1
|
Gao H, Seidi F, Cai Y, Sun Z, Bian H, Dai H, Xu T. Construction of curcumin-conjugated pH-responsive lignin-based nanoparticles for alleviating oxidative stress: Stability, antioxidant activity and biocompatibility. Int J Biol Macromol 2025; 302:140036. [PMID: 39837443 DOI: 10.1016/j.ijbiomac.2025.140036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Curcumin has a great effect on alleviating oxidative stress, but its poor stability and low biocompatibility limit its application in therapeutic field. In order to overcome these limitations of curcumin, in this study, curcumin was grafted to lignin by esterification, and then prepared into nanoparticles. The results showed that the photothermal stability of curcumin was effectively improved. Moreover, cytotoxicity test showed that Lig-Cur nanoparticles can significantly improve the biocompatibility of curcumin. The ester bonds formed from conjugate also help Lig-Cur nanoparticles have pH-sensitivity in stimulated inflammatory tissue and release curcumin. Finally, by reducing proinflammatory factors, Lig-Cur nanoparticles could effectively scavenge reactive oxygen species (ROS). In addition to alleviating oxidative stress, Lig-Cur nanoparticles were expected to be used as a carrier platform for the treatment of many other inflammatory diseases.
Collapse
Affiliation(s)
- Huanli Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqun Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ziwei Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Tingting Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Li Y, Gu Y, Ao X. Nano selenium and plant extracts supplementation enhanced reproductive performance of parity-2 sows. Sci Rep 2025; 15:9678. [PMID: 40113837 PMCID: PMC11926131 DOI: 10.1038/s41598-025-92981-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
To investigate the effects of nano selenium (nano-Se), curcumin (CUR), and glycyrrhiza extracts (GE) on reproductive performance, antioxidant and immune functions of primiparous sows and parity-2 sows, 54 primiparous sows (Landrace × Yorkshire) were randomly divided into three groups (18 sows per group): (1) CON group, basal diet (0.30 mg·kg-1 Se, sodium selenite); (2) CUR group, basal diet + 0.20 mg·kg-1 Se (nano-Se) + 300 mg·kg-1 CUR; (3) GE group, basal diet + 0.20 mg·kg-1 Se (nano-Se) + 500 mg·kg-1 GE. The trial lasted for approximately 180 days from day 90 of gestation of primiparous sows to parity-2 sows. There were no significant differences in reproductive performance among three groups (p > 0.05), but the litter weight gain of piglets from primiparous sows in the GE group was 16.49% higher than that in the CON group (p < 0.05). Compared with the CON group, the serum SOD and GSH-Px levels of primiparous sows in the GE group were significantly increased, and the MDA content was extremely decreased. The concentrations of serum IL-6 and IL-1β (p < 0.05) of primiparous sows in the GE group were significantly lower than those in the CON group, and the serum IL-10 and TNF-α concentrations (p < 0.05) was significantly higher. The combination of nano-Se and CUR decreased the serum IL-1β level and increased the TNF-α concentration (p < 0.05). In conclusion, the addition of nano-Se along with CUR or GE in the diet of primiparous sows significantly increased the antioxidant and immune levels in the serum of primiparous sows at parturition, enhanced their stress resistance, and thus improved growth performance of offspring piglets and reproductive performance of parity-2 sows.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Yan Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiang Ao
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, 644000, China.
| |
Collapse
|
3
|
Wang H, Shi T, Ma J, Meng S, Wei Z, Sun Y, Wang H, Zhou M. Chitosan-based nanocomposite films incorporated with AgNPs/porphyrinic MOFs for killing pathogenic bacteria. Int J Biol Macromol 2025; 295:139584. [PMID: 39788251 DOI: 10.1016/j.ijbiomac.2025.139584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
In this work, a nanocomposite film, designated as CS/PA, was fabricated by integrating chitosan (CS), porphyrinic porous coordination network (PCN), and silver nanoparticles (AgNPs). PCN modified AgNPs was denoted as PCN-AgNPs (PA). The synthesis of PA was verified through transmission electron microscope, Zeta potential, hydrated particle size, element mapping. Furthermore, varying concentrations of PA (0.3 %, 0.4 %, 0.5 %, and 0.6 % w/w) were integrated into the CS matrix to preparate the CS/PA nanocomposite film. The experimental data demonstrated a significant enhancement (p < 0.05) in the tensile strength and elongation at break of the nanocomposite films, while water vapor permeability and water solubility significantly decreased (p < 0.05) as the PA content increased. Additionally, the CS/PA film showed good antibacterial properties against both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Notably, the CS/PA film effectively retarded the spoilage of fresh fish slices. The silver migration from the CS/PA film, measured at 33.02 μg/L, was found to be within the permissible limits set by the USEPA. Consequently, the CS/PA nanocomposite film holds immense promise for applications in food packaging industry.
Collapse
Affiliation(s)
- Huajuan Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China
| | - Tian Shi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiale Ma
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shutong Meng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ziyu Wei
- Public Inspection and Testing Center of Xianning, Xianning 437003, China
| | - Ying Sun
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China
| | - Hongxun Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China.
| | - Min Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China.
| |
Collapse
|
4
|
Lee CR, Lee SJ, Kim TI, Chathuranga K, Lee JS, Kim S, Kim MH, Park WH. Chitosan-gallic acid conjugate edible coating film for perishable fruits. Food Chem 2025; 463:141322. [PMID: 39303471 DOI: 10.1016/j.foodchem.2024.141322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Approximately 30 % of global agricultural land is used to produce food that is ultimately lost or wasted, making it imperative to explore strategies for mitigating this waste. This study explored the potential of chitosan (CS) derivatives as edible coatings to extend food shelf life. Although soluble CS derivatives such as glycol CS are suitable coatings, their antimicrobial properties often diminish with increased solubility. To address this issue, gallic acid (GA), a polyphenol, was conjugated with CS using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry to create edible coating solutions. The resulting CS-GA films exhibited remarkable solubility, mechanical strength, UV-blocking properties, and superior antioxidant and antimicrobial properties. Furthermore, these films exhibited a high affinity for hydrophobic fruit surfaces while also facilitating easy washing, making them an alternative for consumers who are averse to film-coated products. The CS-GA-coated fruits exhibited minimal surface spoilage, decreased mass loss, and increased firmness. Therefore, these CS-GA conjugate coatings hold significant potential as eco-friendly, edible, and washable food packaging coatings.
Collapse
Affiliation(s)
- Cho Rok Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Su Jin Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Tae In Kim
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Kiramage Chathuranga
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Jong Soo Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Sangsik Kim
- Department of Energy Chemical Engineering, Kyungpook National University, Sangju 37224, South Korea
| | - Min Hee Kim
- Department of Textile Engineering, Kyungpook National University, Sangju 37224, South Korea.
