1
|
Nawn D, Hassan SS, Hromić-Jahjefendić A, Bhattacharya T, Basu P, Redwan EM, Barh D, Andrade BS, Aljabali AA, Serrano-Aroca Á, Lundstrom K, Tambuwala MM, Uversky VN. Molecular genomic insights into melanoma associated proteins PRAME and BAP1. J Biomol Struct Dyn 2025:1-31. [PMID: 40084617 DOI: 10.1080/07391102.2025.2475228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Melanoma, a globally prevalent skin cancer with over 325,000 new cases annually, necessitates a comprehensive under- standing of its molecular components. This study looks at the PRAME (cutaneous melanoma-associated antigen) and BAP1 (gene controlling gene-environment interactions) proteins. Both PRAME and BAP1 are associated with critical genomic alterations that significantly influence melanoma progression and patient outcomes. PRAME is overexpressed in various cancers, especially uveal melanoma (UM), where high levels correlate with poor prognosis and genomic instability linked to chromosome 8q12 alterations. Meanwhile, mutations in BAP1 contribute to increased genomic instability and a higher risk of metastasis in UM, highlighting its importance as a key prognostic marker in tumorigenesis. Established approaches along with features proposed in this work are used to investigate sequence conservation, polyglutamic acid presence, intrinsic disorder of proteins, polar-nonpolar residues arrangement PRAME and BAP1 conserved residues highlight their critical roles in protein function and interaction. Sequence invariance indicates the possibility of functional relevance and evolutionary conservation. PRAME has enhanced intrinsic disorder and flexibility, whereas BAP1 has changed disorder-promoting residue sequences. Polyglutamic acid strings are found in both proteins, emphasizing their modulatory involvement in protein interactions. The ratios and spatial arrangement of amino acids have a profound influence on interactions and gene dysregulation. This work contributes to a better knowledge of the two melanoma-associated proteins viz. PRAME and BAP1 by unraveling their structural and functional complexities.
Collapse
Affiliation(s)
- Debaleena Nawn
- Department of Computer Science and Engineering, Adamas University, Jagannathpur, Kolkata, West Bengal, India
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, West Bengal, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Tanishta Bhattacharya
- Developmental Genetics (Dept III), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Pallab Basu
- School of Physics, University of the Witwatersrand, Johannesburg, Braamfontein, South Africa
- Adjunct Faculty, Woxsen School of Sciences, Woxsen University, Hyderabad, Telangana, India
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Protein Research Department, Therapeutic and Protective Proteins Laboratory, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, India
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Silva Andrade
- Department of Biological Sciences, Laboratory of Bioinformatics and Computational Chemistry, State University of Southwest of Bahia (UESB), Jequié, Brazil
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | | | | | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Malhis N, Gsponer J. Computational Prediction of Linear Interacting Peptides. Methods Mol Biol 2025; 2867:233-245. [PMID: 39576585 DOI: 10.1007/978-1-0716-4196-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Intrinsically disordered protein regions, IDRs, are observed in many eukaryotic proteins. They play critical roles in essentially all cellular processes because segments of these regions, known as linear interacting peptides (LIPs), are heavily involved in regulatory protein interactions across proteomes. This chapter presents an integrated summary of the results from the last two Critical Assessments of protein Intrinsic Disorder predictions, known as CAID events, on the computational prediction of LIP segments. Because the CAID community questioned the quality of the test dataset used by the first CAID event, we reannotated this dataset using more accurate annotations from the latest DisProt database release. Then, we compared the results of the first CAID with the updated data and the results of the second CAID event. Our comparison highlights the importance of data annotation on the evaluation outcome and provides recommendations for users of LIP predictors.
Collapse
Affiliation(s)
- Nawar Malhis
- Michael Smith Laboratories, the University of British Columbia, Vancouver, BC, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories, the University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Bastardo-Méndez M, Rangel HR, Pujol FH, Grillet ME, Jaspe RC, Malaver N, Rodríguez M, Zamora-Figueroa A. Detection of SARS-CoV-2 in wastewater as an earlier predictor of COVID-19 epidemic peaks in Venezuela. Sci Rep 2024; 14:27294. [PMID: 39516586 PMCID: PMC11549330 DOI: 10.1038/s41598-024-78982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Wastewater-based epidemiological surveillance has proven to be a useful and cost-effective tool for detecting COVID-19 outbreaks. Here, our objective was to evaluate its potential as an early warning system in Venezuela by detecting SARS-CoV-2 RNA in wastewater and its correlation with reported cases of COVID-19. Viral RNA was concentrated from wastewater collected at various sites in Caracas (northern Venezuela), from September 2021 to July 2023, using the polyethylene glycol (PEG) precipitation method. Viral quantification was performed by RT-qPCR targeting the N1 and ORF1ab genes. A significant association (p < 0.05) was found between viral load in wastewater and reported cases of COVID-19 up to six days after sampling. During the whole study, two populated areas of the city were persistent hotspots of viral infection. The L452R mutation, suggestive of the presence of the Delta variant, was identified in the only sample where a complete genomic sequence could be obtained. Significant differences (p < 0.05) between the physicochemical conditions of the wastewater samples positive and negative for the virus were found. Our results support proof of concept that wastewater surveillance can serve as an early warning system for SARS-CoV-2 outbreaks, complementing public health surveillance in those regions where COVID-19 is currently underreported.
Collapse
Affiliation(s)
- Marjorie Bastardo-Méndez
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Héctor R Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, Miranda, Venezuela
| | - Flor H Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, Miranda, Venezuela
| | - María-Eugenia Grillet
- Centro de Ecología y Evolución, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Rossana C Jaspe
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, Miranda, Venezuela
| | - Nora Malaver
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - María Rodríguez
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Alejandra Zamora-Figueroa
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela.
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, Miranda, Venezuela.
| |
Collapse
|
4
|
Maiti AK. Progressive Evolutionary Dynamics of Gene-Specific ω Led to the Emergence of Novel SARS-CoV-2 Strains Having Super-Infectivity and Virulence with Vaccine Neutralization. Int J Mol Sci 2024; 25:6306. [PMID: 38928018 PMCID: PMC11204377 DOI: 10.3390/ijms25126306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
An estimation of the proportion of nonsynonymous to synonymous mutation (dn/ds, ω) of the SARS-CoV-2 genome would indicate the evolutionary dynamics necessary to evolve into novel strains with increased infection, virulence, and vaccine neutralization. A temporal estimation of ω of the whole genome, and all twenty-nine SARS-CoV-2 genes of major virulent strains of alpha, delta and omicron demonstrates that the SARS-CoV-2 genome originally emerged (ω ~ 0.04) with a strong purifying selection (ω < 1) and reached (ω ~ 0.85) in omicron towards diversifying selection (ω > 1). A marked increase in the ω occurred in the spike gene from alpha (ω = 0.2) to omicron (ω = 1.97). The ω of the replication machinery genes including RDRP, NSP3, NSP4, NSP7, NSP8, NSP10, NSP13, NSP14, and ORF9 are markedly increased, indicating that these genes/proteins are yet to be evolutionary stabilized and are contributing to the evolution of novel virulent strains. The delta-specific maximum increase in ω in the immunomodulatory genes of NSP8, NSP10, NSP16, ORF4, ORF5, ORF6, ORF7A, and ORF8 compared to alpha or omicron indicates delta-specific vulnerabilities for severe COVID-19 related hospitalization and death. The maximum values of ω are observed for spike (S), NSP4, ORF8 and NSP15, which indicates that the gene-specific temporal estimation of ω identifies specific genes for its super-infectivity and virulency that could be targeted for drug development.
