1
|
Yang X, Li T, Chen X, Zhang H, Liu C, Tao C, Nie H. Tetraphenylethylene-indole as a novel fluorescent probe for selective and sensitive detection of human serum albumin (HSA) in biological matrices and monitoring of HSA purity and degradation. Talanta 2025; 286:127471. [PMID: 39736207 DOI: 10.1016/j.talanta.2024.127471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
Human serum albumin (HSA) levels in serum and urine is a crucial biomarker for diagnosing liver and kidney diseases. HSA is used to treat various disorders in clinical practice and as an excipient in the production of vaccine or protein drug, ensuring its purity essential for patient safety. However, selective and sensitive detection of HSA remains challenging due to its structural similarity with bovine serum albumin (BSA) and the inherent complexity of biological matrices. This study presents a novel application of the tetraphenylethylene-indole (TPE-indo) fluorophore for the identification and quantification of HSA. The findings demonstrate that TPE-indo binds specifically to HSA in a 1:1 M ratio, thereby triggering its aggregation-induced emission (AIE) mechanism and producing a selective, sensitive, and rapid "turn-on" fluorescence response. The fluorescence intensity of TPE-indo exhibited minimal interference from proteins, amino acids, sugars, ions, and urine metabolites, and demonstrated a linear correlation with HSA concentration up to 60 μg/mL, with a limit of detection of 0.30 μg/mL. Furthermore, TPE-indo displays a markedly enhanced response to HSA in comparison to BSA, which can be ascribed to the distinct binding modes between TPE-indo and these two proteins. TPE-indo can be used to quantify HSA in serum, grade proteinuria samples, detect BSA adulteration in HSA samples, and real-time monitor HSA degradation processes. This study not only advances the development of efficient HSA detection methods but also highlights the significance of TPE-indo as a versatile tool for bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Xueping Yang
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China
| | - Taoran Li
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China
| | - Xu Chen
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China
| | - Huan Zhang
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China
| | - Chao Liu
- Department of Statistics, Hebei University, Baoding, 071002, PR China.
| | - Chenchuang Tao
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China
| | - Hailiang Nie
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China
| |
Collapse
|
2
|
Zhang Q, Zhang Y, Zhang S, Zeng Y, He Z, Yang K, Luo J, Guo H, Chi B. Elucidation of the interaction between apo-transferrin and indisulam via multi-spectroscopic techniques and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125652. [PMID: 39736258 DOI: 10.1016/j.saa.2024.125652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Apo-transferrin (apo-TRF) is a vital protein for maintaining iron balance in the body, which is produced by the liver. Indisulam (IDM) has been extensively used to treat cancer in clinical study and has been identified as a molecular glue. Iron imbalances in the body are believed to encourage the growth and spread of cancer cells. Thus, understanding the interactions between apo-TRF and IDM may serve as a foundation for identifying novel therapeutic strategies for cancer associated with iron imbalances. In this study, multi-spectroscopic methods and computer simulations were employed to explore the binding mode between apo-TRF and IDM, as well as to investigate IDM's impact on the biological functions of apo-TRF. Multi-spectroscopic studies indicated that IDM and apo-TRF formed binary complexes with Ka of 1.274 × 104 M-1 at 298 K. The H-bonds and van der Waals forces were the dominant interaction forces based on an analysis of the thermodynamic parameters (ΔHθ = -37.565 kJ/mol, ΔSθ = -46.665 J mol-1 K-1). Three-dimensional (3D) and circular dichroism (CD) spectra revealed the conformational of apo-TRF changed by IDM, resulting in a looser and more unfolded structure. With escalating concentrations of IDM, a notable reduction in the binding affinity between apo-TRF and Fe3+ was observed, indicating that IDM could potentially alter iron transfer mediated by apo-TRF. Molecular docking analysis indicated that IDM docked in the apo-TRF iron-binding pocket. After in-depth analysis of the molecular dynamic results, it was found that Asp392 played an important role in this interaction. In addition, accessible surface area (ASA) values of key residues (Tyrosine, Aspartate, and Histidine) for iron transfer were altered, which could be a possible reason for the change in iron transport.
Collapse
Affiliation(s)
- Qiumei Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yue Zhang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Shuyuan Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yujing Zeng
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zimeng He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Kaiyu Yang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jiaqing Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hui Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
3
|
Sookai S, Akerman M, Færch M, Sayed Y, Munro OQ. Cytotoxic pyrrole-based gold(III) chelates target human topoisomerase II as dual-mode inhibitors and interact with human serum albumin. Eur J Med Chem 2025; 287:117330. [PMID: 39904146 DOI: 10.1016/j.ejmech.2025.117330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Topoisomerase IIα (Top II) is a critical enzyme that resolves DNA topology during transcription and replication. Inhibitors of Top II are used as anticancer agents and are classified as interfacial poisons (IFPs) or catalytic inhibitors (CICs). Here, we report a novel class of cytotoxic, stable cationic gold(III) Schiff base chelates (AuL1, AuL2, and AuL3) with DNA-intercalating properties. In the NCI-60 screen, AuL1 and AuL3 exhibited potent cytotoxicity (mean GI50 values of 11 (7) μM and 14 (9) μM, respectively), whereas AuL2 showed minimal cytotoxicity. Cluster analysis aligned AuL1 and AuL3 with the Top II poison etoposide. Mechanistic studies revealed that AuL1 acts as an IFP at concentrations between 0.5 and 50 μM and as a CIC at concentrations between 50 and 500 μM. Further investigations demonstrated that all three gold(III) chelates bind to and intercalate DNA, the main substrate for Top II. Finally, binding studies with human serum albumin (HSA) indicated that the chelates have moderate affinity for the protein. Thermodynamic analysis indicates entropically driven binding, with minimal structural disruption observed via UV-CD spectroscopy. These findings highlight the dual mode Top II inhibition mechanism delineated for the gold(III) chelates and their favourable pharmacodynamic interactions with HSA, underscoring their potential as promising anticancer agents.
Collapse
Affiliation(s)
- Sheldon Sookai
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa.
| | - Matthew Akerman
- School of Chemistry, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Mia Færch
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa; School of Chemistry, University of Leeds, Woodhouse Lane, LS2 9JT, UK
| |
Collapse
|
4
|
Samandar F, Mohsenpour A, Rastin F, Doustmohammadi-Salmani S, Saberi MR, Chamani J. Evaluating binding behavior of quercetin to human serum albumin and calf thymus DNA: Insights from molecular dynamics, spectroscopy, and apoptotic pathway regulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125638. [PMID: 39733709 DOI: 10.1016/j.saa.2024.125638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
In this work, we sought to apprehend quercetin binding affinity and its interaction behavior in complex with human serum albumin (HSA) and calf thymus DNA (ctDNA) through multi spectroscopy and molecular dynamics and also evaluated its effects on colorectal cancer. The binding constants of ctDNA-quercetin and HSA-quercetin complexes at 298 K, which were calculated to be (2.67 ± 0.04) × 103 M-1 and (4.77 ± 0.05) × 104 M-1 respectively, denoted the strong binding of quercetin with ctDNA and HSA. The Ksv and Kb values decrease with increasing temperature, indicating that the quenching of HSA and ctDNA in the presence of quercetin is caused by the combined dynamic and static effects. The obtained thermodynamic parameters for the ctDNA-quercetin interaction represented the existence of electrostatic forces (ΔH0 < 0 and ΔS0 > 0), and the thermodynamic parameters of HSA-quercetin complex disclose the dominance of hydrogen bonds and van der Waals interactions (ΔH0 < 0 and ΔS0 < 0). Moreover, the interactions were exothermic, as evidenced by the negative ΔH0 value for both interactions. According to molecular docking and MD simulation data, quercetin was capable of placing into the site 1 of HSA and forming stable interaction plus this ligand tended to unwind DNA's strands as an intercalator ligand, which was confirmed by experimental results. The fluorescence competition studies between the two intercalator probes of ethidium bromide (EB) and acridine orange (AO), as well as the effect of ionic strength, proposed the strong tendency of quercetin to exist between the two strands of ctDNA as a sign of its intercalative property. Consequently, quercetin can be assumed as an efficient intercalator ligand carried by HSA with an anticancer property. We also conducted cell viability experiments on HT-29 and SW620 cell lines to validate the anticancer ability of quercetin, and observed its decreasing impact on the cell viability of these two cell lines. Additionally, the outcomes of Real-time qPCR proved its capability to reduce the CXCR4 expression and increase the NKD2 expression in Wnt signaling pathway. Therefore, these facts confirm the inhibiting ability of quercetin towards colorectal cancer growth via the prevention of Wnt pathway and approve its functionality as a potential anticancer agent for this cancer.
Collapse
Affiliation(s)
- Farzaneh Samandar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Aida Mohsenpour
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farangis Rastin
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
5
|
Kenéz B, Koplányi G, Decsi B, Molnár Z, Horváth P, Katona G, Balogh GT, Balogh-Weiser D. Development of a Novel Human Serum Albumin-Based Tool for Effective Drug Discovery: The Investigation of Protein Quality and Immobilization. J Med Chem 2025; 68:2840-2848. [PMID: 39813641 PMCID: PMC11831590 DOI: 10.1021/acs.jmedchem.4c02136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
The binding ability of human serum albumin (HSA) on active pharmaceutical ingredients (APIs) is one of the most important parameters in the early stages of drug discovery. In this study, an immobilized HSA-based tool was developed for the rapid and easy in vitro screening of API binding. The work explored the serious incompleteness in the identification of HSA used for in vitro screening published in the last five years. To mitigate this problem, a comprehensive analysis and immobilization studies were performed on the most used HSA types. Serious differences in the colloidal stability of HSAs and their API binding ability on a selected set of APIs were observed. HSAs were immobilized on magnetic nanoparticles with glutardialdehyde (GDA) or cyclohexyl-diglycidyl ether (CDGE) linkers, which have never been used for HSA immobilization before. The HSA-MNP-CDGE complexes achieved a higher immobilization yield and preserved API binding ability; however, the esterase-like enzymatic activity of HSA reduced significantly.
Collapse
Affiliation(s)
- Balázs Kenéz
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Műegyetem rkp. 3, H-1111Budapest, Hungary
| | - Gábor Koplányi
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Műegyetem rkp. 3, H-1111Budapest, Hungary
| | - Balázs Decsi
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111Budapest, Hungary
| | - Zsófia Molnár
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Műegyetem rkp. 3, H-1111Budapest, Hungary
| | - Péter Horváth
- Department
of Pharmaceutical Chemistry, Semmelweis
University, Hőgyes E. Street 7−9, H-1092 Budapest, Hungary
| | - Gábor Katona
- Institute
of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - György T. Balogh
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111Budapest, Hungary
- Department
of Pharmaceutical Chemistry, Semmelweis
University, Hőgyes E. Street 7−9, H-1092 Budapest, Hungary
- Center
for Pharmacology and Drug Research & Development, Semmelweis University, Üllői Street 26, H-1085Budapest, Hungary
| | - Diána Balogh-Weiser
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Műegyetem rkp. 3, H-1111Budapest, Hungary
- Department
of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111Budapest, Hungary
| |
Collapse
|
6
|
Zhou R, Pan D. Association between blood-urea-nitrogen-to-albumin ratio and in-hospital mortality in patients diagnosed with coronavirus disease 2019: a retrospective cohort study. Eur J Med Res 2025; 30:78. [PMID: 39905533 DOI: 10.1186/s40001-025-02338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND The blood-urea-nitrogen-to-albumin ratio (BAR) is recognized as a novel prognostic indicator; however, there is a limited number of studies investigating the relationship between BAR and in-hospital mortality associated with coronavirus disease 2019 (COVID-19). Therefore, the present investigation aims to explore the correlation between BAR and in-hospital mortality in patients with COVID-19 in China. METHODS This retrospective observational study enrolled a cohort of 1027 patients diagnosed with COVID-19 between December 2022 and March 2023. Multivariate Cox regression analyses were used to ascertain the independent association between BAR and in-hospital mortality among patients with COVID-19. Furthermore, stratified analyses were used to investigate potential interaction effects with variables, such as age, sex, COVID-19 Severity, hypertension, coronary artery disease, and diabetes mellitus. RESULTS A total of 117 patients (11.4%) died from various causes during hospitalization. Subsequent to adjustment for confounding variables, patients in the highest BAR tertile exhibited an elevated risk for in-hospital mortality relative to those in the lowest tertile (hazard ratio [HR] 2.44 [95% confidence interval CI 1.24-4.79]) when BAR was treated as a categorical variable. When considering BAR as a continuous variable, a 6% increase in the prevalence of in-hospital mortality was observed for each 1-unit increase in BAR (adjusted HR 1.06 [95% CI 1.03-1.08]; P < 0.001). Stratified analyses revealed a consistent association between BAR and in-hospital mortality due to COVID-19. CONCLUSIONS BAR exhibited a significant relationship with in-hospital mortality in patients with COVID-19, suggesting that a higher BAR is associated with a poorer prognosis. However, further research is required to confirm these findings.