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
5
|
Geng F, Zhang M, Sun T, Xie J, Gan J, Li X, Xue B. Effect of molecular weight of chitosan on quercetin-loaded chitosan nanoparticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9531-9539. [PMID: 39096019 DOI: 10.1002/jsfa.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/22/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The widespread use of quercetin is limited by its instability, low solubility and poor oral bioavailability. Encapsulation of quercetin using a nanoparticle delivery system is an effective way to overcome these drawbacks. RESULTS The effect of the molecular weight (Mw) of chitosan (CS) (100, 200, 500 and 1000 kDa) on quercetin-loaded chitosan nanoparticles (QCNPs) was investigated. The structure, stability, release properties and antioxidant activities of the nanoparticles (QCNP-10, QCNP-20, QCNP-50 and QCNP-100) were assessed. Particle size of QCNPs decreased and polydispersity index increased with the increasing Mw of CS. The main forces involved in the formation of QCNPs were hydrogen bonding and hydrophobic interaction. X-ray diffraction verified that quercetin was loaded into CS nanoparticles. The photostability and thermal stability of QCNPs increased with increasing Mw of CS. QCNP-100 exhibited the lowest release rate in a mixture of water and anhydrous ethanol. The antioxidant activities of QCNPs were enhanced with increasing Mw of CS, and QCNP-100 possessed the highest antioxidant activities, which might be relevant to its smallest particle size. CONCLUSION Overall, these results revealed that the Mw of CS affected the properties of QCNPs, and QCNP-100 possessed the smallest particle, best stability, lowest release rate and highest antioxidant activities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Geng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Mengyang Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tao Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jianhong Gan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaohui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Bin Xue
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
6
|
Luo X, Zhao L, Khan IM, Yue L, Zhang Y, Wang Z. Chitosan-curcumin conjugate prepared by one-step free radical grafting: Characterization, and functional evaluation. Carbohydr Res 2024; 545:109297. [PMID: 39467401 DOI: 10.1016/j.carres.2024.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Curcumin (Cur) is a naturally hydrophobic polyphenol, and it has a wide range of physiological functions. But the practical application of Cur is constrained by its low water solubility and poor stability. To improve these deficiencies of Cur, a novel Cur derivative (CS-Cur) was prepared by grafting chitosan (CS) with Cur through a one-step reaction of a free radical-mediated redox system. A series of characterizations provided evidence that the grafting of CS with Cur was successful. The obtained CS-Cur showed lower crystallinity and thermal properties than CS and Cur. After grafting, the water solubility of CS-Cur was found to be 9.76 ± 2.45 g/L and greatly improved. Meanwhile, the CS-Cur showed good photothermal stability, antioxidant activity, and photodynamic antibacterial activity in an aqueous solution, and it had good in vitro biosafety. This provides an idea for the design and synthesis of novel highly water-soluble Cur derivatives and also improves the practical application of Cur in aqueous systems.
Collapse
Affiliation(s)
- Xuerong Luo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Lingyu Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Lin Yue
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
7
|
Yu F, Luo H, Wang Y, Wei Z, Li B, Zhao Y, Wu P, Wang J, Yang H, Gao J, Li Q, Pan J, Chen K, Wang H, Qi Z, Chen XD. Preparation of curcumin-loaded chitosan/lecithin nanoparticles with increased anti-oxidant activity and in vivo bioavailability. Int J Biol Macromol 2024; 281:136659. [PMID: 39423985 DOI: 10.1016/j.ijbiomac.2024.136659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
As a natural polyphenol, curcumin (Cur) has exhibited a range of bioactive properties, including anti-inflammatory, anti-oxidant, and anti-infection properties. However, the chemical instability and low water solubility of Cur hinder its wide application. Herein, Cur-loaded chitosan/lecithin nanoparticles (CCL NPs) were prepared by the electrostatic self-assembly method. The prepared CCL NPs showed a small particle size (122.86 ± 1.53 nm) with homogeneous distribution (PDI = 0.17 ± 0.01). The high EE (79.34 ± 2.93 %) and LC (9.33 ± 0.34 %) indicated that most of Cur was encapsulated in CCL NPs. Meanwhile, the Cur was released from CCL NPs in a quick and sustained way after being exposed to simulated gastrointestinal fluids. The CCL NPs displayed superior anti-oxidant activity than that of free Cur. Moreover, the in vivo pharmacokinetic studies showed that the CCL NPs could lead to a ~ 2.64-fold increase in oral bioavailability compared with that of free Cur. All these findings indicated that the formation of CCL NPs would be a promising platform to deliver Cur in the food industry.
Collapse
Affiliation(s)
- Fei Yu
- Medical College, Guangxi University, Nanning 530004, China
| | - Hongcheng Luo
- Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yuqin Wang
- Medical College, Guangxi University, Nanning 530004, China
| | - Zizhan Wei
- Medical College, Guangxi University, Nanning 530004, China
| | - Bangda Li
- Medical College, Guangxi University, Nanning 530004, China
| | - Yuanyuan Zhao
- Medical College, Guangxi University, Nanning 530004, China
| | - Peng Wu
- Suzhou Key Lab of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jingjing Wang
- Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou 215152, China
| | - Hua Yang
- Medical College, Guangxi University, Nanning 530004, China
| | - Jie Gao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Quanyang Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Junheng Pan
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Kuncheng Chen
- Department of Intensive Care Unit, Zhongshan Hospital of Xiamen University, Xiamen 361005, China.
| | - Huiyun Wang
- Department of Pharmacy, Jining Medical University, Rizhao 276826, China.
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530004, China.
| | - Xiao Dong Chen
- Suzhou Key Lab of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Chaschin IS, Perepelkin EI, Sinolits MA, Badun GA, Chernysheva MG, Ivanova NM, Vasil Ev VG, Kizas OA, Anuchina NM, Khugaev GA, Britikov DV, Bakuleva NP. Coating based on chitosan/vancomycin nanoparticles: Patterns of formation in a water-carbon dioxide biphase system and in vivo stability. Int J Biol Macromol 2024; 278:134940. [PMID: 39173806 DOI: 10.1016/j.ijbiomac.2024.134940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
The patterns of formation of chitosan nanoparticles doped with vancomycin and coatings based on them in carbonate solutions have been investigated for the first time in this study. Using a technique of radioactive indicators, it was found that at a CO2 pressure of 30 MPa, the yield of the nanoparticles was ∼85 %, and a maximum antibiotic encapsulation efficiency of ∼30 % was achieved. By spectrophotometric and high-resolution microscopy, it was found that the coating of stabilized xenopericardial tissue of bioprosthetic heart valve, based on chitosan nanoparticles doped with vancomycin with a zeta potential |ζ| ∼20 mV completely covers collagen fibers by depositing about 60 nm nanoparticles onto them under direct deposition from carbonic acid at a pressure of 30 MPa CO2. The coating preserves the mechanical strength characteristics of collagen tissue and completely suppresses the growth of S. aureus pathogenic biofilm. This is consistent with the observed increase in antibiotic release of 15 % when the medium was acidified. Histological study demonstrated that the structure of pericardial tissues was not significantly altered by the deposition nanoparticles from carbonic acid. It was found that the rate of biodegradation of polymers and vancomycin in the coating differs by half (16 weeks for the rat model). A significantly lower degradation rate of antibiotics (∼50 % of vancomycin total remaining mass and ∼25 % of chitosan) was associated with its reliable encapsulation into nanoparticles.
