1
|
Subalakshmi S, Rushendran R, Vellapandian C. Revisiting Migraine Pathophysiology: from Neurons To Immune Cells Through Lens of Immune Regulatory Pathways. J Neuroimmune Pharmacol 2025; 20:30. [PMID: 40172704 DOI: 10.1007/s11481-025-10197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Migraine is a prevalent neurological disorder characterized by severe, recurrent headaches accompanied by symptoms, such as nausea, photophobia, and phonophobia, significantly affecting the quality of life of millions of people worldwide. Although the neurovascular pathway, involving blood vessel dilation and neurogenic inflammation, has been a cornerstone in understanding migraine pathophysiology. Emerging evidence suggests that immune dysregulation plays a pivotal role in the onset and progression of migraine. This review uniquely synthesizes recent advances linking immune regulatory pathways to migraine, an area that has not been widely explored in the literature. Specifically, we highlighted the involvement of CD4 + CD25 + regulatory T (Treg) cells, interleukins, and pro-inflammatory and anti-inflammatory cytokines, which have been implicated in pain signaling and immune imbalance in patients with migraine. Furthermore, genetic studies have provided compelling evidence by identifying associations between migraine susceptibility and immune-related polymorphisms, particularly in forkhead box P3 (FOXP3) and nuclear factor of activated T cells (NFAT). Moreover, the higher prevalence of migraine in individuals with comorbid autoimmune diseases further supports the hypothesis of a shared pathophysiological mechanism. Despite the growing recognition of immune involvement in migraine, its precise mechanisms remain unclear. By integrating key immune biomarkers and genetic insights, this review proposes a novel framework for understanding the immune-mediated pathways in migraine progression. Future research should focus on elucidating the specific immunological mechanisms underlying migraine, which could open new avenues for innovative, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sugumar Subalakshmi
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - R Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Xia Q, Liu X, Zhong L, Qu J, Dong L. SMURF1 mediates damaged lysosomal homeostasis by ubiquitinating PPP3CB to promote the activation of TFEB. Autophagy 2025; 21:530-547. [PMID: 39324484 PMCID: PMC11849922 DOI: 10.1080/15548627.2024.2407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
The calcium-activated phosphatase PPP3/calcineurin dephosphorylates TFEB (transcription factor EB) to trigger its nuclear translocation and the activation of macroautophagic/autophagic targets. However, the detailed molecular mechanism regulating TFEB activation remains poorly understood. Here, we highlighted the importance of SMURF1 (SMAD specific E3 ubiquitin protein ligase 1) in the activation of TFEB for lysosomal homeostasis. SMURF1 deficiency prevents the calcium-triggered ubiquitination of the catalytic subunit of PPP3/calcineurin in a manner consistent with defective autophagic degradation of damaged lysosomes. Mechanically, PPP3CB/CNA2 plays a bridging role in the recruitment of SMURF1 by LGALS3 (galectin 3) upon lysosome damage. Importantly, PPP3CB increases the dissociation of the N-terminal tail (NT) and C-terminal carbohydrate-recognition domain (CRD) of LGALS3, which may promote the formation of open conformers in a PPP3CB dephosphorylation activity-dependent manner. In addition, PPP3CB is ubiquitinated at lysine 146 by the recruited SMURF1 in response to intracellular calcium stimulation. The K63-linked ubiquitination of PPP3CB enhances the recruitment of TFEB. Moreover, TFEB directly interacts with both PPP3CB and the regulatory subunit PPP3R1 which facilitate the conformational correction of TFEB for its activation for the transcription of TFEB-targeted genes. Altogether, our results highlighted a critical mechanism for the regulation of PPP3/calcineurin activity via its ubiquitin ligase SMURF1 in response to lysosomal membrane damage, which may account for a potential target for the treatment of stress-related diseases.Abbreviation AID: autoinhibitory domain; ATG: autophagy related; CD: catalytic domain; CRD: carbohydrate-recognition domain; CsA: cyclosporin A; DMSO: dimethyl sulfoxide; ESCRT: endosomal sorting complexes required for transport; GSK3B: glycogen synthase kinase 3 beta; LAMP1: lysosomal associated membrane protein 1; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; ML-SA1: mucolipin synthetic agonist 1; MTORC1: mechanistic target of rapamycin kinase complex 1; NT: N-terminal tail; PPP3CB: protein phosphatase 3 catalytic subunit beta; PPP3R1: protein phosphatase 3 regulatory subunit B, alpha; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; VCP/p97: valosin containing protein; YWHA/14-3-3: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein.
Collapse
Affiliation(s)
- Qin Xia
- Department of General Surgery, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lu Zhong
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- Department of General Surgery, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
3
|
Boccarelli A, Del Buono N, Esposito F. Review of Patient Gene Profiles Obtained through a Non-Negative Matrix Factorization-Based Framework to Determine the Role Inflammation Plays in Neuroblastoma Pathogenesis. Int J Mol Sci 2024; 25:4406. [PMID: 38673990 PMCID: PMC11050151 DOI: 10.3390/ijms25084406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. It is a highly heterogeneous tumor consisting of different subcellular types and genetic abnormalities. Literature data confirm the biological and clinical complexity of this cancer, which requires a wider availability of gene targets for the implementation of personalized therapy. This paper presents a study of neuroblastoma samples from primary tumors of untreated patients. The focus of this analysis is to evaluate the impact that the inflammatory process may have on the pathogenesis of neuroblastoma. Eighty-eight gene profiles were selected and analyzed using a non-negative matrix factorization framework to extract a subset of genes relevant to the identification of an inflammatory phenotype, whose targets (PIK3CG, NFATC2, PIK3R2, VAV1, RAC2, COL6A2, COL6A3, COL12A1, COL14A1, ITGAL, ITGB7, FOS, PTGS2, PTPRC, ITPR3) allow further investigation. Based on the genetic signals automatically derived from the data used, neuroblastoma could be classified according to stage rather than as a "cold" or "poorly immunogenic" tumor.
Collapse
Affiliation(s)
- Angelina Boccarelli
- Department of Precision and Regenerative Medicine and Polo Jonico, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121 Bari, Italy;
| | - Nicoletta Del Buono
- Department of Mathematics, University of Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy;
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy;
| |
Collapse
|
4
|
Bai CW, Lu L, Zhang JN, Zhou C, Ni YC, Li KR, Yao J, Zhou XZ, Lan CG, Cao C. G protein subunit alpha i2's pivotal role in angiogenesis. Theranostics 2024; 14:2190-2209. [PMID: 38505600 PMCID: PMC10945342 DOI: 10.7150/thno.92909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Here we explored the potential role of Gαi2 (G protein subunit alpha i2) in endothelial cell function and angiogenesis. Methods: Genetic methodologies such as shRNA, CRISPR/Cas9, dominant negative mutation, and overexpression were utilized to modify Gαi2 expression or regulate its function. Their effects on endothelial cell functions were assessed in vitro. In vivo, the endothelial-specific Gαi2 shRNA adeno-associated virus (AAV) was utilized to silence Gαi2 expression. The impact of this suppression on retinal angiogenesis in control mice and streptozotocin (STZ)-induced diabetic retinopathy (DR) mice was analyzed. Results: Analysis of single-cell RNA sequencing data revealed Gαi2 (GNAI2) was predominantly expressed in retinal endothelial cells and expression was increased in retinal endothelial cells following oxygen-induced retinopathy (OIR) in mice. Moreover, transcriptome analysis linking Gαi2 to angiogenesis-related processes/pathways, supported by increased Gαi2 expression in experimental OIR mouse retinas, highlighted its possible role in angiogenesis. In various endothelial cell types, shRNA-induced silencing and CRISPR/Cas9-mediated knockout (KO) of Gαi2 resulted in substantial reductions in cell proliferation, migration, invasion, and capillary tube formation. Conversely, Gαi2 over-expression in endothelial cells induced pro-angiogenic activities, enhancing cell proliferation, migration, invasion, and capillary tube formation. Furthermore, our investigation revealed a crucial role of Gαi2 in NFAT (nuclear factor of activated T cells) activation, as evidenced by the down-regulation of NFAT-luciferase reporter activity and pro-angiogenesis NFAT-targeted genes (Egr3, CXCR7, and RND1) in Gαi2-silenced or -KO HUVECs, which were up-regulated in Gαi2-overexpressing endothelial cells. Expression of a dominant negative Gαi2 mutation (S48C) also down-regulated NFAT-targeted genes, slowing proliferation, migration, invasion, and capillary tube formation in HUVECs. Importantly, in vivo experiments revealed that endothelial Gαi2 knockdown inhibited retinal angiogenesis in mice, with a concomitant down-regulation of NFAT-targeted genes in mouse retinal tissue. In contrast, Gαi2 over-expression in endothelial cells enhanced retinal angiogenesis in mice. Single-cell RNA sequencing data confirmed increased levels of Gαi2 specifically in retinal endothelial cells of mice with streptozotocin (STZ)-induced diabetic retinopathy (DR). Importantly, endothelial Gαi2 silencing ameliorated retinal pathological angiogenesis in DR mice. Conclusion: Our study highlights a critical role for Gαi2 in NFAT activation, endothelial cell activation and angiogenesis, offering valuable insights into potential therapeutic strategies for modulating these processes.
