1
|
Long Y, Zhang J, Bian H, Xu T, Wang S, Dai H, Gao Y. In-situ synthesis of magnetic nanoparticles/wood-structural holocellulose hybrid for metal ions adsorption. Carbohydr Polym 2025; 357:123436. [PMID: 40158974 DOI: 10.1016/j.carbpol.2025.123436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 04/02/2025]
Abstract
Effective removal of metal ions from water is crucial for reducing pollution during manufacturing processes. To address this issue, we have developed a block Fe3O4/wood-structural holocellulose hybrids (MW) for removing heavy metal ions from industrial wastewater. By employing chemical pretreatment, solvent-induced self-impregnation, and in-situ deposition, Fe3O4 nanoparticles were attached into the cell's lumen while also embedded within the cell walls, achieving a loading capacity of 35.89 %. The MW exhibited notable magnetic responsiveness. Adsorption experiments were then conducted to evaluate the performance of MW in adsorbing Pb2+, and the adsorption mechanism was elucidated based on density functional theory (DFT) calculations. The results demonstrated that MW exhibited high adsorption efficiency for Pb2+ (537.63 mg/g), This is primarily attributed to the porous structure of MW and the interactions among -COOH, -OH, and FeO groups within the structure with Pb2+. The adsorption process followed the pseudo-second-order kinetic model and the Langmuir isotherm model. After three consecutive reuse cycles, the adsorption capacity remaining at 77.62 % after three cycles. Furthermore, DFT calculations indicated that the composite of Fe3O4 and cellulose could enhance the adsorption energy between Pb2+ and MW. This indicates that MW offers high adsorption, recyclability, and magnetic control, making it a promising material for wastewater treatment.
Collapse
Affiliation(s)
- Yiyu Long
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jingxiang Zhang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Tingting Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shumei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ying Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China; School of Materials and Energy, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Yang C, Duan G, Zhang C, Huang Y, Li S, Jiang S. Preparation and applications of magnetic nanocellulose composites: A review. Carbohydr Polym 2025; 354:123317. [PMID: 39978902 DOI: 10.1016/j.carbpol.2025.123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
Cellulose is the most abundant biomass material in the world. Magnetic nanoparticles can be used as reinforcing materials to give cellulose more functions due to their unique magnetism. According to the dispersion stability of nanocellulose, magnetic nanocellulose is divided into homogeneous preparation and heterogeneous preparation. In addition, the directional arrangement of nanocellulose by external magnetic field is also a way of cellulose functionalization. The current preparation of magnetic nanocellulose is mainly based on heterogeneous preparation. Magnetic nanofiber cellulose has great application potential in the field of biomedicine and sewage purification due to its special magnetic properties. It can also be applied to sensors, food packaging and other fields. In this paper, the preparation methods of magnetic nanocellulose and its physical magnetism are introduced. Then, the application of magnetic nanocellulose in different fields is reviewed. Finally, the current challenges of magnetic nanocellulose are summarized and the future development trend is prospected.
Collapse
Affiliation(s)
- Chen Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Li M, Wang L, Zhang L, Li C, Xing B, Fan Y, Wang H. Selective Trapping of In(III) Ions under σ-π* Bond Synergistic Effects by Modulating Lewis Basicity of Capture Sites on Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8582-8591. [PMID: 40138660 DOI: 10.1021/acs.langmuir.4c05032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Effectively selective recovery and separation of indium from alternative resources are of great environmental and economic significance. Although adsorption plays a critical role in this process, the design of highly selective capture sites remains a great challenge. Inspired by molecular orbital theory and hard and soft acids and bases theory (HSAB), we recognize that the nonequivalent orbital hybridization of In(III) ions renders them susceptible to deformation, exhibiting softer Lewis acidity. Herein, the thioacetamide-modified nanofiber (TAANF), with the O═C─NH─C═S as the capture sites, was prepared through an electrospinning technique combined with chemical modification. As expected, the O═C─NH─C═S exhibits softer Lewis basicity via modulated Lewis basicity of C═S by C═O, which better matches the Lewis acidity of In(III) ions to improve affinity. Adsorption studies showed that TAANF exhibited excellent properties for In(III) ions, especially in terms of selectivity; the selectivity coefficients range from 20 to 276 for K(I), Ca(II), Na(I), Mg(II), Mn(II), Zn(II), and Fe(II) ions in a multicomponent system. Furthermore, the capture mechanism indicates that In(III) ions not only can accept electrons from capture sites but also donate rich d2 orbit electrons to the π orbitals of capture sites, as demonstrated by XAFS, XPS, and DFT. This enables selective capture of In(III) ions by forming a stable six-membered ring under the synergistic effect of σ and feedback π bonds (σ-π*). Finally, this work provides a strategy to design highly selective capture sites and holds promise for recovering In(III) ions from alternative sources.
Collapse
Affiliation(s)
- Min Li
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Lu Wang
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Lin Zhang
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Chuanbin Li
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Bo Xing
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, PR China
| | - Yuzhu Fan
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Haichao Wang
- School of Resources and Environmental Engineering, Ludong University, Shandong, Yantai 264025, PR China
| |
Collapse
|
4
|
Meena HM, Kukreti S, Jassal PS, Kalra AK. Novel green magnetite-chitosan adsorbent using Ricinus communis plants to adsorption of lead (II) from wastewater solution: anodic linear sweep voltammetry, isotherms, and kinetics study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6198-6220. [PMID: 39982669 DOI: 10.1007/s11356-025-36107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
This study centered on removing toxic Pb (II) ions from wastewater using Fe3O4 with natural biopolymer chitosan and green plant extracts from Ricinus communis (Castor plant) to synthesize a novel magnetic chitosan nano-composites (GCS-Fe3O4) adsorbent. The nano-material was synthesized using the co-precipitation method and characterized using FTIR, XRD, FESEM, TEM, SEM, AFM, TGA-DTA, DLS, UV-Vis, and VSM. The green-synthesized nanocomposites (GCS-Fe3O4) have been used to remove Pb (II) from a wastewater solution. A study was conducted on the experimental parameters, such as the pH range, contact time, adsorbent dosage, and temperature effects, the highest capacity of adsorption Pb (II) ions observed at a pH 6.8, a temperature of 30℃, a contact time of 60 min., with an adsorbent dose of 0.30 g/L. The maximum removal of Pb (II) ions was 99.2%, obtained at a concentration of 0.30 g/L. The Freundlich isotherm stipulated the most precise simulation of the adsorption equilibrium. The maximum adsorption capacity was determined to be 48.64 mg/g at 30℃ using the Freundlich isotherm. The pseudo-second-order kinetic model most accurately represented the adsorption kinetics of Pb (II). In contrast, thermodynamic data shows an endothermic adsorption process with temperature, the adsorption efficiency also increases to 5.35, 7.17, and 8.90 kJ/mol respectively. The Pb (II) ions were determined by 797 VA anodic linear sweep voltammetry Computrace (Metrohm). Hence, the synthesized green magnetite chitosan composite (GCS-Fe3O4) is suitable for removing Pb (II) ions from wastewater solutions.