Collapse
Affiliation(s)
- Ruoqing Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dianzhu Pan
- Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
- Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University in Liaoning, Jinzhou, China.
| |
Collapse
|
7
|
Halder K, Dasgupta S. Temperature dependent human serum albumin Corona formation: A case study on gold nanorods and nanospheres. Int J Biol Macromol 2025; 290:138581. [PMID: 39689792 DOI: 10.1016/j.ijbiomac.2024.138581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/23/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Protein molecules interact with nanoparticles to form a protein layer on the surface called the protein corona. Corona formation can be affected by the temperature and shape of the nanoparticles thereby impacting the fate of the nanoparticles inside physiological systems. We have investigated the human serum albumin (HSA) corona formation and its interactions with gold nanospheres and nanorods at different temperatures (18-42 °C). UV-Vis, fluorescence, isothermal titration calorimetry (ITC), x-ray photoelectron spectroscopy (XPS) and circular dichroism (CD) experiments have been performed to determine the changes due to the shape and temperature. UV-Vis spectra show a greater propensity of corona induced aggregation in the nanorods compared to the nanospheres. The Stern-Volmer plot indicates that static quenching is predominant in the HSA-AuNP interactions with higher quenching efficiency for nanorods than nanospheres. ITC analyses show that HSA-nanorods are involved in more favorable interactions compared to HSA-nanospheres. XPS studies indicate a more electron rich environment on the AuNRs surface and higher AuS interactions in AuNSs. CD spectra show higher secondary structural changes with temperature in case of HSA-AuNR interactions compared to HSA-AuNS interactions. The changes in the protein corona due to nanoparticle shape and variable temperature have been investigated through protein adsorption and composition, types of interactions and protein conformation.
Collapse
Affiliation(s)
- Krishna Halder
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302. India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302. India.
| |
Collapse
|
8
|
Cheang I, Li Y, Zhu X, Chen Z, Ren Q, Wu M, Xu X, Tse H, Yiu K, Li X. Prognosis Prediction of Cardiovascular Event With Glucose-Albumin Ratio on Patients With Cancer and Prescribed With Anthracycline. Cancer Med 2024; 13:e70471. [PMID: 39660481 PMCID: PMC11632394 DOI: 10.1002/cam4.70471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/06/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024] Open
Abstract
AIMS This study aimed to investigate the clinical value of the glucose-albumin ratio (GAR) in predicting the prognosis of cancer patients prescribed anthracycline-based chemotherapy. METHODS We included cancer patients who underwent anthracycline-based chemotherapy, drawn from the population-based cohort Clinical Data Analysis Reporting System of Hong Kong between January 2000 and December 2019. Demographics, medical history, baseline laboratory, and metabolic indicators, including GAR, were collected. We employed random survival forests (RSF) with the variable importance (VIMP) method to rank the importance of these variables. Cox proportional hazards regression was used to assess the association between GAR levels and event risks. RESULTS A total of 18,700 patients were included in the analysis. The top 2 factors for predicting overall cardiovascular event risk were GAR and fasting blood glucose (FBG). Our results revealed that a higher GAR was significantly associated with poorer cardiovascular prognosis in patients with cancer prescribed with anthracycline-based chemotherapy. Compared to the lowest quartile, higher GAR levels were significantly associated with increased risk of all-cause mortality, major adverse cardiovascular events, hospitalization of heart failure, and cardiovascular mortality regardless of the adjustments (all p trend < 0.001). CONCLUSION GAR is a potential biomarker for predicting the prognosis of cancer patients undergoing anthracycline-based chemotherapy. Monitoring GAR levels before and during treatment may help identify patients at higher risk of adverse outcomes, facilitating personalized treatment strategies and improving clinical management.
Collapse
Affiliation(s)
- Iokfai Cheang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of CardiologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
- Division of Cardiology, Department of MedicineThe University of Hong Kong ‐ Shenzhen HospitalShenzhenChina
- Cardiology Division, Department of MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Ying Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of CardiologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Xu Zhu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of CardiologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Ziqi Chen
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of CardiologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Qing‐Wen Ren
- Division of Cardiology, Department of MedicineThe University of Hong Kong ‐ Shenzhen HospitalShenzhenChina
- Cardiology Division, Department of MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Mei‐Zhen Wu
- Division of Cardiology, Department of MedicineThe University of Hong Kong ‐ Shenzhen HospitalShenzhenChina
- Cardiology Division, Department of MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Xin Xu
- Division of Cardiology, Department of MedicineThe University of Hong Kong ‐ Shenzhen HospitalShenzhenChina
- Cardiology Division, Department of MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Hung‐Fat Tse
- Cardiology Division, Department of MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Kai‐Hang Yiu
- Division of Cardiology, Department of MedicineThe University of Hong Kong ‐ Shenzhen HospitalShenzhenChina
- Cardiology Division, Department of MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Xinli Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of CardiologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| |
Collapse
|
9
|
Croes CACC, Chrysanthou M, Hoppenbrouwers T, Wichers H, Keijer J, Savelkoul HFJ, Teodorowicz M. Diabetic Glycation of Human Serum Albumin Affects Its Immunogenicity. Biomolecules 2024; 14:1492. [PMID: 39766199 PMCID: PMC11673269 DOI: 10.3390/biom14121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Advanced glycation end-products (AGEs) are products of a non-enzymatic reaction between amino acids and reducing sugars. Glycated human serum albumin (HSA) increases in diabetics as a consequence of elevated blood glucose levels and glycating metabolites like methylglyoxal (MGO). The impact of different types of glycation on the immunomodulatory properties of HSA is poorly understood and is studied here. HSA was glycated with D-glucose, MGO, or glyoxylic acid (CML). Glycation-related biochemical changes were characterized using various biochemical methods. The binding of differentially glycated HSA to AGE receptors was determined with inhibition ELISAs, and the impact on inflammatory markers in macrophage cell line THP-1 and adherent monocytes isolated from human peripheral blood mononuclear cells (PBMCs) was studied. All glycation methods led to unique AGE profiles and had a distinct impact on protein structure. Glycation resulted in increased binding of HSA to the AGE receptors, with MGO modification showing the highest binding, followed by glucose and, lastly, CML. Additionally, modification of HSA with MGO led to the increased expression of pro-inflammatory markers in THP-1 macrophages and enhanced phosphorylation of NF-κB p65. The same pattern, although less prominent, was observed for HSA glycated with glucose and CML, respectively. An increase in pro-inflammatory markers was also observed in PBMC-derived monocytes exposed to all glycated forms of HSA, although HSA-CML led to a significantly higher inflammatory response. In conclusion, the type of HSA glycation impacts immune functional readouts with potential relevance for diabetes.
Collapse
Affiliation(s)
- Cresci-Anne C. C. Croes
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| | - Marialena Chrysanthou
- Department of Food Quality and Design, Wageningen University and Research Centre, 6708 WG Wageningen, The Netherlands; (M.C.); (T.H.)
- Department of Food Chemistry, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands;
| | - Tamara Hoppenbrouwers
- Department of Food Quality and Design, Wageningen University and Research Centre, 6708 WG Wageningen, The Netherlands; (M.C.); (T.H.)
- Department of Food and Biobased Research, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Harry Wichers
- Department of Food Chemistry, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands;
- Department of Food and Biobased Research, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands;
| | - Huub F. J. Savelkoul
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| | - Malgorzata Teodorowicz
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| |
Collapse
|
10
|
Li W, Sun L, Yang X, Peng C, Hua R, Zhu M. Enantioselective effects of chiral profenofos on the conformation for human serum albumin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106159. [PMID: 39477612 DOI: 10.1016/j.pestbp.2024.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 11/07/2024]
Abstract
Profenofos, as a typical chiral organophosphorus pesticide, can cause various environmental problems and even endanger human health when used in excess. The toxicity of chiral profenofos was investigated through multispectral analysis, molecular docking, and density functional theory (DFT), employing human serum albumin (HSA) as the model protein. Fluorescence titration and lifetime measurements demonstrated that the interaction between chiral profenofos and HSA involves static quenching. Chiral profenofos forms a 1:1 complex with HSA at site II (subdomain IIIA), primarily driven by hydrophobic interactions and hydrogen bonds. Notably, the binding efficacy diminishes as temperature increases. Spectroscopic analyses confirm that chiral profenofos alters the microenvironment and structure of HSA, with the R-enantiomer exerting a greater impact than the S-enantiomer. Consequently, the toxicological implications of the R-profenofos is significantly more pronounced. Investigating the molecular-level toxic effects of chiral pesticides enhances the thoroughness of pesticide assessments, aids in understanding their distribution, metabolism, and associated risks, and facilitates the development of mitigation strategies.
Collapse
Affiliation(s)
- Wenze Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Long Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
11
|
Yildiz M. Computational Analysis of Interactions Between Drugs and Human Serum Albumin. J Mol Recognit 2024; 37:e3105. [PMID: 39305213 DOI: 10.1002/jmr.3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/24/2024] [Accepted: 09/03/2024] [Indexed: 10/16/2024]
Abstract
Drug molecules exist as complexed with serum proteins such as human serum albumin (HSA) and/or unbound free form in the blood circulation. Drugs can be effective only when they are free. Thus, it is important to understand aspects that are important for interaction between drugs and interacting proteins. In this study, interactions among 2990 FDA approved drugs and HSA were computational analyzed to unravel principles that are critical for drug-HSA interactions. Docking results showed that drugs have higher affinity toward cavity-1 (C1) than cavity-2 (C2). A total of 1131 drug molecules have docking score greater than 60 while 768 molecules have docking score greater than 60 when they are docked in C2. In addition, three solvent channels have potential to direct solvent to C1 cavity while C2 does not have any effective channel. The post MD analyses demonstrated that drugs are making polar interactions with basic amino acids in the binding cavities. Verbscoside and ceftazidime both have stable low RMSD values throughout MD simulation with 2 Å on average in C1 cavity. The ligand RMSD shows less stability for verbscoside, which is around 4 Å when it is in complex with HSA in C1. The individual contribution of the residues K192, K196, R215, and R254 to ceftazidime are -1.92 ± 0.18, -3.09 ± 0.09, -2.17 ± 0.17, and - 2.32 ± 0.098, respectively. These residues contribute the binding energy of the verbscoside by -6.06 ± 0.08, -2.10 ± 0.06, and - 1.57 ± 0.03 kcal/mol individually in C1 cavity. C2 is making polar interactions with drug via R469, K472, and K488 residues and their contribution to the two drugs are -3.13 ± 0.21 kcal/mol for R469, -1.94 ± 0.18 kcal/mol for K472, and -1.96 ± 0.11 kcal/mol for K488 to total binding energy of ceftazidime. The binding energy of verbscoside is 57.17 ± 7.00 kcal/mol and Arg-407 has the highest contribution this bind energy individually with -4.29 ± 0.12 kcal/mol. Drugs with hydrogen bond donor/acceptor chemical adducts such as verbscoside involve higher hydrogen bond formation in C1 pocket. Ceftazidime makes interaction with HSA toward hydrophobic residues, L384, L404, L487, and L488 in the C2 cavity.
