1
|
Tan C, Xiang Z, Wang S, He H, Li X, Xu M, Guo X, Pu Y, Zhen J, Dong W. Diosmin alleviates colitis by inhibiting PANoptosis of intestinal epithelial cells and regulating gut microbiota and metabolites. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156671. [PMID: 40138774 DOI: 10.1016/j.phymed.2025.156671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/14/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Inflammatory bowel disease (IBD), particularly ulcerative colitis (UC), is a chronic inflammatory disorder characterized by an unclear etiology, often linked to gut microbiota dysbiosis and immune dysregulation. Existing UC therapies are constrained by suboptimal efficacy and adverse effects, underscoring the necessity for novel therapeutic strategies. Diosmin (DIO), a naturally occurring flavonoid, has demonstrated anti-inflammatory and antioxidant potential, yet its precise mechanisms and therapeutic role in colitis remain poorly understood. PURPOSE This study aimed to investigate the therapeutic efficacy and mechanistic underpinnings of DIO in dextran sulfate sodium (DSS)-induced colitis, with a focus on its effects on intestinal epithelial cell PANoptosis, gut microbiota composition, fecal metabolites, and an in vitro inflammatory model using human colonic epithelial cells. STUDY DESIGN A controlled experimental design was employed, utilizing a DSS-induced murine colitis model and an LPS-induced inflammatory model in human colonic epithelial cells (NCM460). Mice were allocated into four groups: normal control, DSS-induced colitis, low-dose DIO (DIO-L, 100 mg/kg), and high-dose DIO (DIO-H, 200 mg/kg). In vitro experiments involved treating NCM460 cells with varying DIO concentrations post-LPS stimulation to assess its impact on inflammation and epithelial barrier integrity. METHODS Mice were administered DIO orally at 100 mg/kg or 200 mg/kg daily. Therapeutic outcomes were evaluated through body weight monitoring, Disease Activity Index (DAI) scoring, and histopathological examination. Gut microbiota composition was analyzed via 16S rRNA sequencing, while untargeted metabolomics was employed to profile fecal metabolites. Data integration was performed using O2PLS and WGCNA to identify microbiota-metabolite correlations. In vitro, immunofluorescence staining and Western blotting were utilized to evaluate the expression of tight junction proteins (ZO-1, E-cadherin, and Occludin). RESULTS DIO administration significantly ameliorated colitis symptoms in mice, as evidenced by attenuated weight loss, reduced DAI scores, and preserved colon length. Histopathological analysis confirmed diminished inflammation and tissue damage in DIO-treated groups. Mechanistically, DIO suppressed the expression of PANoptosis-associated genes and proteins, including ZBP1 and Caspase-1, while maintaining epithelial barrier integrity in vitro. Furthermore, DIO modulated gut microbiota composition, promoting beneficial taxa such as Ruminococcus and reducing pathogenic Proteobacteria. Metabolomic profiling revealed alterations in key metabolic pathways, including flavonoid and steroid hormone biosynthesis, which correlated with microbiota changes. CONCLUSION DIO effectively mitigates DSS-induced colitis by inhibiting intestinal epithelial cell PANoptosis, preserving barrier function, and modulating gut microbiota and metabolite profiles. These findings highlight DIO's potential as a therapeutic agent for IBD and warrant further exploration of its clinical applications.
Collapse
Affiliation(s)
- Cheng Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zixuan Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Department of General Practice, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shuo Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Haodong He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiangyun Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Miao Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xingzhou Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Pu
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Department of General Practice, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Junhai Zhen
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Department of General Practice, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Zeng D, Ren W, Zhao B, Li Y, Jiao J, Mo T. Glycyrrhiza pallidiflora Polysaccharide Ameliorates DSS-Induced Colitis by Protecting Intestinal Barrier Integrity. Cell Biochem Biophys 2025:10.1007/s12013-025-01765-8. [PMID: 40346348 DOI: 10.1007/s12013-025-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Ulcerative colitis (UC) is an idiopathic inflammatory bowel disease. Glycyrrhiza pallidiflora polysaccharide (GPP) is an important constituent of a species of Glycyrrhiza pallidiflora, but its therapeutic mechanism in UC mice is not clear. A dextran sulphate sodium salt (DSS)-induced mouse model of UC was established, and GPP was extracted by ultrasound-assisted extraction, optimised to a GPP content of 25.66% by one-factor optimisation. The effects of different doses (100, 200, 300 mg/kg) of GPP on UC were investigated. The results showed that GPP could delay the trend of weight loss, reduce the DAI score and decrease colon damage in mice, and GPP had a better ameliorative effect on enteritis, which provided a theoretical basis for studying the effect of natural products on UC.
Collapse
Affiliation(s)
- Dandan Zeng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Weijie Ren
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Bo Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuanyuan Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jinlong Jiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Shi D, Xu X, Wang J, Bu T, Sun P, Yang K, Cai M. Synergistic anti-inflammatory effects of Ganoderma lucidum polysaccharide and ganoderic acid A on LPS-induced RAW264.7 cells by inhibition of TLR4/NF-κB activation. Int J Biol Macromol 2025; 309:143074. [PMID: 40220822 DOI: 10.1016/j.ijbiomac.2025.143074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Ganoderma lucidum, a food-grade medicinal mushroom, is rich in biologically active components that offer significant health benefits. This study investigated the synergistic anti-inflammatory effects of Ganoderma lucidum polysaccharide (GLP-1) and ganoderic acid A (GAA) in RAW264.7 cells. GLP-1 was a low molecular weight β-D-glucan with an alternating backbone structure formed by →3)-β-D-Glcp-(1 → and →4)-β-D-Glcp-(1 → linkages. Notably, significant synergistic effects were observed at a mass concentration ratio of GAA: GLP-1 of 1:4. The combination of GLP-1 and GAA more effectively inhibited the production of NO, pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) and reactive oxygen species (ROS) compared to each component alone. Additionally, the combination increased anti-inflammatory cytokine levels (IL-10) and restored mitochondrial membrane potential. RT-qPCR and Western blot results suggested that GLP-1 and GAA may co-target the TLR4/NF-κB signaling pathways to achieve their synergistic anti-inflammatory effects. These findings provide valuable insights for future synergistic application of active ingredients from natural products.