Collapse
Affiliation(s)
- Hari Mohan Meena
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India.
| | - Shrikant Kukreti
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Pyar Singh Jassal
- Department of Chemistry, SGTB Khalsa College, University of Delhi, Delhi, 110007, India
| | - Amarpreet Kaur Kalra
- Department of Chemistry, SGTB Khalsa College, University of Delhi, Delhi, 110007, India
| |
Collapse
|
5
|
Shen B, Qian B, Tu N. Utilizing AI algorithms to model and optimize the composite of nanocellulose and hydrogels via a new technique. Int J Biol Macromol 2025; 290:138903. [PMID: 39701236 DOI: 10.1016/j.ijbiomac.2024.138903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Plants, various biological organisms, and certain marine organisms typically provide biopolymers, like cellulose. Some things that make them unique are that they are non-toxic, biodegradable, have high specific strength and specific modulus, are easy to change the surface of, are highly hydrophilic, and are biocompatible. Significantly, nanocellulose has emerged as a prominent development in the 21st century. The objective of this work was to create a model that can accurately predict and optimize the viscosity, storage modulus (G'), and loss modulus (G″) of sulfate nanocellulose (S-NC) hydrogen materials. These properties were analyzed in different experimental settings. To do this, the researchers used the RSM and multi-layer perceptron (MLP)-ANN techniques to accurately represent and optimize the viscosity, G', and G″ properties. Ultimately, the researchers conducted RSM optimization to identify the optimal patterns of viscosity, G', and G″ characteristics for a new method of producing nanocellulose materials. The results showed that the ANN and RSM methods were very good at predicting how nanocellulose hydrogels would behave while nanocellulose products were being made. Moreover, the ANN technique exhibited superior accuracy in forecasting processes' G' and G' behavior compared to the RSM method. Ultimately, the ideal viscosity state was attained by using a shear rate value of 95 S-1 and including 1.5 wt% of S-NC. The optimal mode for G' and G″ was achieved at a frequency of 14.532 Hz and an S-NC concentration of 1.468 wt%.
Collapse
Affiliation(s)
- Baohua Shen
- Hangzhou Dianzi University Information Engineering College, Hangzhou 311035, Zhejiang, P.R. China
| | - Bibo Qian
- Hangzhou Dianzi University Information Engineering College, Hangzhou 311035, Zhejiang, P.R. China.
| | - Ni Tu
- School of Automation, Guangxi University of Science and Technology, Liuzhou 545616, Guangxi, P.R. China
| |
Collapse
|
6
|
Zhu J. Utilization of peanut hull hydrochar /beta cyclodextrin/Fe 3O 4 magnetic composite for lead ion removal from water solution. ENVIRONMENTAL RESEARCH 2024; 259:119525. [PMID: 38964586 DOI: 10.1016/j.envres.2024.119525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
This study involves synthesizing peanut hull hydrochar (PHH) and a PHH/β-CD/Fe3O4 magnetic composite through hydrothermal and chemical precipitation methods, respectively, to use as effective adsorbents for Pb2+ removal. Vibrating-sample magnetometry (VSM) and Brunauer-Emmett-Teller (BET) analyses revealed that the magnetic saturation value and specific active surface area of PHH/β-CD/Fe3O4 are 31.543 emu/g and 32.123 m2/g, respectively. The impact of key variables on adsorption efficiency was evaluated using the response surface method - central composite design. ANOVA results (F-value: 166.22 and p-value: <0.05) demonstrated that the model effectively assesses the interaction of variables in the adsorption process. Additionally, R2, Adjusted R2, and Predicted R2 values were 0.999, 0.986, and 0.975, respectively, indicating the model's high adequacy in describing response changes. The maximum efficiency for Pb2+ adsorption was found to be 95.35% using PHH and 99.73% with the PHH/β-CD/Fe3O4 magnetic composite. These measurements were taken at a temperature of 25 °C, an adsorbent dose of 1 g/L, a pH of 6, and a Pb2+ concentration of 5 mg/L, with respective contact times of 130 min and 50 min. Thermodynamic analysis revealed negative enthalpy and Gibbs free energy values, indicating that the adsorption process is exothermic and spontaneous. The negative entropy parameter suggests a reduction in random interactions during the process. The Pb2+ adsorption data for both PHH (R2: 0.982) and PHH/β-CD/Fe3O4 (R2: 0.985) were best described by the Pseudo 2nd order kinetic model. Equilibrium data followed the Freundlich model, with R2 values of 0.981 for PHH and 0.990 for PHH/β-CD/Fe3O4, highlighting the importance of heterogeneous surfaces in the removal process. The maximum adsorption capacities for Pb2+ were 26.72 mg/g for PHH and 33.88 mg/g for PHH/β-CD/Fe3O4. Reuse and stability tests confirmed the structural stability and reusability of the adsorbents. Therefore, the PHH/β-CD/Fe3O4 magnetic composite is a promising option for removing Pb2+ from aqueous solutions.
Collapse
Affiliation(s)
- Junren Zhu
- Chongqing Vocational Institute of Engineering, Chongqing, 402660, PR China.
| |
Collapse
|
7
|
Othman JAS, Ilyas RA, Nordin AH, Ngadi N, Alkbir MFM. Recent advancements in bamboo nanocellulose-based bioadsorbents and their potential in wastewater applications: A review. Int J Biol Macromol 2024; 277:134451. [PMID: 39102907 DOI: 10.1016/j.ijbiomac.2024.134451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
The research interest in sustainable and eco-friendly materials based on natural sources has increased dramatically due to their recyclability, biodegradability, compatibility, and nontoxic behavior. Recently, nanocellulose-based green composites are under extensive exploration and have gained popularity among researchers owing to their lightweight, lost cost, low density, excellent mechanical and physical characteristics. This review provides a comprehensive overview of the recent advancements in the extraction, modification, and application of bamboo nanocellulose as a high-performance bioadsorbent. Bamboo, a rapidly renewable resource, offers an eco-friendly alternative to traditional materials due to its abundant availability and unique structural properties. Significantly, bamboo comprises a considerable amount of cellulose, approximately 40 % to 50%, rendering it a valuable source of cellulose fiber for the fabrication of cellulose nanocrystals. The review highlights different various modification techniques which enhance the adsorption capacities and selectivity of bamboo nanocellulose. Furthermore, the integration of bamboo nanocellulose into novel composite materials and its performance in removing contaminants such as heavy metals, dyes, and organic pollutants from wastewater are critically analyzed. Emphasis is placed on the mechanisms of adsorption, regeneration potential, and the economic and environmental benefits of using bamboo-based bioadsorbents. The findings underscore the potential of bamboo nanocellulose to play a pivotal role in developing sustainable wastewater treatment technologies, offering a promising pathway towards cleaner water and a greener future.