Collapse
Affiliation(s)
- Muslum Yildiz
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
12
|
Gonzalez-Posada AH, Mesa M, Sierra L, Lopez B. Interactions of human serum albumin with phosphate and Tris buffers: impact on paclitaxel binding and nanoparticles self-assembly. J Microencapsul 2024; 41:564-575. [PMID: 39268923 DOI: 10.1080/02652048.2024.2389135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024]
Abstract
AIM To investigate the conformational changes in human serum albumin (HSA) caused by chemical (CD) and thermal denaturation (TD) at pH 7.4 and 9.9, crucial for designing controlled drug delivery systems with paclitaxel (PTX). METHODS Experimental and computational methods, including differential scanning calorimetry (DSC), UV-Vis and intrinsic fluorescence spectroscopy, mean diameter, polydispersity index (PDI), ζ-potential, encapsulation efficiency (EE), in vitro release and protein docking studies were conducted to study the HSA denaturation and nanoparticles (NPs) preparation. RESULTS TD at pH 7.4 produced smaller NPs (287.1 ± 12.9 nm) than CD at pH 7.4 with NPs (584.2 ± 47.7 nm). TD at pH 9.9 exhibited high EE (97.3 ± 0.2%w/w) with rapid PTX release (50% within 1h), whereas at pH 7.4 (96.4 ± 2.1%w/w), release only 40%. ζ-potentials were around -30 mV. CONCLUSION Buffer type and pH significantly influence NP properties. TD in PBS at pH 7.4, provided optimal conditions for a stable and efficient drug delivery system.
Collapse
Affiliation(s)
- A H Gonzalez-Posada
- Materials Science Group, Institute of Chemistry, University of Antioquia, Medellín, Colombia
| | - M Mesa
- Materials Science Group, Institute of Chemistry, University of Antioquia, Medellín, Colombia
| | - L Sierra
- Materials Science Group, Institute of Chemistry, University of Antioquia, Medellín, Colombia
| | - B Lopez
- Materials Science Group, Institute of Chemistry, University of Antioquia, Medellín, Colombia
| |
Collapse
|
13
|
Parsadanyan MA, Shahinyan MA, Mikaelyan MS, Grigoryan SV, Poghosyan GH, Vardevanyan PO. Influence of millimeter range electromagnetic waves on bovine serum albumin interaction with acridine orange. Electromagn Biol Med 2024; 43:246-255. [PMID: 39068541 DOI: 10.1080/15368378.2024.2383683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The effect of non-ionizing millimeter range electromagnetic waves (MM EMW) (30-300 GHz) on the bovine serum albumin (BSA) interaction peculiarities with acridine orange (AO) has been studied in vitro. The frequencies 41.8 and 50.3 GHz were chosen, since the first one is nonresonant frequency for the water, while the second one is resonant for water. The binding constant and number of binding sites were calculated at both irradiation presence and absence. AO was revealed to bind to BSA, while after the protein irradiation the interaction force strengthens. However, it was also shown that there are differences of the interaction parameters while irradiating by 41.8 or 50.3 GHz. AO binds to BSA, irradiated by MM EMW with the frequency 41.8 GHz much more weaker, than to that, irradiated by MM EMW with the frequency 50.3 GHz.
Collapse
Affiliation(s)
- M A Parsadanyan
- Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - M A Shahinyan
- Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - M S Mikaelyan
- Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - S V Grigoryan
- Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - G H Poghosyan
- Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - P O Vardevanyan
- Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
14
|
Xu F, Shen Y, Pan Z, Zhou X, Gu W, Dong J, Yin S, Liu S, Xu M, Chen B. The hemostatic molecular mechanism of Sanguisorbae Radix's pharmacological active components based on HSA: Spectroscopic investigations, molecular docking and dynamics simulation. Heliyon 2024; 10:e37020. [PMID: 39296229 PMCID: PMC11407948 DOI: 10.1016/j.heliyon.2024.e37020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/15/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
The interactions between human serum albumin (HSA) and the hemostatic components of the Chinese medicine Sanguisorbae Radix (SR), specifically phenolic acid compounds such as caffeic acid (CA), ferulic acid (FA) and their 1:1 mixture (1:1) were studied to investigate the molecular mechanism underlying the hemostatic effect of SR. Network pharmacology combined with the experimental and computational data revealed that HSA is one of the hemostatic targets to SR phenolic acids. SDS-PAGE and multi-spectroscopy demonstrated that the phenolic acids bind to the Sudlow site I on HSA, altering its structure and influencing its migration velocity. There is an observed synergistic effect upon the mixture of CA and FA. Quantum chemistry, molecular docking, and molecular dynamics simulations indicate that the binding of phenolic acids to HSA is stable, and variations in binding efficiency are associated with the hydrophobicity of the substituent at the C3 position of the side chain, and also, the key amino acids and functional groups for hemostasis of SR were identified, along with the active sites that contribute to the synergistic enhancement by phenolic acids.
Collapse
Affiliation(s)
- Fei Xu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine/Jangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - YuQing Shen
- The Second People's Hospital of Taizhou City, Taizhou, 225500, China
| | - ZhiQiang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuan Zhou
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, 210023, China
| | - Wei Gu
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing, 210023, China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - ShengJin Liu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine/Jangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ming Xu
- Jiangsu Sunan Pharmaceutical Group Co., Ltd., Zhenjiang, 212400, China
| | - Baoduan Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
15
|
Gao Y, Zhao K, Liu J, Zhang X, Gong L, Zhou X, Chen G. Prediction of Clinical Severity of COVID-19 Using a Combination of Heparin-Binding Protein, Interleukin-6, and C-Reactive Protein: A Retrospective Study. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70003. [PMID: 39187469 PMCID: PMC11347126 DOI: 10.1111/crj.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/16/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Systemic inflammation stands as a pivotal factor tightly interwoven with the progression of COVID-19. This study endeavors to elucidate the significance of three key inflammatory molecules, that is, heparin-binding protein (HBP), interleukin-6 (IL-6), and C-reactive protein (CRP), in assessing the severity and prognostic implications of COVID-19. METHODS The demographic, clinical, and laboratory data were retrospectively collected from a cohort of 214 adult patients diagnosed with COVID-19. Patients were divided into two groups: nonsevere (n = 93; 43.5%) and severe (n = 121; 56.5%). Additionally, based on their organ function, patients were categorized into nonorgan failure (n = 137) and organ failure (n = 77) groups. The levels of inflammation-related cytokines were then compared among these defined groups. RESULTS The severe group was characterized by a higher proportion of males, older age, and longer hospital stays compared to nonsevere cases. Additionally, severe cases exhibited a higher prevalence of underlying diseases and organ failure. Statistical analysis revealed significantly elevated levels of HBP, IL-6, and CRP in the severe group. HBP, IL-6, and CRP were identified as independent risk factors for severe COVID-19. Furthermore, a combined assessment of these biomarkers demonstrated superior diagnostic sensitivity (85.10%) and specificity (95.70%) for predicting COVID-19 severity. A positive relationship between elevated HBP, IL-6, and CRP levels and impaired organ function was also observed. The predictive efficiency significantly increased (hazard ratio = 3.631, log-rank p = 0.003) when two or more of them were combinedly used. Notably, elevated levels of HBP, IL-6, and CRP were associated with an increased risk of mortality. CONCLUSIONS In conclusion, the combined assessment of HBP, IL-6, and CRP offers enhanced accuracy and specificity in predicting the severity, organ failure, and mortality risk associated with COVID-19.
Collapse
Affiliation(s)
- Yidan Gao
- Department of HepatologyThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Ke Zhao
- Department of Immunology and Pathogen Biology, School of Basic Medical SciencesHangzhou Normal UniversityHangzhouZhejiangChina
| | - Jing Liu
- Department of HepatologyThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Xiangbo Zhang
- Department of HepatologyThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Ling Gong
- Department of HepatologyThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Xiang Zhou
- Department of HepatologyThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Gongying Chen
- Department of HepatologyThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
16
|
Xiao B, Yang Z, Liang H, Han Y, Wu Y, Xiao J, Bi Y. Predictive value of D-dimer to albumin ratio for severe illness and mortality in patients with COVID-19. Front Med (Lausanne) 2024; 11:1410179. [PMID: 39144651 PMCID: PMC11322116 DOI: 10.3389/fmed.2024.1410179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Objective Although the impact of the variants of COVID-19 on the general population is diminishing, there is still a certain mortality rate for severe and critically ill patients, especially for the elderly with comorbidities. The present study investigated whether the D-dimer to albumin ratio (DAR) can predict the severity of illness and mortality in COVID-19 patients. Methods A total of 1,993 patients with COVID-19 were retrospectively reviewed and the association of DAR with severe or critical illness or death during hospitalization was analyzed. The area under the ROC curve was used to screen the best indicators, Chi-square test, rank sum test, and univariate and multivariate binary logistic regression analysis were used to calculate the mean value of difference and adjusted odds ratio (aORs) with their 95% CI, and finally, survival was analyzed using Kaplan-Meier (KM) curves. Results Among 1,993 patients with COVID-19, 13.4% were severely ill, and the mortality rate was 2.3%. The area under the curve (AUC) using DAR to predict severe and critically ill patients was higher than that using other parameters. The best cut-off value of DAR was 21 in the ROC with a sensitivity of 83.1% and a specificity of 68.7%. After adjusting age, gender, comorbidities, and treatment, the binary logistic regression analysis showed that elevated DAR was an independent risk factor for severely ill and mortality of COVID-19 patients. The KM curve suggested that patients with a higher DAR was associated with worse survival. The negative predictive value of DAR (21) for adverse prognosis and death was 95.98 and 99.84%, respectively, with a sensitivity of 80.9 and 95.65%, respectively. Conclusion The DAR may be an important predictor for severe illness and mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Benjie Xiao
- Department of Neurology, Zhoupu Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhangwei Yang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Medical Department, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huazheng Liang
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, Jiangsu, China
| | - Yudi Han
- Department of Neurology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yinyan Wu
- Department of Neurology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jingjing Xiao
- Department of Neurology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yong Bi
- Department of Neurology, Zhoupu Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Georgieva E, Ananiev J, Yovchev Y, Arabadzhiev G, Abrashev H, Zaharieva V, Atanasov V, Kostandieva R, Mitev M, Petkova-Parlapanska K, Karamalakova Y, Tsoneva V, Nikolova G. Stable Nitroxide as Diagnostic Tools for Monitoring of Oxidative Stress and Hypoalbuminemia in the Context of COVID-19. Int J Mol Sci 2024; 25:8045. [PMID: 39125614 PMCID: PMC11312055 DOI: 10.3390/ijms25158045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024] Open
Abstract
Oxidative stress is a major source of ROS-mediated damage to macromolecules, tissues, and the whole body. It is an important marker in the severe picture of pathological conditions. The discovery of free radicals in biological systems gives a "start" to studying various pathological processes related to the development and progression of many diseases. From this moment on, the enrichment of knowledge about the participation of free radicals and free-radical processes in the pathogenesis of cardiovascular, neurodegenerative, and endocrine diseases, inflammatory conditions, and infections, including COVID-19, is increasing exponentially. Excessive inflammatory responses and abnormal reactive oxygen species (ROS) levels may disrupt mitochondrial dynamics, increasing the risk of cell damage. In addition, low serum albumin levels and changes in the normal physiological balance between reduced and oxidized albumin can be a serious prerequisite for impaired antioxidant capacity of the body, worsening the condition in patients. This review presents the interrelationship between oxidative stress, inflammation, and low albumin levels, which are hallmarks of COVID-19.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (E.G.); (J.A.); (V.Z.)
| | - Julian Ananiev
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (E.G.); (J.A.); (V.Z.)
| | - Yovcho Yovchev
- Department of Surgery and Anesthesiology, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria; (Y.Y.); (G.A.)
| | - Georgi Arabadzhiev
- Department of Surgery and Anesthesiology, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria; (Y.Y.); (G.A.)
| | - Hristo Abrashev
- Department of Vascular Surgery, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Vyara Zaharieva
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (E.G.); (J.A.); (V.Z.)
| | - Vasil Atanasov
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria; (V.A.); (R.K.)
| | - Rositsa Kostandieva
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria; (V.A.); (R.K.)
| | - Mitko Mitev
- Department of Diagnostic Imaging, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria;
| | - Kamelia Petkova-Parlapanska
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (G.N.)
| | - Yanka Karamalakova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (G.N.)
| | - Vanya Tsoneva
- Department of Propaedeutics of Internal Medicine and Clinical Laboratory, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Galina Nikolova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (G.N.)
| |
Collapse
|
18
|
Cho YJ, Kim H, Lim SI. Preserved structure and function of human serum albumin self-folded in the oxidative cytoplasm of Escherichia coli. J Biotechnol 2024; 390:62-70. [PMID: 38761885 DOI: 10.1016/j.jbiotec.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Human serum albumin (HSA), a polypeptide featuring 17 disulfide bonds, acts as a crucial transport protein in human blood plasma. Its extended circulation half-life, mediated by FcRn (neonatal Fc receptor)-facilitated recycling, positions HSA as an excellent carrier for long-acting drug delivery. However, the conventional method of obtaining HSA from human blood faces limitations due to availability and potential contamination risks, such as blood-borne diseases. This study introduced SHuffle, an oxidative Escherichia coli (E. coli) expression system, for the production of recombinant HSA (rHSA) that spontaneously self-folds into its native conformation. This system ensures precise disulfide bond formation and correct folding of cysteine-rich rHSA, eliminating the need for chaperone co-expression or domain fusion of a folding enhancer. The purified rHSA underwent thorough physicochemical characterization, including mass spectrometry, circular dichroism spectroscopy, intrinsic fluorescence spectroscopy, esterase-like activity assay, and size exclusion chromatography, to assess critical quality attributes. Importantly, rHSA maintained native binding affinity to FcRn and the albumin-binding domain. Collectively, our analyses demonstrated a high comparability between rHSA and plasma-derived HSA. The expression of rHSA in E. coli with an oxidizing cytosol provides a secure and cost-effective approach, enhancing the potential of rHSA for diverse medical applications.