Collapse
Affiliation(s)
- Chao-wen Bai
- Department of Orthopedics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
| | - Lu Lu
- Department of Joint Surgery and Geriatric Orthopedics, Affiliated Hospital of YouJiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise City, China
| | - Jia-nan Zhang
- Department of Orthopedics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
| | - Chengyu Zhou
- Department of Neuroscience, Case Western Reserve University, Cleveland, USA
| | - Yi-chao Ni
- Department of Orthopedics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
| | - Ke-ran Li
- The Fourth Medical School, Eye hospital, Nanjing Medical University, Nanjing, China
| | - Jin Yao
- The Fourth Medical School, Eye hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-zhong Zhou
- Department of Orthopedics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
| | - Chang-gong Lan
- Department of Joint Surgery and Geriatric Orthopedics, Affiliated Hospital of YouJiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise City, China
| | - Cong Cao
- Department of Orthopedics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Guo Y, Feng Y, Jiang F, Hu L, Shan T, Li H, Liao H, Bao H, Shi H, Si Y. Down-regulating nuclear factor of activated T cells 1 alleviates cognitive deficits in a mouse model of sepsis-associated encephalopathy, possibly by stimulating hippocampal neurogenesis. Brain Res 2024; 1826:148731. [PMID: 38154504 DOI: 10.1016/j.brainres.2023.148731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, and has been associated with increased morbidity and mortality. Nuclear factor of activated T cells (NFATs) 1, a transcriptional factor that regulates T cell development, activation and differentiation, has been implicated in neuronal plasticity. Here we examined the potential role of NFAT1 in sepsis-associated encephalopathy in mice. Adult male C57BL/6J mice received intracerebroventricular injections of short interfering RNA against NFAT1 or sex-determining region Y-box 2 (SOX2), or a scrambled control siRNA prior to cecal ligation and perforation (CLP). A group of mice receiving sham surgery were included as an additional control. CLP increased escape latency and decreased the number of crossings into, and total time spent within, the target quadrant in the Morris water maze test. CLP also decreased the freezing time in context-dependent, but not context-independent, fear conditioning test. Knockdown of either NFAT1 or SOX2 attenuated these behavioral deficits. NFAT1 knockdown also attenuated CLP-induced upregulation of SOX2, increased the numbers of nestin-positive cells and newborn astrocytes, reduced the number of immature newborn neurons, and promoted the G1 to S transition of neural stem cells in hippocampus. These findings suggest that NFAT1 may contribute to sepsis-induced behavioral deficits, possibly by promoting SOX2 signaling and neurogenesis.
Collapse
Affiliation(s)
- Yaoyi Guo
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Yue Feng
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Fan Jiang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Liang Hu
- Department of Pharmacology, Nanjing Medical University, No. 101 Longmiandadao Road, Jiangning District, Nanjing, Jiangsu Province 211166, People's Republic of China
| | - Tao Shan
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Haojia Li
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Hongsen Liao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Hongwei Shi
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Yanna Si
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China.
| |
Collapse
|
6
|
Kraner SD, Sompol P, Prateeptrang S, Promkan M, Hongthong S, Thongsopha N, Nelson PT, Norris CM. Development of a monoclonal antibody specific for a calpain-generated ∆48 kDa calcineurin fragment, a marker of distressed astrocytes. J Neurosci Methods 2024; 402:110012. [PMID: 37984591 PMCID: PMC10841921 DOI: 10.1016/j.jneumeth.2023.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase. In healthy tissue, CN exists mainly as a full-length (∼60 kDa) highly-regulated protein phosphatase involved in essential cellular functions. However, in diseased or injured tissue, CN is proteolytically converted to a constitutively active fragment that has been causatively-linked to numerous pathophysiologic processes. These calpain-cleaved CN fragments (∆CN) appear at high levels in human brain at early stages of cognitive decline associated with Alzheimer's disease (AD). NEW METHOD We developed a monoclonal antibody to ∆CN, using an immunizing peptide corresponding to the C-terminal end of the ∆CN fragment. RESULTS We obtained a mouse monoclonal antibody, designated 26A6, that selectively detects ∆CN in Western analysis of calpain-cleaved recombinant human CN. Using this antibody, we screened both pathological and normal human brain sections provided by the University of Kentucky's Alzheimer's Disease Research Center. 26A6 showed low reactivity towards normal brain tissue, but detected astrocytes both surrounding AD amyloid plaques and throughout AD brain tissue. In brain tissue with infarcts, there was considerable concentration of 26A6-positive astrocytes within/around infarcts, suggesting a link with anoxic/ischemia pathways. COMPARISON WITH EXISTING METHOD The results obtained with the new monoclonal are similar to those obtained with a polyclonal we had previously developed. However, the monoclonal is an abundant tool available to the dementia research community. CONCLUSIONS The new monoclonal 26A6 antibody is highly selective for the ∆CN proteolytic fragment and labels a subset of astrocytes, and could be a useful tool for marking insidious brain pathology and identifying novel astrocyte phenotypes.