Collapse
Affiliation(s)
- Jameelah Alhad Salih Othman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia.
| | - M F M Alkbir
- Advanced Facilities Engineering Technology Research Cluster, Malaysian Institute of Industrial Technology (MITEC), University Kuala Lumpur, Malaysia; Plant Engineering Technology (PETech), UniKL Malaysian Institute of Industrial Technology (MITEC), Persiaran Sinaran Ilmu, Johor, Darul Takzim, Malaysia
| |
Collapse
|
8
|
Tolosa GR, Gomes AS, Leal MVG, de Oliveira Setti G, Dognani G, Job AE. Green reduction of ZnO nanoparticles using cationic dialdehyde cellulose (cDAC) for efficient Congo red dye removal. Int J Biol Macromol 2024; 277:134063. [PMID: 39038565 DOI: 10.1016/j.ijbiomac.2024.134063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
More sustainable materials have been becoming an important concern of worldwide scientists, and cellulosic materials are one alternative in water decontamination. An efficient strategy to improve removal capacity is functionalizing or incorporating nanomaterials in cellulose-based materials. The new hybrid cDAC/ZnONPs was produced by green synthesis of zinc oxide nanoparticles (ZnONPs), promoting the in situ reduction and immobilization on the cationic dialdehyde cellulose microfibers (cDAC) surface to remove Congo red dye from water. cDAC/ZnONPs was characterized by scanning electron microscopy (SEM-EDS) and infrared spectroscopy (FTIR), which showed efficient nanoparticles reduction. Adsorption efficiency on cationic cellulose surface was investigated by pH, contact time, initial concentration, and dye selectivity tests. The material followed the H isotherm model, which resulted in a maximum adsorption capacity of 1091.16 mg/g. Herein, was developed an efficient and ecologically correct new adsorbent, highly effective in Congo red dye adsorption even at high concentrations, suitable for the remediation of contaminated industrial effluents.
Collapse
Affiliation(s)
- Gabrieli Roefero Tolosa
- São Paulo State University (UNESP), School of Technology and Sciences, 19060-080 Presidente Prudente, SP, Brazil
| | - Andressa Silva Gomes
- São Paulo State University (UNESP), School of Technology and Sciences, 19060-080 Presidente Prudente, SP, Brazil.
| | | | - Grazielle de Oliveira Setti
- São Paulo State University (UNESP), School of Technology and Sciences, 19060-080 Presidente Prudente, SP, Brazil
| | - Guilherme Dognani
- São Paulo State University (UNESP), School of Technology and Sciences, 19060-080 Presidente Prudente, SP, Brazil
| | - Aldo Eloízo Job
- São Paulo State University (UNESP), School of Technology and Sciences, 19060-080 Presidente Prudente, SP, Brazil.
| |
Collapse
|
9
|
Sayago UFC, Ballesteros VB, Aguilar AML. Bacterial Cellulose-Derived Sorbents for Cr (VI) Remediation: Adsorption, Elution, and Reuse. Polymers (Basel) 2024; 16:2605. [PMID: 39339069 PMCID: PMC11435167 DOI: 10.3390/polym16182605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The search for adsorbents that are non-toxic and low cost with a high adsorption capacity and excellent recyclability is a priority to determine the way to reduce the serious environmental impacts caused by the discharge of effluents loaded with heavy metals. Bacterial cellulose (BC) biomass has functional groups such as hydroxyl and carbonyl groups that play a crucial role in making this cellulose so efficient at removing contaminants present in water through cation exchange. This research aims to develop an experimental process for the adsorption, elution, and reuse of bacterial cellulose biomass in treating water contaminated with Cr (VI). SEM images and the kinetics behavior were analyzed with pseudo-first- and pseudo-second-order models together with isothermal analysis after each elution and reuse process. The adsorption behavior was in excellent agreement with the Langmuir model along with its elution and reuse; the adsorption capacity was up to 225 mg/g, adding all the elution processes. This study presents a novel approach to the preparation of biomass capable of retaining Cr (VI) with an excellent adsorption capacity and high stability. This method eliminates the need for chemical agents, which would otherwise be difficult to implement due to their costs. The viability of this approach for the field of industrial wastewater treatment is demonstrated.
Collapse
|
10
|
Awasthi S, Komal, Pandey SK. Translational applications of magnetic nanocellulose composites. NANOSCALE 2024; 16:15884-15908. [PMID: 39136070 DOI: 10.1039/d4nr01794c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Nanocellulose has emerged as a potential 'green' material owing to its inimitable properties. Furthermore, the significant development in technology has facilitated the design of multidimensional nanocellulose structures, including one-dimensional (1D: microparticles and nanofibers), two-dimensional (2D: coatings), and three-dimensional (3D: hydrogels/ferrogels) composites. In this case, nanocellulose composites blended with magnetic nanoparticles represent a new class of hybrid materials with improved biocompatibility and biodegradability. The application field of magnetic nanocellulose composites (MNCs) ranges from biomedicine and the environment to catalysis and sensing. In this review, we present the major applications of MNCs, emphasizing their innovative benefits and how they interconnect with translational applications in clinics and the environment. Additionally, we focus on the synthesis techniques and role of different additives in the fabrication of MNCs for achieving extremely precise and intricate tasks related to real-world applications. Subsequently, we reveal the recent interdisciplinary research on MNCs and discuss their mechanical, tribological, electrochemical, magnetic, and biological phenomena. Finally, this review concludes with a portrayal of computational modelling together with a glimpse of the various translational applications of MNCs. Therefore, it is anticipated that the current review will provide the readers with an extensive opportunity and a more comprehensive depiction related to the types, properties, and applications of MNCs.
Collapse
Affiliation(s)
- Shikha Awasthi
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India.
| | - Komal
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India.
| | - Sarvesh Kumar Pandey
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal-462003, Madhya Pradesh, India.
| |
Collapse
|
11
|
Ferenji AE, Hassen YE, Mekuria SL, Girma WM. Biogenic mediated green synthesis of NiO nanoparticles for adsorptive removal of lead from aqueous solution. Heliyon 2024; 10:e31669. [PMID: 38828348 PMCID: PMC11140706 DOI: 10.1016/j.heliyon.2024.e31669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The spread of heavy metal in water bodies, particularly lead (Pb), has occurred as a global threat to human existence. In this study, NiO nanoparticles (NPs) was prepared by coprecipitation approach using Hagenia abyssinica plant extract mediated as a reducing and template agent for the removal of Pb from aqueous solution. X-ray crystallographic diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and Brunauer-Emmett-Teller (BET) techniques were employed for the characterization of as prepared NiO NPs. The efficacy of adsorbent was evaluated on the removal of Pb2+ by varying the adsorptive parameters such as pH, Bio-NiO amount, interaction time, and Pb2+ concentration. The adsorption was 99.99% at pH, 0.06 g of NiO NPs dose, 60 mg L-1 concentrations of Pb2+ within 80 min contact time. The higher removal efficiency is could be due to higher surface area (151 m2g-1). The adsorption process was best fitted with Freundlich isotherm and pseudo-second order kinetic models, implying that it was chemical adsorption on the heterogeneous surface. The adsorption intensity (n) was found to be 1/n < 1 (0.47) indicating adsorption of Pb2+ on the surface of Bio-NiO NPs was favorable with a maximum adsorption capacity 60.13 mg g-1. The reusability studies confirmed that the synthesized bio-NiO NPs were an effective adsorbent for removing Pb2+ from aqueous solution up to five cycles.