Collapse
Affiliation(s)
- Dongcheng Shi
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Xinhui Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jian Wang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Tingting Bu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China.
| |
Collapse
|
4
|
Wang W, Li H, Yang D, Cai W, Che H, Li H. Study on the ameliorative effect of marine fungus Hansfordia sinuosae extracellular polysaccharide on DSS-induced ulcerative colitis and depression-like behavior. Int J Biol Macromol 2025; 309:142852. [PMID: 40188913 DOI: 10.1016/j.ijbiomac.2025.142852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/12/2025] [Accepted: 04/03/2025] [Indexed: 05/10/2025]
Abstract
Colitis has become a public health problem in recent years due to its high incidence rate. The extracellular polysaccharides produced by microorganisms were reported to possess the ability to alleviate colitis. A mannan (HPA) was isolated from the fermented broth of the marine fungus Hansfordia sinuosae, and its effect on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) was investigated in vivo. The results showed that HPA could relieve the disease symptoms and colon pathological injury of UC mice. Further mechanism analysis indicated that HPA repressed the level of NLRP3 inflammasome and inflammatory mediators TNF-α and IL-1β, and promoted the production of IL-10. HPA repaired the colonic barrier by increasing the expression of tight junction proteins ZO-1 and occludin, as well as the number of goblet cells. It also restored the imbalance of the gut microbiota caused by DSS treatment by enhancing the abundance of beneficial bacteria such as Clostridia UCG-014 and Bifidobacterium, while reducing the abundance of potentially harmful bacteria like Escherichia-Shigella and Enterococcus. Besides, HPA relieved the depression-like behavior of UC mice by inhibiting inflammatory response and activation of astrocyte and microglia in brain tissues. In short, HPA had the potential to be developed as functional foods or drugs for the treatment of colitis and accompanied depression-like behavior.
Collapse
Affiliation(s)
- Wei Wang
- College of Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huiru Li
- College of Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dezhao Yang
- College of Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wanshuang Cai
- College of Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongxia Che
- College of Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongyan Li
- College of Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
5
|
Yu H, Nie Y, Zhang B, Xue J, Xue K, Huang X, Zhang X. Creatine supplementation in largemouth bass (Micropterus salmoides) diets: Improving intestinal health and alleviating enteritis. FISH & SHELLFISH IMMUNOLOGY 2025; 159:110164. [PMID: 39894092 DOI: 10.1016/j.fsi.2025.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Creatine plays an important role in regulating intestinal epithelial cell energy metabolism, epithelial integrity, and intestinal barrier function. In this study, three feeds with varying creatine concentrations (0 %, 0.5 %, and 4 %, labeled CR0, CR0.5, and CR4, respectively) were formulated and administered to juvenile largemouth bass (Micropterus salmoides) for 8 weeks. Creatine-containing diets significantly improved growth performance and intestinal villus height. Microbiota analysis revealed that creatine-containing diets changed the beta diversity of gut microbes and increased the relative proportion of Cetobacterium. Enteritis was induced for 7 days using the corresponding feeds containing creatine and 2 % DSS (labeled CR0, DCR0, DCR0.5, and DCR4). Enteritis resulted in an increase in hif1α expression in the DCR0.5 and DCR4 groups and a significant increase expression of creatine transporter SLC6A8. QPCR and Western blotting of intestinal barrier-related genes (e.g., Claudin1, Claudin4, and ZO1), MUC2 immunohistochemistry, and PAS mucus staining were used to show intestinal barrier status, these results suggest that dietary creatine attenuates the extent of intestinal barrier damage. After TUNEL and KI67 immunofluorescence analyses of the intestine and detection of the expression of relevant genes at the protein and transcript levels, the results showed that dietary addition of creatine significantly alleviated intestinal apoptosis and cellular inflammatory responses due to DSS-induced enteritis. These findings indicate long-term dietary supplementation with creatine modulated the microbial composition of the intestinal lumen of juvenile largemouth bass, promoted intestinal health, and improved anti-inflammatory properties following enteritis induction. This study provides a theoretical foundation for largemouth bass feed formulation optimization and fish enteritis control.
Collapse
Affiliation(s)
- Haodong Yu
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yukang Nie
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Boran Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiajie Xue
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Kun Xue
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xixuan Huang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China; Research Institute of Huanong-Tianchen, Wuhan, 430070, China.
| |
Collapse
|
6
|
Li Y, Yue X, Ren X, Pang Y, Wang T, Huangfu B, Mikhailovich ZA, Vasilievich KV, Zhang M, Luan Y, Wang Q, He X. Mare milk and fermented mare milk alleviate dextran sulfate sodium salt-induced ulcerative colitis in mice by reducing inflammation and modulating intestinal flora. J Dairy Sci 2025; 108:2182-2198. [PMID: 39647629 DOI: 10.3168/jds.2024-25181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Mare milk (MM) and fermented mare milk (FM) are specialized animal milks with high nutritional value, containing a variety of functionally active substances that are capable of resisting inflammatory responses and oxidative stress. However, little relevant research on the maintenance of intestinal homeostasis has been performed. This study aimed to investigate the effects of MM and FM on the prevention of dextran sulfate sodium salt (DSS)-induced ulcerative colitis in a mouse model and to preliminarily elucidate the underlying mechanisms. The results showed that MM and FM had different degrees of protective effects against the damage caused by DSS and alleviated ulcerative colitis by inhibiting weight loss, reducing colon length shortening, and restoring intestinal structure. Additionally, MM and FM maintained intestinal tight junction protein levels to repair barrier function, downregulated inflammatory cytokines (e.g., IL-1β, TNF-α, IL-6, and iNOS) and bolstered the body's antioxidant defense system. Moreover, MM and FM regulated dysregulation of the intestinal microenvironment by improving the diversity of the gut microbiota and reshaping its structure, including increasing the proportion of Firmicutes and Bacteroidetes and the relative abundance of beneficial bacterial genera (e.g., Akkermansia). In summary, MM and FMM can serve as dietary resources for preventing ulcerative colitis and maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | - Xiaoyu Yue
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193
| | - Xinxin Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | - Yang Pang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | - Teng Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | | | | | - Mu Zhang
- Shenyang Agricultural University, Shenyang, China 110161
| | - Yue Luan
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193
| | - Qin Wang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193.