Collapse
Affiliation(s)
| | - Pradoldej Sompol
- Sanders Brown Center on Aging, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Siriyagon Prateeptrang
- Sanders Brown Center on Aging, USA; School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Moltira Promkan
- Sanders Brown Center on Aging, USA; Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Suthida Hongthong
- Sanders Brown Center on Aging, USA; School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Napasorn Thongsopha
- Sanders Brown Center on Aging, USA; School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Peter T Nelson
- Sanders Brown Center on Aging, USA; Department of Pathology, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher M Norris
- Sanders Brown Center on Aging, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
7
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
Maffioli E, Nonnis S, Grassi Scalvini F, Negri A, Tedeschi G, Toni M. The Neurotoxic Effect of Environmental Temperature Variation in Adult Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:15735. [PMID: 37958719 PMCID: PMC10648238 DOI: 10.3390/ijms242115735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Neurotoxicity consists of the altered functionality of the nervous system caused by exposure to chemical agents or altered chemical-physical parameters. The neurotoxic effect can be evaluated from the molecular to the behavioural level. The zebrafish Danio rerio is a model organism used in many research fields, including ecotoxicology and neurotoxicology. Recent studies by our research group have demonstrated that the exposure of adult zebrafish to low (18 °C) or high (34 °C) temperatures alters their brain proteome and fish behaviour compared to control (26 °C). These results showed that thermal variation alters the functionality of the nervous system, suggesting a temperature-induced neurotoxic effect. To demonstrate that temperature variation can be counted among the factors that generate neurotoxicity, eight different protein datasets, previously published by our research group, were subjected to new analyses using an integrated proteomic approach by means of the Ingenuity Pathway Analysis (IPA) software (Release December 2022). The datasets consist of brain proteome analyses of wild type adult zebrafish kept at three different temperatures (18 °C, 26 °C, and 34 °C) for 4 days (acute) or 21 days (chronic treatment), and of BDNF+/- and BDNF-/- zebrafish kept at 26 °C or 34 °C for 21 days. The results (a) demonstrate that thermal alterations generate an effect that can be defined as neurotoxic (p value ≤ 0.05, activation Z score ≤ -2 or ≥2), (b) identify 16 proteins that can be used as hallmarks of the neurotoxic processes common to all the treatments applied and (c) provide three protein panels (p value ≤ 0.05) related to 18 °C, 34 °C, and BDNF depletion that can be linked to anxiety-like or boldness behaviour upon these treatments.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
- CRC “Innovation for Well-Being and Environment” (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Armando Negri
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
- CRC “Innovation for Well-Being and Environment” (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Via Alfonso Borrelli 50, 00161 Rome, Italy
| |
Collapse
|
9
|
Montenegro YHA, Bobermin LD, Sesterheim P, Salvato RS, Anschau F, de Oliveira MJS, Wyse ATS, Netto CA, Gonçalves CAS, Quincozes-Santos A, Leipnitz G. Serum of COVID-19 patients changes neuroinflammation and mitochondrial homeostasis markers in hippocampus of aged rats. J Neurovirol 2023; 29:577-587. [PMID: 37501054 DOI: 10.1007/s13365-023-01156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Patients affected by COVID-19 present mostly with respiratory symptoms but acute neurological symptoms are also commonly observed. Furthermore, a considerable number of individuals develop persistent and often remitting symptoms months after infection, characterizing the condition called long-COVID. Since the pathophysiology of acute and persistent neurological manifestations is not fully established, we evaluated the expression of different genes in hippocampal slices of aged rats exposed to the serum of a post-COVID (sPC) individual and to the serum of patients infected by SARS-CoV-2 [Zeta (sZeta) and Gamma (sGamma) variants]. The expression of proteins related to inflammatory process, redox homeostasis, mitochondrial quality control and glial reactivity was determined. Our data show that the exposure to sPC, sZeta and sGamma differentially altered the mRNA levels of most inflammatory proteins and reduced those of antioxidant response markers in rat hippocampus. Furthermore, a decrease in the expression of mitochondrial biogenesis genes was induced by all serum samples, whereas a reduction in mitochondrial dynamics was only caused by sPC. Regarding the glial reactivity, S100B expression was modified by sPC and sZeta. These findings demonstrate that changes in the inflammatory response and a reduction of mitochondrial biogenesis and dynamics may contribute to the neurological damage observed in COVID-19 patients.
Collapse
Affiliation(s)
- Yorran Hardman A Montenegro
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil.
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências da Saúde: Cardiologia, Instituto de Cardiologia/ Fundação Universitária de Cardiologia, RS, Porto Alegre, Brazil
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Richard Steiner Salvato
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Fernando Anschau
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Setor de Pesquisa da Gerência de Ensino, Pesquisa e Inovação do Grupo Hospitalar Conceição (GHC), RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Avaliação de Tecnologias para o SUS do GHC, Porto Alegre, RS, Brazil
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria José Santos de Oliveira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Carlos-Alberto Saraiva Gonçalves
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Pirbalouti RG, Mohseni MM, Taheri M, Neishabouri SM, Shirvani-Farsani Z. Deregulation of NF-κB associated long non-coding RNAs in bipolar disorder. Metab Brain Dis 2023; 38:2223-2230. [PMID: 37278925 DOI: 10.1007/s11011-023-01246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are major genetic factors whose disruption lead to many diseases, including nervous system diseases. Bipolar disorder (BD) is a neuro-psychiatric disease with no definitive diagnosis and incomplete treatment. Regarding the role of NF-κB-associated lncRNAs in the neuro-psychiatric disorders, we examined the expression of three lncRNAs, DICER1-AS1, DILC, and CHAST, in BD patients. To assess lncRNA expression in peripheral blood mononuclear cells (PBMCs) of 50 BD patients and 50 healthy individuals, Real-time PCR was used. Additionally, some clinical characteristics of BD patients were investigated via an analysis of ROC curves and correlations. Based on our results, the expression level of CHAST increased significantly in BD patients in comparison with healthy people, in BD men compared with healthy men, as well as in BD women in comparison with control females (p < 0.05). A similar increase in expression was observed for DILC and DICER1-AS1 lncRNAs in female patients compared with healthy women. Whereas compared to healthy men, DILC was decreased in diseased men. Based on the results of the ROC curve, the area under the curve (AUC) for CHAST lncRNA was 0.83 with a P value of 0.0001. So, the expression level of CHAST lncRNA could play a role in the pathobiology of the BD and be considered a good putative biomarker for individuals with bipolar disorder.
Collapse
Affiliation(s)
- Razieh Ghasemi Pirbalouti
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Mahdieh Mehrab Mohseni
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medicals Sciences, Tehran, Iran.
| | - Seyedeh Morvarid Neishabouri
- Department of Psychiatric, Loghman Hakim Hospital, Shahid Beheshti University of Medicals Sciences, Tehran, Iran.
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
11
|
Miao Y, Qian G, Zhang R, Yuan Y, Zuo Y, Ding Y, Li X, Tang Y, Zheng H, Lv H. Linear ubiquitination improves NFAT1 protein stability and facilitates NFAT1 signalling in Kawasaki disease. FEBS J 2023; 290:4224-4237. [PMID: 36779231 DOI: 10.1111/febs.16749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/08/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
NFAT1 is known for its roles in T cell development and activation. So far, the phosphorylation of NFAT1 has been extensively studied, but the other post-translational modifications of NFAT1 remain largely unknown. In this study, we reported that NFAT1 is a linearly ubiquitinated substrate of linear ubiquitin chain assembly complex (LUBAC). LUBAC promoted NFAT1 linear ubiquitination, which in turn inhibited K48-linked polyubiquitination of NFAT1 and therefore increased NFAT1 protein stability. Interestingly, the linear ubiquitination levels of NFAT1 in patients with the Kawasaki disease were upregulated. Further studies demonstrated that the patients with the Kawasaki disease had increased mRNA levels of HOIL-1L. These findings revealed a linearly ubiquitinated substrate of LUBAC and an important biological function of NFAT1 linear ubiquitination in the Kawasaki disease and therefore may provide a novel strategy for the treatment of the Kawasaki disease.
Collapse
Affiliation(s)
- Ying Miao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Renxia Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yukang Yuan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yibo Zuo
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yueyue Ding
- Department of Pediatric Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Xuan Li
- Department of Pediatric Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Yunjia Tang
- Department of Pediatric Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Hui Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatric Cardiology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Sant'Anna R, Robbs BK, de Freitas JA, Dos Santos PP, König A, Outeiro TF, Foguel D. The alpha-synuclein oligomers activate nuclear factor of activated T-cell (NFAT) modulating synaptic homeostasis and apoptosis. Mol Med 2023; 29:111. [PMID: 37596531 PMCID: PMC10439599 DOI: 10.1186/s10020-023-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Soluble oligomeric forms of alpha-synuclein (aSyn-O) are believed to be one of the main toxic species in Parkinson's disease (PD) leading to degeneration. aSyn-O can induce Ca2+ influx, over activating downstream pathways leading to PD phenotype. Calcineurin (CN), a phosphatase regulated by Ca2+ levels, activates NFAT transcription factors that are involved in the regulation of neuronal plasticity, growth, and survival. METHODS Here, using a combination of cell toxicity and gene regulation assays performed in the presence of classical inhibitors of the NFAT/CN pathway, we investigate NFAT's role in neuronal degeneration induced by aSyn-O. RESULTS aSyn-O are toxic to neurons leading to cell death, loss of neuron ramification and reduction of synaptic proteins which are reversed by CN inhibition with ciclosporin-A or VIVIT, a NFAT specific inhibitor. aSyn-O induce NFAT nuclear translocation and transactivation. We found that aSyn-O modulates the gene involved in the maintenance of synapses, synapsin 1 (Syn 1). Syn1 mRNA and protein and synaptic puncta are drastically reduced in cells treated with aSyn-O which are reversed by NFAT inhibition. CONCLUSIONS For the first time a direct role of NFAT in aSyn-O-induced toxicity and Syn1 gene regulation was demonstrated, enlarging our understanding of the pathways underpinnings synucleinopathies.
Collapse
Affiliation(s)
- Ricardo Sant'Anna
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil
| | - Bruno K Robbs
- Departamento de Ciência Básica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Nova Friburgo, RJ, 28625-650, Brazil
| | - Júlia Araújo de Freitas
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil
| | - Patrícia Pires Dos Santos
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany.