Collapse
Affiliation(s)
- Abdurohman Eshtu Ferenji
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box:1145, Dessie, Ethiopia
| | - Yeshi Endris Hassen
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box:1145, Dessie, Ethiopia
| | - Shewaye Lakew Mekuria
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, 196, Ethiopia
| | - Wubshet Mekonnen Girma
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box:1145, Dessie, Ethiopia
| |
Collapse
|
12
|
Ibrahim BM, Fakhre NA, Jalhoom MG, Qader IN, Shareef HY, Jalal AF. Removal of lead ions from aqueous solutions by modified cellulose. ENVIRONMENTAL TECHNOLOGY 2024; 45:2335-2347. [PMID: 35306975 DOI: 10.1080/09593330.2022.2056086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The new adsorbent was prepared by mixing cellulose with dicyclohexyl-18- crown-6 via microwave irradiation method and it was used to remove lead ions from aqueous solution. In contrast to the traditional way (in which grafted polymers are produced by using chemical-free radical producers), this method is rapid, reproducible, and gives a high-quality product. Different physicochemical techniques such as FTIR, SEM, and XRD and TGA were used for the characterization of the produced adsorbent. Based on the ANOVA statistical value, the adsorption of Pb2+ ion onto grafted cellulose has been found to be significant, with very low probability (p) values (<0.001). The pH and initial concentration were observed to be the most significant factors that affected the Pb2+ ion removal from the analysis of variance. Pseudo-second-order and Langmuir equations were applied to the adsorption of Pb2+ ion and under the optimized conditions, the maximum absorption capacity in modified cellulose of Pb2+ was 58.3 mg/g. Various factors which affect metal ion adsorption, including temperature, power of hydrogen, shaking time, adsorbent quantity, and metal ions concentration were studied. More importantly, the adsorbent could be reused by using 0.1 M nitric acid.
Collapse
Affiliation(s)
- Bnar M Ibrahim
- Department of Chemistry, College of Science, University of Raparin, Sulaymaneyah, Iraq
| | - Nabil A Fakhre
- Department of Chemistry, College of Education, Salahaddin University, Erbil, Iraq
| | - Moayyed G Jalhoom
- Department of Production Engineering and Minerals, University of Technology, Baghdad, Iraq
| | - Ibrahim Nazem Qader
- Department of Physics, College of Science, University of Raparin, Sulaymaneyah, Iraq
| | - Huda Y Shareef
- Department of Chemistry, College of Education, Salahaddin University, Erbil, Iraq
| | - Aveen F Jalal
- Department of Chemistry, College of Education, Salahaddin University, Erbil, Iraq
| |
Collapse
|
13
|
Karami N, Mohammadpour A, Samaei MR, Amani AM, Dehghani M, Varma RS, Sahu JN. Green synthesis of sustainable magnetic nanoparticles Fe 3O 4 and Fe 3O 4-chitosan derived from Prosopis farcta biomass extract and their performance in the sorption of lead(II). Int J Biol Macromol 2024; 254:127663. [PMID: 37884234 DOI: 10.1016/j.ijbiomac.2023.127663] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The sustainable processes are now in tremendous demand for nanomaterial synthesis as a result of their unique properties and characteristics. The magnetic nanoparticles comprised of Fe3O4 and its conjugate with abundant and renewable biopolymer, chitosan, were synthesized using Prosopis farcta biomass extract, and the resulting materials were used to adsorb Pb (II) from aqueous solution. Thermodynamic parameters revealed that the sorption of lead (II) on Fe3O4 as well as Fe3O4-Chitosan (Fe3O4-CS) has been an endothermic and self-regulating procedure wherein the sorption kinetics was defined by a pseudo-second-order pattern and the sorption isotherms corresponded to the Freundlich pattern. A multivariable quadratic technique for adsorption process optimization was implemented to optimize the lead (II) adsorption on Fe3O4 and Fe3O4-chitosan nanoparticles, the optimal conditions being pH 7.9, contact time of 31.2 min, initial lead concentration of 39.2 mg/L, adsorbent amount of 444.3 mg, at a 49.7 °C temperature. The maximum adsorption efficiencies under optimal conditions were found to be 69.02 and 89.54 % for Fe3O4 and Fe3O4-CS adsorbents, respectively. Notably, Fe3O4 and Fe3O4-CS can be easily recovered using an external magnet, indicating that they are a viable and cost-effective lead removal option.
Collapse
Affiliation(s)
- Najmeh Karami
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Mohammadpour
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Samaei
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansooreh Dehghani
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos - SP, Brazil
| | - J N Sahu
- University of Stuttgart, Institute of Chemical Technology, Faculty of Chemistry, D-70550 Stuttgart, Germany; South Ural State University (National Research University), Chelyabinsk, Russian Federation.
| |
Collapse
|
14
|
Garg S, Goel N. Encapsulation of heavy metal ions via adsorption using cellulose/ZnO composite: First principles approach. J Mol Graph Model 2023; 124:108566. [PMID: 37487371 DOI: 10.1016/j.jmgm.2023.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
The primary goal of the current research is to describe an effective and eco-friendly adsorbent for the removal of aquatic micropollutants. The design of the cellulose-modified zinc oxide (ZnO) nanocomposite was successfully carried out by density functional calculations. The proposed structures of the constituent and composite materials were confirmed using formation energy (Ef), frontier orbitals, band gaps (Egap), density of state (DOS) plots, natural bond orbitals (NBO), and UV-Vis spectral analysis. The cellulose/(ZnO)12 composite was further used for the adsorption of different heavy metal ions such as Hg(II), Pb(II), Cd(II), Ni(II), and As(III) through calculation of electronic and optical properties. The values of the adsorption energy (Eads) show that the As(III) interacted better with the composite in both phases, i.e., gas (-806.98 kcal/mol) and aqueous (-491.66 kcal/mol). The analysis of frontier molecular orbital data exhibited a decrease in the Egap of composite@metal ion complexes. The high negative value of the solvation energies (ΔEsol) indicates the suitability of composite@metal ions in an aqueous environment. The nature of interactions between metal ions and the composite unit is analyzed by noncovalent interactions (NCI) and the quantum theory of atoms in molecules (QTAIM). The theoretical results of the present study show the feasibility of the cellulose/(ZnO)12 composite for the removal of heavy metal ions and provide useful information to experimentalists to treat contaminated water.