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083.
| |
Collapse
|
7
|
Deng L, Feng Z, Li X, Fan L, Wu X, Tavakoli S, Zhu Y, Ye H, Wu K. Exploring the potential mechanism of B-phycoerythrin on DSS-induced colitis and colitis-associated bone loss based on network pharmacology, molecular docking, and experimental validation. Sci Rep 2025; 15:5455. [PMID: 39953092 PMCID: PMC11828949 DOI: 10.1038/s41598-025-90011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
B-phycoerythrin (B-PE), a pigment protein, has found extensive applications in the food, pharmaceutical, and cosmetic industries. However, the effects and potential mechanisms of B-PE on colitis and colitis-associated bone loss remain unclear. Thus, the aim of this study was to investigate the pharmacological mechanisms of B-PE against colitis and colitis-associated bone loss using network pharmacology analysis, molecular docking, and experimental validation. Based on public databases, 99 common targets of B-PE against inflammatory bowel disease and osteoporosis were predicted. The protein-protein interaction network identified 16 core targets, including TNF, AKT1, EGFR, etc., as hub targets. Additionally, functional enrichment analyses and molecular docking results revealed that the PI3K/AKT signaling pathway may serve as a potential signaling pathway for B-PE in the treatment of colitis and colitis-associated bone loss. Furthermore, pharmacological experiments indicated that B-PE not only reversed the elevated expression of TNF-α, IL-1β, MMP9, and CXCL8a, and the reduced expression of ZO-1, E-cadherin, COL1A1, and RUNX2 in the DSS-induced colitis zebrafish model, but also enhanced the phosphorylation of PI3K and AKT, thereby mitigating inflammatory response and promoting osteogenesis. In conclusion, this study provides a theoretical basis for considering B-PE as a promising candidate for the treatment of colitis and colitis-associated bone loss.
Collapse
Affiliation(s)
- Luming Deng
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, 524023, China
| | - Zhenhui Feng
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China
| | - Xingyan Li
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China
| | - Lvhua Fan
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xia Wu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China
| | - Samad Tavakoli
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuzhen Zhu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China
| | - Hua Ye
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
- Zhanjiang Engineering Research Center for Algae High-value Utilization, Zhanjiang, 524023, China.
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Kefeng Wu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
- Zhanjiang Engineering Research Center for Algae High-value Utilization, Zhanjiang, 524023, China.
- Guangdong Engineering Technology Research Center for the Development and Utilization of Mangrove Wetland Medicinal Resources, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
8
|
Chen W, Ma X, Jin W, Cheng H, Xu G, Wen H, Xu P. Shellfish polysaccharides: A comprehensive review of extraction, purification, structural characterization, and beneficial health effects. Int J Biol Macromol 2024; 279:135190. [PMID: 39216565 DOI: 10.1016/j.ijbiomac.2024.135190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Global food systems are currently facing great challenges, such as food sources, food safety, and environmental crises. Alternative nutritional resources have been proposed as part of the solution to meeting future global food demand. In the natural resources, shellfish are the major component of global aquatic animals. Although most studies focus on the allergy, toxin, and contamination of shellfish, it is also a delicious food to the human diet rich in proteins, polysaccharides, minerals, and omega-3. Among the functional ingredients, shellfish polysaccharides possess nutritional and medicinal values that arouse the great interest of researchers. The selection of the extraction approach and the experimental condition are the key factors that influence the extraction efficiency of shellfish polysaccharides. Importantly, the purification of crude polysaccharides comprises the enrichment of shellfish polysaccharides and isolation of fractions, also resulting in various structural characteristics and physicochemical properties. Chemical modification is also an efficient method to further improve the biological activities of shellfish polysaccharides. This review summarizes the extraction, purification, structural characterization, and chemical modification methods for shellfish polysaccharides. Additionally, the beneficial health effects of shellfish polysaccharides are highlighted, with an emphasis on their potential mechanism. Finally, current challenges and perspectives on shellfish polysaccharides are also spotlighted.
Collapse
Affiliation(s)
- Wanwen Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wu Jin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Pao Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
9
|
Yuan L, Liu C, Li B, Wang S, Sun J, Mao X. Multi-omics analysis reveals that agaro-oligosaccharides with different degrees of polymerization alleviate colitis in mice by regulating intestinal flora and arginine synthesis. Food Funct 2024; 15:10628-10643. [PMID: 39310981 DOI: 10.1039/d4fo03650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Inflammatory bowel disease (IBD) is a common chronic disease with a complex etiology, characterized by body weight loss, intestinal barrier damage, and an imbalance of intestinal flora, posing a significant threat to people's health. In this work, we studied whether safer natural active agaro-oligosaccharides (AOSs) benefit mice with IBD and elucidated their underlying mechanisms. The findings indicated that oral administration of agarobiose (A2), agarotriose (A3), and agarotetraose (A4) contributed to alleviating body weight loss and colon shortening, as well as enhancing IL-10 levels while reducing IL-6, IL-1β, and TNF-α. AOSs improved colon disruption, reduced the number of goblet cells caused by DSS, and enhanced the expression of Muc2, ZO-1, and occludin-1 to repair the intestinal barrier. It is noteworthy that A3 demonstrated superior outcomes in the evaluated AOSs relative to A2 and A4. This was evidenced by an increase in Bacteroidota and reduced Firmicutes at the phylum level, which corrected DSS-induced intestinal dysbiosis and significantly restored disrupted metabolic pathways, including amino acid and lipid metabolism. The differential metabolites between the AOS treatment groups and the model group were mainly enriched in arginine synthesis with co-regulated critical substances N-acetyl-L-citrulline and N2-acetylornithine, which alleviated colitis. This evidence offers a fresh perspective on the potential application of AOSs as functional foods to improve intestinal inflammation and metabolism.