Collapse
Affiliation(s)
- Yong Joon Cho
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea
| | - Hyunji Kim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea.
| |
Collapse
|
19
|
Paliwal H, Kaewpaiboon S, Ali Khumaini Mudhar Bintang M, Srichana T. Interaction studies of cannabidiol with human serum albumin by surface plasmon resonance, spectroscopy, and molecular docking. J Biomol Struct Dyn 2024; 42:5147-5158. [PMID: 37434318 DOI: 10.1080/07391102.2023.2234494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
The binding interaction of cannabidiol (CBD) and human serum albumin (HSA) under physiological blood pH conditions (pH 7.4) was conducted by surface plasmon resonance (SPR), fluorescence spectroscopy, UV-Visible spectrophotometry, and molecular docking. The responses from SPR measurement increased with the increase in CBD concentration until equilibrium was reached at the equilibrium dissociation constant (KD) of 9.8 × 10-4 M. The results from fluorescence and UV-Visible spectroscopy showed that CBD bound to HSA at one site in a spontaneous manner to form protein-CBD complexes. The quenching process involved both static and dynamic mechanisms while the static mechanism contributed predominantly to the binding between CBD and albumin. The binding constants estimated from the fluorescence studies were from 0.16 × 103 to 8.10 × 103 M-1, which were calculated at different temperature conditions using Stern-Volmer plots. The thermodynamic parameters demonstrated that the binding interaction was a spontaneous reaction as Gibbs free energy had negative values (ΔG = -12.57 to -23.20 kJ.mol-1). Positive ΔH and ΔS values (ΔH = 2.46 × 105 J.mol-1 and ΔS = 869.81 J.mol-1K-1) indicated that the hydrophobic force was the major binding interaction. Finally, confirmation of the type and extent of interaction was provided using UV-spectroscopy and molecular docking studies. The outcomes of this study are expected to serve as a platform to conduct future studies on binding interactions and toxicological research of CBD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Himanshu Paliwal
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sunisa Kaewpaiboon
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Muhammad Ali Khumaini Mudhar Bintang
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
20
|
Liang P, Wei Z, Li R, Zhou E, Chen Z. Predictive value of hematocrit, serum albumin level difference, and fibrinogen-to-albumin ratio for COVID-19-associated acute respiratory failure. Heliyon 2024; 10:e33326. [PMID: 39021974 PMCID: PMC11253537 DOI: 10.1016/j.heliyon.2024.e33326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Background Acute respiratory failure is the main clinical manifestation and a major cause of death in patients with COVID-19. However, few reports on its prevention and control have been published because of the need for laboratory predictive indicators. This study aimed to evaluate the predictive value of hematocrit level, serum albumin level difference, and fibrinogen-to-albumin ratio for COVID-19-associated acute respiratory failure. Material and methods A total of 120 patients with COVID-19 from the First Affiliated Hospital of Anhui Medical University were selected between December 2022 and March 2023. Patients were divided into acute respiratory failure and non-acute respiratory failure groups and compared patient-related indicators between them using univariate and multivariate logistic regression analyses. Receiver operating characteristic analysis was performed to determine the discrimination accuracy. Results In total, 48 and 72 patients were enrolled in the acute respiratory failure and non-acute respiratory failure groups, respectively. The Quick COVID-19 Severity Index scores, fibrinogen-to-albumin ratio, hematocrit and serum albumin level difference, fibrinogen, and hematocrit levels were significantly higher in the acute respiratory failure group than in the non-acute respiratory failure group. A Quick COVID-19 Severity Index >7, fibrinogen-to-albumin ratio >0.265, and hematocrit and serum albumin level difference >12.792 had a 96.14 % positive predictive rate and a 94.06 % negative predictive rate. Conclusion Both fibrinogen-to-albumin ratio and hematocrit and serum albumin level difference are risk factors for COVID-19-associated acute respiratory failure. The Quick COVID-19 Severity Index score combined with fibrinogen-to-albumin ratio, and hematocrit and serum albumin level difference predict high and low risks with better efficacy and sensitivity than those of the Quick COVID-19 Severity Index score alone; therefore, these parameters can be used collectively as a risk stratification method for assessing patients with COVID-19.
Collapse
Affiliation(s)
| | | | | | - Enze Zhou
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of AnHui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Zheng Chen
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of AnHui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| |
Collapse
|
21
|
Nattich-Rak M, Kosior D, Morga M, Adamczyk Z. Kinetics of Human Serum Albumin Adsorption on Polycation Functionalized Silica. Biomolecules 2024; 14:531. [PMID: 38785938 PMCID: PMC11117822 DOI: 10.3390/biom14050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The adsorption kinetics of human serum albumin (HSA) on bare and poly-L-arginine (PARG)-modified silica substrates were investigated using reflectometry and atomic force microscopy (AFM). Measurements were carried out at various pHs, flow rates and albumin concentrations in the 10 and 150 mM NaCl solutions. The mass transfer rate constants and the maximum protein coverages were determined for the bare silica at pH 4.0 and theoretically interpreted in terms of the hybrid random sequential adsorption model. These results were used as reference data for the analysis of adsorption kinetics at larger pHs. It was shown that the adsorption on bare silica rapidly decreased with pH and became negligible at pH 7.4. The albumin adsorption on PARG-functionalized silica showed an opposite trend, i.e., it was negligible at pH 4 and attained maximum values at pH 7.4 and 150 mM NaCl, the conditions corresponding to the blood serum environment. These results were interpreted as the evidence of a significant role of electrostatic interactions in the albumin adsorption on the bare and PARG-modified silica. It was also argued that our results can serve as useful reference data enabling a proper interpretation of protein adsorption on substrates functionalized by polyelectrolytes.
Collapse
Affiliation(s)
| | - Dominik Kosior
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (M.N.-R.); (M.M.)
| | | | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (M.N.-R.); (M.M.)
| |
Collapse
|
22
|
Zhang H, Qiu S, Chen F, Wang X. Combined Serum Albumin and Left Ventricular Ejection Fraction Predict All-Cause Death in Patients with Stable Coronary Artery Disease. Cardiol Res Pract 2024; 2024:9969628. [PMID: 38584962 PMCID: PMC10999290 DOI: 10.1155/2024/9969628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Objective To explore the feasibility of serum albumin (Alb) and left ventricular ejection fraction (LVEF) in predicting all-cause death (ACD) in patients with stable coronary artery disease (SCAD). Methods Patients with SCAD were divided into 4 groups according to their Alb and LVEF levels: Group A: Alb ≤4 g/dL and LVEF > 50%; Group B: Alb ≤4 g/dL and LVEF ≤50%; Group C: Alb >4 g/dL and LVEF ≤50%; Group D: Alb >4 g/dL and LVEF >50%. The K-M curve and log-rank test were used to compare ACD among the four groups over three years. Receiver operating characteristic (ROC) curves were used to compare the efficacy of predicting ACD among the combination of Alb and LVEF and either Alb or LVEF alone. Cox regression analysis identified the influencing factors of ACD in patients with SCAD and detected the correlation between Alb and LVEF. Results ACD occurred in 18 (8.9%) of 203 patients with SCAD, with an average follow-up of 26.53 ± 14.34 months. In the Kaplan‒Meier analysis, the risk of ACD in the four groups ranged from high to low: Group B (17.6%) > Group A (26.7%) > Group D (0.9%) > Group C (0%, P < 0.001). The ROC curve showed that the combination of Alb and LVEF (AUC = 0.888) had better predictive value for ACD than either Alb (AUC = 0.879) or LVEF alone (AUC = 0.651), P < 0.001. Multivariate Cox regression analysis showed that Alb ≤4 g/dL predicted ACD events after adjusting for baseline (HR: 12.16, 95% CI: 1.57 to 94.41; P=0.017) and treatment (HR: 19.36, 95% CI: 2.53-147.78, P=0.004). Alb was positively correlated with LVEF (r = 0.22, P=0.002). Conclusions Alb combined with LVEF is more effective than a single index in predicting ACD in SCAD and could be used as a new model to judge the prognosis of SCAD.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Medical Ultrasound, The Second Affiliated Hospital of Guangzhou Medical University, No. 250, Changgang East Road, Haizhu District, Guangzhou, Guangdong, China
| | - Shaodong Qiu
- Department of Medical Ultrasound, The Second Affiliated Hospital of Guangzhou Medical University, No. 250, Changgang East Road, Haizhu District, Guangzhou, Guangdong, China
| | - Fei Chen
- Department of Medical Ultrasound, The Second Affiliated Hospital of Guangzhou Medical University, No. 250, Changgang East Road, Haizhu District, Guangzhou, Guangdong, China
| | - Xiaojun Wang
- Department of Medical Ultrasound, The Second Affiliated Hospital of Guangzhou Medical University, No. 250, Changgang East Road, Haizhu District, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Alshanqeeti S, Szpunar S, Anne P, Saravolatz L, Bhargava A. Epidemiology, clinical features and outcomes of hospitalized patients with COVID-19 by vaccination status: a multicenter historical cohort study. Virol J 2024; 21:71. [PMID: 38515170 PMCID: PMC10958885 DOI: 10.1186/s12985-024-02325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/25/2024] [Indexed: 03/23/2024] Open
Abstract
INTRODUCTION COVID-19 disease resulted in over six million deaths worldwide. Although vaccines against SARS-CoV-2 demonstrated efficacy, breakthrough infections became increasingly common. There is still a lack of data regarding the severity and outcomes of COVID-19 among vaccinated compared to unvaccinated individuals. METHODS This was a historical cohort study of adult COVID-19 patients hospitalized in five Ascension hospitals in southeast Michigan. Electronic medical records were reviewed. Vaccine information was collected from the Michigan Care Improvement Registry. Data were analyzed using Student's t-test, analysis of variance, the chi-squared test, the Mann-Whitney and Kruskal-Wallis tests, and multivariable logistic regression. RESULTS Of 341 patients, the mean age was 57.9 ± 18.3 years, 54.8% (187/341) were female, and 48.7% (166/341) were black/African American. Most patients were unvaccinated, 65.7%, 8.5%, and 25.8% receiving one dose or at least two doses, respectively. Unvaccinated patients were younger than fully vaccinated (p = 0.001) and were more likely to be black/African American (p = 0.002). Fully vaccinated patients were 5.3 times less likely to have severe/critical disease (WHO classification) than unvaccinated patients (p < 0.001) after controlling for age, BMI, race, home steroid use, and serum albumin levels on admission. The case fatality rate in fully vaccinated patients was 3.4% compared to 17.9% in unvaccinated patients (p = 0.003). Unvaccinated patients also had higher rates of complications. CONCLUSIONS Patients who were unvaccinated or partially vaccinated had more in-hospital complications, severe disease, and death as compared to fully vaccinated patients. Factors associated with severe COVID-19 disease included advanced age, obesity, low serum albumin, and home steroid use.