Collapse
Affiliation(s)
- Shivangi Garg
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Neetu Goel
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
15
|
Hassanisaadi M, Saberi Riseh R, Rabiei A, Varma RS, Kennedy JF. Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants. Int J Biol Macromol 2023; 246:125763. [PMID: 37429338 DOI: 10.1016/j.ijbiomac.2023.125763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Overusing pesticides, fertilizers, and synthetic dyes has significantly increased their presence in various parts of the environment. The transportation of these pollutants into agricultural soil and water through rivers, soils, and groundwater has seriously threatened human and ecosystem health. Applying techniques and materials to clean up agricultural sources from pesticides, heavy metals (HMs), and synthetic dyes (SDs) is one of the major challenges in this century. The sorption technique offers a viable solution to remediate these chemical pollutants (CHPs). Cellulose-based materials have become popular in nano and micro scales because they are widely available, safe to use, biodegradable, and have a significant ability to absorb substances. Nanoscale cellulose-based materials exhibit greater capacity in absorbing pollutants compared to their microscale counterparts because they possess a larger surface area. Many available hydroxyl groups (-OH) and chemical and physical modifications enable the incorporation of CHPs on to cellulose-based materials. Following this potential, this review aims to comprehensively summarize recent advancements in the field of nano- and micro-cellulose-based materials as effective adsorbents for CHPs, given the abundance of cellulosic waste materials from agricultural residues. The recent developments pertaining to the enhancement of the sorption capacity of cellulose-based materials against pesticides, HMs, and SDs, are deliberated.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Ali Rabiei
- Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom
| |
Collapse
|
16
|
Indurkar PD, Raj SK, Kulshrestha V. Multivariate modeling and process optimization of Hg(II) remediation using solvothermal synthesized 2D MX/Fe 3O 4 by response surface methodology: characteristics and mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27687-7. [PMID: 37233927 DOI: 10.1007/s11356-023-27687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Two-dimensional MXene with layered structure has recently emerged as a nanomaterial with fascinating characteristics and applicability. Herein, we prepared the newly modified magnetic MXene (MX/Fe3O4) nanocomposite using solvothermal approach and investigated its adsorption behavior to study the removal efficiency of Hg(II) ions from aqueous solution. The effect of adsorption parameters such as adsorbent dose, time, concentration, and pH were optimized using response surface methodology (RSM). The experimental data fitted well with quadratic model to predict the optimum conditions for maximum Hg(II) ion removal efficiency which were found to be at adsorbent dose 0.871 g/L, time 103.6 min, concentration 40.17 mg/L, and 6.5 pH respectively. To determine the adequacy of the developed model, a statistical analysis of variance (ANOVA) was used, which demonstrated high agreement between the experimental data and the suggested model. According to isotherm result, the experimental data were following the best agreement with the Redlich-Peterson isotherm model. The results of the experiments revealed that the maximum Langmuir adsorption capacity of 699.3 mg/g was obtained at optimum conditions, which was closed to the experimental adsorption capacity of 703.57 mg/g. The adsorption phenomena was well represented by the pseudo-second-order model (R2 = 0.9983). On the whole, it was clear that MX/Fe3O4 has lot of potential as a Hg(II) ion impurity removal agent in aqueous solutions.
Collapse
Affiliation(s)
- Pankaj D Indurkar
- Membrane Science & Separation Technology Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Savan K Raj
- Membrane Science & Separation Technology Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 364002, India
- Department of Physics, The MK Bhavnagar University, Bhavnagar, 364 002, India
| | - Vaibhav Kulshrestha
- Membrane Science & Separation Technology Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
17
|
Liu S. Preparation of nanocellulose grafted molecularly imprinted polymer for selective adsorption Pb(II) and Hg(II). CHEMOSPHERE 2023; 316:137832. [PMID: 36640989 DOI: 10.1016/j.chemosphere.2023.137832] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution has become a major problem in environmental pollution. Ion imprinted polymers with specific identification and wide practicality have gradually become an important tool for wastewater treatment. In this work, ion-imprinted polymer-grafted modified nanocellulose was designed as an adsorbent for the serious hazard of Pb(II) and Hg(II) in wastewater. This work used medical cotton wool as raw material to prepare a nanocellulose suspension by acid-catalyzed hydrolysis. The high reactivity of carbonyl diimidazole (CDI) was utilized to react with acrylic acid (AA) to generate reactive intermediates, which then reacted with nanocellulose to form activated nanocellulose (AA-CDI-NC). Crown ether was used as functional monomers to synthesize Pb(II) ion-imprinted polymers and grafted onto the AA-CDI-NC surface (Pb(II)-MIP-NC). Meanwhile, Hg(II) ion-imprinted polymer was synthesized and grafted onto the AA-CDI-NC surface (Hg(II)-MIP-NC) using thymine as a functional monomer. The experimental results showed that Pb(II)-MIP-NC and Hg(II)-MIP-NC could effectively adsorb Pb(II) and Hg(II), respectively. Their adsorption behaviors for Pb(II) and Hg(II) were consistent with the secondary kinetic model and Langmuir adsorption isotherm model. The adsorption capacities of Pb (II)-MIP-NC and Hg (II)-MIP-NC for Pb (II) and Hg (II) were 27.55 mg/g and 161.31, respectively.
Collapse
Affiliation(s)
- Shuo Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
18
|
Azizan A, Samsudin AA, Shamshul Baharin MB, Dzulkiflee MH, Rosli NR, Abu Bakar NF, Adlim M. Cellulosic fiber nanocomposite application review with zinc oxide antimicrobial agent nanoparticle: an opt for COVID-19 purpose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16779-16796. [PMID: 35084685 PMCID: PMC8793331 DOI: 10.1007/s11356-022-18515-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/01/2022] [Indexed: 05/08/2023]
Abstract
Cellulosic fiber (CF) in nanoform is emergingly finding its way for COVID-19 solution for instance via nanocomposite/nanoparticle from various abundant biopolymeric waste materials, which may not be widely commercialized when the pandemic strikes recently. The possibility is wide open but needs proper collection of knowledge and research data. Thus, this article firstly reviews CF produced from various lignocellulosic or biomass feedstocks' pretreatment methods in various nanoforms or nanocomposites, also serving together with metal oxide (MeO) antimicrobial agents having certain analytical reporting. CF-MeO hybrid product can be a great option for COVID-19 antimicrobial resistant environment to be proposed considering the long-established CF and MeO laboratory investigations. Secondly, a preliminary pH investigation of 7 to 12 on zinc oxide synthesis discussing on Fouriertransform infrared spectroscopy (FTIR) functional groups and scanning electron microscope (SEM) images are also presented, justifying the knowledge requirement for future stable nanocomposite formulation. In addition to that, recent precursors suitable for zinc oxide nanoparticle synthesis with emergingly prediction to serve as COVID-19 purposes via different products, aligning with CFs or nanocellulose for industrial applications are also reviewed.
Collapse
Affiliation(s)
- Amizon Azizan
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia.