Collapse
Affiliation(s)
- Long Yuan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Bolun Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, 572025, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, 572025, PR China
| |
Collapse
|
10
|
Chen L, Li Y, Zhang X, Du X, Zhang Y, Li X, Zhong Z, Zhou C, Liu X, Wang J, Wang Q. Fucoidan prevents diabetic cognitive dysfunction via promoting TET2-mediated active DNA demethylation in high-fat diet induced diabetic mice. Int J Biol Macromol 2024; 278:134186. [PMID: 39173790 DOI: 10.1016/j.ijbiomac.2024.134186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Diabetic cognitive dysfunction (DCD) refers to cognitive impairment in individuals with diabetes, which is one of the most important comorbidities and complications. Preliminary evidence suggests that consuming sufficient dietary fiber could have benefits for both diabetes and cognitive function. However, the effect and underlying mechanism of dietary fiber on DCD remain unclear. We conducted a cross-sectional analysis using data from NHANES involving 2072 diabetics and indicated a significant positive dose-response relationship between the dietary fiber intake and cognitive performance in diabetics. Furthermore, we observed disrupted cognitive function and neuronal morphology in high-fat diet induced DCD mice, both of which were effectively restored by fucoidan supplementation through alleviating DNA epigenetic metabolic disorders. Moreover, fucoidan supplementation enhanced the levels of short-chain fatty acids (SCFAs) in the cecum of diabetic mice. These SCFAs enhanced TET2 protein stability by activating phosphorylated AMPK and improved TETs activity by reducing the ratio of (succinic acid + fumaric acid)/ α-ketoglutaric acid, subsequently enhancing TET2 function. The positive correlation between dietary fiber intake and cognitive function in diabetics was supported by human and animal studies alike. Importantly, fucoidan can prevent the occurrence of DCD by promoting TET2-mediated active DNA demethylation in the cerebral cortex of diabetic mice.
Collapse
Affiliation(s)
- Lei Chen
- School of Health and life Sciences, University of Health and Rehabilitation Sciences, China
| | - Yan Li
- School of Public health, Qingdao University, Qingdao, China
| | - Xueqian Zhang
- School of Public health, Qingdao University, Qingdao, China
| | - Xiuping Du
- People's Hospital of Gaomi, Weifang, China
| | - Yangting Zhang
- School of Public health, Qingdao University, Qingdao, China
| | - Xiaona Li
- School of Public health, Qingdao University, Qingdao, China
| | - Zhaoyi Zhong
- Hedong District Center for Disease Control and Prevention, Tianjin, China
| | - Chengfeng Zhou
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, China
| | - Xiaohong Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, China
| | - Jun Wang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China.
| | - Qiuzhen Wang
- School of Public health, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Ma X, Li M, Wang X, Xu H, Jiang L, Wu F, Wei L, Qi G, Zhang D. Dihydromyricetin ameliorates experimental ulcerative colitis by inhibiting neutrophil extracellular traps formation via the HIF-1α/VEGFA signaling pathway. Int Immunopharmacol 2024; 138:112572. [PMID: 38955027 DOI: 10.1016/j.intimp.2024.112572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Dihydromyricetin (DHM), which has various biological functions, possesses therapeutic potential for ulcerative colitis (UC). Neutrophil extracellular traps (NETs) and their components play a crucial role in several pathological processes in UC. However, whether DHM alleviates UC by regulating NETs remains unclear. Mice with dextran sulfate sodium (DSS)-induced acute colitis were treated with DHM at different concentrations, and the severity of colitis was evaluated by assessing body weight, colon length, histological scores, cytokine production, and epithelial barrier integrity. To quantify and visualize NETs, the expression of cell free-DNA (cf-DNA) in serum and Cit-H3 in colonic tissue was analyzed via western blotting and immunofluorescence analysis. HL-60 cells and mouse bone marrow-derived neutrophils (BMDNs) were used to evaluate the effects of DHM on NETs in vitro. NETs were treated with DHM at varying concentrations or DNase I and used to repair the intestinal epithelial barrier in a Caco-2/HIEC-6 cell monolayer model. Furthermore, the genes targeted by DHM through neutrophils for alleviating UC were identified by screening online databases, and the results of network pharmacological analysis were verified via western blotting and quantitative real-time polymerase chain reaction. DHM alleviated DSS-induced colitis in mice by reversing weight loss, increased DAI score, colon length shortening, enhanced spleen index, colonic pathological damage, cytokine production, and epithelial barrier loss in a dose-dependent manner. In addition, it inhibited the formation of NETs both in vivo and in vitro. Based on the results of network pharmacological analysis, DHM may target HIF-1α and VEGFA through neutrophils to alleviate UC. Treatment with PMA increased the expression of HIF-1α and VEGFA in D-HL-60 cells and BMDNs, whereas treatment with DHM or DNase I reversed this effect. Treatment with DMOG, an inhibitor of HIF prolyl hydroxylase (HIF-PH), counteracted the suppressive effects of DHM on NETs formation in D-HL-60 cells and BMDNs. Accordingly, it partially counteracted the protective effects of DHM on the intestinal epithelial barrier in Caco-2 and HIEC-6 cells. These results indicated that DHM alleviated DSS-induced UC by regulating NETs formation via the HIF-1α/VEGFA signaling pathway, suggesting that DHM is a promising therapeutic candidate for UC.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaochun Wang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Huimei Xu
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Luxia Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Fanqi Wu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