Collapse
Affiliation(s)
- Ivan S Chaschin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation; Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation.
| | - Evgenii I Perepelkin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation
| | - Maria A Sinolits
- Lomonosov Moscow State University, Chemistry Department, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - Gennadii A Badun
- Lomonosov Moscow State University, Chemistry Department, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - Maria G Chernysheva
- Lomonosov Moscow State University, Chemistry Department, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation.
| | - Nina M Ivanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation.
| | - Victor G Vasil Ev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation.
| | - Olga A Kizas
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation.
| | - Nelya M Anuchina
- Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation
| | - Georgiy A Khugaev
- Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation
| | - Dmitrii V Britikov
- Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation.
| | - Natalia P Bakuleva
- Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation
| |
Collapse
|
9
|
Jiang Y, Sun Y, Wei C, Li X, Deng W, Wu S, Kong F, Sheng L. Development and characterization of curcumin-loaded chitosan/egg yolk freshness-keeping edible films for chilled fresh pork packaging application. Int J Biol Macromol 2024; 276:133907. [PMID: 39019376 DOI: 10.1016/j.ijbiomac.2024.133907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
In this study, a novel fresh-keeping edible film was prepared using egg yolk (EY) and chitosan (CS) with varying concentrations of curcumin (Cur) for food packaging. The addition of Cur notably enhanced tensile strength, elongation at break, and water resistance from 15.70 MPa to 24.24 MPa, 43.79 % to 63.69 %, and 1.599 g·mm·(m2·h·kPa)-1 to 1.541 g·mm·(m2·h·kPa)-1, respectively. Cur also impacted moisture content, swelling degree, and film color. SEM revealed a uniform distribution of Cur, creating a smooth and dense film surface. FT-IR analysis suggested that hydrogen bonding facilitated Cur integration into the film network. The films demonstrated excellent UV-blocking and antioxidant properties attributed to Cur's chromogenic and phenolic hydroxyl groups. Consequently, they effectively inhibited lipid oxidation and weight loss in meat, thereby prolonging the shelf-life of chilled pork by at least 2 d. In conclusion, this study provided a simple and cost-effective idea to incorporate actives with EY as a natural emulsifier, presenting an effective solution for developing active packaging materials to enhance the safety and quality of meat products.
Collapse
Affiliation(s)
- Yiting Jiang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunxin Sun
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengfeng Wei
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wanqing Deng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sirui Wu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fandi Kong
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Liu M, Zou X, Wu X, Li X, Chen H, Pan F, Zhang Y, Fang X, Tian W, Peng W. Preparation of chitosan/Tenebrio molitor larvae protein/curcumin active packaging film and its application in blueberry preservation. Int J Biol Macromol 2024; 275:133675. [PMID: 38971287 DOI: 10.1016/j.ijbiomac.2024.133675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
With growing concerns about postharvest spoilage of fruits, higher requirements have been placed on high-performance and sustainable active packaging materials. In this study, we prepared curcumin-based functional composite films using chitosan (CS) and Tenebrio molitor larvae protein (TMP) as the substrates. The effects of curcumin concentration on the structural and physicochemical properties of the composite films were determined. Curcumin was equally distributed in the polymer film through physical interactions. Furthermore, the curcumin composite film with 0.3 % addition exhibited a 27.39 % increase in elongation at break (EBA), a 37.04 % increase in the water vapor barrier, and strong UV-blocking properties and antioxidant activity compared with the control film (CS/TMP). The degradation experiment of the composite film on natural soil revealed that the composite film exhibited good biodegradability and environmental protection. Furthermore, the applicability of functional composite films for preserving blueberries was investigated. Compared with the control film and polyethylene (PE) films, the prepared composite films packaging treatment reduced the decay rate and weight loss rate of blueberries during storage, delayed softening and aging, and maintained the quality of blueberries. Using sustainable protein resources (TMP) and natural polysaccharides as packaging materials provides an economically, feasible and sustainable way to achieve the functional preservation of biomass materials.
Collapse
Affiliation(s)
- Mengyao Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xu Zou
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xinning Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiangxin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hualei Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuan Zhang
- School of plant protection, Anhui agricultural university, Hefei 230036, China
| | - Xiaoming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
11
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
12
|
Jin J, Luo B, Xuan S, Shen P, Jin P, Wu Z, Zheng Y. Degradable chitosan-based bioplastic packaging: Design, preparation and applications. Int J Biol Macromol 2024; 266:131253. [PMID: 38556240 DOI: 10.1016/j.ijbiomac.2024.131253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Food packaging is an essential part of food transportation, storage and preservation. Biodegradable biopolymers are a significant direction for the future development of food packaging materials. As a natural biological polysaccharide, chitosan has been widely concerned by researchers in the field of food packaging due to its excellent film-forming property, good antibacterial property and designability. Thus, the application research of chitosan-based food packaging films, coatings and aerogels has been greatly developed. In this review, recent advances on chitosan-based food packaging materials are summarized. Firstly, the development background of chitosan-based packaging materials was described, and then chitosan itself was introduced. In addition, the design, preparation and applications of films, coatings and aerogels in chitosan-based packaging for food preservation were discussed, and the advantages and disadvantages of each research in the development of chitosan-based packaging materials were analyzed. Finally, the application prospects, challenges and suggestions for solving the problems of chitosan-based packaging are summarized and prospected.
Collapse
Affiliation(s)
- Jing Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bodan Luo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Simin Xuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Chau TP, Saravanan M, Al-Ansari MM, Al-Dahmash ND, Kuriakose LL, Sindhu R. Antimicrobial and biocompatibility nature of methanol extract of Lannea coromandelica bark and edible coating film preparation for fruit preservation. ENVIRONMENTAL RESEARCH 2024; 243:117861. [PMID: 38070851 DOI: 10.1016/j.envres.2023.117861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/22/2023]
Abstract
This research was performed to evaluate the antimicrobial activity of methanol extract of Lannea coromandelica bark against fruit damage causing microbes such as fungi: Alternaria sp., Aspergillus sp., Botrytis sp., Cladosporium sp., Fusarium sp., Penicillium sp., Phytophthora sp., and Trichoderma sp. The bacteria: such as Chromobacter sp., Enterobacter sp., Erwinia sp., Flavobacterium sp., Lactobacillus sp., Pseudomonas sp., and Xanthomonas sp. was investigated. Furthermore, their biocompatibility nature was determined through animal (rat) model study and their fruit preserving potential was determined by edible coating preparation with chitosan and other substances. Interestingly, the extract showed dose dependent (1000 μg mL-1) activity against these microbes in the following order: Enterobacter sp. (26.4 ± 1.5) > Chromobacter sp. (25.4 ± 1.6) > Pseudomonas sp. (24.5 ± 1.3) > Flavobacterium sp. (24.3 ± 1.4) > Xanthomonas sp. (23.6 ± 1.6) > Erwinia sp. (23.6 ± 1.6) > Lactobacillus sp. (19.6 ± 1.3). Similarly, the antifungal activity was found as Penicillium sp. (32.6 ± 1.3) > Cladosporium sp. (32.6 ± 1.5) > Alternaria sp. (30.3 ± 1.2) > Aspergillus sp. (29.9 ± 1.8) > Botrytis sp. (29.8 ± 1.2) > Fusarium sp. (28.6 ± 1.5) > Trichoderma sp. (19.8 ± 1.4) > Phytophthora sp. (16.2 ± 1.1). The acute toxicity and histopathological study results revealed that the extract possesses biocompatible in nature. The illumination transmittance and active functional groups involved in interaction among test methanol extract and chitosan investigated by UV-vis and Fourier-transform infrared spectroscopy (FTIR) analyses and found average light transmittance and few vital functional groups accountable for optimistic interaction to creak edible coating. Approximately four (set I-IV) treatment sets were prepared, and it was discovered that all of the coated Citrus maxima fruit quality characteristics including total soluble solids (TSS), weight loss (%), pH of fruit pulp juice, and decay percentage were significantly (p>0.05) better than uncoated fruit.