Collapse
Affiliation(s)
- Shatha Alshanqeeti
- Department of Internal Medicine, Ascension St. John Hospital, 19251 Mack Avenue, Suite 340, 48236, Detroit, MI, USA
| | - Susan Szpunar
- Department of Biomedical Investigations and Research, Ascension St. John Hospital, Detroit, MI, USA
| | - Premchand Anne
- Department of Internal Medicine, Ascension St. John Hospital, 19251 Mack Avenue, Suite 340, 48236, Detroit, MI, USA
- Department of Pediatrics, Ascension St. John Hospital, Detroit, MI, USA
| | - Louis Saravolatz
- Department of Internal Medicine, Ascension St. John Hospital, 19251 Mack Avenue, Suite 340, 48236, Detroit, MI, USA
- Division of Infectious Disease, Department of Internal Medicine, Ascension St. John Hospital, Detroit, MI, USA
- Thomas Mackey Center for Infectious Disease Research, Ascension St John Hospital, Detroit, MI, USA
| | - Ashish Bhargava
- Department of Internal Medicine, Ascension St. John Hospital, 19251 Mack Avenue, Suite 340, 48236, Detroit, MI, USA.
- Division of Infectious Disease, Department of Internal Medicine, Ascension St. John Hospital, Detroit, MI, USA.
- Thomas Mackey Center for Infectious Disease Research, Ascension St John Hospital, Detroit, MI, USA.
| |
Collapse
|
24
|
Li X, Gao X, Fu B, Lu C, Han H, Zhou Q, Xu H. Study on the toxicity prediction model ofacetolactate synthase inhibitor herbicides based on human serum albumin and superoxide dismutase binding information. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123789. [PMID: 38154301 DOI: 10.1016/j.saa.2023.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
Toxicity significantly influences the successful development of drugs. Based on the toxicity prediction method (carrier protein binding information-toxicity relationship) previously established by the our group, this paper introduces information on the interaction between pesticides and environmental markers (SOD) into the model for the first time, so that the toxicity prediction model can not only predict the toxicity of pesticides to humans and animals, but also predict the toxicity of pesticides to the environment. Firstly, the interaction of acetolactate synthase inhibitor herbicides (ALS inhibitor herbicides) with human serum albumin (HSA) and superoxide dismutase (SOD) was investigated systematically from theory combined with experiments by spectroscopy methods and molecular docking, and important fluorescence parameters were obtained. Then, the fluorescence parameters, pesticides acute toxicity LD50 and structural splitting information were used to construct predictive modeling of ALS inhibitor herbicides based on the carrier protein binding information (R2 = 0.977) and the predictive modeling of drug acute toxicity based on carrier protein binding information and conformational relationship (R2 = 0.991), which had effectively predicted pesticides toxicity in humans and animals. To predict potential environmental toxicity, the predictive modeling of drug acute toxicity based on superoxide dismutase binding information was established (R2 = 0.883) by ALS inhibitor herbicides-SOD binding information, which has a good predictive ability in the potential toxicity of pesticides to the environment. This study lays the foundation for developing low toxicity pesticides.
Collapse
Affiliation(s)
- Xiangfen Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Xiaojie Gao
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Bowen Fu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Chang Lu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - He Han
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Qin Zhou
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| | - Hongliang Xu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
25
|
Brahma D, Sarangi AN, Kaushik R, Gupta AN. Oxidative stress induced conformational changes of human serum albumin. Phys Chem Chem Phys 2024; 26:8528-8538. [PMID: 38411624 DOI: 10.1039/d4cp00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Oxidative stress, generated by reactive oxygen species (ROS), is responsible for the loss of structure and functionality of proteins and is associated with several aging-related diseases. Here, we report an in vitro study to gauge the effect of ROS on the structural rearrangement of human serum albumin (HSA), a plasma protein, through metal-catalyzed oxidation (MCO) at physiological temperature through various biophysical techniques like UV-vis absorption, circular dichroism (CD), differential scanning calorimetry (DSC), MALDI-TOF, FTIR, and Raman spectroscopy. The UV-vis spectra of oxidized HSA show an early blueshift, signifying the unfolding of the protein because of ROS followed by the broadening of the absorption peak at a longer time. The DSC data corroborate the observation, revealing an exothermic transition for the oxidized sample at a longer time, suggesting in situ aggregation. The CD and FTIR spectra indicate the associated secondary structural changes occurring with time, depicting the variation of the helical content of HSA. The amide-III analysis of Raman data also complements the structural changes, and MALDI-TOF data show the mass distribution with time. Overall, this work might help determine the effect of oxidation on the biological activity of serum albumin as it can impact the physiological properties of HSA.
Collapse
Affiliation(s)
- Debdip Brahma
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur, 721302, India.
| | - Akshay Narayan Sarangi
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur, 721302, India.
| | - Rupal Kaushik
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur, 721302, India.
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur, 721302, India.
| |
Collapse
|
26
|
Tang Q, Li X, Sun CR. Predictive value of serum albumin levels on cancer survival: a prospective cohort study. Front Oncol 2024; 14:1323192. [PMID: 38500655 PMCID: PMC10944876 DOI: 10.3389/fonc.2024.1323192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Background Serum albumin levels and cancer mortality are closely related, yet large-sample studies encompassing a broad spectrum of cancer types are lacking. Methods This study encompassed patients diagnosed with cancer across the continuous 10 cycles of NHANES surveys from 1999 to 2018. The study population was stratified into two groups based on median albumin levels (≤ 4.2g/dL and > 4.2 g/dL) or cancer aggressiveness (well-survived cancers and poorly-survived cancers). Survival rates were estimated using the Kaplan-Meier method. The Cox proportional hazards model was employed to evaluate the association between serum albumin levels and cancer mortality. Restricted cubic spline (RCS) analysis was conducted to assess the nonlinear relationship between serum albumin levels and the risk of cancer mortality. Results Kaplan-Meier curves demonstrated that patients with albumin levels ≤ 4.2 g/dL exhibited lower survival rates compared to those with levels > 4.2 g/dL, irrespective of cancer aggressiveness. Following adjustment for confounders, decreased albumin levels were associated with an elevated risk of cancer mortality across all groups [all cancers, HR (95%CI) = 2.03(1.73, 2.37); well survived cancers, HR (95%CI) = 1.78(1.38, 2.32); and poorly survived cancers, HR (95%CI) = 1.99(1.64, 2.42)]. RCS analyses revealed a stable nonlinear negative association between albumin levels and cancer mortality in all groups, regardless of confounder adjustment. Conclusion Low serum albumin levels predict higher cancer mortality. Furthermore, a nonlinear negative association was observed between serum albumin levels and the risk of cancer mortality.
Collapse
Affiliation(s)
- Quan Tang
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xu Li
- Division of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Rong Sun
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
27
|
Li H, Cheng ZJ, Fu X, Liu M, Liu P, Cao W, Liang Z, Wang F, Sun B. Decoding acute myocarditis in patients with COVID-19: Early detection through machine learning and hematological indices. iScience 2024; 27:108524. [PMID: 38303719 PMCID: PMC10831249 DOI: 10.1016/j.isci.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024] Open
Abstract
During the persistent COVID-19 pandemic, the swift progression of acute myocarditis has emerged as a profound concern due to its augmented mortality, underscoring the urgency of prompt diagnosis. This study analyzed blood samples from 5,230 COVID-19 individuals, identifying key blood and myocardial markers that illuminate the relationship between COVID-19 severity and myocarditis. A predictive model, applying Bayesian and random forest methodologies, was constructed for myocarditis' early identification, unveiling a balanced gender distribution in myocarditis cases contrary to a male predominance in COVID-19 occurrences. Particularly, older men exhibited heightened vulnerability to severe COVID-19 strains. The analysis revealed myocarditis was notably prevalent in younger demographics, and two subvariants COVID-19 progression paths were identified, characterized by symptom intensity and specific blood indicators. The enhanced myocardial marker model displayed remarkable diagnostic accuracy, advocating its valuable application in future myocarditis detection and treatment strategies amidst the COVID-19 crisis.
Collapse
Affiliation(s)
- Haiyang Li
- Department of Clinical Laboratory, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK
| | - Zhangkai J. Cheng
- Department of Clinical Laboratory, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Xing Fu
- Group of Theoretical Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Mingtao Liu
- Department of Clinical Laboratory, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Peng Liu
- Department of Clinical Pharmacy, Dazhou Central Hospital, Dazhou 635000, China
| | - Wenhan Cao
- Department of Clinical Laboratory, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Zhiman Liang
- Department of Clinical Laboratory, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Fei Wang
- Department of Clinical Pharmacy, Dazhou Central Hospital, Dazhou 635000, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
28
|
Azeem K, Abdulhameed HT, Hussain A, Amir S, Parveen M, Patel R, Abid M. A Comprehensive Multispectroscopic and Computational Analysis of the Interaction between Plant-Based Antiplasmodial Compounds and Bovine Serum Albumin. ACS OMEGA 2024; 9:5576-5591. [PMID: 38343956 PMCID: PMC10851409 DOI: 10.1021/acsomega.3c07630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2025]
Affiliation(s)
- Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Haider Thaer Abdulhameed
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Samira Amir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mehtab Parveen
- Division of Organic Synthesis, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Rajan Patel
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
29
|
Divya, Chandra P. Bioengineered cellulosic paper micro-device for serum albumin detection in clinical range. Int J Biol Macromol 2024; 258:128921. [PMID: 38141694 DOI: 10.1016/j.ijbiomac.2023.128921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Chronic Kidney Disease (CKD) is becoming one of the major causes of morbidity and mortalities in 21st century. We have developed a bioengineered cellulosic paper device for the quantification of albumin (ALB) in physiological samples. The paper surface was activated and antibodies specific to target biomarker was immobilized on engineered paper surface. Every step after modification was characterized by FTIR, XPS, SPM and optical analysis. Further, the device model was designed using CAD file, and a 3-D cascade device was fabricated with in-built constant light source to provide proper and controlled environment for in-situ image analysis. After adding the sample on the bioengineered paper, the antigen-antibody reaction takes place, after that addition of dye results in change of color from yellow to blueish-green within 40 s. An optical method was employed for the analysis of the images by recognizing the specific area and the color intensity. Additionally, the immunosensor specificity was evaluated on number of molecules that are usually found in the serum sample. The linear dynamic range of the developed immunosensor has been reported to be 1-60 mg/mL, covering the normal as well as clinical range of ALB in physiological samples with a detection limit of 0.049(±0.002) mg/mL. With good precision and recovery, the device was able to successfully determine the ALB concentrations in serum sample. The developed device has simple and user-friendly interface and it may also help diagnosing CKD in personalized settings.
Collapse
Affiliation(s)
- Divya
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India.
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
30
|
Mohammadi MA, Shareghi B, Farhadian S, Uversky VN. Investigating the effect of pH on the interaction of cypermethrin with human serum albumin: Insights from spectroscopic and molecular dynamics simulation studies. Int J Biol Macromol 2024; 257:128459. [PMID: 38035951 DOI: 10.1016/j.ijbiomac.2023.128459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
To efficiently combat the negative consequences of the utilization of pesticides and hazardous substances with biomolecules, it is crucial to comprehend the features of the corresponding compounds. In this study, interactions between cypermethrin (CYP) and HSA at neutral and acidic pH were investigated using a set of spectroscopic and computational tools, such as UV/VIS's absorption spectroscopy, fluorescence, Fourier-transform infrared (FTIR) spectroscopy, molecular docking, and molecular dynamics. Furthermore, the effect of CYP on the HSA thermal stability was investigated. The increase in the CYP concentration at acidic and neutral pH resulted in static HSA fluorescence quenching. In the interaction between HSA and CYP at both pH, increasing the temperature led to a decrease in the Stern-Volmer quenching constant and the binding constant. We also revealed that with increasing CYP concentration, the melting temperature of HSA increases at both pH values.