Collapse
Affiliation(s)
- Amit K Maiti
- Department of Genetics and Genomics, Mydnavar, 28475 Greenfield Rd, Southfield, MI 48076, USA
| |
Collapse
|
5
|
Aleebrahim-Dehkordi E, Soveyzi F, Deravi N, Saghazadeh A, Rezaei N. Mental Healthcare in Pediatrics During the COVID-19 Pandemic: A Call for International Public Health Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1458:19-34. [PMID: 39102187 DOI: 10.1007/978-3-031-61943-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Public health measures associated with coronavirus disease 2019 (COVID-19), such as lockdowns and quarantine of suspected cases, can negatively affect children's mental health status. Although the current crisis provides personal growth and family cohesion opportunities, pitfalls appear to outweigh the benefits. The magnitude and quality of its impact on children depend on several factors, including anxiety, lack of social contact, and a reduced opportunity for stress regulation, along with an increased risk for parental mental health issues, child maltreatment, and domestic violence. Children with special needs and social disadvantages like trauma experiences, disabilities, pre-existing mental illness, e.g., autism spectrum disorders and hyperactivity, and low socioeconomic status, may be at higher risk in this context. Here, the potentials social support can provide for pediatrics, both healthy children and children with special needs, are reviewed after an overview of quarantine's adverse effects on this special population during a pandemic. The most common psychological issues associated with the COVID-19 pandemic are sleep disorders, mood swings, depression, anxiety, decreased attention, stress, irritability, anger, and fear. Moreover, the impact of COVID-19 on children's physical health includes weight gain, reduced physical activity, immune dysregulation, and cardiometabolic disorders. All support systems, involving parents, teachers/school counselors, pediatricians, mental healthcare workers, and Health and Art (HEART) groups, need to enter the scene and make their share of children's mental health care.
Collapse
Affiliation(s)
- Elahe Aleebrahim-Dehkordi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Faezeh Soveyzi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Radiology Resident at MUMS, Radiology Department Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student's Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
- MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
6
|
Haltom J, Trovao NS, Guarnieri J, Vincent P, Singh U, Tsoy S, O'Leary CA, Bram Y, Widjaja GA, Cen Z, Meller R, Baylin SB, Moss WN, Nikolau BJ, Enguita FJ, Wallace DC, Beheshti A, Schwartz R, Wurtele ES. SARS-CoV-2 Orphan Gene ORF10 Contributes to More Severe COVID-19 Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.27.23298847. [PMID: 38076862 PMCID: PMC10705665 DOI: 10.1101/2023.11.27.23298847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The orphan gene of SARS-CoV-2, ORF10, is the least studied gene in the virus responsible for the COVID-19 pandemic. Recent experimentation indicated ORF10 expression moderates innate immunity in vitro. However, whether ORF10 affects COVID-19 in humans remained unknown. We determine that the ORF10 sequence is identical to the Wuhan-Hu-1 ancestral haplotype in 95% of genomes across five variants of concern (VOC). Four ORF10 variants are associated with less virulent clinical outcomes in the human host: three of these affect ORF10 protein structure, one affects ORF10 RNA structural dynamics. RNA-Seq data from 2070 samples from diverse human cells and tissues reveals ORF10 accumulation is conditionally discordant from that of other SARS-CoV-2 transcripts. Expression of ORF10 in A549 and HEK293 cells perturbs immune-related gene expression networks, alters expression of the majority of mitochondrially-encoded genes of oxidative respiration, and leads to large shifts in levels of 14 newly-identified transcripts. We conclude ORF10 contributes to more severe COVID-19 clinical outcomes in the human host.
Collapse
Affiliation(s)
- Jeffrey Haltom
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Nidia S Trovao
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Joseph Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Pan Vincent
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Urminder Singh
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
| | - Sergey Tsoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Collin A O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Gabrielle A Widjaja
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zimu Cen
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert Meller
- Morehouse School of Medicine, Atlanta, GA , 30310-1495, USA
| | - Stephen B Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
- Van Andel Research Institute, Grand Rapids, MI 49503
| | - Walter N Moss
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Basil J Nikolau
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA 02155, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98104 USA
| | - Robert Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| |
Collapse
|
7
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Jang WS, Jee H, Lee JM, Lim CS, Kim J. Performance Evaluation of a BZ COVID-19 NALF Assay for Rapid Diagnosis of SARS-CoV-2. Diagnostics (Basel) 2023; 13:diagnostics13061118. [PMID: 36980425 PMCID: PMC10047401 DOI: 10.3390/diagnostics13061118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Coronavirus disease (COVID-19) caused by SARS-CoV-2 infection has been a global pandemic for more than two years, and it is important to quickly and accurately diagnose and isolate patients with SARS-CoV-2 infection. The BZ COVID-19 NALF Assay could sensitively detect SARS-CoV-2 from a nasopharyngeal swab because it adopts both a loop-mediated isothermal amplification and lateral flow immunochromatography technology. In this study, a total of 389 nasopharyngeal swab samples, of which 182 were SARS-CoV-2 PCR positive and 207 were negative samples, were recruited. Compared to the Allplex™ SARS-CoV-2 Assay, the BZ COVID-19 NALF Assay showed 95.05% sensitivity and 99.03% specificity for detecting SARS-CoV-2. The concordance rate between the BZ COVID-19 NALF Assay and Allplex™ SARS-CoV-2 Assay was 97.69%. The turnaround time of the BZ COVID-19 NALF Assay is only about 40~55 min. The BZ COVID-19 NALF Assay is an accurate, easy, and quick molecular diagnostic test compared to the conventional PCR test for detection of SARS-CoV-2. In addition, the BZ COVID-19 NALF Assay is thought to be very useful in small size medical facilities or developing countries where it is difficult to operate a clinical laboratory.
Collapse
Affiliation(s)
- Woong Sik Jang
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Hyunseul Jee
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Joon Min Lee
- Departments of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Chae Seung Lim
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Departments of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Jeeyong Kim
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Correspondence: ; Tel.: +82-31-412-5304
| |
Collapse
|
9
|
Askari H, Rabiei F, Lohrasbi F, Ghadir S, Ghasemi-Kasman M. The Latest Cellular and Molecular Mechanisms of COVID-19 on Non-Lung Organs. Brain Sci 2023; 13:brainsci13030415. [PMID: 36979225 PMCID: PMC10046222 DOI: 10.3390/brainsci13030415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding the transmission pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will aid in developing effective therapies directed at the virus’s life cycle or its side effects. While severe respiratory distress is the most common symptom of a coronavirus 2019 (COVID-19) infection, the virus is also known to cause damage to almost every major organ and system in the body. However, it is not obvious whether pathological changes in extra-respiratory organs are caused by direct infection, indirect, or combination of these effects. In this narrative review, we first elaborate on the characteristics of SARS-CoV-2, followed by the mechanisms of this virus on various organs such as brain, eye, and olfactory nerve and different systems such as the endocrine and gastrointestinal systems.
Collapse
Affiliation(s)
- Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: ; Tel./Fax: +98-11-32190557
| |
Collapse
|
10
|
Wu W, Cheng Y, Zhou H, Sun C, Zhang S. The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol J 2023; 20:6. [PMID: 36627683 PMCID: PMC9831023 DOI: 10.1186/s12985-023-01968-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to take a heavy toll on personal health, healthcare systems, and economies around the globe. Scientists are expending tremendous effort to develop diagnostic technologies for detecting positive infections within the shortest possible time, and vaccines and drugs specifically for the prevention and treatment of COVID-19 disease. At the same time, emerging novel variants have raised serious concerns about vaccine efficacy. The SARS-CoV-2 nucleocapsid (N) protein plays an important role in the coronavirus life cycle, and participates in various vital activities after virus invasion. It has attracted a large amount of attention for vaccine and drug development. Here, we summarize the latest research of the N protein, including its role in the SARS-CoV-2 life cycle, structure and function, and post-translational modifications in addition to its involvement in liquid-liquid phase separation (LLPS) and use as a basis for the development of vaccines and diagnostic techniques.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Ying Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
11
|
Koifman MO, Malyasova AS, Romanenko YV, Yurina ES, Lebedeva NS, Gubarev YA, Koifman OI. Spectral and theoretical study of SARS-CoV-2 ORF10 protein interaction with endogenous and exogenous macroheterocyclic compounds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121403. [PMID: 35617836 PMCID: PMC9113648 DOI: 10.1016/j.saa.2022.121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 coronavirus has spread rapidly around the world in a matter of weeks. Most of the current recommendations developed for the use of antivirals in COVID-19 were developed during the initial waves of the pandemic, when resources were limited and administrative or pragmatic criteria took precedence. The choice of drugs for the treatment of COVID-19 was carried out from drugs approved for medical use. COVID-19 is a serious public health problem and the search for drugs that can relieve the disease in infected patients at various stages is still necessary. Therefore, the search for effective drugs with inhibitory and/or virucidal activity is a paramount task. Accessory proteins of the virus play a significant role in the pathogenesis of the disease, as they modulate the host's immune response. This paper studied the interaction of one of the SARS-CoV-2 accessory proteins ORF10 with macroheterocyclic compounds - protoporphyrin IX d.m.e., Fe(III)protoporphyrin d.m.e. and 5,10,15,20-tetrakis(3'-pyridyl)chlorin tetraiodide, which are potential inhibitors and virucidal agents. The SARS-CoV-2 ORF10 protein shows the highest affinity for Chlorin, which binds hydrophobically to the alpha structured region of the protein. Protoporphyrin is able to form several complexes with ORF10 close in energy, with alpha- and beta-molecular recognition features, while Fe(III)protoporphyrin forms complexes with the orientation of the porphyrin macrocycle parallel to the ORF10 alpha-helix. Taking into account the nature of the interaction with ORF10, it has been suggested that Chlorin may have virucidal activity upon photoexposure. The SARS-CoV-2 ORF10 protein was expressed in Escherichia coli cells, macroheterocyclic compounds were synthesized, and the structure was confirmed. The interaction between macrocycles with ORF10 was studied by spectral methods. The results of in silico studies were confirmed by experimental data.