Collapse
Affiliation(s)
- Tan Phat Chau
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Mythili Saravanan
- Department of Pharmaceutical Sciences, North Carolina Central University, USA
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nora Dahmash Al-Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Laya Liz Kuriakose
- Department of Food Technology, TKM Institute of Technology, Kollam, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, Kerala, India.
| |
Collapse
|
14
|
Wibowo C, Salsabila S, Muna A, Rusliman D, Wasisto HS. Advanced biopolymer-based edible coating technologies for food preservation and packaging. Compr Rev Food Sci Food Saf 2024; 23:e13275. [PMID: 38284604 DOI: 10.1111/1541-4337.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 01/30/2024]
Abstract
Along with the growth of the world's population that reduces the accessibility of arable land and water, demand for food, as the fundamental element of human beings, has been continuously increasing each day. This situation not only becomes a challenge for the modern food chain systems but also affects food availability throughout the world. Edible coating is expected to play a significant role in food preservation and packaging, where this technique can reduce the number of food loss and subsequently ensure more sustainable food and agriculture production through various mechanisms. This review provides comprehensive information related to the currently available advanced technologies of coating applications, which include advanced methods (i.e., nanoscale and multilayer coating methods) and advanced properties (i.e., active, self-healing, and super hydrophobic coating properties). Furthermore, the benefits and drawbacks of those technologies during their applications on foods are also discussed. For further research, opportunities are foreseen to develop robust edible coating methods by combining multiple advanced technologies for large-scale and more sustainable industrial production.
Collapse
Affiliation(s)
- Condro Wibowo
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Syahla Salsabila
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | - Aulal Muna
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | - David Rusliman
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | | |
Collapse
|
15
|
Pandey AK, Sanches Silva A, Chávez-González ML, Singh P. Recent advances in delivering free or nanoencapsulated Curcuma by-products as antimicrobial food additives. Crit Rev Biotechnol 2023; 43:1257-1283. [PMID: 36130809 DOI: 10.1080/07388551.2022.2110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
Food commodities are often contaminated by microbial pathogens in transit or during storage. Hence, mitigation of these pathogens is necessary to ensure the safety of food commodities. Globally, researchers used botanicals as natural additives to preserve food commodities from bio-deterioration, and advances were made to meet users' acceptance in this domain, as synthetic preservatives are associated with harmful effects to both consumers and environments. Over the last century, the genus Curcuma has been used in traditional medicine, and its crude and nanoencapsulated essential oils (EOs) and curcuminoids were used to combat harmful pathogens that deteriorate stored foods. Today, more research is needed for solving the problem of pathogen resistance in food commodities and to meet consumer demands. Therefore, Curcuma-based botanicals may provide a source of natural preservatives for food commodities that satisfy the needs both of the food industry and the consumers. Hence, this article discusses the antimicrobial and antioxidant properties of EOs and curcuminoids derived from the genus Curcuma. Further, the action modes of Curcuma-based botanicals are explained, and the latest advances in nanoencapsulation of these compounds in food systems are discussed alongside knowledge gaps and safety assessment where the focus of future research should be placed.
Collapse
Affiliation(s)
- Abhay K Pandey
- Department of Mycology and Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Mónica L Chávez-González
- Food Research Departments, School of Chemistry, Autonomous University of Coahuila, Saltillo, México
| | - Pooja Singh
- Bacteriology and Natural Pesticide Laboratory, Department of Botany, DDU Gorakhpur University, Gorakhpur, India
| |
Collapse
|
16
|
Tosif MM, Bains A, Dhull SB, Chawla P, Goksen G. Effect of Aloe vera and carboxymethyl cellulose-derived binary blend edible coating on the shelf life of fresh-cut apple. Food Sci Nutr 2023; 11:6987-6999. [PMID: 37970395 PMCID: PMC10630825 DOI: 10.1002/fsn3.3623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 11/17/2023] Open
Abstract
In recent years, the demand and market for minimally processed fruits are increasing worldwide. Fresh-cut apples are extremely sensitive to environmental factors including oxygen, temperature, and microorganisms in resulting the browning of apples. Therefore, in this study, different concentration of blended edible-coating solution was prepared using Aloe vera and carboxymethyl cellulose (1:1, 1:2, 2:1, 3:3, 3:2, 4:2, 2:4, 3:4, and 4:3, respectively). Lease particle size (101.74 ± 0.67 nm) of the coating solution was observed with 3% A. vera and 2% carboxymethyl cellulose (CMC). Afterward, the shelf life of the apples was evaluated for 10 days at refrigeration condition. Results showed that a significant difference was found in weight loss of coated (6.42%-10.26%) and uncoated apples (8.12%-15.32%) for 2-10 days. Moreover, the titrable acidity of the cut apples increased during the storage time. Rheological data emerged that the viscosity of the coating solution decreases with the increasing temperature from 0 to 50°C. Fourier transform infrared spectroscopy data confirmed the presence of hydroxyl group (-OH), C=O, C-O, and N-H banding in the A. vera, CMC, and blend-coating solution. The blend solution indicated excellent antimicrobial efficiency. Total phenolic content of coated and uncoated apples at 0 day was 737.55 mg GAE kg-1 for uncoated and 717.88 mg GAE kg-1, respectively. Whereas, aerobic and psychrotrophic bacteria counts for edible coated apples significantly lower than control apples. For coated apples, aerobic and psychrotrophic bacteria counts were 1.59 ± 0.84 and 1.25 ± 0.49 log CFU g-1 were 4.26 ± 0.67 and 2.68 ± 0.22 log CFU g-1 at 10th day, respectively. Overall, it can be inferred that blend of A. vera and carboxymethyl cellulose could be used as a nontoxic potential anti-browning and antimicrobial component for the enhancement of the shelf life and additional nutritional value of fresh-cut apples.