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| | - Debora Foguel
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil.
| |
Collapse
|
13
|
Li Z, Qi Y, Li Z, Chen S, Geng H, Han J, Wang J, Wang Z, Lei S, Huang B, Li G, Li X, Wu S, Ni S. Nervous tract-bioinspired multi-nanoyarn model system regulating neural differentiation and its transcriptional architecture at single-cell resolution. Biomaterials 2023; 298:122146. [PMID: 37149989 DOI: 10.1016/j.biomaterials.2023.122146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Bioinspired by native nervous tracts, a spinal cord-mimicking model system that was composed of multiple nanofibrous yarns (NYs) ensheathed in a nanofibrous tube was constructed by an innovative electrospinning-based fabrication and integration strategy. The infilling NYs exhibited uniaxially aligned nanofibrous architecture that had a great resemblance to spatially-arranged native nervous tracts, while the outer nanofibrous tubes functioned as an artificial dura matter to provide a stable intraluminal microenvironment. The three-dimensional (3D) NYs were demonstrated to induce alignment, facilitate migration, promote neuronal differentiation, and even phenotypic maturation of seeded neural stem and progenitor cells (NSPCs), while inhibiting gliogenesis. Single-cell transcriptome analysis showed that the NSPC-loaded 3D NY model shared many similarities with native spinal cords, with a great increase in excitatory/inhibitory (EI) neuron ratio. Curcumin, as a model drug, was encapsulated into nanofibers of NYs to exert an antioxidant effect and enhanced axon regeneration. Overall, this study provides a new paradigm for the development of a next-generation in vitro neuronal model system via anatomically accurate nervous tract simulation and constructs a blueprint for the research on NSPC diversification in the biomimetic microenvironment.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Zheng Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Huimin Geng
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Jinming Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Jiahao Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Zhaoqing Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Sun Lei
- Department of Endocrinology, Qilu Hospital of Shandong University and Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China.
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China.
| |
Collapse
|
14
|
Santos-Durán GN, Barreiro-Iglesias A. Roles of dual specificity tyrosine-phosphorylation-regulated kinase 2 in nervous system development and disease. Front Neurosci 2022; 16:994256. [PMID: 36161154 PMCID: PMC9492948 DOI: 10.3389/fnins.2022.994256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Dual specificity tyrosine-phosphorylation-regulated kinases (DYRKs) are a group of conserved eukaryotic kinases phosphorylating tyrosine, serine, and threonine residues. The human DYRK family comprises 5 members (DYRK1A, DYRK1B, DYRK2, DYRK3, and DYRK4). The different DYRKs have been implicated in neurological diseases, cancer, and virus infection. Specifically, DYRK2 has been mainly implicated in cancer progression. However, its role in healthy and pathological nervous system function has been overlooked. In this context, we review current available data on DYRK2 in the nervous system, where the available studies indicate that it has key roles in neuronal development and function. DYRK2 regulates neuronal morphogenesis (e.g., axon growth and branching) by phosphorylating cytoskeletal elements (e.g., doublecortin). Comparative data reveals that it is involved in the development of olfactory and visual systems, the spinal cord and possibly the cortex. DYRK2 also participates in processes such as olfaction, vision and, learning. However, DYRK2 could be involved in other brain functions since available expression data shows that it is expressed across the whole brain. High DYRK2 protein levels have been detected in basal ganglia and cerebellum. In adult nervous system, DYRK2 mRNA expression is highest in the cortex, hippocampus, and retina. Regarding nervous system disease, DYRK2 has been implicated in neuroblastoma, glioma, epilepsy, neuroinflammation, Alzheimer's disease, Parkinson's disease, spinal cord injury and virus infection. DYRK2 upregulation usually has a negative impact in cancer-related conditions and a positive impact in non-malignant conditions. Its role in axon growth makes DYRK2 as a promising target for spinal cord or brain injury and regeneration.
Collapse
Affiliation(s)
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
15
|
Miranda JG, Schleicher WE, Wells KL, Ramirez DG, Landgrave SP, Benninger RKP. Dynamic changes in β-cell [Ca 2+] regulate NFAT activation, gene transcription, and islet gap junction communication. Mol Metab 2022; 57:101430. [PMID: 34979329 PMCID: PMC8804269 DOI: 10.1016/j.molmet.2021.101430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Diabetes occurs because of insufficient insulin secretion due to β-cell dysfunction within the islet of Langerhans. Elevated glucose levels trigger β-cell membrane depolarization, action potential generation, and slow sustained free-Ca2+ ([Ca2+]) oscillations, which trigger insulin release. Nuclear factor of activated T-cell (NFAT) is a transcription factor, which is regulated by the increases in [Ca2+] and calceineurin (CaN) activation. NFAT regulation links cell activity with gene transcription in many systems and regulates proliferation and insulin granule biogenesis within the β-cell. However, the link between the regulation of β-cell electrical activity and oscillatory [Ca2+] dynamics with NFAT activation and downstream transcription is poorly understood. Here, we tested whether dynamic changes to β-cell electrical activity and [Ca2+] regulate NFAT activation and downstream transcription. METHODS In cell lines, mouse islets, and human islets, including those from donors with type 2 diabetes, we applied both agonists/antagonists of ion channels together with optogenetics to modulate β-cell electrical activity. We measured the dynamics of [Ca2+] and NFAT activation as well as performed whole transcriptome and functional analyses. RESULTS Both glucose-induced membrane depolarization and optogenetic stimulation triggered NFAT activation as well as increased the transcription of NFAT targets and intermediate early genes (IEGs). Importantly, slow, sustained [Ca2+] oscillation conditions led to NFAT activation and downstream transcription. In contrast, in human islets from donors with type2 diabetes, NFAT activation by glucose was diminished, but rescued upon pharmacological stimulation of electrical activity. NFAT activation regulated GJD2 expression and increased Cx36 gap junction permeability upon elevated oscillatory [Ca2+] dynamics. However, it is unclear if NFAT directly binds the GJD2 gene to regulate expression. CONCLUSIONS This study provides an insight into the specific patterns of electrical activity that regulate NFAT activation, gene transcription, and islet function. In addition, it provides information on how these factors are disrupted in diabetes.
Collapse
Affiliation(s)
- Jose G Miranda
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Wolfgang E Schleicher
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David G Ramirez
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Samantha P Landgrave
- Program in Cell Biology, Stem Cell and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA; Program in Cell Biology, Stem Cell and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
16
|
Lowell JA, O’Neill N, Danzi MC, Al-Ali H, Bixby JL, Lemmon VP. Phenotypic Screening Following Transcriptomic Deconvolution to Identify Transcription Factors Mediating Axon Growth Induced by a Kinase Inhibitor. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:1337-1354. [PMID: 34218704 PMCID: PMC10509783 DOI: 10.1177/24725552211026270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
After injury to the central nervous system (CNS), both neuron-intrinsic limitations on regenerative responses and inhibitory factors in the injured CNS environment restrict regenerative axon growth. Instances of successful axon regrowth offer opportunities to identify features that differentiate these situations from that of the normal adult CNS. One such opportunity is provided by the kinase inhibitor RO48, which dramatically enhances neurite outgrowth of neurons in vitro and substantially increased contralateral sprouting of corticospinal tract neurons when infused intraventricularly following unilateral pyramidotomy. The authors present here a transcriptomic deconvolution of RO48-associated axon growth, with the goal of identifying transcriptional regulators associated with axon growth in the CNS. Through the use of RNA sequencing (RNA-seq) and transcription factor binding site enrichment analysis, the authors identified a list of transcription factors putatively driving differential gene expression during RO48-induced neurite outgrowth of rat hippocampal neurons in vitro. The 82 transcription factor motifs identified in this way included some with known association to axon growth regulation, such as Jun, Klf4, Myc, Atf4, Stat3, and Nfatc2, and many with no known association to axon growth. A phenotypic loss-of-function screen was carried out to evaluate these transcription factors for their roles in neurite outgrowth; this screen identified several potential outgrowth regulators. Subsequent validation suggests that the Forkhead box (Fox) family transcription factor Foxp2 restricts neurite outgrowth, while FoxO subfamily members Foxo1 and Foxo3a promote neurite outgrowth. The authors' combined transcriptomic-phenotypic screening strategy therefore allowed identification of novel transcriptional regulators of neurite outgrowth downstream of a multitarget kinase inhibitor.