Collapse
Affiliation(s)
- M O Koifman
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - A S Malyasova
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - Yu V Romanenko
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - E S Yurina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - N Sh Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Yu A Gubarev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia.
| | - O I Koifman
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia
| |
Collapse
|
12
|
Debnath P, Khan U, Khan MS. Characterization and Structural Prediction of Proteins in SARS-CoV-2 Bangladeshi Variant Through Bioinformatics. Microbiol Insights 2022; 15:11786361221115595. [PMID: 35966939 PMCID: PMC9373114 DOI: 10.1177/11786361221115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022] Open
Abstract
The renowned respiratory disease induced by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has become a global epidemic in just less than a year by the first half of 2020. The subsequent efficient human-to-human transmission of this virus eventually affected millions of people worldwide. The most devastating thing is that the infection rate is continuously uprising and resulting in significant mortality especially among the older age population and those with health co-morbidities. This enveloped, positive-sense RNA virus is chiefly responsible for the infection of the upper respiratory system. The virulence of the SARS-CoV-2 is mostly regulated by its proteins such as entry to the host cell through fusion mechanism, fusion of infected cells with neighboring uninfected cells to spread virus, inhibition of host gene expression, cellular differentiation, apoptosis, mitochondrial biogenesis, etc. But very little is known about the protein structures and functionalities. Therefore, the main purpose of this study is to learn more about these proteins through bioinformatics approaches. In this study, ORF10, ORF7b, ORF7a, ORF6, membrane glycoprotein, and envelope protein have been selected from a Bangladeshi Corona-virus strain G039392 and a number of bioinformatics tools (MEGA-X-V10.1.7, PONDR, ProtScale, ProtParam, SCRIBER, NetSurfP v2.0, IntFOLD, UCSF Chimera, and PyMol) and strategies were implemented for multiple sequence alignment and phylogeny analysis with 9 different variants, predicting hydropathicity, amino acid compositions, protein-binding propensity, protein disorders, and 2D and 3D protein modeling. Selected proteins were characterized as highly flexible, structurally and electrostatically extremely stable, ordered, biologically active, hydrophobic, and closely related to proteins of different variants. This detailed information regarding the characterization and structure of proteins of SARS-CoV-2 Bangladeshi variant was performed for the first time ever to unveil the deep mechanism behind the virulence features. And this robust appraisal also paves the future way for molecular docking, vaccine development targeting these characterized proteins.
Collapse
Affiliation(s)
- Pinky Debnath
- Chemical Biotechnology Department,
Technical University of Munich, Straubing, Germany
| | - Umama Khan
- Biotechnology and Genetic Engineering
Discipline, Khulna University, Bangladesh
| | | |
Collapse
|
13
|
Troyano-Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 in Spain during the First Two Years of the Pandemic: Circulating Variants, Amino Acid Conservation, and Genetic Variability in Structural, Non-Structural, and Accessory Proteins. Int J Mol Sci 2022; 23:6394. [PMID: 35742840 PMCID: PMC9223475 DOI: 10.3390/ijms23126394] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Monitoring SARS-CoV-2’s genetic diversity and emerging mutations in this ongoing pandemic is crucial to understanding its evolution and ensuring the performance of COVID-19 diagnostic tests, vaccines, and therapies. Spain has been one of the main epicenters of COVID-19, reaching the highest number of cases and deaths per 100,000 population in Europe at the beginning of the pandemic. This study aims to investigate the epidemiology of SARS-CoV-2 in Spain and its 18 Autonomous Communities across the six epidemic waves established from February 2020 to January 2022. We report on the circulating SARS-CoV-2 variants in each epidemic wave and Spanish region and analyze the mutation frequency, amino acid (aa) conservation, and most frequent aa changes across each structural/non-structural/accessory viral protein among the Spanish sequences deposited in the GISAID database during the study period. The overall SARS-CoV-2 mutation frequency was 1.24 × 10−5. The aa conservation was >99% in the three types of protein, being non-structural the most conserved. Accessory proteins had more variable positions, while structural proteins presented more aa changes per sequence. Six main lineages spread successfully in Spain from 2020 to 2022. The presented data provide an insight into the SARS-CoV-2 circulation and genetic variability in Spain during the first two years of the pandemic.
Collapse
Affiliation(s)
| | | | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology Department and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) in Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), 28034 Madrid, Spain; (P.T.-H.); (R.R.)
| |
Collapse
|
14
|
Effect of cannabidiol on apoptosis and cellular interferon and interferon-stimulated gene responses to the SARS-CoV-2 genes ORF8, ORF10 and M protein. Life Sci 2022; 301:120624. [PMID: 35568225 PMCID: PMC9091075 DOI: 10.1016/j.lfs.2022.120624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
AIMS To study effects on cellular innate immune responses to ORF8, ORF10, and Membrane protein (M protein) from the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, in combination with cannabidiol (CBD). MAIN METHODS HEK293 cells transfected with plasmids expressing control vector, ORF8, ORF10, or M protein were assayed for cell number and markers of apoptosis at 24 h, and interferon and interferon-stimulated gene expression at 14 h, with or without CBD. Cells transfected with polyinosinic:polycytidylic acid (Poly (I:C)) were also studied as a general model of RNA-type viral infection. KEY FINDINGS Reduced cell number and increased early and late apoptosis were found when expression of viral genes was combined with 1-2 μM CBD treatment, but not in control-transfected cells treated with CBD, or in cells expressing viral genes but treated only with vehicle. In cells expressing viral genes, CBD augmented expression of IFNγ, IFNλ1 and IFNλ2/3, as well as the 2'-5'-oligoadenylate synthetase (OAS) family members OAS1, OAS2, OAS3, and OASL. CBD also augmented expression of these genes in control cells not expressing viral genes, but without enhancing apoptosis. CBD similarly enhanced the cellular anti-viral response to Poly (I:C). SIGNIFICANCE Our results demonstrate a poor ability of HEK293 cells to respond to SARS-CoV-2 genes alone, but an augmented innate anti-viral response to these genes in the presence of CBD. Thus, CBD may prime components of the innate immune system, increasing readiness to respond to RNA-type viral infection without activating apoptosis, and could be studied for potential in prophylaxis.
Collapse
|
15
|
Rajpal VR, Sharma S, Sehgal D, Singh A, Kumar A, Vaishnavi S, Tiwari M, Bhalla H, Goel S, Raina SN. A comprehensive account of SARS-CoV-2 genome structure, incurred mutations, lineages and COVID-19 vaccination program. Future Virol 2022. [PMID: 35747328 PMCID: PMC9203033 DOI: 10.2217/fvl-2021-0277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/26/2022] [Indexed: 12/23/2022]
Abstract
This review collates information on the onset of COVID-19, SARS-CoV-2 genome architecture, emergence of novel viral lineages that drove multiple waves of infection around the world and standard and fast track development of vaccines. With the passage of time, the continuously evolving SARS-CoV-2 has acquired an expanded mutational landscape. The functional characterization of spike protein mutations, the primary target of diagnostics, therapeutics and vaccines has revealed increased transmission, pathogenesis and immune escape potential in the variant lineages of the virus. The incurred mutations have also resulted in substantial viral neutralization escape to vaccines, monoclonal, polyclonal and convalescent antibodies presently in use. The present situation suggests the need for development of precise next-generation vaccines and therapeutics by targeting the more conservative genomic viral regions for providing adequate protection.