Collapse
Affiliation(s)
- Mansuri M. Tosif
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraIndia
| | - Aarti Bains
- Department of MicrobiologyLovely Professional UniversityPhagwaraIndia
| | - Sanju Bala Dhull
- Department of Food Science and TechnologyChaudhary Devi Lal UniversitySirsaIndia
| | - Prince Chawla
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraIndia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial ZoneTarsus UniversityMersinTurkey
| |
Collapse
|
17
|
Perez-Vazquez A, Barciela P, Carpena M, Prieto MA. Edible Coatings as a Natural Packaging System to Improve Fruit and Vegetable Shelf Life and Quality. Foods 2023; 12:3570. [PMID: 37835222 PMCID: PMC10572534 DOI: 10.3390/foods12193570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
In the past years, consumers have increased their interest in buying healthier food products, rejecting those products with more additives and giving preference to the fresh ones. Moreover, the current environmental situation has made society more aware of the importance of reducing the production of plastic and food waste. In this way and considering the food industry's need to reduce food spoilage along the food chain, edible coatings have been considered eco-friendly food packaging that can replace traditional plastic packaging, providing an improvement in the product's shelf life. Edible coatings are thin layers applied straight onto the food material's surface that are made of biopolymers that usually incorporate other elements, such as nanoparticles or essential oils, to improve their physicochemical properties. These materials must provide a barrier that can prevent the passage of water vapor and other gasses, microbial growth, moisture loss, and oxidation so shelf life can be extended. The aim of this review was to compile the current data available to give a global vision of the formulation process and the different ways to improve the characteristics of the coats applied to both fruits and vegetables. In this way, the suitability of compounds in by-products produced in the food industry chain were also considered for edible coating production.
Collapse
Affiliation(s)
| | | | | | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain; (A.P.-V.); (P.B.); (M.C.)
| |
Collapse
|
18
|
Ulagesan S, Krishnan S, Nam TJ, Choi YH. The Influence of κ-Carrageenan-R-Phycoerythrin Hydrogel on In Vitro Wound Healing and Biological Function. Int J Mol Sci 2023; 24:12358. [PMID: 37569731 PMCID: PMC10419105 DOI: 10.3390/ijms241512358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Wound healing is widely recognized as a critical issue impacting the healthcare sector in numerous countries. The application of wound dressings multiple times in such instances can result in tissue damage, thereby increasing the complexity of wound healing. With the aim of tackling this necessity, in the present study, we have formulated a hydrogel using natural polysaccharide κ-carrageenan and phycobiliprotein R-phycoerythrin from Pyropia yezoensis. The formulated hydrogel κ-Carrageenan-R-Phycoerythrin (κ-CRG-R-PE) was analyzed for its antioxidant and antimicrobial activity. The wound healing potential of the κ-CRG-R-PE was evaluated in Hs27 cells by the wound scratch assay method. The hydrogel showed dose-dependent antioxidant activity and significant antimicrobial activity at 100 μg/mL concentration. κ-CRG-R-PE hydrogels promoted more rapid and complete wound closure than κ-Carrageenan (κ-CRG) hydrogel at 24 and 48 h. κ-CRG-R-PE hydrogels also filled the wound within 48 h of incubation, indicating that they positively affect fibroblast migration and wound healing.
Collapse
Affiliation(s)
- Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea;
| | - Sathish Krishnan
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Republic of Korea; (S.K.); (T.-J.N.)
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Republic of Korea; (S.K.); (T.-J.N.)
| | - Youn-Hee Choi
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea;
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Republic of Korea; (S.K.); (T.-J.N.)
| |
Collapse
|
19
|
Taheriazam A, Entezari M, Firouz ZM, Hajimazdarany S, Hossein Heydargoy M, Amin Moghadassi AH, Moghadaci A, Sadrani A, Motahhary M, Harif Nashtifani A, Zabolian A, Tabari T, Hashemi M, Raesi R, Jiang M, Zhang X, Salimimoghadam S, Ertas YN, Sun D. Eco-friendly chitosan-based nanostructures in diabetes mellitus therapy: Promising bioplatforms with versatile therapeutic perspectives. ENVIRONMENTAL RESEARCH 2023; 228:115912. [PMID: 37068723 DOI: 10.1016/j.envres.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nanoparticles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these nanocarriers in DM therapy.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Hossein Amin Moghadassi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amin Sadrani
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
20
|
Lv Y, Su L, Zhao Z, Zhao J, Su H, Zhang Z, Wang Y. Chitosan Microspheres Loaded with Curcumin and Gallic Acid: Modified Synthesis, Sustainable Slow Release, and Enhanced Biological Property. Curr Microbiol 2023; 80:240. [PMID: 37296240 DOI: 10.1007/s00284-023-03352-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Improving the utilization rate of loaded-drugs is of huge importance for generating chitosan-based (CS) micro-carriers. This study aims to fabricate a novel CS microspheres co-delivered curcumin (Cur) and gallic acid (Ga) to assess drug loading and release kinetics, the blood compatibility and anti-osteosarcoma properties. The present study observes the interaction between CS and Cur/Ga molecules and estimates the change in crystallinity and loading and release rate. In addition, blood compatibility and cytotoxicity of such microspheres are also evaluated. Cur-Ga-CS microspheres present high entrapment rate of (55.84 ± 0.34) % for Ga and (42.68 ± 0.11) % for Cur, possibly attributed to surface positive charge (21.76 ± 2.46) mV. Strikingly, Cur-Ga-CS microspheres exhibit slowly sustainable release for almost 7 days in physiological buffer. Importantly, these microspheres possess negligibly toxic to blood and normal BMSC cells, but strong anti-osteosarcoma effect on U2OS cells. Overall, Cur-Ga-CS microspheres are promising to become a novel anti-osteosarcoma agent or sustainable delivery carrier in biomedical applications.
Collapse
Affiliation(s)
- Yan Lv
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
| | - Lijia Su
- The Third-Grade Pharmacological Laboratory On Traditional, Chinese Medicine (Approved By State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, 443002, China
| | - Zihang Zhao
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
| | - Jinying Zhao
- The Third-Grade Pharmacological Laboratory On Traditional, Chinese Medicine (Approved By State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, 443002, China
| | - Huahua Su
- The Third-Grade Pharmacological Laboratory On Traditional, Chinese Medicine (Approved By State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, 443002, China
| | - Zhikai Zhang
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
| | - Yanhua Wang
- Department of Morphology, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
- The Analysis and Testing Center, China Three Gorges University, Yichang, 443002, China.
- Life Science Building, China Three Gorges University, No. 8 Daxue Road, Yichang, 443002, China.
| |
Collapse
|
21
|
Lan X, Liu Y, Wang L, Wang H, Hu Z, Dong H, Yu Z, Yuan Y. A review of curcumin in food preservation: Delivery system and photosensitization. Food Chem 2023; 424:136464. [PMID: 37247602 DOI: 10.1016/j.foodchem.2023.136464] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
As a natural polyphenol, curcumin has been used as an alternative to synthetic preservatives in food preservation. Different from previous reviews that mainly focus on the pH-responsive discoloration of curcumin to detect changes in food quality in real time, this paper focuses on the perspective of the delivery system and photosensitization of curcumin for food preservation. The delivery system is an effective means to overcome the challenges of curcumin like instability, hydrophobicity, and low bioavailability. Curcumin as a photosensitizer can effectively sterilize to preserve food. The practical fresh-keeping effects of the delivery system and photosensitization of curcumin on foods (fruits/vegetables, animal-derived food, and grain) were summarized comprehensively, including shelf-life extension, maintenance of physicochemical properties, nutritional quality, and sensory. Future research should focus on the development of novel curcumin-loaded materials used for food preservation, and most importantly, the biosafety and accumulation toxicity associated with these materials should be explored.