| | - Aisyah Afiqah Samsudin
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | | | - Muhammad Harith Dzulkiflee
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Nor Roslina Rosli
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Noor Fitrah Abu Bakar
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Muhammad Adlim
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, 23111 Darussalam Banda Aceh, Kuala, Indonesia
- Chemistry Department, FKIP, Universitas Syiah Kuala, 23111 Darussalam Banda Aceh, Kuala, Indonesia
| |
Collapse
|
19
|
Kumar A, Kumar V. A Comprehensive Review on Application of Lignocellulose Derived Nanomaterial in Heavy Metals Removal from Wastewater. CHEMISTRY AFRICA 2023; 6:39-78. [DOI: 10.1007/s42250-022-00367-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/18/2022] [Indexed: 01/12/2025]
|
20
|
Rizwan K, Babar ZB, Munir S, Arshad A, Rauf A. Recent advancements in engineered biopolymeric-nanohybrids: A greener approach for adsorptive-remediation of noxious metals from aqueous matrices. ENVIRONMENTAL RESEARCH 2022; 215:114398. [PMID: 36174757 DOI: 10.1016/j.envres.2022.114398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Industrial wastewater is causing serious health problems due to presence of large concentrations of toxic metals. Removal of these metals is still a big challenge using pristine natural biopolymers due to their low surface area, water solubility, and poor recovery. Developing biopolymeric composites with other materials has attained attention because they possess a high surface area and structural porosity, high reactivity, and less water solubility. In simple words, biopolymeric nanohybrids have great adsorption capacity for heavy metals. Biopolymeric materials are abundant, low cost, biodegradable, and possess different functional moieties (carboxyl, amine, hydroxyl, and carbonyl) which play a vital role to adsorb metal ions through various inter-linkages (i.e., electrostatic, hydrogen bonding, ion exchange, chelation, etc.). Biopolymeric nanohybrids have been proven a potent tool in environmental remediation such as the abatement of heavy metal ions from polluted water. Herein, we have reported the adsorption potential of various biopolymers (cellulose, chitosan, pectin, gelatin, and silk proteins) for the removal of heavy metals. This review discusses the suitability of biopolymeric nanohybrids as an adsorbent for heavy metals, their synthesis, modification, adsorption potential, and adsorption mechanism along with best fitted thermodynamic and kinetic models. The influence of pH, contact time, and adsorbent dose on adsorption potential has also been discussed in detail. Lastly, the challenges, research gaps and recommendations have been presented. This review concludes that biopolymers in combination with other materials such as metal-based nanoparticles, clay, and carbon-based materials are excellent materials to remove metallic ions from wastewater. Significant adsorption of heavy metals was obtained at a moderate pH (5-6). Contact time and adsorbent dose also affect the adsorption of heavy metals in certain ways. The Pseudo-first order model fits the data for the initial period of the first step of the reaction. Kinetic studies of different adsorption processes of various biopolymeric nanohybrids described that for majority of bionanohybrids, Pseudo-second order fitted the experimental data very well. Functionalized biopolymeric nanohybrids being biodegradable, environment friendly, cost-effective materials have great potential to adsorb heavy metal ions. These may be the future materials for environmental remediation.
Collapse
Affiliation(s)
- Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Zaeem Bin Babar
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Shahid Munir
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Ali Arshad
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Abdul Rauf
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
21
|
Tabasi E, Vafa N, Firoozabadi B, Salmankhani A, Nouranian S, Habibzadeh S, Mashhadzadeh AH, Spitas C, Saeb MR. Ion rejection performances of functionalized porous graphene nanomembranes for wastewater purification: A molecular dynamics simulation study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
da Rosa Salles T, da Silva Bruckamann F, Viana AR, Krause LMF, Mortari SR, Rhoden CRB. Magnetic Nanocrystalline Cellulose: Azithromycin Adsorption and In Vitro Biological Activity Against Melanoma Cells. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:2695-2713. [DOI: 10.1007/s10924-022-02388-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 09/01/2023]
|
23
|
Alboghbeish M, Larki A, Saghanezhad SJ. Effective removal of Pb(II) ions using piperazine-modified magnetic graphene oxide nanocomposite; optimization by response surface methodology. Sci Rep 2022; 12:9658. [PMID: 35688868 PMCID: PMC9187642 DOI: 10.1038/s41598-022-13959-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/31/2022] [Indexed: 12/07/2022] Open
Abstract
In this research, the piperazine-modified magnetic graphene oxide (Pip@MGO) nanocomposite was synthesized and utilized as a nano-adsorbent for the removal of Pb(II) ions from environmental water and wastewater samples. The physicochemical properties of Pip@MGO nanocomposite was characterized by X-ray diffraction analysis (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDAX), Thermo-gravimetric analysis (TGA), Vibrating Sample Magnetometery (VSM) and Fourier-transform infrared spectroscopy (FT-IR) analysis. In this method, the batch removal process were designed by response surface methodology (RSM) based on a central composite design (CCD) model. The results indicated that the highest efficiency of Pb(II) removal was obtained from the quadratic model under optimum conditions of prominent parameters (initial pH 6.0, adsorbent dosage 7 mg, initial concentration of lead 15 mg L−1 and contact time 27.5 min). Adsorption data showed that lead ions uptake on Pip@MGO nanocomposite followed the Langmuir isotherm model equation and pseudo-second order kinetic model. High adsorption capacity (558.2 mg g−1) and easy magnetic separation capability showed that the synthesized Pip@MGO nanocomposite has great potential for the removal of Pb(II) ions from contaminated wastewaters.
Collapse
Affiliation(s)
- Mousa Alboghbeish
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Arash Larki
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | | |
Collapse
|
24
|
Iqbal D, Zhao Y, Zhao R, Russell SJ, Ning X. A Review on Nanocellulose and Superhydrophobic Features for Advanced Water Treatment. Polymers (Basel) 2022; 14:2343. [PMID: 35745924 PMCID: PMC9229312 DOI: 10.3390/polym14122343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Globally, developing countries require access to safe drinking water to support human health and facilitate long-term sustainable development, in which waste management and control are critical tasks. As the most plentiful, renewable biopolymer on earth, cellulose has significant utility in the delivery of potable water for human consumption. Herein, recent developments in the application of nanoscale cellulose and cellulose derivatives for water treatment are reviewed, with reference to the properties and structure of the material. The potential application of nanocellulose as a primary component for water treatment is linked to its high aspect ratio, high surface area, and the high number of hydroxyl groups available for molecular interaction with heavy metals, dyes, oil-water separation, and other chemical impurities. The ability of superhydrophobic nanocellulose-based textiles as functional fabrics is particularly acknowledged as designed structures for advanced water treatment systems. This review covers the adsorption of heavy metals and chemical impurities like dyes, oil-water separation, as well as nanocellulose and nanostructured derivative membranes, and superhydrophobic coatings, suitable for adsorbing chemical and biological pollutants, including microorganisms.
Collapse
Affiliation(s)
- Danish Iqbal
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Yintao Zhao
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Renhai Zhao
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Stephen J. Russell
- Leeds Institute of Textiles and Colour (LITAC), School of Design, University of Leeds, Leeds LS2 9JT, UK;
| | - Xin Ning
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| |
Collapse
|
25
|
In vitro‐studies of adenosine‐ β‐cyclodextrin inclusion complexes loaded into chitosan, sodium alginate and bentonite‐based nanocomposite optimized by RSM as a sustained release system. J Appl Polym Sci 2022. [DOI: 10.1002/app.52706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Das R, Lindström T, Sharma PR, Chi K, Hsiao BS. Nanocellulose for Sustainable Water Purification. Chem Rev 2022; 122:8936-9031. [PMID: 35330990 DOI: 10.1021/acs.chemrev.1c00683] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanocelluloses (NC) are nature-based sustainable biomaterials, which not only possess cellulosic properties but also have the important hallmarks of nanomaterials, such as large surface area, versatile reactive sites or functionalities, and scaffolding stability to host inorganic nanoparticles. This class of nanomaterials offers new opportunities for a broad spectrum of applications for clean water production that were once thought impractical. This Review covers substantial discussions based on evaluative judgments of the recent literature and technical advancements in the fields of coagulation/flocculation, adsorption, photocatalysis, and membrane filtration for water decontamination through proper understanding of fundamental knowledge of NC, such as purity, crystallinity, surface chemistry and charge, suspension rheology, morphology, mechanical properties, and film stability. To supplement these, discussions on low-cost and scalable NC extraction, new characterizations including solution small-angle X-ray scattering evaluation, and structure-property relationships of NC are also reviewed. Identifying knowledge gaps and drawing perspectives could generate guidance to overcome uncertainties associated with the adaptation of NC-enabled water purification technologies. Furthermore, the topics of simultaneous removal of multipollutants disposal and proper handling of post/spent NC are discussed. We believe NC-enabled remediation nanomaterials can be integrated into a broad range of water treatments, greatly improving the cost-effectiveness and sustainability of water purification.