Collapse
Affiliation(s)
- Jeffrey A. Lowell
- Miami Project to Cure Paralysis and University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicholas O’Neill
- Miami Project to Cure Paralysis and University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matt C. Danzi
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis and University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine and Peggy & Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John L. Bixby
- Miami Project to Cure Paralysis and University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vance P. Lemmon
- Miami Project to Cure Paralysis and University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
17
|
Huang J, Hu M, Niu H, Wang J, Si Y, Cheng S, Ding W. Osteopontin isoform c promotes the survival of cisplatin-treated NSCLC cells involving NFATc2-mediated suppression on calcium-induced ROS levels. BMC Cancer 2021; 21:750. [PMID: 34187410 PMCID: PMC8243455 DOI: 10.1186/s12885-021-08495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022] Open
Abstract
Background Tumor microenvironment (TME) critically contributed to the malignant progression of transformed cells and the chemical responses to chemotherapy reagents. Osteopontin (OPN) is a secretory onco-protein with several splicing isoforms, all of which were known to regulate tumor growth and able to alter cell-cell or cell-TME communication, however, the exact role and regulation of the OPN splicing isoforms was not well understood. Methods In this study, the effects of conditioned medium from the culture of OPN splicing isoforms overexpressing cells on cell functions were evaluated. The methods of nuclear calcium reporter assays and subcellular distribution of nuclear factor of activated T cells c2 (NFATc2) assays were used to investigate the molecular mechanism underlining the roles of OPN splicing isoforms. Results We found that the survival of NSCLC cells treated with cisplatin was increased by secretory OPNc in the condition medium, where reduction of apoptosis by OPNc was associated with the activation of cellular calcium signals and subsequent nuclear translocation of NFATc2. Conclusions The results revealed a mechanism of OPN and downstream signal for tumor cells to survive in chemo-stressed TME, which emphasized the importance of secretory proteins in alternative splicing isoforms. Our study not only demonstrated the importance of OPN neutralization for anti-tumor effects, but also implied that modulation in calcium/NFATc2/ROS axis could be a novel approach for improving the long-term outcome of NSCLC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08495-z.
Collapse
Affiliation(s)
- Jing Huang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Mu Hu
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huan Niu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jing Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yang Si
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shan Cheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Wei Ding
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
18
|
Carter NM, Pomerantz JL. Calcineurin inhibitors target Lck activation in graft-versus-host disease. J Clin Invest 2021; 131:e149934. [PMID: 34060488 DOI: 10.1172/jci149934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Calcineurin inhibitors (CNIs) such as cyclosporin A and FK506 are widely administered immunosuppressive drugs. Calcineurin relieves inhibitory phosphorylation from nuclear factor of activated T cells (NFAT) transcription factors downstream of T cell receptor engagement, resulting in their nuclear translocation and the production of cytokines, including IL-2, IFN-γ, and TNF-α. It was previously believed that CNIs downregulate immunity by reducing NFAT activation. However, work from Otsuka et al. in this issue of the JCI revealed a second mechanism by which CNIs suppress T cell function. The authors previously reported that calcineurin removes an inhibitory phosphate from the tyrosine kinase Lck at Ser59 (Lck-S59) and that this dephosphorylation positively regulates T cell activation. In the present work, the authors showed that inhibition of Lck-S59 dephosphorylation was essential for the CNI-mediated suppression of acute graft-versus-host disease (aGVHD). These findings have important implications for future approaches to the management of aGVHD, organ transplant rejection, and autoimmune disease.
Collapse
|
19
|
Grimm J, Heckl D, Klusmann JH. Molecular Mechanisms of the Genetic Predisposition to Acute Megakaryoblastic Leukemia in Infants With Down Syndrome. Front Oncol 2021; 11:636633. [PMID: 33777792 PMCID: PMC7992977 DOI: 10.3389/fonc.2021.636633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/12/2021] [Indexed: 01/28/2023] Open
Abstract
Individuals with Down syndrome are genetically predisposed to developing acute megakaryoblastic leukemia. This myeloid leukemia associated with Down syndrome (ML–DS) demonstrates a model of step-wise leukemogenesis with perturbed hematopoiesis already presenting in utero, facilitating the acquisition of additional driver mutations such as truncating GATA1 variants, which are pathognomonic to the disease. Consequently, the affected individuals suffer from a transient abnormal myelopoiesis (TAM)—a pre-leukemic state preceding the progression to ML–DS. In our review, we focus on the molecular mechanisms of the different steps of clonal evolution in Down syndrome leukemogenesis, and aim to provide a comprehensive view on the complex interplay between gene dosage imbalances, GATA1 mutations and somatic mutations affecting JAK-STAT signaling, the cohesin complex and epigenetic regulators.
Collapse
Affiliation(s)
- Juliane Grimm
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
20
|
Méjécase C, Way CM, Owen N, Moosajee M. Ocular Phenotype Associated with DYRK1A Variants. Genes (Basel) 2021; 12:234. [PMID: 33562844 PMCID: PMC7915179 DOI: 10.3390/genes12020234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A or DYRK1A, contributes to central nervous system development in a dose-sensitive manner. Triallelic DYRK1A is implicated in the neuropathology of Down syndrome, whereas haploinsufficiency causes the rare DYRK1A-related intellectual disability syndrome (also known as mental retardation 7). It is characterised by intellectual disability, autism spectrum disorder and microcephaly with a typical facial gestalt. Preclinical studies elucidate a role for DYRK1A in eye development and case studies have reported associated ocular pathology. In this study families of the DYRK1A Syndrome International Association were asked to self-report any co-existing ocular abnormalities. Twenty-six patients responded but only 14 had molecular confirmation of a DYRK1A pathogenic variant. A further nineteen patients from the UK Genomics England 100,000 Genomes Project were identified and combined with 112 patients reported in the literature for further analysis. Ninety out of 145 patients (62.1%) with heterozygous DYRK1A variants revealed ocular features, these ranged from optic nerve hypoplasia (13%, 12/90), refractive error (35.6%, 32/90) and strabismus (21.1%, 19/90). Patients with DYRK1A variants should be referred to ophthalmology as part of their management care pathway to prevent amblyopia in children and reduce visual comorbidity, which may further impact on learning, behaviour, and quality of life.
Collapse
Affiliation(s)
- Cécile Méjécase
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
| | - Christopher M. Way
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
| | - Nicholas Owen
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
21
|
Li AL, Zhu YM, Gao LQ, Wei SY, Wang MT, Ma Q, Zheng YY, Li JH, Wang QF. Exploration of the Immune-Related Signatures and Immune Infiltration Analysis in Melanoma. Anal Cell Pathol (Amst) 2021; 2021:4743971. [PMID: 33511023 PMCID: PMC7826228 DOI: 10.1155/2021/4743971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022] Open
Abstract
In the present study, we aimed to investigate immune-related signatures and immune infiltration in melanoma. The transcriptome profiling and clinical data of melanoma were downloaded from The Cancer Genome Atlas database, and their matched normal samples were obtained from the Genotype-Tissue Expression database. After merging the genome expression data using Perl, the limma package was used for data normalization. We screened the differentially expressed genes (DEGs) and obtained immune signatures associated with melanoma by an immune-related signature list from the InnateDB database. Univariate Cox regression analysis was used to identify potential prognostic immune genes, and LASSO analysis was used to identify the hub genes. Next, based on the results of multivariate Cox regression analysis, we constructed a risk model for melanoma. We investigated the correlation between risk score and clinical characteristics and overall survival (OS) of patients. Based on the TIMER database, the association between selected immune signatures and immune cell distribution was evaluated. Next, the Wilcoxon rank-sum test was performed using CIBERSORT, which confirmed the differential distribution of immune-infiltrating cells between different risk groups. We obtained a list of 91 differentially expressed immune-related signatures. Functional enrichment analysis indicated that these immune-related DEGs participated in several areas of immune-related crosstalk, including cytokine-cytokine receptor interactions, JAK-STAT signaling pathway, chemokine signaling pathway, and Th17 cell differentiation pathway. A risk model was established based on multivariate Cox analysis results, and Kaplan-Meier analysis was performed. The Kruskal-Wallis test suggested that a high risk score indicated a poorer OS and correlated with higher American Joint Committee on Cancer-TNM (AJCC-TNM) stages and advanced pathological stages (P < 0.01). Furthermore, the association between hub immune signatures and immune cell distribution was evaluated in specific tumor samples. The Wilcoxon rank-sum test was used to estimate immune infiltration density in the two groups, and results showed that the high-risk group exhibited a lower infiltration density, and the dominant immune cells included M0 macrophages (P = 0.023) and activated mast cells (P = 0.005).