Collapse
Affiliation(s)
- Xiang Lan
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yueyue Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lei Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Haiyan Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhe Hu
- Hisense Ronshen (Guangdong) Refrigerator Co., Ltd., Foshan 528303, China
| | - Hao Dong
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhiwen Yu
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
22
|
Yu X, Yang Y, Liu Q, Jin Z, Jiao A. A hydroxypropyl methylcellulose/hydroxypropyl starch nanocomposite film reinforced with chitosan nanoparticles encapsulating cinnamon essential oil: Preparation and characterization. Int J Biol Macromol 2023; 242:124605. [PMID: 37116838 DOI: 10.1016/j.ijbiomac.2023.124605] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Active packaging derived from polysaccharides plays an important role in prolonging the shelf life of food. In this study, cinnamon essential oil (CEO)-loaded chitosan nanoparticles (CNs) were prepared and embedded in hydroxypropyl methylcellulose (HPMC)/hydroxypropyl starch (HPS) blends to enhance the physicochemical and biofunctional properties of the formed films. Different concentrations (25, 50, 75, and 100 μL/mL) of CEOs were encapsulated with CNs to form CEO-CNs, as confirmed by Fourier Transform Infrared Spectrometer (FTIR), X-Ray Diffraction (XRD), and scanning electron microscope (SEM) images. The prepared CEO-CNs were incorporated into the HPMC/HPS film-forming matrix to prepare reinforced nanocomposite films. SEM images showed that the CEO-CNs were dispersed in the HPMC/HPS matrix, thus filling the void space in the composite matrix and significantly improving the mechanical and barrier properties of the bio-nanocomposite films. The elongation at break of the reinforced films improved from 8.54 ± 0.53 MPa to 24.81 ± 0.47 MPa, and the water vapor permeability was reduced by nearly 30 %. FTIR and XRD analyses indicated the formation of hydrogen bonds between CEO-CNs and HPMC/HPS polymer molecules. Release studies showed that the nanocomposite film was capable of sustained release of CEO, which imparted antioxidant (radical scavenging activity of 27.66-42.19 %) and antimicrobial properties (inhibition of Escherichia coli and Aspergillus flavus growth). Therefore, these HPMC/HPS nanocomposite films with enhanced properties may have great potential for food preservation.
Collapse
Affiliation(s)
- Xuepeng Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Qing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
23
|
Luo Y, Wang J, Lv T, Wang H, Zhou H, Ma L, Zhang Y, Dai H. Chitosan particles modulate the properties of cellulose nanocrystals through interparticle interactions: Effect of concentration. Int J Biol Macromol 2023; 240:124500. [PMID: 37080408 DOI: 10.1016/j.ijbiomac.2023.124500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
The physical and chemical properties of cellulose nanocrystals (CNC) were regulated by physical crosslinking with chitosan particles (CSp). At a fixed concentration (0.5 wt%) of CNC, varying CSp concentration (0.02-0.5 wt%) influenced the morphologies and chemical properties of the obtained complex particles (CNC-CSp). The results of Fourier transform infrared spectroscopy (FTIR) and zeta potential confirmed the electrostatic and hydrogen bonding interactions between CSp and CNC. At a low CSp concentration (0.02-0.05 wt%), the charge shielding effect induced the formation of particle aggregation networks, thus showing increased viscosity, turbidity and size (153.4-2605.7 nm). At a higher CSp concentration (0.1-0.5 wt%), the hydrogen bonding interaction promoted CSp adsorption onto the surface of CNC, thus facilitating the dispersion of CNC-CSp due to electrostatic repulsion caused by surface-adsorbed CSp. In addition, CSp improved the thermal stability, hydrophobicity (41.87-60.02°) and rheological properties of CNC. Compared with CNC, CNC-CSp displayed a better emulsifying ability and emulsion stability, in which CSp could play a dual role (i.e., charge regulator and stabilizer). This study suggests that introducing CSp can improve the properties and application potentials of CNC as food colloids.
Collapse
Affiliation(s)
- Yuyuan Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Junjie Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tianyi Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, Chongqing 400715, China.
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
24
|
Ren G, He Y, Lv J, Zhu Y, Xue Z, Zhan Y, Sun Y, Luo X, Li T, Song Y, Niu F, Huang M, Fang S, Fu L, Xie H. Highly biologically active and pH-sensitive collagen hydrolysate-chitosan film loaded with red cabbage extracts realizing dynamic visualization and preservation of shrimp freshness. Int J Biol Macromol 2023; 233:123414. [PMID: 36708891 DOI: 10.1016/j.ijbiomac.2023.123414] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Accurate and efficient detection of food freshness is of great significance to guarantee food safety. Herein, pH sensitive colorimetric films with considerable biological activities have been prepared by combining red cabbage anthocyanin extracts (RCE) with collagen hydrolysate-chitosan (CH-CS) matrix film. The formation mechanism of CH-CS-RCE films was discussed by SEM, FT-IR and XRD, which showed that RCE was successfully fixed in CH-CS film through hydrogen bonding and electrostatic interaction. The CH-CS-RCE films exhibited good mechanical properties, high barrier ability, excellent thermal stability, significant antioxidant and antimicrobial activity, and especially sensitive response to pH and ammonia. Fickian diffusion was the main mechanism for the release of RCE from CH-CS-RCE films and such release mechanism facilitated the maintenance of functional features of films. During the storage of shrimps at 4 °C, CH-CS-RCE2% showed a remarkable preservation effect on shrimps, and their shelf life was prolonged from 2 d to 5 d. Furthermore, CH-CS-RCE2% provided a dynamic visual color switching to detect the freshness of shrimp, realizing real-time monitoring of freshness. Color information (RGB) extracted via smartphone APP was used to enhance the accuracy and universality of freshness indication. Thus, this multifunctional film has great potential in food preservation and freshness monitoring.
Collapse
Affiliation(s)
- Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Junfei Lv
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Zhengfang Xue
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yujing Zhan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yufan Sun
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Xin Luo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ting Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yuling Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Fuge Niu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
25
|
Zeng Z, Yang YJ, Tu Q, Jian YY, Xie DM, Bai T, Li SS, Liu YT, Li C, Wang CX, Liu AP. Preparation and characterization of carboxymethyl chitosan/pullulan composite film incorporated with eugenol and its application in the preservation of chilled meat. Meat Sci 2023; 198:109085. [PMID: 36640716 DOI: 10.1016/j.meatsci.2022.109085] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 01/08/2023]
Abstract
To solve the problem of easy spoilage of chilled meat during storage, we fabricated a novel composite film using carboxymethyl chitosan (CMCS)/pullulan (Pul)/eugenol (E) by casting method. The results showed that the mechanical properties of the films were better when the CMCS/Pul ratio was 2.5/2.5. The Fourier transform infrared spectroscopy (FTIR) results showed that intermolecular hydrogen bonds were formed among E, CMCS, and Pul, which was consistent with the rheological test results. Scanning electron microscopic (SEM) images showed that eugenol was well dispersed in the CMCS/Pul matrix. The addition of eugenol significantly increased the antibacterial properties and antioxidant properties. Moreover, when 5% eugenol was added, the water vapor permeability (WVP) of the film reduced to 2.41 × 10-11 g/m·s·Pa. Finally, the freshness of the chilled meat wrapped with the eugenol-containing composite film was prolonged, thereby offering a potential alternative to synthetic materials.