Collapse
Affiliation(s)
- Rasel Das
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tom Lindström
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Priyanka R Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Kai Chi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
27
|
Hitam CNC, Jalil AA. Recent advances on nanocellulose biomaterials for environmental health photoremediation: An overview. ENVIRONMENTAL RESEARCH 2022; 204:111964. [PMID: 34461122 DOI: 10.1016/j.envres.2021.111964] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
As one of the potential bionanomaterials, nanocellulose has appeared as a favorable candidate for photoremediation of the environment because of its abundance in nature, inexpensive, eco-friendly, decomposable, high surface area, and outstanding mechanical properties. The current review carefully summarized the diverse type of nanocellulose, their preparation approaches, and several previous works on the use of nanocellulose for photoremediation. These include the role of nanocellulose for the increased surface active site of the hybrid photocatalysts by providing a large surface area for enhanced adsorption of photons and pollutant molecules, as a dispersing agent to increase distribution of metal/non-metal dopants photocatalysts, as well as for controlled size and morphology of the dopants photocatalysts. Furthermore, the recommendations for upcoming research provided in this review are anticipated to ignite an idea for the development of other nanocellulose-based photocatalysts. Other than delivering beneficial information on the present growth of the nanocellulose biomaterials photocatalysts, this review is expected will attract more interest to the utilization of nanocellulose photocatalyst and distribute additional knowledge in this exciting area of environmental photoremediation. This could be attained by considering that a review on nanocellulose biomaterials for environmental health photoremediation has not been described elsewhere, notwithstanding intensive research works have been dedicated to this topic.
Collapse
Affiliation(s)
- C N C Hitam
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
28
|
Reshmy R, Philip E, Madhavan A, Pugazhendhi A, Sindhu R, Sirohi R, Awasthi MK, Pandey A, Binod P. Nanocellulose as green material for remediation of hazardous heavy metal contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127516. [PMID: 34689089 DOI: 10.1016/j.jhazmat.2021.127516] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution generated by urban and industrial activities has become a major global concern due to its high toxicity, minimal biodegradability, and persistence in the food chain. These are the severe pollutants that have the potential to harm humans and the environment as a whole. Mercury, chromium, copper, zinc, cadmium, lead, and nickel are the most often discharged hazardous heavy metals. Nanocellulose, reminiscent of many other sustainable nanostructured materials, is gaining popularity for application in bioremediation technologies owing to its many unique features and potentials. The adsorption of heavy metals from wastewaters is greatly improved when cellulose dimension is reduced to nanometric levels. For instance, the adsorption efficiency of Cr3+ and Cr6+ is found to be 42.02% and 5.79% respectively using microcellulose, while nanocellulose adsorbed 62.40% of Cr3+ ions and 5.98% of Cr6+ ions from contaminated water. These nanomaterials are promising in terms of their ease and low cost of regeneration. This review addresses the relevance of nanocellulose as biosorbent, scaffold, and membrane in various heavy metal bioremediation, as well as provides insights into the challenges, future prospects, and updates. The methods of designing better nanocellulose biosorbents to improve adsorption efficiency according to contaminant types are focused.
Collapse
Affiliation(s)
- R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR, Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
29
|
Kaur J, Sengupta P, Mukhopadhyay S. Critical Review of Bioadsorption on Modified Cellulose and Removal of Divalent Heavy Metals (Cd, Pb, and Cu). Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jatinder Kaur
- Department of Chemistry, Fergusson College, Pune 411004, India
| | | | - Samrat Mukhopadhyay
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
30
|
Motaghi H, Arabkhani P, Parvinnia M, Javadian H, Asfaram A. Synthesis of highly porous three-dimensional PVA/GO/ZIF-67 cryogel for the simultaneous treatment of waters contaminated with cadmium (II) and lead (II) heavy metal ions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05418j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this research, PVA/GO/ZIF-67 cryogel as a highly porous three-dimensional polymeric adsorbent was synthesized by freeze-drying method and applied for the simultaneous removal of Cd2+ and Pb2+ ions from contaminated...
Collapse
|
31
|
Mohammadi S, Mohammadi S, Salimi A, Ahmadi R. A Chelation-enhanced Fluorescence Assay using Thiourea Capped Carbonaceous Fluorescent Nanoparticles for As (III) Detection in Water Samples. J Fluoresc 2021; 32:145-153. [PMID: 34643855 DOI: 10.1007/s10895-021-02834-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
Herein, we designed a sensitive and selective "Turn-On" fluorescence nanosensor using water-soluble carbonaceous fluorescent nanomaterials (CFNs) functionalized with thiourea (CFNs-Thiourea) for efficient detection of trace concentrations of arsenic (III) in aqueous samples. The CFNs and CFNs-Thiourea were characterized by transmission electron microscopy (TEM), UV-visible spectroscopy (UV-vis) and fourier transformed infrared spectroscopy (FTIR). The emission peak intensity of proposed nanosensor at 425 nm was gradually enhanced on arsenite addition in a wide detection range (3.3-828.5 µg L-1) attributed to the binding of arsenite species with sulfur groups of CFNs-Thiourea. The limit of detection (LOD) was 0.48 µg L-1 being much lower than the World Health Organization (WHO) recommended threshold value of 10 µg L-1. Furthermore, the as-prepared CFNs-Thiourea exhibited a superb selectivity for As (III) compared to various cations and anions, such as; NO3-, NO2-, F-, Ni2+, Fe3+, Cu2+, Ca2+, Mg2+, Zn2+, Fe2+, Hg2+, Pb2+, F-, Cl-, Mn2+, Cr3+, Co2+, Cd2+, Bi3+, Al3+ and As (V) at 100 folds concentration of As (III). The turn on fluorescence nanosensor was successfully exploited for quantification of arsenic in spiked water samples with acceptable efficiencies.
Collapse
Affiliation(s)
- Susan Mohammadi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Somayeh Mohammadi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran. .,Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Rezgar Ahmadi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.,Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran
| |
Collapse
|
32
|
Preparation and Characterization of Functionalized Cellulose Nanomaterials (CNMs) for Pb(II) Ions Removal from Wastewater. J CHEM-NY 2021. [DOI: 10.1155/2021/5514853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Due to their remarkable properties, cellulose nanomaterials are emerging materials for wastewater (WW) treatment. In this study, both pristine cellulose nanomaterial (CNM) and sodium periodate modified cellulose nanomaterial (NaIO4-CNM) were prepared from the stem of the Erythrina brucei plant for the removal of Pb(II) ions from WW. As-prepared CNMs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscope (SEM), and thermogravimetric analysis with differential thermogravimetry (TGA-DTG) analysis. The as-prepared and characterized CNMs were tested for the removal of Pb(II) ions from secondary run-off wastewater (SERWW). Langmuir and Freundlich adsorption isotherms were certainly fixed to a maximum Pb(II) ions uptake capability (Qmax) of 91.74 and 384.62 mg g−1 by CNM and NaIO4-CNM adsorbents, respectively. The pseudo-second-order (PSO) kinetics model was well fitted to the uptake process. Results revealed that the percentage removal (%R) of Pb(II) ions was decreased by the presence of nitrogen and organic matter, but not affected by the presence of phosphorous in SERWW. Due to its high efficiency, NaIO4-CNM was selected for the regeneration study. The regeneration study was conducted after desorption of Pb(II) ions from the adsorbent by the addition of HCl, and the regenerated sorbent was reused as an adsorbent for at least 13 successive cycles. The results indicated excellent recycling capabilities, and the adsorbent was used as adsorbing material for the removal of Pb(II) ions from SERWW after 13 successive cycles without significant efficient loss.