Collapse
Affiliation(s)
- Ai-lan Li
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Yong-mei Zhu
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Lai-qiang Gao
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Shu-yue Wei
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Ming-tao Wang
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Qiang Ma
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - You-you Zheng
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Jian-hua Li
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Qing-feng Wang
- College of Integrated Chinese and Western Medicine, Liaoning University of traditional Chinese Medicine, Shenyang 110079, China
| |
Collapse
|
22
|
Enriched conditioning expands the regenerative ability of sensory neurons after spinal cord injury via neuronal intrinsic redox signaling. Nat Commun 2020; 11:6425. [PMID: 33349630 PMCID: PMC7752916 DOI: 10.1038/s41467-020-20179-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Overcoming the restricted axonal regenerative ability that limits functional repair following a central nervous system injury remains a challenge. Here we report a regenerative paradigm that we call enriched conditioning, which combines environmental enrichment (EE) followed by a conditioning sciatic nerve axotomy that precedes a spinal cord injury (SCI). Enriched conditioning significantly increases the regenerative ability of dorsal root ganglia (DRG) sensory neurons compared to EE or a conditioning injury alone, propelling axon growth well beyond the spinal injury site. Mechanistically, we established that enriched conditioning relies on the unique neuronal intrinsic signaling axis PKC-STAT3-NADPH oxidase 2 (NOX2), enhancing redox signaling as shown by redox proteomics in DRG. Finally, NOX2 conditional deletion or overexpression respectively blocked or phenocopied enriched conditioning-dependent axon regeneration after SCI leading to improved functional recovery. These studies provide a paradigm that drives the regenerative ability of sensory neurons offering a potential redox-dependent regenerative model for mechanistic and therapeutic discoveries. Pre conditioning injury or environmental enrichment have been shown to promote axon regeneration. Here the authors show that environmental enrichment, combined with preconditioning injury promotes regeneration via a redox signalling dependent mechanism.
Collapse
|
23
|
Kim C, Beilina A, Smith N, Li Y, Kim M, Kumaran R, Kaganovich A, Mamais A, Adame A, Iba M, Kwon S, Lee WJ, Shin SJ, Rissman RA, You S, Lee SJ, Singleton AB, Cookson MR, Masliah E. LRRK2 mediates microglial neurotoxicity via NFATc2 in rodent models of synucleinopathies. Sci Transl Med 2020; 12:eaay0399. [PMID: 33055242 PMCID: PMC8100991 DOI: 10.1126/scitranslmed.aay0399] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/04/2019] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Synucleinopathies are neurodegenerative disorders characterized by abnormal α-synuclein deposition that include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The pathology of these conditions also includes neuronal loss and neuroinflammation. Neuron-released α-synuclein has been shown to induce neurotoxic, proinflammatory microglial responses through Toll-like receptor 2, but the molecular mechanisms involved are poorly understood. Here, we show that leucine-rich repeat kinase 2 (LRRK2) plays a critical role in the activation of microglia by extracellular α-synuclein. Exposure to α-synuclein was found to enhance LRRK2 phosphorylation and activity in mouse primary microglia. Furthermore, genetic and pharmacological inhibition of LRRK2 markedly diminished α-synuclein-mediated microglial neurotoxicity via lowering of tumor necrosis factor-α and interleukin-6 expression in mouse cultures. We determined that LRRK2 promoted a neuroinflammatory cascade by selectively phosphorylating and inducing nuclear translocation of the immune transcription factor nuclear factor of activated T cells, cytoplasmic 2 (NFATc2). NFATc2 activation was seen in patients with synucleinopathies and in a mouse model of synucleinopathy, where administration of an LRRK2 pharmacological inhibitor restored motor behavioral deficits. Our results suggest that modulation of LRRK2 and its downstream signaling mediator NFATc2 might be therapeutic targets for treating synucleinopathies.
Collapse
Affiliation(s)
- Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alexandria Beilina
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan Smith
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Minhyung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ravindran Kumaran
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice Kaganovich
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adamantios Mamais
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony Adame
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michiyo Iba
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Somin Kwon
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Won-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Soo-Jean Shin
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Robert A Rissman
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sungyong You
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Poberezhnyi V, Marchuk O, Katilov O, Shvydiuk O, Lohvinov O. Basic concepts and physical-chemical phenomena, that have conceptual meaning for the formation of systemic clinical thinking and formalization of the knowledge of systemic structural-functional organization of the human’s organism. PAIN MEDICINE 2020. [DOI: 10.31636/pmjua.v5i2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
From the point of view of perception and generalization processes there are complex, logic and conceptual forms of thinking. Its conceptual form is the highest result of interaction between thinking and speech. While realizing it, human uses the concept, which are logically formed thoughts, that are the meaning of representation in thinking of unity of meaningful features, relations of subjects or phenomena of objective reality. Special concepts, that are used in the science and technique are called terms. They perform a function of corresponding, special, precise marking of subjects and phenomena, their features and interactions. Scientific knowledge are in that way an objective representation of material duality in our consciousness. Certain complex of terms forms a terminological system, that lies in the basis of corresponding sphere of scientific knowledge and conditions a corresponding form and way of thinking. Clinical thinking is a conceptual form, that manifests and represents by the specialized internal speech with gnostic motivation lying in its basis. Its structural elements are corresponding definitions, terms and concepts. Cardinal features of clinical systems are consistency, criticality, justification and substantiation. Principles of perception and main concepts are represented in the article along with short descriptions of physical and chemical phenomena, that have conceptual meaning for the formation of systematic clinical thinking and formalization of systemic structural-functional organization of the human’s organism
Collapse
|
25
|
Control of the neuroprotective Lipocalin Apolipoprotein D expression by alternative promoter regions and differentially expressed mRNA 5' UTR variants. PLoS One 2020; 15:e0234857. [PMID: 32559215 PMCID: PMC7304576 DOI: 10.1371/journal.pone.0234857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/03/2020] [Indexed: 02/02/2023] Open
Abstract
The Lipocalin Apolipoprotein D (ApoD) is one of the few genes consistently overexpressed in the aging brain, and in most neurodegenerative and psychiatric diseases. Its functions include metabolism regulation, myelin management, neuroprotection, and longevity regulation. Knowledge of endogenous regulatory mechanisms controlling brain disease-triggered ApoD expression is relevant if we want to boost pharmacologically its neuroprotecting potential. In addition to classical transcriptional control, Lipocalins have a remarkable variability in mRNA 5’UTR-dependent translation efficiency. Using bioinformatic analyses, we uncover strong selective pressures preserving ApoD 5’UTR properties, indicating unexpected functional conservation. PCR amplifications demonstrate the production of five 5’UTR variants (A-E) in mouse ApoD, with diverse expression levels across tissues and developmental stages. Importantly, Variant E is specifically expressed in the oxidative stress-challenged brain. Predictive analyses of 5’UTR secondary structures and enrichment in elements restraining translation, point to Variant E as a tight regulator of ApoD expression. We find two genomic regions conserved in human and mouse ApoD: a canonical (α) promoter region and a previously unknown region upstream of Variant E that could function as an alternative mouse promoter (β). Luciferase assays demonstrate that both α and β promoter regions can drive expression in cultured mouse astrocytes, and that Promoter β activity responds proportionally to incremental doses of the oxidative stress generator Paraquat. We postulate that Promoter β works in association with Variant E 5’UTR as a regulatory tandem that organizes ApoD gene expression in the nervous system in response to oxidative stress, the most common factor in aging and neurodegeneration.