Collapse
Affiliation(s)
- Mohammad Ali Mohammadi
- Department of Biology, Faculty of Science, Shahr-e Kord University, Shahr-e Kord, P. O. Box.115, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahr-e Kord University, Shahr-e Kord, P. O. Box.115, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahr-e Kord University, Shahr-e Kord, P. O. Box.115, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
31
|
Yang Y, Wang S, Liu X, Zhang W, Tong W, Luo H, Zhao L. Interactions of ferulic acid and ferulic acid methyl ester with endogenous proteins: Determination using the multi-methods. Heliyon 2024; 10:e24605. [PMID: 38312678 PMCID: PMC10835327 DOI: 10.1016/j.heliyon.2024.e24605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Ferulic acid (FA) and ferulic acid methyl ester (FAM) are important phenolic compounds in Baijiu. In this study, the interaction of FA and FAM with human serum albumin (HSA) and lysozyme (LZM) was investigated using multispectral methods and molecular dynamics simulation. FA and FAM could interact with HSA and LZM, changing the conformation and hydrophilicity of the protein. The quenching mechanisms of FA-HSA, FA-LZM, FAM-HSA, and FAM-LZM were all static-quenching. In the FA-HSA, FAM-HSA, and FA-LZM systems, the interaction forces were mainly hydrophobic interactions and hydrogen bonding. In the FAM-LZM system, the interaction forces were mainly hydrophobic interactions, hydrogen bonding, and van der Waals force. Common metal ions such as K+, Ca2+, Cu2+, Mg2+, and Mn2+ could affect the binding ability of FA and FAM to HSA and LZM. Moreover, FA and FAM could increase the stability of HSA and LZM, and the protein bound to FA/FAM was more stable than the free protein. FA and FAM had varying degrees of impact on the physiological activities of HSA and LZM. This study provides relevant information on the interactions and metabolic mechanisms of FA and its derivatives with endogenous proteins.
Collapse
Affiliation(s)
- Ying Yang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Shuqin Wang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Xingyan Liu
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Wenbin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510000, China
| | - Wenhua Tong
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin, 644000, China
| | - Huibo Luo
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin, 644000, China
| | - Liming Zhao
- East China University of Science and Technology, Shanghai, 200000, China
| |
Collapse
|
32
|
Ismailova AG, Maslennikov RV, Zharkova MS, Ivashkin VT. Impact of Novel Coronavirus Infection on the Course and Prognosis of Cirrhosis. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2024; 33:65-80. [DOI: 10.22416/1382-4376-2023-33-6-65-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Аim: to investigate the impact of COVID-19 on the course and prognosis of cirrhosis.Materials and methods. This was a cohort study in patients with cirrhosis. We included patients with cirrhosis who underwent a medical examination at our center between September 2019 and March 2020. We determined which of these patients were infected with COVID-19, died of COVID-19, or died of cirrhosis complications within the follow-up period from April 2020 to September 2021. Thereafter, we conducted a second medical examination of these surviving patients with cirrhosis in September to December 2021.Results. Among the 226 patients included in the study, 57 had COVID-19, among which 19 patients who died of the disease. Acute-on-chronic liver failure (ACLF) developed in 16 (28.1 %) patients with cirrhosis and COVID-19, 13 (81.3 %) of whom died. One of the COVID-19 survivors eventually died of liver decompensation. Twenty patients who did not have COVID-19 died of complications of cirrhosis (ACLF) during the follow-up period. The mortality rate in patients who were infected with COVID-19 was higher than that in patients who were not infected (35.1 % vs. 14.2 %; p = 0.001). COVID-19 was an independent risk factor for death in patients with cirrhosis. No liver-specific factors predisposing to COVID-19 infection were identified. A more impaired liver function in the pre-pandemic medical examination was a predisposing factor for death in patients who had COVID-19. Patients who died of COVID-19 had better liver function in the pre-pandemic medical examination than patients without COVID-19 who died of complications of cirrhosis during the follow-up period. The liver-related mortality rate and the incidence of liver decompensation or bleeding from esophageal varices during the follow-up period were not significantly different between patients who recovered from COVID-19 and patients with cirrhosis who did not have COVID-19. Among the analyzed survivors, no significant changes were found in the main indicators of liver function after the follow-up period between patients with and without COVID-19, except for the prothrombin index, which was higher in patients after COVID-19.Conclusion. COVID-19 worsens the prognosis of patients with cirrhosis but does not substantially affect the course of cirrhosis after the recovery from this infection.
Collapse
Affiliation(s)
- A. G. Ismailova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - R. V. Maslennikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - M. S. Zharkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
33
|
Xu S, Luo W, Zhu M, Zhao L, Gao L, Liang H, Zhang Z, Yang F. Human Serum Albumin-Platinum(II) Agent Nanoparticles Inhibit Tumor Growth Through Multimodal Action Against the Tumor Microenvironment. Mol Pharm 2024; 21:346-357. [PMID: 38015620 DOI: 10.1021/acs.molpharmaceut.3c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
To overcome the limitations of traditional platinum (Pt)-based drugs and further improve the targeting ability and therapeutic efficacy in vivo, we proposed to design a human serum albumin (HSA)-Pt agent complex nanoparticle (NP) for cancer treatment by multimodal action against the tumor microenvironment. We not only synthesized a series of Pt(II) di-2-pyridone thiosemicarbazone compounds and obtained a Pt(II) agent [Pt(Dp44mT)Cl] with significant anticancer activity but also successfully constructed a novel HSA-Pt(Dp44mT) complex nanoparticle delivery system. The structure of the HSA-Pt(Dp44mT) complex revealed that Pt(Dp44mT)Cl binds to the IIA subdomain of HSA and coordinates with His-242. The HSA-His242-Pt-Dp44mT NPs had an obvious effect on the inhibition of tumor growth, which was superior to that of Dp44mT and Pt(Dp44mT)Cl, and they had almost no toxicity. In addition, the HSA-His242-Pt-Dp44mT NPs were found to kill cancer cells by inducing apoptosis, autophagy, and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Shihang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Weicong Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Lei Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Lijuan Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
34
|
Meng X, Nan G, Du Y, Zhao H, Zheng H, Lin R, Yang G. Comparing the interactions of nitrendipine with lysozyme or human serum albumin and the effects of vitamin C and naringin on these interactions by spectroscopy and molecular docking methods. LUMINESCENCE 2024; 39:e4618. [PMID: 37937696 DOI: 10.1002/bio.4618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
The interactions between drugs and proteins play a pivotal role in determining the pharmacological effects and disposition of drugs within the human body. This study focuses on exploring the interaction between nitrendipine and lysozyme/human serum albumin. Spectroscopic analysis indicated a compound static quenching, indicative of the formation of stable complexes between the drug and proteins. The addition of vitamin C or naringin resulted in a decrease of the binding constant between nitrendipine and lysozyme/human serum albumin. The presence of these compounds may disrupt the interactions between the drug and proteins, potentially leading to an increased concentration of free nitrendipine in the bloodstream. Nitrendipine binds more easily to human serum albumin at 310 K, and human serum albumin has an average binding site ratio with nitrendipine approximately 0.1 higher than that with lysozyme. Vitamin C has a greater impact on the binding constant of nitrendipine to human serum albumin and lysozyme. Compared to the binary system of proteins with the drug, the ternary system with the addition of vitamin C at 310 K reduces the binding constants of lysozyme and human serum albumin by 85%. In conclusion, this study explores the significance of considering drug-protein interactions in understanding drug behavior and potential drug-food interactions.
Collapse
Affiliation(s)
- Xianxin Meng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guanjun Nan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Du
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongwen Zhao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongxia Zheng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rong Lin
- School of Basic Medical Sciences, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Guangde Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
35
|
Akawa OB, Okunlola FO, Alahmdi MI, Abo-Dya NE, Sidhom PA, Ibrahim MAA, Shibl MF, Khan S, Soliman MES. Multi-cavity molecular descriptor interconnections: Enhanced protocol for prediction of serum albumin drug binding. Eur J Pharm Biopharm 2024; 194:9-19. [PMID: 37984594 DOI: 10.1016/j.ejpb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
The role of human serum albumin (HSA) in the transport of molecules predicates its involvement in the determination of drug distribution and metabolism. Optimization of ADME properties are analogous to HSA binding thus this is imperative to the drug discovery process. Currently, various in silico predictive tools exist to complement the drug discovery process, however, the prediction of possible ligand-binding sites on HSA has posed several challenges. Herein, we present a strong and deeper-than-surface case for the prediction of HSA-ligand binding sites using multi-cavity molecular descriptors by exploiting all experimentally available and crystallized HSA-bound drugs. Unlike previously proposed models found in literature, we established an in-depth correlation between the physicochemical properties of available crystallized HSA-bound drugs and different HSA binding site characteristics to precisely predict the binding sites of investigational molecules. Molecular descriptors such as the number of hydrogen bond donors (nHD), number of heteroatoms (nHet), topological polar surface area (TPSA), molecular weight (MW), and distribution coefficient (LogD) were correlated against HSA binding site characteristics, including hydrophobicity, hydrophilicity, enclosure, exposure, contact, site volume, and donor/acceptor ratio. Molecular descriptors nHD, TPSA, LogD, nHet, and MW were found to possess the most inherent capacities providing baseline information for the prediction of serum albumin binding site. We believe that these associations may form the bedrock for establishing a solid correlation between the physicochemical properties and Albumin binding site architecture. Information presented in this report would serve as critical in provisions of rational drug designing as well as drug delivery, bioavailability, and pharmacokinetics.
Collapse
Affiliation(s)
- Oluwole B Akawa
- Molecular Bio-computational and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4001, South Africa
| | - Felix O Okunlola
- Molecular Bio-computational and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4001, South Africa
| | - Mohammed Issa Alahmdi
- Faculty of Science, Department of Chemistry, University of Tabuk, Tabuk 7149, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabuk University, Tabuk 71491, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mahmoud A A Ibrahim
- Molecular Bio-computational and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4001, South Africa; Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519
| | - Mohamed F Shibl
- Renewable Energy Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Shahzeb Khan
- Centre for Pharmaceutical Engineering Science, Faculty of life Science, School of Pharmacy and Medical Sciences, University of Bradford UK, West Yorkshire, BD7 1DP, UK
| | - Mahmoud E S Soliman
- Molecular Bio-computational and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4001, South Africa.
| |
Collapse
|
36
|
Yang Y, He X, Xu S, Wang D, Liu Z, Xu Z. Post-imprinting modification of molecularly imprinted polymer for proteins detection: A review. Int J Biol Macromol 2023; 253:127104. [PMID: 37769758 DOI: 10.1016/j.ijbiomac.2023.127104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Inspired by protein post-translational modification (PTM), post-imprinting modification (PIM) has been proposed and developed to prepare novel molecularly imprinted polymers (MIPs), which are similar to functionalized biosynthetic proteins. The PIM involves site-directed modifications in the imprinted cavity of the MIP, such as introducing high-affinity binding sites and introducing fluorescent signal molecules. This modification makes the MIP further functionalized and improves the shortcomings of general molecular imprinting, such as single function, low selectivity, low sensitivity, and inability to fully restore the complex function of natural antibodies. This paper describes the characteristics of PIM strategies, reviews the latest research progress in the recognition and detection of protein biomarkers such as lysozyme, prostate-specific antigen, alpha-fetoprotein, human serum albumin, and peptides, and further discusses the importance, main challenges, and development prospects of PIM. The PIM technology has the potential to develop a new generation of biomimetic recognition materials beyond natural antibodies. It can be used in bioanalysis and other multitudinous fields for its unique features in molecule recognition.
Collapse
Affiliation(s)
- Yi Yang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaomei He
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Shufang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Dan Wang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
37
|
Wang P, Shi W, Zhao X, Zhao G, Ding L, Zhang S, Li J. The effect of nutritional biochemical indexes on the hospitalization outcome of COVID-19. Aging (Albany NY) 2023; 15:14445-14456. [PMID: 38095633 PMCID: PMC10756130 DOI: 10.18632/aging.205335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
Aims to investigate the relationship between nutritional biochemical indexes and hospitalization outcomes of COVID-19 patients, 132 continuous patients with COVID-19 from December 2022 to January 2023 in Lishui hospital were retrospectively analyzed, and the nutritional biochemical indexes in peripheral blood, such as total protein, albumin, calcium, phosphorus, and magnesium, were detected. Meanwhile, the levels of several cytokines and PBMC subtypes (CD4, CD3, CD8, NK and B cells) were detected too. The Spearman correlation analysis, one-way ANOVA and multivariate logit regression were conducted. Results suggested that the levels of total protein and albumin were significantly decreased in patients with poor outcomes, and the levels of calcium, phosphorus, and magnesium were significantly correlated with hospitalization outcomes. COVID-19 patients with diabetes had higher levels of IL-6 and IFN-γ than those patients without diabetes. The levels of IL-2, IFN-γ, IL-6 and Il-10 in the dead patients were significantly higher than those in the recovery and worse patients. Total protein and albumin were significantly positively correlated with levels of NK and B, CD4, CD8, CD3 lymphocytes. The levels of CD4, CD8 and CD3 lymphocytes were significantly decreased in dead patients than other patients. Multivariate logit regression analysis suggests that lymphocyte number, albumin and IL-6 are independent risk factors to evaluate the hospitalization outcome. In summary, nutritional biochemical indexes were significantly corelated with cytokines and PBMC subsets, and had an impact on the severity of COVID-19 patients. Improvement of low protein malnutrition is broad-spectrum and basic strategy to improve the hospitalization outcome of COVID-19.