Collapse
|
33
|
Faiz Norrrahim MN, Mohd Kasim NA, Knight VF, Mohamad Misenan MS, Janudin N, Ahmad Shah NA, Kasim N, Wan Yusoff WY, Mohd Noor SA, Jamal SH, Ong KK, Zin Wan Yunus WM. Nanocellulose: a bioadsorbent for chemical contaminant remediation. RSC Adv 2021; 11:7347-7368. [PMID: 35423275 PMCID: PMC8695092 DOI: 10.1039/d0ra08005e] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/05/2021] [Indexed: 11/29/2022] Open
Abstract
Chemical contaminants such as heavy metals, dyes, and organic oils seriously affect the environment and threaten human health. About 2 million tons of waste is released every day into the water system. Heavy metals are the largest contributor which cover about 31% of the total composition of water contaminants. Every day, approximately 14 000 people die due to environmental exposure to selected chemicals. Removal of these contaminants down to safe levels is expensive, high energy and unsustainable by current approaches such as oxidation, biodegradation, photocatalysis, precipitation, reverse osmosis and adsorption. A combination of biosorption and nanotechnology offers a new way to remediate these chemical contaminants. Nanostructured materials are proven to have higher adsorption capacities than the same material in its larger-scale form. Nanocellulose is very promising as a high-performance bioadsorbent due to its interesting characteristics of high adsorption capacity, high mechanical strength, hydrophilic surface chemistry, renewability and biodegradability. It has been proven to have higher adsorption capacity and better binding affinity than other similar materials at the macroscale. The high specific surface area and abundance of hydroxyl groups within lead to the possible functionalization of this material for decontamination purposes. Several research papers have shown the effectiveness of nanocellulose in the remediation of chemical contaminants. This review aims to provide an overview of the most recent developments regarding nanocellulose as an adsorbent for chemical contamination remediation. Recent advancements regarding the modification of nanocellulose to enhance its adsorption efficiency towards heavy metals, dyes and organic oils were highlighted. Moreover, the desorption capability and environmental issue related to every developed nanocellulose-based adsorbent were also tackled.
Collapse
Affiliation(s)
- Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Noor Azilah Mohd Kasim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Victor Feizal Knight
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Muhammad Syukri Mohamad Misenan
- Department of Chemistry, College of Arts and Science, Yildiz Technical University, Davutpasa Campus 34220 Esenler Istanbul Turkey
| | - Nurjahirah Janudin
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Noor Aisyah Ahmad Shah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Norherdawati Kasim
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Wan Yusmawati Wan Yusoff
- Department of Physics, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Siti Aminah Mohd Noor
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Siti Hasnawati Jamal
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Keat Khim Ong
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Wan Md Zin Wan Yunus
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
- Research Centre for Tropicalisation, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| |
Collapse
|
34
|
Mallakpour S, Sirous F, Hussain CM. A journey to the world of fascinating ZnO nanocomposites made of chitosan, starch, cellulose, and other biopolymers: Progress in recent achievements in eco-friendly food packaging, biomedical, and water remediation technologies. Int J Biol Macromol 2020; 170:701-716. [PMID: 33388319 DOI: 10.1016/j.ijbiomac.2020.12.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
Green chemistry or in other words "green world" is referred to a sustainable environment using biocompatible, biodegradable, renewable, economical, and simple materials, and methods. Without any exaggeration, the exceptional chemical and physical properties of ZnO bionanocomposites beside various utilizations, make it vital materials in research and green chemistry field. Biocompatible ZnO nanoparticles with fascinating antimicrobial, physicochemical, as well as photocatalytic performance could be applied as a prominent candidate to reinforce diverse biopolymer matrixes, for instance, chitosan, starch, cellulose, gelatin, alginate, poly(hydroxyalkanoates), carrageenan, and so on. With a combination of advantageous properties of these materials, they could be illustrated specific utilizations in different areas. In this regard, the following context focuses on highlighting the recent achievements of this category of material on three important and widely used scopes: eco-friendly food packaging, biomedical specially wound dressings, and water remediation technologies.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Fariba Sirous
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
35
|
Singh R, Bhateria R. Optimization and Experimental Design of the Pb 2+ Adsorption Process on a Nano-Fe 3O 4-Based Adsorbent Using the Response Surface Methodology. ACS OMEGA 2020; 5:28305-28318. [PMID: 33163814 PMCID: PMC7643284 DOI: 10.1021/acsomega.0c04284] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/09/2020] [Indexed: 05/19/2023]
Abstract
Magnetic Fe3O4 nanoparticles have been used as adsorbents for the removal of heavy-metal ions. In this study, optimization of the Pb2+ adsorption process using Fe3O4 has been investigated. The adsorbent was characterized by various techniques such as transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and Brunauer-Emmett-Teller (BET) analysis. The influence of process variables on adsorption of Pb2+ ions in accordance with p < 0.05 was investigated and analyzed by the Box-Behnken design (BBD) matrix with five variables (pH, adsorbent dose, initial Pb2+ ion concentration, contact time, and temperature). The pH and temperature were observed to be the most significant parameters that affected the Pb2+ ion adsorption capacity from the analysis of variance (ANOVA). Conduction of 46 experiments according to BBD and a subsequent analysis of variance (ANOVA) provide information in an empirical equation for the expected response. However, a quadratic correlation was established to calculate the optimum conditions, and it was found that the R 2 value (0.99) is in good agreement with adjusted R 2 (0.98). The optimum process value of variables obtained by numerical optimization corresponds to pH 6, an adsorbent dose of 10 mg, and an initial Pb2+ ion concentration of 110 mg L-1 in 40 min at 40 °C adsorption temperature. A maximum of 98.4% adsorption efficiency was achieved under optimum conditions. Furthermore, the presented model with an F value of 176.7 could adequately predict the response and give appropriate information to scale up the process.
Collapse
Affiliation(s)
- Rimmy Singh
- Department of Environmental Science, Maharshi Dayanand University, Rohtak 124001, India
| | - Rachna Bhateria
- Department of Environmental Science, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
36
|
Saghi MH, Qasemi M, Alidadi H, Alahabadi A, Rastegar A, Kowsari MH, Shams M, Aziznezhad M, Goharshadi EK, Barczak M, Anastopoulos I, Giannakoudakis DA. Vanadium oxide nanoparticles for methylene blue water remediation: Exploring the effect of physicochemical parameters by process modeling. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|