12
|
Zhang Q, Lin Y, Zhao R, Huang T, Tian Y, Zhu L, Qin J, Liu H. Structural characterization of extracellular polysaccharides from Phellinus igniarius SH-1 and their therapeutic effects on DSS induced colitis in mice. Int J Biol Macromol 2024; 275:133654. [PMID: 38972645 DOI: 10.1016/j.ijbiomac.2024.133654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Phellinus igniarius is a valuable medicinal and edible mushroom, and its polysaccharides exhibit excellent anti-inflammatory activity. During liquid fermentation to produce P. igniarius mycelia, the fermentation liquid is often discarded, but it contains extracellular polysaccharides. To better utilize these resources, P. igniarius SH-1 was fermented in a 100 L fermenter, and PIPS-2 was isolated and purified from the fermentation broth. The structural characteristics and anti-inflammatory activity of PIPS-2 were determined. PIPS-2 had a molecular weight of 22.855 kDa and was composed of galactose and mannose in a molar ratio of 0.38:0.62. Structural analysis revealed that the main chain of PIPS-2 involved →2)-α-D-Manp-(1 → 3)-β-D-Galf-(1→, and the side chains involved α-D-Manp-(1 → 6)-α-D-Manp-(1→, α-D-Manp-(1 → 3)-α-D-Manp-(1→, and α-D-Manp-(1. PIPS-2 alleviated the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice, improved the imbalance of inflammatory factors and antioxidant enzymes, and increased short-chain fatty acid contents. Combining the intestinal flora and metabolite results, PIPS-2 was found to regulate the abundance of Firmicutes, Lachnospiraceae_NK4A136_group, Proteobacteria, Bacteroides, and many serum metabolites including hexadecenal, copalic acid, 8-hydroxyeicosatetraenoic acid, artepillin C, and uric acid, thereby ameliorating metabolite related disorders in mice with colitis. In summary, PIPS-2 may improve colitis in mice by regulating the gut microbiota and metabolites.
Collapse
Affiliation(s)
- Qiaoyi Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yuanshan Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.
| | - Rou Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ting Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yun Tian
- Agricultural Bioengineering Institute, Changsha, China
| | - Lin Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jing Qin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- Agricultural Bioengineering Institute, Changsha, China
| |
Collapse
|
13
|
Guo H, Xie W, Ji Z, Wang B, Ren W, Gao W, Yuan B. Oyster Peptides Ameliorate Dextran Sulfate Sodium-Induced Ulcerative Colitis via Modulating the Gut Microbiota and Inhibiting the TLR4/NF-κB Pathway. Nutrients 2024; 16:1591. [PMID: 38892524 PMCID: PMC11175164 DOI: 10.3390/nu16111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with an increasing prevalence year over year, and the medications used to treat patients with UC clinically have severe side effects. Oyster peptides (OPs) have anti-inflammatory and antioxidant properties as functional foods that can alleviate a wide range of inflammatory conditions. However, the application of oyster peptides in ulcerative colitis is not well studied. In this work, an animal model of acute colitis was established using 3% dextran sulfate sodium (DSS), and the impact of OP therapy on colitis in mice was examined. Supplementing with OPs prevented DSS-induced colitis from worsening, reduced the expression of oxidative stress and inflammatory markers, and restored the intestinal barrier damage caused by DSS-induced colitis in mice. The 16S rDNA results showed that the OP treatment improved the gut microbiota structure of the UC mice, including increasing microbial diversity, increasing beneficial bacteria, and decreasing harmful bacteria. In the UC mice, the OP therapy decreased the relative abundance of Family_XIII_AD3011_group and Prevotella_9 and increased the relative abundance of Alistipes. In conclusion, OP treatment can inhibit the TLR4/NF-κB pathway and improve the intestinal microbiota in UC mice, which in turn alleviates DSS-induced colitis, providing a reference for the treatment of clinical UC patients.
Collapse
Affiliation(s)
- Haixiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wenyin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Bingbing Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wenzhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| |
Collapse
|
14
|
He MT, Park G, Park DH, Choi M, Ku S, Go SH, Lee YG, Song SJ, Ahn CW, Jang YP, Kang KS. So Shiho Tang Reduces Inflammation in Lipopolysaccharide-Induced RAW 264.7 Macrophages and Dextran Sodium Sulfate-Induced Colitis Mice. Biomolecules 2024; 14:451. [PMID: 38672468 PMCID: PMC11047977 DOI: 10.3390/biom14040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
So Shiho Tang (SSHT) is a traditional herbal medicine commonly used in Asian countries. This study evaluated the anti-inflammatory effect of SSHT and the associated mechanism using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and murine dextran sodium sulfate (DSS)-induced ulcerative colitis models. Pre-treatment of RAW 264.7 macrophages with SSHT significantly reduced LPS-induced inflammation by decreasing nitrite production and regulating the mitogen-activated protein kinase pathway. Meanwhile, in mice, DSS-induced colitis symptoms, including colon shortening and body weight loss, were attenuated by SSHT. Moreover, representative compounds of SSHT, including glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin A, and saikosaponin B2, were quantified, and their effects on nitrite production were measured. A potential anti-inflammatory effect was detected in LPS-induced RAW 264.7 cells. Our findings suggest that SSHT is a promising anti-inflammatory agent. Its representative components, including saikosaponin B2, ginsenoside Rb1, and baicalin, may represent the key active compounds responsible for eliciting the anti-inflammatory effects and can, therefore, serve as quality control markers in SSHT preparations.