Collapse
Affiliation(s)
- Peng Wang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Wenzhou Medical University and Lishui City People’s Hospital, Lishui 323000, Zhejiang Province, China
| | - Wenying Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, Guizhou, P.R. China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanan Zhao
- Department of Urology Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University and Lishui City People’s Hospital, Lishui 323000, Zhejiang Province, China
| | - Lidan Ding
- Department of Clinical Nutrition, The Sixth Affiliated Hospital of Wenzhou Medical University and Lishui City People’s Hospital, Lishui 323000, Zhejiang Province, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiaxin Li
- Department of Clinical Nutrition, The Sixth Affiliated Hospital of Wenzhou Medical University and Lishui City People’s Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
38
|
Meng S, Yu Q, Li M, Liu X, Zhao X, Wu K, Wang Q, Liu Y, Wu Y, Gong Z. Unveiling the molecular interactions between alkyl imidazolium ionic liquids and human serum albumin: Implications for toxicological significance. Chem Biol Interact 2023; 386:110762. [PMID: 37844773 DOI: 10.1016/j.cbi.2023.110762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Alkyl imidazolium-based ionic liquids (ILs) are promising for diverse industrial applications; however, their growing prevalence has raised concerns regarding human exposure and potential health implications. A critical aspect to be clarified to address the adverse health effects associated with ILs exposure is their binding mode to human serum albumin (HSA). In this study, we delved into the binding interactions between three alkyl imidazolium ILs (1-hexyl-3-methyl-imidazolium (C6[MIM]), 1-ethyl-3-methyl-imidazolium chloride (C8[MIM]) and 1-decyl-3-methyl-imidazolium (C10[MIM]) and human serum albumins (HSAs) using a comprehensive approach encompassing molecular docking and multi-spectroscopy (UV-visible, Fluorescence, Circular Dichroism, FTIR). Furthermore, for the first time, we developed an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach time to quantify plasma protein binding rates. Our results revealed that the ILs primarily bind to the hydrophobic cavity of HSA through hydrogen bonding and van der Waals forces, forming stable complexes via static quenching. This affected HSA's secondary structure, reducing α-helical content, particularly around specific residues. Equilibrium dialysis and ultrafiltration coupled with UPLC-MS/MS analysis showed modest plasma protein binding rates (17.84%-31.85%) for the three ILs, with no significant influence from alkyl chain effects or concentration relationship. Lower plasma protein binding rates can affect bioavailability and distribution of ILs, potentially influencing their toxicity. These findings provide critical insights into the potential toxicological implications at the molecular level, thereby contributing to continuous efforts to evaluate the risk profiles and ensure the safe utilization of these compounds.
Collapse
Affiliation(s)
- Shizhen Meng
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qingqing Yu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ming Li
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xin Liu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Xiaole Zhao
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Kejia Wu
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Qiao Wang
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yan Liu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yongning Wu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Zhiyong Gong
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
39
|
Messina GML, Campione P, Marletta G. Building Surfaces with Controlled Site-Density of Anchored Human Serum Albumin. ACS APPLIED BIO MATERIALS 2023; 6:4952-4960. [PMID: 37902234 DOI: 10.1021/acsabm.3c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Stable and uniform layers of protein molecules at the surface are important to build passive devices as well as active constructs for smart biointerfaces for a large number of biomedical applications. In this context, a strategy to build-up surfaces able to anchor protein molecules on specific and controlled surface sites has been developed. Human serum albumin (HSA) has been chosen as a model protein due to its important antithrombogenic properties and its features in cell response highly valuable for in vivo devices. Uniform self-assembled monolayers of 2,2':6'2″-terpyridines (SAM), whose sites were further employed to chelate copper and iron ions, forming SAM-Cu(II) and SAM-Fe(II) complexes, have been developed. The effect of two metal cations on the physicochemical features of SAM, including thickness, Young's modulus, and tip-monolayer adhesion factors, has been investigated. Protein adsorption at different concentrations showed that the copper ion-templated surfaces exhibit highly specific mass uptake, kinetic behavior, and recognition and anchoring of HSA molecules owing to the coordination sphere of the different cations. The results pave the way to the development of a more general strategy to obtain ordered and density-tuned arrays of specific metal cations, which in turn would drive the anchoring of precise proteins for different biological functions.
Collapse
Affiliation(s)
- Grazia M L Messina
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Paola Campione
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Giovanni Marletta
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
40
|
Lakis R, Sauvage FL, Pinault E, Marquet P, Saint-Marcoux F, El Balkhi S. Semi-synthetic human albumin isoforms: Production, structure, binding capacities and influence on a routine laboratory test. Int J Biol Macromol 2023; 250:126239. [PMID: 37572814 DOI: 10.1016/j.ijbiomac.2023.126239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Human Serum Albumin (HSA) undergoes Post-Translational-Modifications (PTMs) leading to isoforms affecting its oncotic and non-oncotic properties. HSA is comprised of several isoforms whose abundance may vary with pathologies such as diabetes, kidney and liver diseases. Studying their impact separately may help to understand their sources and potential pathogenicity and further their evaluation as biomarkers. The present study examined semi-synthetic HSA isoforms to investigate independently their structure by means of advanced mass spectrometry techniques (LC-TOF-MS and ICP-MS), influence on the HSA binding/antioxidant activities using a binding capacity test, and potential impact on albumin quantification by a routine immunoturbidimetric assay. Applying different chemical reactions to a commercial HSA solution, we obtained different solutions enriched up to 53 % of native HSA, 78 % of acetylated HSA, 71 % of cysteinylated HSA, 94 % of oxidized HSA, 58 % of nitrosylated HSA and 96 % of glycated HSA, respectively. Moreover, the semi-synthetic isoforms showed differently altered binding capacities for a panel of ligands (Cu, Cd, Au, Ds and L-T4). Furthermore, immunoturbidimetry was found to be insensitive to the presence and abundance of the different isoforms. The fully characterized semi synthetic HSA isoforms obtained should be useful to further investigate their pathogenicity and potential roles as biomarkers.
Collapse
Affiliation(s)
- Roy Lakis
- P&T, UMR1248, University of Limoges, National Institute for Health and Medical Research (INSERM), Limoges, France
| | - François-Ludovic Sauvage
- P&T, UMR1248, University of Limoges, National Institute for Health and Medical Research (INSERM), Limoges, France
| | - Emilie Pinault
- P&T, UMR1248, University of Limoges, National Institute for Health and Medical Research (INSERM), Limoges, France
| | - Pierre Marquet
- P&T, UMR1248, University of Limoges, National Institute for Health and Medical Research (INSERM), Limoges, France; Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges, France
| | - Franck Saint-Marcoux
- P&T, UMR1248, University of Limoges, National Institute for Health and Medical Research (INSERM), Limoges, France; Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges, France
| | - Souleiman El Balkhi
- P&T, UMR1248, University of Limoges, National Institute for Health and Medical Research (INSERM), Limoges, France; Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges, France.
| |
Collapse
|
41
|
Kowalska D, Dołżonek J, Żamojć K, Samsonov SA, Maszota-Zieleniak M, Makowska J, Stepnowski P, Białk-Bielińska A, Wyrzykowski D. Insights into the interaction of human serum albumin with ionic liquids - Thermodynamic, spectroscopic and molecular modelling studies. Int J Biol Macromol 2023; 249:125883. [PMID: 37499721 DOI: 10.1016/j.ijbiomac.2023.125883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Human serum albumin (HSA) effectively binds different types of low-molecular-weight compounds and thus enables their distribution in living organisms. Recently, it has been reported that the protein-ligand interactions play a crucial role in bioaccumulation processes and provide an important sorption phase, especially for ionogenic compounds. Therefore, the binding interactions of such compounds with proteins are the subject of an ongoing interest in environmental and life sciences. In this paper, the influence of some counter-ions, namely [B(CN)4]- and [C(CN)3]- on the affinity of the [IM1-12]+ towards HSA has been investigated and discussed based on experimental methods (isothermal titration calorimetry and steady-state fluorescence spectroscopy) and molecular dynamics-based computational approaches. Furthermore, the thermal stability of the resulting HSA/ligand complexes was assessed using DSC and CD spectroscopy. As an outcome of the work, it has been ascertained that the protein is able to bind simultaneously the ligands under study but in different regions of HSA. Thus, the presence in the system of [IM1-12]+ does not disturb the binding of [C(CN)3]- and [B(CN)4]-. The presented results provide important information on the presence of globular proteins and some ionogenic compounds in the distribution and bioaccumulation of ILs in the environment and living organisms.