Collapse
|
26
|
Ding XW, Li R, Geetha T, Tao YX, Babu JR. Nerve growth factor in metabolic complications and Alzheimer's disease: Physiology and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165858. [PMID: 32531260 DOI: 10.1016/j.bbadis.2020.165858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
As the population ages, obesity and metabolic complications as well as neurological disorders are becoming more prevalent, with huge economic burdens on both societies and families. New therapeutics are urgently needed. Nerve growth factor (NGF), first discovered in 1950s, is a neurotrophic factor involved in regulating cell proliferation, growth, survival, and apoptosis in both central and peripheral nervous systems. NGF and its precursor, proNGF, bind to TrkA and p75 receptors and initiate protein phosphorylation cascades, resulting in changes of cellular functions, and are associated with obesity, diabetes and its complications, and Alzheimer's disease. In this article, we summarize changes in NGF levels in metabolic and neuronal disorders, the signal transduction initiated by NGF and proNGF, the physiological and pathophysiological relevance, and therapeutic potential in treating chronic metabolic diseases and cognitive decline.
Collapse
Affiliation(s)
- Xiao-Wen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
27
|
Integrative analysis of lithium treatment associated effects on brain structure and peripheral gene expression reveals novel molecular insights into mechanism of action. Transl Psychiatry 2020; 10:103. [PMID: 32251271 PMCID: PMC7136209 DOI: 10.1038/s41398-020-0784-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Lithium is a highly effective medication for bipolar disorder, but its mechanism of action remains unknown. In this study, brain MRI scans and blood samples for gene expression (total of 110 scans and 109 blood samples) were collected from 21 bipolar subjects before and after 2 and 8 weeks of lithium monotherapy and at the same time-points from untreated 16 healthy controls. We used linear mixed-effects models to identify brain structural features and genes with expression changed after lithium treatment, with correction for multiple testing, and correlated their concurrent changes to identify molecular pathways associated with lithium effects. There are significant increases in gray matter fraction, global cortical thickness, and the frontal and parietal cortices after 8 weeks of lithium treatment (corrected p < 0.05). Volume increases were also seen for putamen, hippocampus, thalamic nuclei, and thalamic substructures. Several genes showed significant expression changes, and 14 gene pathways were identified for the present integration analysis. Of these, nine pathways had significant correlations with structural changes (FDR < 0.05). Three neurotrophy-related pathways (GDNF family of ligands, NFAT immune-response, and p53-signaling pathway) correlated with structural changes in multiple regions. Mediation analysis showed that the sphingomyelin metabolism pathway is associated with HAM-D change (p < 0.01), and this effect is mediated via the volume of mediodorsal thalamus (p < 0.03). In summary, the integration of lithium effects on brain structural and peripheral gene expression changes revealed effects on several neurotrophic molecular pathways, which provides further insights into the mechanism of lithium action.
Collapse
|
28
|
Gao J, Liao Y, Qiu M, Shen W. Wnt/β-Catenin Signaling in Neural Stem Cell Homeostasis and Neurological Diseases. Neuroscientist 2020; 27:58-72. [PMID: 32242761 DOI: 10.1177/1073858420914509] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neural stem/progenitor cells (NSCs) maintain the ability of self-renewal and differentiation and compose the complex nervous system. Wnt signaling is thought to control the balance of NSC proliferation and differentiation via the transcriptional coactivator β-catenin during brain development and adult tissue homeostasis. Disruption of Wnt signaling may result in developmental defects and neurological diseases. Here, we summarize recent findings of the roles of Wnt/β-catenin signaling components in NSC homeostasis for the regulation of functional brain circuits. We also suggest that the potential role of Wnt/β-catenin signaling might lead to new therapeutic strategies for neurological diseases, including, but not limited to, spinal cord injury, Alzheimer's disease, Parkinson's disease, and depression.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Liao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Transcriptome signatures in the brain of a migratory songbird. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100681. [PMID: 32222683 DOI: 10.1016/j.cbd.2020.100681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022]
Abstract
Most of the birds's adaptations for migration have a neuroendocrine origin, triggered by changes in photoperiod and the patterns of Earth's magnetic field. Migration phenomenology has been well described in the past decades, yet the genetic structure behind it remains terra incognita. We used RNA-Seq data to investigate which biological functions are linked with the seasonal brain adaptations of a long-distance trans-continental migratory passerine, the Northern Wheatear (Oenanthe oenanthe). We sequenced the wheatear's transcriptomes at three different stages: lean birds, a characteristic phenotype before the onset of migration, during fattening, and at their maximal migratory body mass. We identified a total of 15,357 genes in the brain of wheatears, of which 84 were differentially expressed. These were mostly related to nervous tissue development, angiogenesis, ATP production, innate immune response, and antioxidant protection, as well as GABA and dopamine signalling. The expression pattern of differentially expressed genes is correlated with typical phenotypic changes before migration, such as hyperphagia, migratory restlessness, and a potential increment in the visual and spatial memory capacities. Our work points out, for future studies, biological functions found to be involved in the development of the migratory phenotype -a unique model to study the core of neural, energetic and muscular adaptations for endurance exercise. Comparison of wheatears' transcriptomic data with two other studies with similar goals shows no correlation among the trends in the gene expression. It highlights the complexity and diversity of adaptations for long-distance migration in birds.
Collapse
|
30
|
Schade-Mann T, Münkner S, Eckrich T, Engel J. Calcium signaling in interdental cells during the critical developmental period of the mouse cochlea. Hear Res 2020; 389:107913. [PMID: 32120242 DOI: 10.1016/j.heares.2020.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 11/18/2022]
Abstract
The tectorial membrane (TM), a complex acellular structure that covers part of the organ of Corti and excites outer hair cells, is required for normal hearing. It consists of collagen fibrils and various glycoproteins, which are synthesized in embryonic and postnatal development by different cochlear cell types including the interdental cells (IDCs). At its modiolar side, the TM is fixed to the apical surfaces of IDCs, which form the covering epithelium of the spiral limbus. We performed confocal membrane imaging and Ca2+ imaging in IDCs of the developing mouse cochlea from birth to postnatal day 18 (P18). Using the fluorescent membrane markers FM 4-64 and CellMask™ Deep Red on explanted whole-mount cochlear epithelium, we identified the morphology of IDCs at different z-levels of the spiral limbus. Ca2+ imaging of Fluo-8 AM-loaded cochlear epithelia revealed spontaneous intracellular Ca2+ transients in IDCs at P0/1, P4/5, and P18. Their relative frequency was lowest on P0/1, increased by a factor of 12.5 on P4/5 and decreased to twice the initial value on P18. At all three ages, stimulation of IDCs with the trinucleotides ATP and UTP at 1 and 10 μM elicited Ca2+ transients of varying amplitude and shape. Before the onset of hearing, IDCs responded with robust Ca2+ oscillations. At P18, after the onset of hearing, ATP stimulation either caused Ca2+ oscillations or an initial Ca2+ peak followed by a plateau while the UTP response was unchanged from that at pre-hearing stage. Parameters of spontaneous and nucleotide-evoked Ca2+ transients such as amplitude, decay time and duration were markedly reduced during cochlear development, whereas the kinetics of the Ca2+ rise did not show relevant changes. Whether low-frequency spontaneous Ca2+ transients are necessary for the formation and maintenance of the tectorial membrane e.g. by regulating gene transcription needs to be elucidated in further studies.