Collapse
Affiliation(s)
- Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| | - Geonha Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Do Hwi Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| | - Minsik Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Sejin Ku
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Seung Hyeon Go
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Yun Gyo Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Seok Jun Song
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Chang-Wook Ahn
- Dr. Ahn’s Surgery Clinic, Osan 18144, Republic of Korea;
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| |
Collapse
|
15
|
Zhang X, Shi Q, Hu M, Zhu K, Zhu L, Cao J, Li C. Holothuria leucospilota polysaccharides (HLP) ameliorate colitis rats via regulation of the metabolic profiling and TLR4/NLRP3 signaling pathways. FOOD FRONTIERS 2024; 5:656-667. [DOI: 10.1002/fft2.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractRecently, the development of natural polysaccharides for ameliorating immunity and gut metabolism has attracted extensive attention. This study used Holothuria leucospilota polysaccharides (HLP) to explore the improvement mechanism in ulcerative colitis rats on perspectives of immunity and metabolism. The results showed that HLP increased goblet cells’ number and the content of tight junction proteins (zona occludens 1 and occludin) and improved intestinal barrier permeability. The levels of immune cytokines (IL‐4, IL‐6, IL‐10, IL‐18, TNF‐α, and IL‐1β) and the activity of oxidative stress‐related enzymes (superoxide dismutase, catalase, malondialdehyde, and glutathione peroxidase) were regulated. HLP regulated the related genes and proteins expression of immune cytokines, MAPK, and NLRP3 inflammasome. Furthermore, HLP treatment increased the concentration of short‐chain fatty acids (SCFAs) and regulated serum metabolic disorders by regulating amino acid metabolism, SCFA metabolism, and energy metabolism. These results provide a new perspective for developing HLP as a promising functional food for preventing and mitigating colitis.
Collapse
Affiliation(s)
- Xin Zhang
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources of Ministry of Education, School of Food Science and Engineering Hainan University Haikou China
| | - Qiuge Shi
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources of Ministry of Education, School of Food Science and Engineering Hainan University Haikou China
| | - Maojie Hu
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources of Ministry of Education, School of Food Science and Engineering Hainan University Haikou China
| | - Kexue Zhu
- Spice and Beverage Research Institute Chinese Academy of Tropical Agricultural Sciences Wanning China
| | - Lulu Zhu
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources of Ministry of Education, School of Food Science and Engineering Hainan University Haikou China
| | - Jun Cao
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources of Ministry of Education, School of Food Science and Engineering Hainan University Haikou China
| | - Chuan Li
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources of Ministry of Education, School of Food Science and Engineering Hainan University Haikou China
- Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Marine Food Deep Processing Dalian Polytechnic University Dalian China
| |
Collapse
|
16
|
Jin Y, Wu J, Huang K, Liang Z. Heat-Killed Saccharomyces boulardii Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis by Restoring the Intestinal Barrier, Reducing Inflammation, and Modulating the Gut Microbiota. Nutrients 2024; 16:702. [PMID: 38474831 DOI: 10.3390/nu16050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Ulcerative colitis (UC) is a global intestinal disease, and conventional therapeutic drugs often fail to meet the needs of patients. There is an urgent need to find efficient and affordable novel biological therapies. Saccharomyces boulardii has been widely used in food and pharmaceutical research due to its anti-inflammatory properties and gut health benefits. However, there is still a relatively limited comparison and evaluation of different forms of S. boulardii treatment for UC. This study aimed to compare the therapeutic effects of S. boulardii, heat-killed S. boulardii, and S. boulardii β-glucan on UC, to explore the potential of heat-killed S. boulardii as a new biological therapy. The results demonstrate that all three treatments were able to restore body weight, reduce the disease activity index (DAI), inhibit splenomegaly, shorten colon length, and alleviate histopathological damage to colonic epithelial tissues in DSS-induced colitis mice. The oral administration of S. boulardii, heat-killed S. boulardii, and S. boulardii β-glucan also increased the levels of tight junction proteins (Occludin and ZO-1), decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in the serum, and suppressed the expressions of TNF-α, IL-1β, and IL-6 mRNA in the colon. In particular, in terms of gut microbiota, S. boulardii, heat-killed S. boulardii, and S. boulardii β-glucan exhibited varying degrees of modulation on DSS-induced dysbiosis. Among them, heat-killed S. boulardii maximally restored the composition, structure, and functionality of the intestinal microbiota to normal levels. In conclusion, heat-killed S. boulardii showed greater advantages over S. boulardii and S. boulardii β-glucan in the treatment of intestinal diseases, and it holds promise as an effective novel biological therapy for UC. This study is of great importance in improving the quality of life for UC patients and reducing the burden of the disease.
Collapse
Affiliation(s)
- Yuxin Jin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingwei Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
17
|
Huang J, Wang M, Jiang X, Liu Y, Ge Y, Zhang C. Bletilla striata carbon dots with alleviating effect of DSS-induced ulcerative colitis. Biochem Biophys Res Commun 2024; 695:149358. [PMID: 38159410 DOI: 10.1016/j.bbrc.2023.149358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) that significantly affected quality of life for patients. In this study, carbon dots based on Bletilla striata (BS-CDs) were synthesized by hydrothermal method and characterized by optical property analysis. In addition, the study measured the potential effect of BS-CDs on colonic histopathology and inflammation in dextran sulfate sodium (DSS)-induced ulcerative colitis. The results suggested that BS-CDs significantly increased colon length, improved colonic histopathology, and reduced the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in colitis mice. Taken together, BS-CDs alleviate clinical inflammation by blocking pro-inflammatory cytokines which were expected to be a potential agent for the treatment of colitis.