Collapse
Affiliation(s)
- Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yu-Jing Yang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qian Tu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yu-Ying Jian
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Da-Ming Xie
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Shan-Shan Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yun-Tao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Cai-Xia Wang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ai-Ping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
26
|
Mendes CG, Martins JT, Lüdtke FL, Geraldo A, Pereira A, Vicente AA, Vieira JM. Chitosan Coating Functionalized with Flaxseed Oil and Green Tea Extract as a Bio-Based Solution for Beef Preservation. Foods 2023; 12:foods12071447. [PMID: 37048269 PMCID: PMC10093991 DOI: 10.3390/foods12071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Ecological and safe packaging solutions arise as pivotal points in the development of an integrated system for sustainable meat production. The aim of this study was to assess the effect of a combined chitosan (Ch) + green tea extract (GTE) + essential oil (thyme oil, TO; flaxseed oil, FO; or oregano oil, OO) coating on the safety and quality of vacuum-packaged beef during storage at 4 °C. An optimized bio-based coating formulation was selected (2% Ch + 2% GTE + 0.1% FO) to be applied to three fresh beef cuts (shoulder, Sh; knuckle, Kn; Striploin, St) based on its pH (5.8 ± 0.1), contact angle (22.3 ± 0.4°) and rheological parameters (viscosity = 0.05 Pa.s at shear rate > 20 s-1). Shelf-life analysis showed that the Ch-GTE-FO coating delayed lipid oxidation and reduced total viable counts (TVC) and Enterobacteriaceae growth compared with uncoated beef samples over five days. In addition, Ch-GTE-FO coating decreased total color changes of beef samples (e.g., ∆E* = 9.84 and 3.94, for non-coated and coated Kn samples, respectively) for up to five days. The original textural parameters (hardness, adhesiveness and springiness) of beef cuts were maintained during storage when Ch-GTE-FO coating was applied. Based on the physicochemical and microbial characterization results, the combination of the Ch-GTE-FO coating developed was effective in preserving the quality of fresh beef cuts during refrigerated storage along with vacuum packaging.
Collapse
Affiliation(s)
- Cíntia G Mendes
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Joana T Martins
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Fernanda L Lüdtke
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Geraldo
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, University of Evora, 7006-554, Évora, Portugal
| | - Alfredo Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, University of Evora, 7006-554, Évora, Portugal
| | - António A Vicente
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Jorge M Vieira
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
27
|
Zhao L, Ding X, Khan IM, Yue L, Zhang Y, Wang Z. Preparation and characterization of curcumin/chitosan conjugate as an efficient photodynamic antibacterial agent. Carbohydr Polym 2023; 313:120852. [PMID: 37182952 DOI: 10.1016/j.carbpol.2023.120852] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Curcumin (Cur) is a natural pigment with excellent biological activity. The poor stability and insolubility of Cur in water severely limit its application. Therefore, to overcome these dilemmas which are big hindrances in their application, a novel derivative (COCS-Cur) was prepared by the esterification reaction of carboxylated chitosan (COCS) and Cur. The structure and properties of conjugate were determined through a series of characterizations. The derivatives had excellent solubility as well as stability. In addition, antioxidant and photodynamic antibacterial experiments proved that COCS-Cur had the excellent free radical scavenging ability and photodynamic antibacterial activity. The derivatives presented a better antibacterial effect on Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli). Noteworthy, the COCS-Cur derivatives showed no obvious toxicity which makes them a stronger contender and potential antimicrobial agent or functional nutrient for application in the food industry.
Collapse
|
28
|
Wang Z, Ng K, Warner RD, Stockmann R, Fang Z. Application of cellulose- and chitosan-based edible coatings for quality and safety of deep-fried foods. Compr Rev Food Sci Food Saf 2023; 22:1418-1437. [PMID: 36717375 DOI: 10.1111/1541-4337.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/21/2022] [Accepted: 01/15/2023] [Indexed: 02/01/2023]
Abstract
Excessive oil uptake and formation of carcinogens, such as acrylamide (AA), heterocyclic amines (HCAs), and polycyclic aromatic hydrocarbons (PAHs), during deep-frying are a potential threat for food quality and safety. Cellulose- and chitosan-based edible coatings have been widely applied to deep-fried foods for reduction of oil uptake because of their barrier property to limit oil ingress, and their apparent inhibition of AA formation. Cellulose- and chitosan-based edible coatings have low negative impacts on sensory attributes of fried foods and are low cost, nontoxic, and nonallergenic. They also show great potential for reducing HCAs and PAHs in fried foods. The incorporation of nanoparticles improves mechanical and barrier properties of cellulose and chitosan coatings, which may also contribute to reducing carcinogens derived from deep-frying. Considering the potential for positive health outcomes, cellulose- and chitosan-based edible coatings could be a valuable method for the food industry to improve the quality and safety of deep-fried foods.
Collapse
Affiliation(s)
- Zun Wang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Robyn Dorothy Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Chen Y, Liu Y, Dong Q, Xu C, Deng S, Kang Y, Fan M, Li L. Application of functionalized chitosan in food: A review. Int J Biol Macromol 2023; 235:123716. [PMID: 36801297 DOI: 10.1016/j.ijbiomac.2023.123716] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Environmental and sustainability issues have received increasing attention in recent years. As a natural biopolymer, chitosan has been developed as a sustainable alternative to traditional chemicals such as food preservation, food processing, food packaging, and food additives due to its abundant functional groups and excellent biological functions. This review analyzes and summarizes the unique properties of chitosan, with a particular focus on the mechanism of action for its antibacterial and antioxidant properties. This provides a lot of information for the preparation and application of chitosan-based antibacterial and antioxidant composites. In addition, chitosan is modified by physical, chemical and biological modifications to obtain a variety of functionalized chitosan-based materials. The modification not only improves the physicochemical properties of chitosan, but also enables it to have different functions and effects, showing promising applications in multifunctional fields such as food processing, food packaging, and food ingredients. In the current review, applications, challenges, and future perspectives of functionalized chitosan in food will be discussed.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Yong Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qingfeng Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shanggui Deng
- Engineering Research Center of Food Thermal Processing Technology, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, Zhejiang, China
| | - Yongfeng Kang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China.
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
30
|
Fabrication, Evaluation, and Antioxidant Properties of Carrier-Free Curcumin Nanoparticles. Molecules 2023; 28:molecules28031298. [PMID: 36770966 PMCID: PMC9920916 DOI: 10.3390/molecules28031298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Curcumin (Cur), a natural hydrophobic polyphenolic compound, exhibits multiple beneficial biological activities. However, low water solubility and relative instability hinder its application in food fields. In this study, carrier-free curcumin nanoparticles (CFC NPs) were prepared by adding the DMSO solution of Cur into DI water under continuous rapid stirring. The morphology of CFC NPs was a spherical shape with a diameter of 65.25 ± 2.09 nm (PDI = 0.229 ± 0.107), and the loading capacity (LC) of CFC NPs was as high as 96.68 ± 0.03%. The thermal property and crystallinity of CFC NPs were investigated by XRD. Furthermore, the CFC NPs significantly accelerated the release of Cur in vitro owing to its improved water dispersibility. Importantly, CFC NPs displayed significantly improved DPPH radical scavenging activity. Overall, all these results suggested that CFC NPs would be a promising vehicle to widen the applications of Cur in food fields.