Collapse
Affiliation(s)
| | - Shashi Sharma
- Virology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, 474002, India
| | - Deepmala Sehgal
- International Maize & Wheat Improvement Center (CIMMYT) Carretera México-Veracruz Km. 45, El Batán, Texcoco, 56237, México
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, India
| | - Avinash Kumar
- Department of Botany, Vinoba Bhave University, Hazaribag, Jharkhand, 825319, India
| | - Samantha Vaishnavi
- Department of Botany, Central University of Jammu, Rahya Suchani (Bagla), Distt. Samba, Jammu and Kashmir, 181143, India
| | - Mugdha Tiwari
- ICMR-National Institute of Occupational Health (ICMR-NIOH), Meghaninagar, Ahmedabad, 380016, India
| | - Hemal Bhalla
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, India
| |
Collapse
|
16
|
Zhang Z, Shen Q, Chang H. Vaccines for COVID-19: A Systematic Review of Immunogenicity, Current Development, and Future Prospects. Front Immunol 2022; 13:843928. [PMID: 35572592 PMCID: PMC9092649 DOI: 10.3389/fimmu.2022.843928] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
The persistent coronavirus disease 2019 (COVID-19), characterized by severe respiratory syndrome, is caused by coronavirus 2 (SARS-CoV-2), and it poses a major threat to public health all over the world. Currently, optimal COVID-19 management involves effective vaccination. Vaccination is known to greatly enhance immune response against viral infections and reduce public transmission of COVID-19. However, although current vaccines offer some benefits, viral variations and other factors demand the continuous development of vaccines to eliminate this virus from host. Hence, vaccine research and development is crucial and urgent to the elimination of this pandemic. Herein, we summarized the structural and replicatory features of SARS-CoV-2, and focused on vaccine-mediated disease prevention strategies like vaccine antigen selection, vaccine research, and vaccine application. We also evaluated the latest literature on COVID-19 and extensively reviewed action mechanisms, clinical trial (CT) progresses, advantages, as well as disadvantages of various vaccine candidates against SARS-CoV-2. Lastly, we discussed the current viral treatment, prevention trends, and future prospects.
Collapse
Affiliation(s)
- Zhan Zhang
- Ministry of Education (MOE) Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qi Shen
- Ministry of Education (MOE) Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Haocai Chang
- Ministry of Education (MOE) Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
17
|
Ramm F, Dondapati SK, Trinh HA, Wenzel D, Walter RM, Zemella A, Kubick S. The Potential of Eukaryotic Cell-Free Systems as a Rapid Response to Novel Zoonotic Pathogens: Analysis of SARS-CoV-2 Viral Proteins. Front Bioeng Biotechnol 2022; 10:896751. [PMID: 35519622 PMCID: PMC9061942 DOI: 10.3389/fbioe.2022.896751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The ongoing pandemic caused by the novel coronavirus (SARS-CoV-2) has led to more than 445 million infections and the underlying disease, COVID-19, resulted in more than 6 million deaths worldwide. The scientific world is already predicting future zoonotic diseases. Hence, rapid response systems are needed to tackle future epidemics and pandemics. Here, we present the use of eukaryotic cell-free systems for the rapid response to novel zoonotic diseases represented by SARS-CoV-2. Non-structural, structural and accessory proteins encoded by SARS-CoV-2 were synthesized by cell-free protein synthesis in a fast and efficient manner. The inhibitory effect of the non-structural protein 1 on protein synthesis could be shown in vitro. Structural proteins were quantitatively detected by commercial antibodies, therefore facilitating cell-free systems for the validation of available antibodies. The cytotoxic envelope protein was characterized in electrophysiological planar lipid bilayer measurements. Hence, our study demonstrates the potential of eukaryotic cell-free systems as a rapid response mechanism for the synthesis, functional characterization and antibody validation against a viral pathogen.
Collapse
Affiliation(s)
- Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Srujan K. Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Hoai Anh Trinh
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Department of Applied Biochemistry, Institute of Biotechnology, Technical University Berlin, Berlin, Germany
| | - Dana Wenzel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Ruben M. Walter
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Department of Applied Biochemistry, Institute of Biotechnology, Technical University Berlin, Berlin, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus–Senftenberg, The Brandenburg Medical School Theodor Fontane, The University of Potsdam, Potsdam, Germany
- *Correspondence: Stefan Kubick,
| |
Collapse
|
18
|
Hassan SS, Kodakandla V, Redwan EM, Lundstrom K, Pal Choudhury P, Abd El-Aziz TM, Takayama K, Kandimalla R, Lal A, Serrano-Aroca Á, Azad GK, Aljabali AA, Palù G, Chauhan G, Adadi P, Tambuwala M, Brufsky AM, Baetas-da-Cruz W, Barh D, Azevedo V, Bazan NG, Andrade BS, Santana Silva RJ, Uversky VN. An issue of concern: unique truncated ORF8 protein variants of SARS-CoV-2. PeerJ 2022; 10:e13136. [PMID: 35341060 PMCID: PMC8944340 DOI: 10.7717/peerj.13136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/27/2022] [Indexed: 01/12/2023] Open
Abstract
Open reading frame 8 (ORF8) shows one of the highest levels of variability among accessory proteins in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19). It was previously reported that the ORF8 protein inhibits the presentation of viral antigens by the major histocompatibility complex class I (MHC-I), which interacts with host factors involved in pulmonary inflammation. The ORF8 protein assists SARS-CoV-2 in evading immunity and plays a role in SARS-CoV-2 replication. Among many contributing mutations, Q27STOP, a mutation in the ORF8 protein, defines the B.1.1.7 lineage of SARS-CoV-2, engendering the second wave of COVID-19. In the present study, 47 unique truncated ORF8 proteins (T-ORF8) with the Q27STOP mutations were identified among 49,055 available B.1.1.7 SARS-CoV-2 sequences. The results show that only one of the 47 T-ORF8 variants spread to over 57 geo-locations in North America, and other continents, which include Africa, Asia, Europe and South America. Based on various quantitative features, such as amino acid homology, polar/non-polar sequence homology, Shannon entropy conservation, and other physicochemical properties of all specific 47 T-ORF8 protein variants, nine possible T-ORF8 unique variants were defined. The question as to whether T-ORF8 variants function similarly to the wild type ORF8 is yet to be investigated. A positive response to the question could exacerbate future COVID-19 waves, necessitating severe containment measures.
Collapse
Affiliation(s)
- Sk. Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, India
| | - Vaishnavi Kodakandla
- Department of Life sciences, Sophia College For Women, University of Mumbai, Mumbai, India
| | - Elrashdy M. Redwan
- Faculty of Science, Department of Biological Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Amos Lal
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic Rochester, Rochester, NY, United States
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigacion Traslacional San Alberto Magno, Universidad Catolica de Valencia San Vicente Martir, Valencia, Spain
| | | | - Alaa A.A. Aljabali
- Department of Pharmaceutics and Pharmaceutical, Yarmouk University, Irbid, Jordan
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Parise Adadi
- Department of Food Science, University of Otago, University of Otago, Dunedin, New Zealand
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, UK
| | - Adam M. Brufsky
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Wagner Baetas-da-Cruz
- Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, College of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and 46 Applied Biotechnology (IIOAB), Nonakuri, India
| | - Vasco Azevedo
- Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nikolas G. Bazan
- Neuroscience Center of Excellence, School of Medicine, LSU Health New Orleans, New Orleans, LA, United States
| | - Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, Brazil
| | - Raner José Santana Silva
- Departamento de Ciencias Biologicas (DCB), Programa de Pos-Graduacao em Genetica e Biologia Molecular (PPGGBM), Universidade Estadual de Santa Cruz (UESC), Ilheus, Brazil
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
19
|
Maiti AK. Identification of G-quadruplex DNA sequences in SARS-CoV2. Immunogenetics 2022; 74:455-463. [PMID: 35303126 PMCID: PMC8931451 DOI: 10.1007/s00251-022-01257-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
G-quadruplex structure or Putative Quadruplex Sequences (PQSs) are abundant in human, microbial, DNA, or RNA viral genomes. These sequences in RNA viral genome play critical roles in integration into human genome as LTR (Long Terminal Repeat), genome replication, chromatin rearrangements, gene regulation, antigen variation (Av), and virulence. Here, we investigated whether the genome of SARS-CoV2, an RNA virus, contained such potential G-quadruplex structures. Using bioinformatic tools, we searched for such sequences and found thirty-seven (forward strand (twenty-five) + reverse strand (Twelve)) QGRSs (Quadruplex forming G-Rich Sequences)/PQSs in SARS-CoV2 genome. These sequences are dispersed mainly in the upstream of SARS-CoV2 genes. We discuss whether existing PQS/QGRS ligands could inhibit the SARS-CoV2 replication and gene transcription as has been observed in other RNA viruses. Further experimental validation would determine the role of these G-quadruplex sequences in SARS-CoV2 genome function to survive in the host cells and identify therapeutic agents to destabilize these PQSs/QGRSs.