Collapse
Affiliation(s)
- Jiwen Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Mengqing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinjian Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuting Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yunbo Ge
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Chaoyan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| |
Collapse
|
18
|
Wen H, Leong PM, Wang X, Li D. Isolation and Characterization of n-3 Polyunsaturated Fatty Acids in Enteromorpha prolifera Lipids and Their Preventive Effects on Ulcerative Colitis in C57BL/6J Mice. Foods 2023; 13:46. [PMID: 38201073 PMCID: PMC10778640 DOI: 10.3390/foods13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Enteromorpha prolifera (EP) is a green alga that causes green bloom worldwide. This study aimed to isolate and identify n-3 polyunsaturated fatty acids (PUFAs) from EP oil obtained via supercritical fluid extraction (SFE) and to explore its preventive effects against dextran sodium sulfate (DSS)-induced ulcerative colitis in C57BL/6J mice. In EP oil, we found the novel n-3 polyunsaturated fatty acid C16:4n-3 and two unusual fatty acids C18:4n-3 and C16:3n-3, using GC-MS. The administration of EP oil reduced histopathological of symptoms colitis and the shortening of the colon length. Pro-inflammatory cytokines of IL-6 and TNF-α in serum of EP oil treatment were lower than DSS treatment (by 37.63% and 83.52%), and IL-6 gene expression in the colon was lower in than DSS group by 48.28%, and IL-10 in serum was higher than DSS group by 2.88-fold. Furthermore, the protein expression of p-STAT3 by the EP oil treatment was significantly reduced compared with DSS treatment group by 73.61%. Lipidomics study suggested that phosphatidylcholine and phosphatidylethanolamine were positively associated with the anti-inflammatory cytokine IL-10, while cholesteryl ester and sphingomyelin were negatively related to inflammation cytokines in the EP oil group. The present results indicated that EP oil rich in n-3 PUFA contains a novel fatty acid C16:4n-3, as well as two uncommon fatty acids C18:4n-3 and C16:3n-3. EP oil could prevent DSS-induced ulcerative colitis by regulating the JAK/STAT pathway and lipid metabolism.
Collapse
Affiliation(s)
- Haichao Wen
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.W.); (X.W.)
- School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Pooi Mun Leong
- School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Xincen Wang
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.W.); (X.W.)
- School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.W.); (X.W.)
- School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| |
Collapse
|
19
|
Mao Z, Jiang H, Sun J, Mao X. Virtual screening and structure optimization of xanthine oxidase inhibitory peptides from whole protein sequences of Pacific white shrimp via molecular docking. Food Chem 2023; 429:136837. [PMID: 37473632 DOI: 10.1016/j.foodchem.2023.136837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Xanthine oxidase (XO) inhibitory peptides are safer than conventional pharmacological therapy in relieving hyperuricemia. However, traditional enzymatic hydrolysis, separation, and purification techniques for bio-active peptide preparation are time-consuming, inefficient, and labor-intensive. In this study, molecular docking and BLAST were used to virtually screen XO inhibitory peptides from whole protein sequences of Pacific white shrimp according to the bio-active peptides database, and the structure of peptides was optimized based on the structure-effective relationship. Seven new XO inhibitory peptides were virtual screened rapidly from Pacific white shrimp, and YNITGW (IC50 = 9.78 ± 0.13 mM) showed the strongest activity. The results of YNITGW optimization showed that the insertion of Trp residue in the middle position of peptides could effectively enhance the activity. This study revealed that screening and optimizing peptides by molecular docking were a novel and feasible method to obtain bio-active peptides.
Collapse
Affiliation(s)
- Zhenjie Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Hong Jiang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Jianan Sun
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Research Institute, Ocean University of China, Sanya 572025, China.
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Research Institute, Ocean University of China, Sanya 572025, China.
| |
Collapse
|
20
|
Ma Q, Zhang X, Xu X, Lu Y, Chen Q, Chen Y, Liu C, Chen K. Long-term oral administration of burdock fructooligosaccharide alleviates DSS-induced colitis in mice by mediating anti-inflammatory effects and protection of intestinal barrier function. Immun Inflamm Dis 2023; 11:e1092. [PMID: 38018589 PMCID: PMC10664397 DOI: 10.1002/iid3.1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Ulcerative colitis, a typical subtype of inflammatory bowel disease, can cause many serious complications. Burdock fructooligosaccharide (BFO), a linear inulin with a purity of 99.439% and a molecular weight of 2345 Da, demonstrates anti-inflammatory and immunomodulatory properties. METHODS The Kunming mice were divided into two experimental models: a normal pretreatment model and a colitis experimental model. During the experimental treatment period, we assessed changes in weight and disease activity index (DAI), quantified the intestinal index, and determined myeloperoxidase (MPO) activity and reactive oxide species (ROS) levels in colitis mice. We also photographed colon morphology to investigate alterations in the integrity of the intestinal barrier function. Finally, we performed ELISA and qRT-PCR to evaluate the anti-inflammatory effect of BFO treatment on colitis mice. RESULT The long-term oral administration of BFO alone exhibited protective effects by preventing disruption of the intestinal functional structure and increasing the colon index in mice. However, in a dextran sodium sulfate (DSS)-induced colitis mouse model, BFO administration facilitated quick recovery of body weight and effectively reduced the DAI, especially in the BFO-H group (500 mg/kg/day). BFO treatment maintained the integrity of the intestinal barrier by attenuating the crypt distortion and increasing the goblet cells count It restored the DSS-induced colon shortening and reduced the symptoms of colitis. These effects may be attributed to the appropriate concentrations of BFO effectively inhibiting MPO activity, clearing excessive ROS, and relieving spleen abnormalitie. BFO also attenuated the overexpression and excessive secretion of inflammatory cytokines (TNF-α, IL-1β, IL-6, and MCP-1) induced by DSS, reduced intestinal inflammation, and consequently protected the intestinal barrier function. CONCLUSION BFO effectively alleviated the symptoms of DSS-induced colitis by mediating anti-inflammatory effects and protecting the intestinal barrier integrity, thereby potentially facilitating the utilization of safer and more efficacious polysaccharides for managing chronic inflammatory diseases.
