolymer-based flocculants have been carried out. The present paper reviews the latest important information about the base materials of biopolymer-based flocculants, including chitosan, starch, cellulose, and lignin etc. This review also highlights the various modification methods of these base materials according to reaction types in detail. Via the recent researches, the flocculation mechanisms of biopolymer-based flocculants, such as adsorption, bridging, charge neutralization, net trapping, and sweeping, as well as, some other special mechanisms are comprehensively summarized. This paper also focuses on the water treatment conditions, the removal efficiency, and advantages of biopolymer-based flocculants in applications. Further, this review sheds light on the future perspectives of biopolymer-based flocculants, which may make progress in the sources of base materials, modification processes, multi-function, and deepening application researches. We believe that this review can guide the further researches and developments of biopolymer-based flocculants in the future, to develop them with a higher efficiency, a lower cost, more safety, and multi-function for more diversified applications. Graphical abstract.
Collapse
Affiliation(s)
- Xincheng Jiang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yisen Li
- Digital Chongqing Big Data Application Development Co., Ltd, Chongqing, 400000, People's Republic of China
| | - Xiaohui Tang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Junyi Jiang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Qiang He
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Zikang Xiong
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China.
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
50
|
Gan SKE, Phua SX, Yeo JY, Heng ZSL, Xing Z. Method for Zero-Waste Circular Economy Using Worms for Plastic Agriculture: Augmenting Polystyrene Consumption and Plant Growth. Methods Protoc 2021; 4:mps4020043. [PMID: 34205648 PMCID: PMC8293350 DOI: 10.3390/mps4020043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Polystyrene (PS) is one of the major plastics contributing to environmental pollution with its durability and resistance to natural biodegradation. Recent research showed that mealworms (Tenebrio molitor) and superworms (Zophobas morio) are naturally able to consume PS as a carbon food source and degrade them without observable toxic effects. In this study, we explored the effects of possible food additives and use of worm frass as potential plant fertilizers. We found that small amounts of sucrose and bran increased PS consumption and that the worm frass alone could support dragon fruit cacti (Hylocereus undatus) growth, with superworm frass in particular, supporting better growth and rooting than mealworm frass and control media over a fortnight. As known fish and poultry feed, these findings present worms as a natural solution to simultaneously tackle both the global plastic problem and urban farming issue in a zero-waste sustainable bioremediation cycle.
Collapse
Affiliation(s)
- Samuel Ken-En Gan
- APD SKEG Pte Ltd., Singapore 439444, Singapore
- Antibody & Product Development Lab, EDDC & BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.-X.P.); (J.Y.Y.); (Z.S.-L.H.)
- Correspondence: ; Tel.: +65-81137725
| | - Ser-Xian Phua
- Antibody & Product Development Lab, EDDC & BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.-X.P.); (J.Y.Y.); (Z.S.-L.H.)
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC & BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.-X.P.); (J.Y.Y.); (Z.S.-L.H.)
| | - Zealyn Shi-Lin Heng
- Antibody & Product Development Lab, EDDC & BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.-X.P.); (J.Y.Y.); (Z.S.-L.H.)
| | - Zhenxiang Xing
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, #08-03, Singapore 138634, Singapore;
| |
Collapse
|