Collapse
Affiliation(s)
- Amit K Maiti
- Mydnavar, Department of Genetics and Genomics, 2645 Somerset Boulevard, Troy, MI, 48084, USA.
| |
Collapse
|
20
|
Hassan SS, Choudhury PP, Dayhoff GW, Aljabali AAA, Uhal BD, Lundstrom K, Rezaei N, Pizzol D, Adadi P, Lal A, Soares A, Mohamed Abd El-Aziz T, Brufsky AM, Azad GK, Sherchan SP, Baetas-da-Cruz W, Takayama K, Serrano-Aroca Ã, Chauhan G, Palu G, Mishra YK, Barh D, Santana Silva RJ, Andrade BS, Azevedo V, Góes-Neto A, Bazan NG, Redwan EM, Tambuwala M, Uversky VN. The importance of accessory protein variants in the pathogenicity of SARS-CoV-2. Arch Biochem Biophys 2022; 717:109124. [PMID: 35085577 PMCID: PMC8785432 DOI: 10.1016/j.abb.2022.109124] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/16/2023]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS- CoV-2) with an estimated fatality rate of less than 1%. The SARS-CoV-2 accessory proteins ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10 possess putative functions to manipulate host immune mechanisms. These involve interferons, which appear as a consensus function, immune signaling receptor NLRP3 (NLR family pyrin domain-containing 3) inflammasome, and inflammatory cytokines such as interleukin 1β (IL-1β) and are critical in COVID-19 pathology. Outspread variations of each of the six accessory proteins were observed across six continents of all complete SARS-CoV-2 proteomes based on the data reported before November 2020. A decreasing order of percentage of unique variations in the accessory proteins was determined as ORF3a > ORF8 > ORF7a > ORF6 > ORF10 > ORF7b across all continents. The highest and lowest unique variations of ORF3a were observed in South America and Oceania, respectively. These findings suggest that the wide variations in accessory proteins seem to affect the pathogenicity of SARS-CoV-2.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, 721140, India.
| | - Pabitra Pal Choudhury
- Applied Statistics Unit, Indian Statistical Institute, Kolkata, 700108, West Bengal, India
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University-Faculty of Pharmacy, Irbid, 566, Jordan
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| | - Damiano Pizzol
- Italian Agency for Development Cooperation - Khartoum, Sudan Street 33, Al Amarat, Sudan
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
| | - Amos Lal
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Antonio Soares
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229-3900, USA
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229-3900, USA; Zoology Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| | - Adam M Brufsky
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, 70112, USA
| | - Wagner Baetas-da-Cruz
- Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Kazuo Takayama
- Center for iPS Cell Research and Application, Kyoto University, Japan
| | - Ãngel Serrano-Aroca
- Biomaterial and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente M'artir, c/Guillem de Castro 94, 46001, Valencia, Spain
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, Nuevo León, Mexico
| | - Giorgio Palu
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121, Padova, Italy
| | - Yogendra Kumar Mishra
- University of Southern Denmark, Mads Clausen Institute, NanoSYD, Alsion 2, 6400, Sønderborg, Denmark
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB, India; Departamento de Genética, Ecologia e Evolucao, Instituto de Cîencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raner Jośe Santana Silva
- Departamento de Ciencias Biologicas (DCB), Programa de Pos-Graduacao em Genetica e Biologia Molecular (PPGGBM), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilheus-Itabuna, km 16, 45662-900, Ilheus, BA, Brazil
| | - Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, 45206-190, Brazil
| | - Vasco Azevedo
- Departamento de Genética, Ecologia e Evolucao, Instituto de Cîencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, LSU Health New Orleans, New Orleans, LA, 70112, USA
| | - Elrashdy M Redwan
- King Abdulaz University, Faculty of Science, Department of Biological Science, Saudi Arabia
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Moscow region, Russia.
| |
Collapse
|
21
|
Gusev E, Sarapultsev A, Solomatina L, Chereshnev V. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. Int J Mol Sci 2022; 23:1716. [PMID: 35163638 PMCID: PMC8835786 DOI: 10.3390/ijms23031716] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The review aims to consolidate research findings on the molecular mechanisms and virulence and pathogenicity characteristics of coronavirus disease (COVID-19) causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and their relevance to four typical stages in the development of acute viral infection. These four stages are invasion; primary blockade of antiviral innate immunity; engagement of the virus's protection mechanisms against the factors of adaptive immunity; and acute, long-term complications of COVID-19. The invasion stage entails the recognition of the spike protein (S) of SARS-CoV-2 target cell receptors, namely, the main receptor (angiotensin-converting enzyme 2, ACE2), its coreceptors, and potential alternative receptors. The presence of a diverse repertoire of receptors allows SARS-CoV-2 to infect various types of cells, including those not expressing ACE2. During the second stage, the majority of the polyfunctional structural, non-structural, and extra proteins SARS-CoV-2 synthesizes in infected cells are involved in the primary blockage of antiviral innate immunity. A high degree of redundancy and systemic action characterizing these pathogenic factors allows SARS-CoV-2 to overcome antiviral mechanisms at the initial stages of invasion. The third stage includes passive and active protection of the virus from factors of adaptive immunity, overcoming of the barrier function at the focus of inflammation, and generalization of SARS-CoV-2 in the body. The fourth stage is associated with the deployment of variants of acute and long-term complications of COVID-19. SARS-CoV-2's ability to induce autoimmune and autoinflammatory pathways of tissue invasion and development of both immunosuppressive and hyperergic mechanisms of systemic inflammation is critical at this stage of infection.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Liliya Solomatina
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Valeriy Chereshnev
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| |
Collapse
|
22
|
Hassan SS, Kodakandla V, Redwan EM, Lundstrom K, Pal Choudhury P, Abd El-Aziz TM, Takayama K, Kandimalla R, Lal A, Serrano-Aroca Á, Azad GK, Aljabali AAA, Palù G, Chauhan G, Adadi P, Tambuwala M, Brufsky AM, Baetas-da-Cruz W, Barh D, Azevedo V, Bazan NG, Andrade BS, Santana Silva RJ, Uversky VN. An issue of concern: unique truncated ORF8 protein variants of SARS-CoV-2. PeerJ 2022. [PMID: 35341060 DOI: 10.1101/2021.05.25.445557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Open reading frame 8 (ORF8) shows one of the highest levels of variability among accessory proteins in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19). It was previously reported that the ORF8 protein inhibits the presentation of viral antigens by the major histocompatibility complex class I (MHC-I), which interacts with host factors involved in pulmonary inflammation. The ORF8 protein assists SARS-CoV-2 in evading immunity and plays a role in SARS-CoV-2 replication. Among many contributing mutations, Q27STOP, a mutation in the ORF8 protein, defines the B.1.1.7 lineage of SARS-CoV-2, engendering the second wave of COVID-19. In the present study, 47 unique truncated ORF8 proteins (T-ORF8) with the Q27STOP mutations were identified among 49,055 available B.1.1.7 SARS-CoV-2 sequences. The results show that only one of the 47 T-ORF8 variants spread to over 57 geo-locations in North America, and other continents, which include Africa, Asia, Europe and South America. Based on various quantitative features, such as amino acid homology, polar/non-polar sequence homology, Shannon entropy conservation, and other physicochemical properties of all specific 47 T-ORF8 protein variants, nine possible T-ORF8 unique variants were defined. The question as to whether T-ORF8 variants function similarly to the wild type ORF8 is yet to be investigated. A positive response to the question could exacerbate future COVID-19 waves, necessitating severe containment measures.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, India
| | - Vaishnavi Kodakandla
- Department of Life sciences, Sophia College For Women, University of Mumbai, Mumbai, India
| | - Elrashdy M Redwan
- Faculty of Science, Department of Biological Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Amos Lal
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic Rochester, Rochester, NY, United States
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigacion Traslacional San Alberto Magno, Universidad Catolica de Valencia San Vicente Martir, Valencia, Spain