Collapse
Affiliation(s)
- Qunfei Ma
- School of Life ScienceShandong UniversityQingdaoChina
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Xiujuan Zhang
- School of Life ScienceShandong UniversityQingdaoChina
| | - Xuan Xu
- School of Life ScienceShandong UniversityQingdaoChina
| | - Yan Lu
- School of Life ScienceShandong UniversityQingdaoChina
- Clinical Laboratory Medicine DepartmentJining No. 1 People's HospitalJiningChina
| | - Qiang Chen
- Burdock Biotechnology (Dezhou) Co., LtdDezhouChina
| | - Yiru Chen
- Burdock Biotechnology (Dezhou) Co., LtdDezhouChina
| | - Chunyan Liu
- Provincial Engineering Laboratory for Screening and Re‐Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyDrug Research & Development Center, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical CollegeWuhuChina
| | - Kaoshan Chen
- School of Life ScienceShandong UniversityQingdaoChina
- Provincial Engineering Laboratory for Screening and Re‐Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyDrug Research & Development Center, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical CollegeWuhuChina
| |
Collapse
|
21
|
Yang J, Li D, Zhang M, Lin G, Hu S, Xu H. From the updated landscape of the emerging biologics for IBDs treatment to the new delivery systems. J Control Release 2023; 361:568-591. [PMID: 37572962 DOI: 10.1016/j.jconrel.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
Inflammatory bowel diseases (IBDs) treatments have shifted from small-molecular therapeutics to the oncoming biologics. The first-line biologics against the moderate-to-severe IBDs are mainly involved in antibodies against integrins, cytokines and cell adhesion molecules. Besides, other biologics including growth factors, antioxidative enzyme, anti-inflammatory peptides, nucleic acids, stem cells and probiotics have also been explored at preclinical or clinical studies. Biologics with variety of origins have their unique potentials in attenuating immune inflammation or gut mucosa healing. Great advances in use of biologics for IBDs treatments have been archived in recent years. But delivering issues for biologic have also been confronted due to their liable nature. In this review, we will focus on biologics for IBDs treatments in the recent publications; summarize the current landscapes of biologics and their promise to control disease progress. Alternatively, the confronted challenges for delivering biologics will also be analyzed. To combat these drawbacks, some new delivering strategies are provided: firstly, designing the functional materials with high affinity toward biologics; secondly, the delivering vehicle systems to encapsulate the liable biologics; thirdly, the topical adhering delivery systems as enema. To our knowledge, this review is the first study to summarize the updated usage of the oncoming biologics for IBDs, their confronted challenges in term of delivery and the potential combating strategies.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Mengjiao Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Gaolong Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
22
|
Li YY, Cui Y, Dong WR, Liu TT, Zhou G, Chen YX. Terminalia bellirica Fruit Extract Alleviates DSS-Induced Ulcerative Colitis by Regulating Gut Microbiota, Inflammatory Mediators, and Cytokines. Molecules 2023; 28:5783. [PMID: 37570753 PMCID: PMC10421151 DOI: 10.3390/molecules28155783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease significantly impacting patients' lives. This study aimed to elucidate the alleviating effect of ethyl acetate extract (TBEA) from Terminalia bellirica fruit on UC and to explore its mechanism. TBEA was the fraction with the best anti-inflammatory activity screened using in vitro anti-inflammatory assays, and HPLC initially characterized its composition. The mice model of ulcerative colitis was established after free drinking of 2.5% dextran sulfate sodium for six days, and the experimental group was treated with 50 mg/kg and 100 mg/kg TBEA for seven days. We found that TBEA significantly alleviated symptoms in UC mice, including a physiologically significant reduction in disease activity index and pathological damage to colonic tissue. TBEA dramatically slowed down oxidative stress and inflammatory process in UC mice, as evidenced by decreasing myeloperoxidase and malondialdehyde activities and increasing glutathione and catalase levels by reducing the concentrations of IL-6, IL-1β, TNF-α, and NO in UC mice, as well as by regulating key proteins in the IL-6/JAK2/STAT3 pathway. Meanwhile, TBEA maintained intestinal homeostasis by regulating intestinal flora structure. Our study provides new ideas for developing TBEA into a new drug to treat UC.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu-Xin Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
23
|
Wang Z, Ma X, Shi S, He S, Li J, Wilson G, Cai W, Liu L. Structural Characterization and Anti-Inflammatory Activity of a Novel Polysaccharide from Duhaldea nervosa. Polymers (Basel) 2023; 15:polym15092081. [PMID: 37177224 PMCID: PMC10180711 DOI: 10.3390/polym15092081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
In the present study, a novel water-soluble polysaccharide (DNP-1) was isolated and purified from the root of Duhaldea nervosa via column chromatography. Structural analyses indicated that DNP-1 had a linear backbone consisting of (2→1)-linked β-D- fructofuranosyl residues, ending with a (2→1) bonded α-D-glucopyranose. DNP-1 was a homogeneous polysaccharide with an average molecular weight of 3.7 kDa. Furthermore, the anti-inflammatory activity of DNP-1 was investigated in vitro. The concentration of pro-inflammatory cytokines, including NO, TNF-α, MCP-1, IL-2, and IL-6, in the DNP-1 treatment group was suppressed in LPS-induced RAW 264.7 cells. DNP-1 was able to improve inflammatory injury by inhibiting the secretion of pro-inflammatory cytokines. These investigations into this polysaccharide from the root of Duhaldea nervosa provide a scientific basis for the further development of this plant. The results indicate that this Duhaldea nervosa polysaccharide could be used as a potential natural source for the treatment of inflammatory injury.
Collapse
Affiliation(s)
- Ziming Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xueqin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Silin Shi
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shuo He
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Jian Li
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Gidion Wilson
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Wei Cai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Lianghong Liu
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|