Collapse
Affiliation(s)
- Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Krzysztof Żamojć
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sergey A Samsonov
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Martyna Maszota-Zieleniak
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
42
|
Hadidi S. A binuclear Cu(I)-phosphine complex as a specific HSA site I binder: synthesis, X-ray structure determination, and a comprehensive HSA interaction analysis. J Biomol Struct Dyn 2023; 41:7616-7626. [PMID: 36120938 DOI: 10.1080/07391102.2022.2123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
In this research, we present a method for synthesis and a detailed description of geometry characterization of a novel binuclear Cu(I) phosphine complex, along with analysis of its interaction with HSA using spectroscopic and simulation methods. The Cu atoms are coordinated in a tetrahedral geometry, which results in coordination by two nitrogen atoms from the N,N'-(ethane-1,2-diyl)bis(1-(pyridin-2-yl)methanimine ligand (L), a chloride, and a PPh3. The complex binding constant to HSA in a biochemical environment was determined to be ∼106, which is indicative of a strong interaction. The fluorescence of HSA is significantly quenched by binding to the complex via a static mechanism, whereas the microenvironment of the tryptophan residue remains unchanged. A spontaneous binding process was indicated by a negative value for ΔG. Thermodynamic signatures reflect the dominance of hydrophobic forces during the interaction. The site marker competitive experiment combined with docking simulation analysis revealed the closeness position of the complex binding site to warfarin location in specific ligand site I of HSA. The information generated in the present study would be valuable to understand the interaction mechanistic and pharmacological behavior of Cu(I) complexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
43
|
Mishra V, Pathak AK, Bandyopadhyay T. Binding of human serum albumin with uranyl ion at various pH: an all atom molecular dynamics study. J Biomol Struct Dyn 2023; 41:7318-7328. [PMID: 36099177 DOI: 10.1080/07391102.2022.2120080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Uranium is routinely handled in various stages of nuclear fuel cycle and its association with human serum albumin (HSA) has been reported in literature, however, their binding characteristics still remains obscure. The present study aims to understand interaction of uranium with HSA by employing all atom molecular dynamics simulation of the HSA-metal ion complex. His67, His247 and Asp249 residues constitute the major binding site of HSA, which capture the uranyl ion (UO22+). A total of six sets of initial coordinates are used for Zn2+-HSA and UO22+-HSA system at pH = 4, 7.4 and 9, respectively. Enhance sampling method, namely, well-tempered meta-dynamics (WT-MtD) is employed to study the binding and un-binding processes of UO22+ and Zn2+ ions. Potential of mean force (PMF) profiles are generated for all the six sets of complexes from the converged WT-MtD run. Various basins and barriers are observed along the (un)binding pathways. Hydrogen bond dynamics and short-range Coulomb interactions are evaluated from the equilibrium run at each basins and barriers for both the ions at all pH values. The binding of UO22+ ion with HSA is the result of the dynamical balance between UO22+-HSA and UO22+-water short range Coulomb interactions. Zn2+ ion interact more strongly than UO22+ at all pH through short range Coulomb interactions. PMF values further concludes that UO22+ cannot associate to the Zn2+ bound HSA protein but can be captured by free HSA at all pH values i.e. endosomal, alkaline and physiological pH.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vijayakriti Mishra
- Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Arup Kumar Pathak
- Homi Bhabha National Institute, Mumbai, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Tusar Bandyopadhyay
- Homi Bhabha National Institute, Mumbai, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
44
|
Tarek Ibrahim M, Tao P. Computational investigation of peptidomimetics as potential inhibitors of SARS-CoV-2 spike protein. J Biomol Struct Dyn 2023; 41:7144-7157. [PMID: 36038961 PMCID: PMC9971351 DOI: 10.1080/07391102.2022.2116601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Several variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were observed since the outbreak of the global pandemic at the end of 2019. The trimeric spike glycoprotein of the SARS-CoV-2 virus is crucial for the viral access to the host cell by interacting with the human angiotensin converting enzyme 2 (ACE2). Most of the mutations take place in the receptor-binding domain (RBD) of the S1 subunit of the trimeric spike glycoprotein. In this work, we targeted both S1 and S2 subunits of the spike protein in the wild type (WT) and the Omicron variant guided by the interaction of the neutralizing monoclonal antibodies. Virtual screening of two different peptidomimetics databases, ChEMBL and ChemDiv databases, was carried out against both S1 and S2 subunits. The use of these two databases provided diversity and enhanced the chance of finding protein-protein interaction inhibitors (PPIIs). Multi-layered filtration, based on physicochemical properties and docking scores, of nearly 114,000 compounds found in the ChEMBL database and nearly 14,000 compounds in the ChemDiv database was employed. Four peptidomimetics compounds were effective against both the WT and the Omicron S1 subunit with the minimum binding free energy of -25 kcal/mol. Five peptidomimetics compounds were effective against the S2 subunit with the minimum binding free energy of -19 kcal/mol. The dynamical cross-correlation matrix insinuated that the mutations of the RBD in the Omicron variant of the SARS-CoV-2 virus altered the correlated conformational motion of the different regions of the protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mayar Tarek Ibrahim
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
45
|
Badawy AB. The kynurenine pathway of tryptophan metabolism: a neglected therapeutic target of COVID-19 pathophysiology and immunotherapy. Biosci Rep 2023; 43:BSR20230595. [PMID: 37486805 PMCID: PMC10407158 DOI: 10.1042/bsr20230595] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023] Open
Abstract
SARS-CoV-2 (COVID-19) exerts profound changes in the kynurenine (Kyn) pathway (KP) of tryptophan (Trp) metabolism that may underpin its pathophysiology. The KP is the main source of the vital cellular effector NAD+ and intermediate metabolites that modulate immune and neuronal functions. Trp metabolism is the top pathway influenced by COVID-19. Sixteen studies established virus-induced activation of the KP mediated mainly by induction of indoleamine 2,3-dioxygenase (IDO1) in most affected tissues and of IDO2 in lung by the increased release of proinflammatory cytokines but could additionally involve increased flux of plasma free Trp and induction of Trp 2,3-dioxygenase (TDO) by cortisol. The major Kyn metabolite targeted by COVID-19 is kynurenic acid (KA), the Kyn metabolite with the greatest affinity for the aryl hydrocarbon receptor (AhR), which is also activated by COVID-19. AhR activation initiates two important series of events: a vicious circle involving IDO1 induction, KA accumulation and further AhR activation, and activation of poly (ADP-ribose) polymerase (PARP) leading to NAD+ depletion and cell death. The virus further deprives the host of NAD+ by inhibiting its main biosynthetic pathway from quinolinic acid, while simultaneously acquiring NAD+ by promoting its synthesis from nicotinamide in the salvage pathway. Additionally, the protective effects of sirtuin 1 are minimised by the PARP activation. KP dysfunction may also underpin the mood and neurological disorders acutely and during 'long COVID'. More studies of potential effects of vaccination therapy on the KP are required and exploration of therapeutic strategies involving modulation of the KP changes are proposed.
Collapse
Affiliation(s)
- Abdulla Abu-Bakr Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, U.K
| |
Collapse
|
46
|
Tan H, Ji Y, Lei H, Wang F, Dong H, Yang S, Zhou H, Deng H, Chen S, Kaplan DL, Xia Q, Wang F. Large-scale and cost-effective production of recombinant human serum albumin (rHSA) in transgenic Bombyx mori cocoons. Int J Biol Macromol 2023:125527. [PMID: 37379947 DOI: 10.1016/j.ijbiomac.2023.125527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
HSA is considered a versatile natural cargo carrier with multiple bio-functions and applications. However, insufficient supply of HSA has limited widespread use. Although various recombinant expression systems had been applied to produce the rHSA to overcome the limited resource, cost-effective and large scale production of rHSA remains a challenge. Herein, we provide a strategy for the large-scale and cost-effective production of rHSA in cocoons of transgenic silkworms, achieving a final 13.54 ± 1.34 g/kg of rHSA yield in cocoons. rHSA was efficiently synthesized and stable over the long-term in the cocoons at room temperature. Artificial control of silk crystal structure during silk spinning significantly facilitated rHSA extraction and purification, with 99.69 ± 0.33 % purity and a productivity of 8.06 ± 0.17 g rHSA from 1 kg cocoons. The rHSA had the same secondary structure to natural HSA, along with effective drug binding capacity, biocompatibility, and bio-safe. The rHSA was successfully evaluated as a potential substitute in serum-free cell culture. These findings suggest the silkworm bioreactor is promising for large-scale and cost-effective production of high quality rHSA to meet the increased worldwide demand.
Collapse
Affiliation(s)
- Huanhuan Tan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Yanting Ji
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Hexu Lei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Fangyu Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Huan Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Shifeng Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Hongji Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Hanxin Deng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Siyu Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China.
| | - Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
47
|
Wang C, He F, Sun K, Guo K, Lu S, Wu T, Gao X, Fang M. Identification and characterization of 7-azaindole derivatives as inhibitors of the SARS-CoV-2 spike-hACE2 protein interaction. Int J Biol Macromol 2023:125182. [PMID: 37276898 DOI: 10.1016/j.ijbiomac.2023.125182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has become a global public health crisis. The entry of SARS-CoV-2 into host cells is facilitated by the binding of its spike protein (S1-RBD) to the host receptor hACE2. Small molecule compounds targeting S1-RBD-hACE2 interaction could provide an alternative therapeutic strategy sensitive to viral mutations. In this study, we identified G7a as a hit compound that targets the S1-RBD-hACE2 interaction, using high-throughput screening in the SARS2-S pseudovirus model. To enhance the antiviral activity of G7a, we designed and synthesized a series of novel 7-azaindole derivatives that bind to the S1-RBD-hACE2 interface. Surprisingly, ASM-7 showed excellent antiviral activity and low cytotoxicity, as confirmed by pseudovirus and native virus assays. Molecular docking and molecular dynamics simulations revealed that ASM-7 could stably bind to the binding interface of S1-RBD-hACE2, forming strong non-covalent interactions with key residues. Furthermore, the binding of ASM-7 caused alterations in the structural dynamics of both S1-RBD and hACE2, resulting in a decrease in their binding affinity and ultimately impeding the viral invasion of host cells. Our findings demonstrate that ASM-7 is a promising lead compound for developing novel therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Chaojie Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Fengming He
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ke Sun
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Kaiqiang Guo
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Sheng Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Tong Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Meijuan Fang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
48
|
Kubczak M, Grodzicka M, Michlewska S, Karimov M, Ewe A, Aigner A, Bryszewska M, Ionov M. The effect of novel tyrosine-modified polyethyleneimines on human albumin structure - Thermodynamic and spectroscopic study. Colloids Surf B Biointerfaces 2023; 227:113359. [PMID: 37209597 DOI: 10.1016/j.colsurfb.2023.113359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The interaction of proteins with nanoparticle components are crucial for the evaluation of nanoparticle function, toxicity and biodistribution. Polyethyleneimines (PEIs) with defined tyrosine modifications are a class of novel polymers designed for improved siRNA delivery. Their interactions with biomacromolecules are still poorly described. This paper analyzes the interaction of different tyrosine-modified PEIs with human serum albumin as the most abundant serum protein. The ability of tyrosine modified, linear or branched PEIs to bind human serum albumin (HSA) was analyzed and further characterized. The interaction with hydrophobic parts of protein were studied using 1- nilinonaphthalene-8-sulfonic acid (ANS) and changes in the HSA secondary structure were evaluated using circular dichroism (CD). Complex formation and sizes were studied by transmission electron microscopy (TEM) and dynamic light scattering methods (DLS). We demonstrate that tyrosine modified PEIs are able to bind human serum albumin. Based on thermodynamic studies, van der Waals interaction, H-bonding and hydrophobic interactions are determined as main molecular forces involved in complex formation. Analysis of secondary structures revealed that the polymers decreased α-helix content, while increasing levels of randomly folded structures. Complex formation was confirmed by TEM and DLS. These findings are crucial for understanding polymer-protein interactions and the properties of nanoparticles.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland.
| | - Marika Grodzicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland; BioMedChem Doctoral School of the UL and Lodz Institutes of the Polish Academy of Science, Banacha 12/16, 90-237 Lodz, Poland
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland; Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland, Banacha 12/16, 90-237 Lodz, Poland
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
49
|
Baindara P, Chowdhury T, Roy D, Mandal M, Mandal SM. Surfactin-like lipopeptides from Bacillus clausii efficiently bind to spike glycoprotein of SARS-CoV-2. J Biomol Struct Dyn 2023; 41:14152-14163. [PMID: 37021470 DOI: 10.1080/07391102.2023.2196694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/02/2023] [Indexed: 04/07/2023]
Abstract
The coronavirus disease 2019 (COVID-19) rapidly spread across the globe, infecting millions and causing hundreds of deaths. It has been now around three years but still, it remained a serious threat worldwide, even after the availability of some vaccines. Bio-surfactants are known to have antiviral activities and might be a potential alternative for the treatment of SARS-CoV-2 infection. In the present study, we have isolated and purified, a surfactin-like lipopeptide produced by a probiotic bacterial strain Bacillus clausii TS. Upon purification and characterization with MALDI analysis, the molecular weight of the lipopeptide is confirmed as 1037 Da (similar to surfactin C) which is known to have antiviral activities against various enveloped viruses. Purified surfactin-like lipopeptide showed efficient binding and inhibition of SARS-CoV-2 spike (S1) protein, revealed by competitive ELISA assay. Further, we have explored the complete thermodynamics of the inhibitory binding of surfactin-like lipopeptide with S1 protein using isothermal titration calorimetric (ITC) assay. ITC results are in agreement with ELISA with a binding constant of 1.78 × 10-4 M-1. For further validation of the inhibitory binding of surfactin-like lipopeptide with S1 protein and its receptor binding domain (RBD), we performed molecular docking, dynamics, and simulation experiments. Our results suggested that surfactin could be a promising drug agent for the spike protein targeting drug development strategy against SARS-CoV-2 and other emerging variants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Radiation Oncology, University of Missouri, Columbia, MO, USA
| | - Trinath Chowdhury
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Dinata Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
50
|
Nemergut M, Sedláková D, Fabriciová G, Belej D, Jancura D, Sedlák E. Explanation of inconsistencies in the determination of human serum albumin thermal stability. Int J Biol Macromol 2023; 232:123379. [PMID: 36702231 DOI: 10.1016/j.ijbiomac.2023.123379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Thermal denaturation of human serum albumin has been the subject of many studies in recent decades, but the results of these studies are often conflicting and inconclusive. To clarify this, we combined different spectroscopic and calorimetric techniques and performed an in-depth analysis of the structural changes that occur during the thermal unfolding of different conformational forms of human serum albumin. Our results showed that the inconsistency of the results in the literature is related to the different quality of samples in different batches, methodological approaches and experimental conditions used in the studies. We confirmed that the presence of fatty acids (FAs) causes a more complex process of the thermal denaturation of human serum albumin. While the unfolding pathway of human serum albumin without FAs can be described by a two-step model, consisting of subsequent reversible and irreversible transitions, the thermal denaturation of human serum albumin with FAs appears to be a three-step process, consisting of a reversible step followed by two consecutive irreversible transitions.
Collapse
Affiliation(s)
- Michal Nemergut
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia
| | - Gabriela Fabriciová
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Dominik Belej
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia; Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia.
| |
Collapse
|