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical, Yarmouk University, Irbid, Jordan
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Parise Adadi
- Department of Food Science, University of Otago, University of Otago, Dunedin, New Zealand
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, UK
| | - Adam M Brufsky
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Wagner Baetas-da-Cruz
- Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, College of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and 46 Applied Biotechnology (IIOAB), Nonakuri, India
| | - Vasco Azevedo
- Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nikolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, LSU Health New Orleans, New Orleans, LA, United States
| | - Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, Brazil
| | - Raner José Santana Silva
- Departamento de Ciencias Biologicas (DCB), Programa de Pos-Graduacao em Genetica e Biologia Molecular (PPGGBM), Universidade Estadual de Santa Cruz (UESC), Ilheus, Brazil
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
23
|
Hassan SS, Lundstrom K, Serrano-Aroca Á, Adadi P, Aljabali AAA, Redwan EM, Lal A, Kandimalla R, El-Aziz TMA, Pal Choudhury P, Azad GK, Sherchan SP, Chauhan G, Tambuwala M, Takayama K, Barh D, Palu G, Basu P, Uversky VN. Emergence of unique SARS-CoV-2 ORF10 variants and their impact on protein structure and function. Int J Biol Macromol 2022; 194:128-143. [PMID: 34863825 PMCID: PMC8635690 DOI: 10.1016/j.ijbiomac.2021.11.151] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
The devastating impact of the ongoing coronavirus disease 2019 (COVID-19) on public health, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has made targeting the COVID-19 pandemic a top priority in medical research and pharmaceutical development. Surveillance of SARS-CoV-2 mutations is essential for the comprehension of SARS-CoV-2 variant diversity and their impact on virulence and pathogenicity. The SARS-CoV-2 open reading frame 10 (ORF10) protein interacts with multiple human proteins CUL2, ELOB, ELOC, MAP7D1, PPT1, RBX1, THTPA, TIMM8B, and ZYG11B expressed in lung tissue. Mutations and co-occurring mutations in the emerging SARS-CoV-2 ORF10 variants are expected to impact the severity of the virus and its associated consequences. In this article, we highlight 128 single mutations and 35 co-occurring mutations in the unique SARS-CoV-2 ORF10 variants. The possible predicted effects of these mutations and co-occurring mutations on the secondary structure of ORF10 variants and host protein interactomes are presented. The findings highlight the possible effects of mutations and co-occurring mutations on the emerging 140 ORF10 unique variants from secondary structure and intrinsic protein disorder perspectives.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India.
| | | | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigacion Traslacional San Alberto Magno, Universidad Catolica de Valencia San Vicente Martir, c/Guillem de Castro, 94, 46001 Valencia, Valencia, Spain.
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid 566, Jordan.
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab 21934, Alexandria, Egypt.
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Department of Biocemistry, Kakatiya Medical College, Warangal, Telangana, India
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229-3900, USA; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt.
| | - Pabitra Pal Choudhury
- Indian Statistical Institute, Applied Statistics Unit, 203 B T Road, Kolkata 700108, India.
| | | | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, 70112, USA.
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849 Monterrey, Nuevo Leon, Mexico.
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 6068507, Japan.
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India; Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Giorgio Palu
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy.
| | - Pallab Basu
- School of Physics, University of the Witwatersrand, Johannesburg, Braamfontein 2000, 721140, South Africa.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
24
|
Hassan SS, Lundstrom K, Barh D, Silva RJS, Andrade BS, Azevedo V, Choudhury PP, Palu G, Uhal BD, Kandimalla R, Seyran M, Lal A, Sherchan SP, Azad GK, Aljabali AAA, Brufsky AM, Serrano-Aroca Á, Adadi P, Abd El-Aziz TM, Redwan EM, Takayama K, Rezaei N, Tambuwala M, Uversky VN. Implications derived from S-protein variants of SARS-CoV-2 from six continents. Int J Biol Macromol 2021; 191:934-955. [PMID: 34571123 PMCID: PMC8462006 DOI: 10.1016/j.ijbiomac.2021.09.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 01/19/2023]
Abstract
The spike (S) protein is a critical determinant of the infectivity and antigenicity of SARS-CoV-2. Several mutations in the S protein of SARS-CoV-2 have already been detected, and their effect in immune system evasion and enhanced transmission as a cause of increased morbidity and mortality are being investigated. From pathogenic and epidemiological perspectives, S proteins are of prime interest to researchers. This study focused on the unique variants of S proteins from six continents: Asia, Africa, Europe, Oceania, South America, and North America. In comparison to the other five continents, Africa had the highest percentage of unique S proteins (29.1%). The phylogenetic relationship implies that unique S proteins from North America are significantly different from those of the other five continents. They are most likely to spread to the other geographic locations through international travel or naturally by emerging mutations. It is suggested that restriction of international travel should be considered, and massive vaccination as an utmost measure to combat the spread of the COVID-19 pandemic. It is also further suggested that the efficacy of existing vaccines and future vaccine development must be reviewed with careful scrutiny, and if needed, further re-engineered based on requirements dictated by new emerging S protein variants.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India.
| | | | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB, India; Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Raner Jośe Santana Silva
- Department of Biological Sciences (DCB), Graduate Program in Genetics and Molecular Biology (PPGGBM), State University of Santa Cruz (UESC), Rodovia Ilheus-Itabuna, km 16, 45662-900 Ilheus, BA, Brazil
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest Bahia (UESB), Jequié 45206-190, Brazil.
| | - Vasco Azevedo
- Laborat'orio de Geńetica Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciˆencias Biol'ogicas, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270-901, Brazil.
| | - Pabitra Pal Choudhury
- Applied Statistics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700108, India
| | - Giorgio Palu
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy.
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
| | - Murat Seyran
- Doctoral Studies in Natural and Technical Sciences (SPL 44), University of Vienna, W¨ahringer Straße, A-1090 Vienna, Austria
| | - Amos Lal
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA.
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid 566, Jordan.
| | - Adam M Brufsky
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigaci'on Traslacional San Alberto Magno, Universidad Cat́olica de Valencia San Vicente Ḿartir, c/Guillem de Castro, 94, 46001 Valencia, Spain.
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt; Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | - Elrashdy M Redwan
- Faculty of Science, Department of Biological Science, King Abdulazizi University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21934, Egypt.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Russia.
| |
Collapse
|
25
|
Arjunan A, Robinson J, Baroutaji A, Tuñón-Molina A, Martí M, Serrano-Aroca Á. 3D Printed Cobalt-Chromium-Molybdenum Porous Superalloy with Superior Antiviral Activity. Int J Mol Sci 2021; 22:12721. [PMID: 34884526 PMCID: PMC8657688 DOI: 10.3390/ijms222312721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 min). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS-CoV-2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver, as the material's viral inactivation time was from 5 h to 30 min. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-CoV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.
Collapse
Affiliation(s)
- Arun Arjunan
- Centre for Engineering Innovation and Research, Additive Manufacturing of Functional Materials (AMFM) Research Group, Faculty of Science and Engineering, Telford Innovation Campus, University of Wolverhampton, Telford TF2 9NT, UK; (J.R.); (A.B.)
| | - John Robinson
- Centre for Engineering Innovation and Research, Additive Manufacturing of Functional Materials (AMFM) Research Group, Faculty of Science and Engineering, Telford Innovation Campus, University of Wolverhampton, Telford TF2 9NT, UK; (J.R.); (A.B.)