Collapse
|
31
|
Zhang L, Chen D, Yu D, Regenstein JM, Jiang Q, Dong J, Chen W, Xia W. Modulating physicochemical, antimicrobial and release properties of chitosan/zein bilayer films with curcumin/nisin-loaded pectin nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Preparation of nano-composites based on curcumin/chitosan-PVA-alginate to improve stability, antioxidant , antibacterial and anticancer activity of curcumin. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Pedro AC, Paniz OG, Fernandes IDAA, Bortolini DG, Rubio FTV, Haminiuk CWI, Maciel GM, Magalhães WLE. The Importance of Antioxidant Biomaterials in Human Health and Technological Innovation: A Review. Antioxidants (Basel) 2022; 11:1644. [PMID: 36139717 PMCID: PMC9495759 DOI: 10.3390/antiox11091644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023] Open
Abstract
Biomaterials come from natural sources such as animals, plants, fungi, algae, and bacteria, composed mainly of protein, lipid, and carbohydrate molecules. The great diversity of biomaterials makes these compounds promising for developing new products for technological applications. In this sense, antioxidant biomaterials have been developed to exert biological and active functions in the human body and industrial formulations. Furthermore, antioxidant biomaterials come from natural sources, whose components can inhibit reactive oxygen species (ROS). Thus, these materials incorporated with antioxidants, mainly from plant sources, have important effects, such as anti-inflammatory, wound healing, antitumor, and anti-aging, in addition to increasing the shelf-life of products. Aiming at the importance of antioxidant biomaterials in different technological segments as biodegradable, economic, and promising sources, this review presents the main available biomaterials, antioxidant sources, and assigned biological activities. In addition, potential applications in the biomedical and industrial fields are described with a focus on innovative publications found in the literature in the last five years.
Collapse
Affiliation(s)
| | | | | | - Débora Gonçalves Bortolini
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Paraná, Brazil
| | - Fernanda Thaís Vieira Rubio
- Departamento de Engenharia Química, Universidade de São Paulo, Escola Politécnica, Sao Paulo 05508-080, Sao Paulo, Brazil
| | | | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba 81280-340, Paraná, Brazil
| | - Washington Luiz Esteves Magalhães
- Embrapa Florestas, Colombo 83411-000, Paraná, Brazil
- Programa de Pós-Graduação em Engenharia e Ciência dos Materiais—PIPE, Universidade Federal do Paraná, Curitiba 81531-990, Paraná, Brazil
| |
Collapse
|
34
|
Zelikina D, Chebotarev S, Komarova A, Balakina E, Antipova A, Martirosova E, Anokhina M, Palmina N, Bogdanova N, Lysakova E, Borisova M, Semenova M. Efficiency of an oral delivery system based on a liposomal form of a combination of curcumin with a balanced amount of n-3 and n-6 PUFAs encapsulated in an electrostatic complex of WPI with chitosan. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Samling BA, Assim Z, Tong WY, Leong CR, Rashid SA, Nik Mohamed Kamal NNS, Muhamad M, Tan WN. Cynometra cauliflora essential oils loaded-chitosan nanoparticles: Evaluations of their antioxidant, antimicrobial and cytotoxic activities. Int J Biol Macromol 2022; 210:742-751. [PMID: 35513100 DOI: 10.1016/j.ijbiomac.2022.04.230] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
Nanoencapsulation has appeared as an alternative approach to protect the bioactive constituents of essential oils (EOs) and to improve their properties. In this study, Cynometra cauliflora essential oils (CCEOs) were nanoencapsulated in chitosan nanoparticles (CSNPs) using an emulsion-ionic gelation technique. Transmission electron microscopy (TEM) images illustrated a well dispersion and spherical shape of C. cauliflora EOs-loaded chitosan nanoparticles (CCEOs-CSNPs) with an average size of less than 100 nm. In addition to that, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) analyses revealed the success of CCEOs nanoencapsulation. The encapsulation efficiency (EE) was in the range of 38.83% to 44.16% while the loading capacity (LC) reached 32.55% to 33.73%. The antioxidant activity (IC50) of CCEOs-CSNPs was ranged from 21.65 to 259.13 μg/mL when assessed using DPPH radical scavenging assay. CCEOs-CSNPs showed an appreciable antimicrobial effects on diabetic wound microorganisms. Notably, cytotoxic effects against human breast cancer MCF-7 and MDA-MB-231 cells recorded IC50 of 3.72-17.81 μg/mL and 16.24-17.65 μg/mL, respectively, after 72 h treatment. Interestingly, no cytotoxicity against human breast normal MCF-10A cells was observed. Thus, nanoencapsulation using CSNPs could improve the properties of CCEOs in biomedical related applications.
Collapse
Affiliation(s)
- Benedict Anak Samling
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Zaini Assim
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Woei-Yenn Tong
- Universiti Kuala Lumpur, Branch Campus Institute of Medical Science Technology, 43000 Kajang, Selangor, Malaysia
| | - Chean-Ring Leong
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, 78000 Melaka, Malaysia
| | - Syarifah Ab Rashid
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, 78000 Melaka, Malaysia
| | - Nik Nur Syazni Nik Mohamed Kamal
- Cluster of Integrative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Musthahimah Muhamad
- Cluster of Integrative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
36
|
Wu W, Liu L, Goksen G, Demir D, Shao P. Multidimensional (0D-3D) nanofillers: fascinating materials in the field of bio-based food active packaging. Food Res Int 2022; 157:111446. [DOI: 10.1016/j.foodres.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
|
37
|
Edible Bioactive Film with Curcumin: A Potential "Functional" Packaging? Int J Mol Sci 2022; 23:ijms23105638. [PMID: 35628450 PMCID: PMC9147907 DOI: 10.3390/ijms23105638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Edible packaging has been developed as a biodegradable and non-toxic alternative to traditional petroleum-based food packaging. Biopolymeric edible films, in addition to their passive protective function, may also play a bioactive role as vehicles for bioactive compounds of importance to human health. In recent years, a new generation of edible food packaging has been developed to incorporate ingredients with functional potential that have beneficial effects on consumer health. Curcumin, a bioactive compound widely used as a natural dye obtained from turmeric rhizomes (Curcuma longa L.), has a broad spectrum of beneficial properties for human health, such as anti-inflammatory, anti-hypertensive, antioxidant, anti-cancer, and other activities. To demonstrate these properties, curcumin has been explored as a bioactive agent for the development of bioactive packaging, which can be referred to as functional packaging and used in food. The aim of this review was to describe the current and potential research on the development of functional-edible-films incorporating curcumin for applications such as food packaging.
Collapse
|
38
|
ZHOU M, LI F, CHEN J, WU Q, ZOU Z. Research progress on natural bio-based encapsulation system of curcumin and its stabilization mechanism. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.78422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Man ZHOU
- Sichuan Agricultural University, China
| | - Fuli LI
- Sichuan Agricultural University, China
| | - Jie CHEN
- Sichuan Agricultural University, China
| | | | | |
Collapse
|