- Additive Analytics Ltd., Stirchley Road, Telford TF3 1EB, UK
| | - Ahmad Baroutaji
- Centre for Engineering Innovation and Research, Additive Manufacturing of Functional Materials (AMFM) Research Group, Faculty of Science and Engineering, Telford Innovation Campus, University of Wolverhampton, Telford TF2 9NT, UK; (J.R.); (A.B.)
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (M.M.)
| | - Miguel Martí
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (M.M.)
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (M.M.)
| |
Collapse
|
26
|
Takayama K, Tuñón-Molina A, Cano-Vicent A, Muramoto Y, Noda T, Aparicio-Collado JL, Sabater i Serra R, Martí M, Serrano-Aroca Á. Non-Woven Infection Prevention Fabrics Coated with Biobased Cranberry Extracts Inactivate Enveloped Viruses Such as SARS-CoV-2 and Multidrug-Resistant Bacteria. Int J Mol Sci 2021; 22:12719. [PMID: 34884521 PMCID: PMC8657951 DOI: 10.3390/ijms222312719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease (COVID-19) pandemic is demanding the rapid action of the authorities and scientific community in order to find new antimicrobial solutions that could inactivate the pathogen SARS-CoV-2 that causes this disease. Gram-positive bacteria contribute to severe pneumonia associated with COVID-19, and their resistance to antibiotics is exponentially increasing. In this regard, non-woven fabrics are currently used for the fabrication of infection prevention clothing such as face masks, caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons and shoe covers as protective tools against viral and bacterial infections. However, these non-woven fabrics are made of materials that do not exhibit intrinsic antimicrobial activity. Thus, we have here developed non-woven fabrics with antimicrobial coatings of cranberry extracts capable of inactivating enveloped viruses such as SARS-CoV-2 and the bacteriophage phi 6 (about 99% of viral inactivation in 1 min of viral contact), and two multidrug-resistant bacteria: the methicillin-resistant Staphylococcus aureus and the methicillin-resistant Staphylococcus epidermidis. The morphology, thermal and mechanical properties of the produced filters were characterized by optical and electron microscopy, differential scanning calorimetry, thermogravimetry and dynamic mechanical thermal analysis. The non-toxicity of these advanced technologies was ensured using a Caenorhabditis elegans in vivo model. These results open up a new prevention path using natural and biodegradable compounds for the fabrication of infection prevention clothing in the current COVID-19 pandemic and microbial resistant era.
Collapse
Affiliation(s)
- Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan;
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (A.C.-V.); (M.M.)
| | - Alba Cano-Vicent
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (A.C.-V.); (M.M.)
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; (Y.M.); (T.N.)
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; (Y.M.); (T.N.)
| | - José Luis Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (R.S.i.S.)
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (R.S.i.S.)
- CIBER-BBN, Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 46022 València, Spain
| | - Miguel Martí
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (A.C.-V.); (M.M.)
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (A.C.-V.); (M.M.)
| |
Collapse
|
27
|
Thakur Y, Pande R. Exploration of In-silico screening of therapeutic agents against SARS-CoV-2. Chem Phys 2021; 551:111354. [PMID: 34511699 PMCID: PMC8416701 DOI: 10.1016/j.chemphys.2021.111354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 12/28/2022]
Abstract
In the present investigation, molecular docking studies have been performed using AutoDock Vina to investigate the role of ligand-binding affinity at the hydrophobic pocket of COVID-19. The knowledge of the binding of protein receptors with ligand molecules is essential in drug discovery processes. Hydroxamic acids with reported biological activity, have been investigated for docking to an important target, SARS-CoV-2, in order to predict their therapeutic efficacy. The spike protein of the coronavirus is responsible for the attachment to host cells and a positive-sense single-strand RNA, (+)ssRNA, is a genetic material that can be translated into protein in the host cell. We modeled the structure of SARS-CoV-2 with the ligands, hydroxamic acids. They show binding capability with both, Spike protein and (+)ssRNA. The twain exhibit negative binding energies which signify that reactions are spontaneous, strong, and fast. The present research proposed hydroxamic acids as molecules which can be used for the development of anti-virals therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Yamini Thakur
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Rama Pande
- School of Studies in Chemistry, Pt Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| |
Collapse
|
28
|
Tan HW, Xu YM, Lau ATY. Human bronchial-pulmonary proteomics in coronavirus disease 2019 (COVID-19) pandemic: applications and implications. Expert Rev Proteomics 2021; 18:925-938. [PMID: 34812694 DOI: 10.1080/14789450.2021.2010549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The outbreak of the newly discovered human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has disrupted the normal life of almost every civilization worldwide. Studies have shown that the coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 can affect multiple human organs and physiological systems, but the respiratory system remains the primary location for viral infection. AREAS COVERED We summarize how omics technologies are used in SARS-CoV-2 research and specifically review the current knowledge of COVID-19 from the aspect of human bronchial-pulmonary proteomics. Also, knowledge gaps in COVID-19 that can be fulfilled by proteomics are discussed. EXPERT OPINION Overall, human bronchial-pulmonary proteomics plays an important role in revealing the dynamics, functions, tropism, and pathogenicity of SARS-CoV-2, which is crucial for COVID-19 biomarker and therapeutic target discoveries. To more fully understand the impact of COVID-19, research from various angles using multi-omics approaches should also be conducted on the lungs as well as other organs.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
29
|
Cano-Vicent A, Tuñón-Molina A, Martí M, Muramoto Y, Noda T, Takayama K, Serrano-Aroca Á. Antiviral Face Mask Functionalized with Solidified Hand Soap: Low-Cost Infection Prevention Clothing against Enveloped Viruses Such as SARS-CoV-2. ACS OMEGA 2021; 6:23495-23503. [PMID: 34514272 PMCID: PMC8424690 DOI: 10.1021/acsomega.1c03511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/24/2021] [Indexed: 05/02/2023]
Abstract
Infection prevention clothing is becoming an essential protective tool in the current pandemic, especially because now we know that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can easily infect humans in poorly ventilated indoor spaces. However, commercial infection prevention clothing is made of fabrics that are not capable of inactivating the virus. Therefore, viral infections of symptomatic and asymptomatic individuals wearing protective clothing such as masks can occur through aerosol transmission or by contact with the contaminated surfaces of the masks, which are suspected as an increasing source of highly infectious biological waste. Herein, we report an easy fabrication method of a novel antiviral non-woven fabric containing polymer filaments that were coated with solidified hand soap. This extra protective fabric is capable of inactivating enveloped viruses such as SARS-CoV-2 and phage Φ6 within 1 min of contact. In this study, this antiviral fabric was used to fabricate an antiviral face mask and did not show any cytotoxic effect in human keratinocyte HaCaT cells. Furthermore, this antiviral non-woven fabric could be used for the fabrication of other infection prevention clothing such as caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons, and shoe covers. Therefore, this low-cost technology could provide a wide range of infection-protective tools to combat COVID-19 and future pandemics in developed and underdeveloped countries.
Collapse
Affiliation(s)
- Alba Cano-Vicent
- Doctoral
School, Biomaterials and Bioengineering Laboratory, Centro de Investigación
Traslacional San Alberto Magno, Universidad
Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Alberto Tuñón-Molina
- Doctoral
School, Biomaterials and Bioengineering Laboratory, Centro de Investigación
Traslacional San Alberto Magno, Universidad
Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Miguel Martí
- Biomaterials
and Bioengineering Laboratory, Centro de Investigación Traslacional
San Alberto Magno, Universidad Católica
de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Yukiko Muramoto
- Laboratory
of Ultrastructural Virology, Institute for Frontier Life and Medical
Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takeshi Noda
- Laboratory
of Ultrastructural Virology, Institute for Frontier Life and Medical
Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Takayama
- Center
for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Ángel Serrano-Aroca
- Biomaterials
and Bioengineering Laboratory, Centro de Investigación Traslacional
San Alberto Magno, Universidad Católica
de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| |
Collapse
|
30
|
Tsai MS, Yang YH, Lin YS, Chang GH, Hsu CM, Yeh RA, Shu LH, Cheng YC, Liu HT, Wu YH, Wu YH, Shen RC, Wu CY. GB-2 blocking the interaction between ACE2 and wild type and mutation of spike protein of SARS-CoV-2. Biomed Pharmacother 2021; 142:112011. [PMID: 34388530 PMCID: PMC8339502 DOI: 10.1016/j.biopha.2021.112011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 01/06/2023] Open
Abstract
Since the start of the outbreak of coronavirus disease 2019 in Wuhan, China, there have been more than 150 million confirmed cases of the disease reported to the World Health Organization. The beta variant (B.1.351 lineage), the mutation lineages of SARS-CoV-2, had increase transmissibility and resistance to neutralizing antibodies due to multiple mutations in the spike protein. N501Y, K417N and E484K, in the receptor binding domain (RBD) region may induce a conformational change of the spike protein and subsequently increase the infectivity of the beta variant. The L452R mutation in the epsilon variant (the B.1.427/B.1.429 variants) also reduced neutralizing activity of monoclonal antibodies. In this study, we discovered that 300 μg/mL GB-2, from Tian Shang Sheng Mu of Chiayi Puzi Peitian Temple, can inhibit the binding between ACE2 and wild-type (Wuhan type) RBD spike protein. GB-2 can inhibit the binding between ACE2 and RBD with K417N-E484K-N501Y mutation in a dose-dependent manner. GB-2 inhibited the binding between ACE2 and the RBD with a single mutation (K417N or N501Y or L452R) except the E484K mutation. In the compositions of GB-2, glycyrrhiza uralensis Fisch. ex DC., theaflavin and (+)-catechin cannot inhibit the binding between ACE2 and wild-type RBD spike protein. Theaflavin 3-gallate can inhibit the binding between ACE2 and wild-type RBD spike protein. Our results suggest that GB-2 could be a potential candidate for the prophylaxis of some SARS-CoV-2 variants infection in the further clinical study because of its inhibition of binding between ACE2 and RBD with K417N-E484K-N501Y mutations or L452R mutation.
Collapse
Affiliation(s)
- Ming-Shao Tsai
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; School of Chinese medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Geng-He Chang
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Reming-Albert Yeh
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Ching Cheng
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hung-Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Huei Wu
- Department of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Heng Wu
- Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Rou-Chen Shen
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; School of Chinese medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
31
|
Gorkhali R, Koirala P, Rijal S, Mainali A, Baral A, Bhattarai HK. Structure and Function of Major SARS-CoV-2 and SARS-CoV Proteins. Bioinform Biol Insights 2021; 15:11779322211025876. [PMID: 34220199 PMCID: PMC8221690 DOI: 10.1177/11779322211025876] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/25/2021] [Indexed: 01/20/2023] Open
Abstract
SARS-CoV-2 virus, the causative agent of COVID-19 pandemic, has a genomic organization consisting of 16 nonstructural proteins (nsps), 4 structural proteins, and 9 accessory proteins. Relative of SARS-CoV-2, SARS-CoV, has genomic organization, which is very similar. In this article, the function and structure of the proteins of SARS-CoV-2 and SARS-CoV are described in great detail. The nsps are expressed as a single or two polyproteins, which are then cleaved into individual proteins using two proteases of the virus, a chymotrypsin-like protease and a papain-like protease. The released proteins serve as centers of virus replication and transcription. Some of these nsps modulate the host’s translation and immune systems, while others help the virus evade the host immune system. Some of the nsps help form replication-transcription complex at double-membrane vesicles. Others, including one RNA-dependent RNA polymerase and one exonuclease, help in the polymerization of newly synthesized RNA of the virus and help minimize the mutation rate by proofreading. After synthesis of the viral RNA, it gets capped. The capping consists of adding GMP and a methylation mark, called cap 0 and additionally adding a methyl group to the terminal ribose called cap1. Capping is accomplished with the help of a helicase, which also helps remove a phosphate, two methyltransferases, and a scaffolding factor. Among the structural proteins, S protein forms the receptor of the virus, which latches on the angiotensin-converting enzyme 2 receptor of the host and N protein binds and protects the genomic RNA of the virus. The accessory proteins found in these viruses are small proteins with immune modulatory roles. Besides functions of these proteins, solved X-ray and cryogenic electron microscopy structures related to the function of the proteins along with comparisons to other coronavirus homologs have been described in the article. Finally, the rate of mutation of SARS-CoV-2 residues of the proteome during the 2020 pandemic has been described. Some proteins are mutated more often than other proteins, but the significance of these mutation rates is not fully understood.
Collapse
Affiliation(s)
- Ritesh Gorkhali
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | | - Sadikshya Rijal
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | - Ashmita Mainali
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | - Adesh Baral
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | |
Collapse
|
32
|
Timmers LFSM, Peixoto JV, Ducati RG, Bachega JFR, de Mattos Pereira L, Caceres RA, Majolo F, da Silva GL, Anton DB, Dellagostin OA, Henriques JAP, Xavier LL, Goettert MI, Laufer S. SARS-CoV-2 mutations in Brazil: from genomics to putative clinical conditions. Sci Rep 2021; 11:11998. [PMID: 34099808 PMCID: PMC8184806 DOI: 10.1038/s41598-021-91585-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Due to the high rate of transmissibility, Brazil became the new COVID-19 outbreak epicenter and, since then, is being monitored to understand how SARS-CoV-2 mutates and spreads. We combined genomic and structural analysis to evaluate genomes isolated from different regions of Brazil and show that the most prevalent mutations were located in the S, N, ORF3a and ORF6 genes, which are involved in different stages of viral life cycle and its interaction with the host cells. Structural analysis brought to light the positions of these mutations on protein structures, contributing towards studies of selective structure-based drug discovery and vaccine development.
Collapse
Affiliation(s)
- Luis Fernando Saraiva Macedo Timmers
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil.
- Graduate Program in Medical Sciences, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil.
| | - Julia Vasconcellos Peixoto
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande Do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Rodrigo Gay Ducati
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - José Fernando Ruggiero Bachega
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| | - Leandro de Mattos Pereira
- Laboratory of Molecular Microbial Ecology, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Rafael Andrade Caceres
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| | - Fernanda Majolo
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Débora Bublitz Anton
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Odir Antônio Dellagostin
- Graduate Program in Biotechnology, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - João Antônio Pegas Henriques
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
- Graduate Program in Medical Sciences, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Léder Leal Xavier
- Laboratory of Cell and Tissue Biology, Pontifical Catholic University of Rio Grande Do Sul - PUCRS, Porto Alegre, RS, Brazil
| | - Márcia Inês Goettert
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
- Graduate Program in Medical Sciences, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
33
|
Hisham Y, Ashhab Y, Hwang SH, Kim DE. Identification of Highly Conserved SARS-CoV-2 Antigenic Epitopes with Wide Coverage Using Reverse Vaccinology Approach. Viruses 2021; 13:787. [PMID: 33925069 PMCID: PMC8145845 DOI: 10.3390/v13050787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
One of the most effective strategies for eliminating new and emerging infectious diseases is effective immunization. The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) warrants the need for a maximum coverage vaccine. Moreover, mutations that arise within the virus have a significant impact on the vaccination strategy. Here, we built a comprehensive in silico workflow pipeline to identify B-cell- and T-cell-stimulating antigens of SARS-CoV-2 viral proteins. Our in silico reverse vaccinology (RV) approach consisted of two parts: (1) analysis of the selected viral proteins based on annotated cellular location, antigenicity, allele coverage, epitope density, and mutation density and (2) analysis of the various aspects of the epitopes, including antigenicity, allele coverage, IFN-γ induction, toxicity, host homology, and site mutational density. After performing a mutation analysis based on the contemporary mutational amino acid substitutions observed in the viral variants, 13 potential epitopes were selected as subunit vaccine candidates. Despite mutational amino acid substitutions, most epitope sequences were predicted to retain immunogenicity without toxicity and host homology. Our RV approach using an in silico pipeline may potentially reduce the time required for effective vaccine development and can be applicable for vaccine development for other pathogenic diseases as well.
Collapse
Affiliation(s)
- Yasmin Hisham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Yaqoub Ashhab
- Palestine-Korea Biotechnology Center, Palestine Polytechnic University, Hebron 90100, Palestine
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|