Collapse
Affiliation(s)
- Thore Schade-Mann
- Dept. of Biophysics & CIPMM, Hearing Research, Saarland University, Homburg, Germany; Department of Otolaryngology, Head and Neck Surgery, Tübingen University Medical Centre, Germany
| | - Stefan Münkner
- Dept. of Biophysics & CIPMM, Hearing Research, Saarland University, Homburg, Germany
| | - Tobias Eckrich
- Dept. of Biophysics & CIPMM, Hearing Research, Saarland University, Homburg, Germany
| | - Jutta Engel
- Dept. of Biophysics & CIPMM, Hearing Research, Saarland University, Homburg, Germany.
| |
Collapse
|
31
|
Tapella L, Soda T, Mapelli L, Bortolotto V, Bondi H, Ruffinatti FA, Dematteis G, Stevano A, Dionisi M, Ummarino S, Di Ruscio A, Distasi C, Grilli M, Genazzani AA, D'Angelo E, Moccia F, Lim D. Deletion of calcineurin from GFAP-expressing astrocytes impairs excitability of cerebellar and hippocampal neurons through astroglial Na + /K + ATPase. Glia 2020; 68:543-560. [PMID: 31626368 DOI: 10.1002/glia.23737] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/29/2023]
Abstract
Astrocytes perform important housekeeping functions in the nervous system including maintenance of adequate neuronal excitability, although the regulatory mechanisms are currently poorly understood. The astrocytic Ca2+ /calmodulin-activated phosphatase calcineurin (CaN) is implicated in the development of reactive gliosis and neuroinflammation, but its roles, including the control of neuronal excitability, in healthy brain is unknown. We have generated a mouse line with conditional knockout (KO) of CaN B1 (CaNB1) in glial fibrillary acidic protein-expressing astrocytes (astroglial calcineurin KO [ACN-KO]). Here, we report that postnatal and astrocyte-specific ablation of CaNB1 did not alter normal growth and development as well as adult neurogenesis. Yet, we found that specific deletion of astrocytic CaN selectively impairs intrinsic neuronal excitability in hippocampal CA1 pyramidal neurons and cerebellar granule cells (CGCs). This impairment was associated with a decrease in after hyperpolarization in CGC, while passive properties were unchanged, suggesting impairment of K+ homeostasis. Indeed, blockade of Na+ /K+ -ATPase (NKA) with ouabain phenocopied the electrophysiological alterations observed in ACN-KO CGCs. In addition, NKA activity was significantly lower in cerebellar and hippocampal lysates and in pure astrocytic cultures from ACN-KO mice. While no changes were found in protein levels, NKA activity was inhibited by the specific CaN inhibitor FK506 in both cerebellar lysates and primary astroglia from control mice, suggesting that CaN directly modulates NKA activity and in this manner controls neuronal excitability. In summary, our data provide formal evidence for the notion that astroglia is fundamental for controlling basic neuronal functions and place CaN center-stage as an astrocytic Ca2+ -sensitive switch.
Collapse
Affiliation(s)
- Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Valeria Bortolotto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Heather Bondi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Federico A Ruffinatti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Alessio Stevano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Marianna Dionisi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Simone Ummarino
- Center of Life Science, Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Annalisa Di Ruscio
- Center of Life Science, Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Carla Distasi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| |
Collapse
|
32
|
Alieva AK, Rudenok MM, Novosadova EV, Vlasov IN, Arsenyeva EL, Rosinskaya AV, Grivennikov IA, Slominsky PA, Shadrina MI. Whole-Transcriptome Analysis of Dermal Fibroblasts, Derived from Three Pairs of Monozygotic Twins, Discordant for Parkinson's Disease. J Mol Neurosci 2020; 70:284-293. [PMID: 31823283 PMCID: PMC7222158 DOI: 10.1007/s12031-019-01452-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/17/2019] [Indexed: 01/24/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. In most cases, the development of the disease is sporadic and is not associated with any currently known mutations associated with PD. It is believed that changes associated with the epigenetic regulation of gene expression may play an important role in the pathogenesis of this disease. The study of individuals with an almost identical genetic background, such as monozygotic twins, is one of the best approaches to the analysis of such changes. A whole-transcriptome analysis of dermal fibroblasts obtained from three pairs of monozygotic twins discordant for PD was carried out in this work. Twenty-nine differentially expressed genes were identified in the three pairs of twins. These genes were included in seven processes within two clusters, according to the results of an enrichment analysis. The cluster with the greatest statistical significance included processes associated with the regulation of the differentiation of fat cells, the action potential, and the regulation of glutamatergic synaptic transmission. The most significant genes, which occupied a central position in this cluster, were PTGS2, SCN9A, and GRIK2. These genes can be considered as potential candidate genes for PD.
Collapse
Affiliation(s)
- Anelya Kh. Alieva
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Margarita M. Rudenok
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Ekaterina V. Novosadova
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Ivan N. Vlasov
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Elena L. Arsenyeva
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Anna V. Rosinskaya
- State Public Health Institution Primorsk Regional Clinical Hospital No. 1, 57 Aleutskaya St, Vladivostok, 690091 Russia
| | - Igor A. Grivennikov
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Petr A. Slominsky
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Maria I. Shadrina
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| |
Collapse
|
33
|
Guo J, Otis JM, Suciu SK, Catalano C, Xing L, Constable S, Wachten D, Gupton S, Lee J, Lee A, Blackley KH, Ptacek T, Simon JM, Schurmans S, Stuber GD, Caspary T, Anton ES. Primary Cilia Signaling Promotes Axonal Tract Development and Is Disrupted in Joubert Syndrome-Related Disorders Models. Dev Cell 2019; 51:759-774.e5. [PMID: 31846650 PMCID: PMC6953258 DOI: 10.1016/j.devcel.2019.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/08/2019] [Accepted: 11/10/2019] [Indexed: 12/18/2022]
Abstract
Appropriate axonal growth and connectivity are essential for functional wiring of the brain. Joubert syndrome-related disorders (JSRD), a group of ciliopathies in which mutations disrupt primary cilia function, are characterized by axonal tract malformations. However, little is known about how cilia-driven signaling regulates axonal growth and connectivity. We demonstrate that the deletion of related JSRD genes, Arl13b and Inpp5e, in projection neurons leads to de-fasciculated and misoriented axonal tracts. Arl13b deletion disrupts the function of its downstream effector, Inpp5e, and deregulates ciliary-PI3K/AKT signaling. Chemogenetic activation of ciliary GPCR signaling and cilia-specific optogenetic modulation of downstream second messenger cascades (PI3K, AKT, and AC3) commonly regulated by ciliary signaling receptors induce rapid changes in axonal dynamics. Further, Arl13b deletion leads to changes in transcriptional landscape associated with dysregulated PI3K/AKT signaling. These data suggest that ciliary signaling acts to modulate axonal connectivity and that impaired primary cilia signaling underlies axonal tract defects in JSRD.
Collapse
Affiliation(s)
- Jiami Guo
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Hotchkiss Brain Institute and the Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, USA.
| | - James M Otis
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sarah K Suciu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christy Catalano
- Hotchkiss Brain Institute and the Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, USA
| | - Lei Xing
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sandii Constable
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dagmar Wachten
- Biophysical Imaging, Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Stephanie Gupton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Janice Lee
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Amelia Lee
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine H Blackley
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Travis Ptacek
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jeremy M Simon
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Stephane Schurmans
- Laboratory of Functional Genetics, GIGA Research Center, University of Liège, Liège, Belgium
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain and Emotion, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
34
|
Zarrei M, Burton CL, Engchuan W, Young EJ, Higginbotham EJ, MacDonald JR, Trost B, Chan AJS, Walker S, Lamoureux S, Heung T, Mojarad BA, Kellam B, Paton T, Faheem M, Miron K, Lu C, Wang T, Samler K, Wang X, Costain G, Hoang N, Pellecchia G, Wei J, Patel RV, Thiruvahindrapuram B, Roifman M, Merico D, Goodale T, Drmic I, Speevak M, Howe JL, Yuen RKC, Buchanan JA, Vorstman JAS, Marshall CR, Wintle RF, Rosenberg DR, Hanna GL, Woodbury-Smith M, Cytrynbaum C, Zwaigenbaum L, Elsabbagh M, Flanagan J, Fernandez BA, Carter MT, Szatmari P, Roberts W, Lerch J, Liu X, Nicolson R, Georgiades S, Weksberg R, Arnold PD, Bassett AS, Crosbie J, Schachar R, Stavropoulos DJ, Anagnostou E, Scherer SW. A large data resource of genomic copy number variation across neurodevelopmental disorders. NPJ Genom Med 2019; 4:26. [PMID: 31602316 PMCID: PMC6779875 DOI: 10.1038/s41525-019-0098-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
Copy number variations (CNVs) are implicated across many neurodevelopmental disorders (NDDs) and contribute to their shared genetic etiology. Multiple studies have attempted to identify shared etiology among NDDs, but this is the first genome-wide CNV analysis across autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia (SCZ), and obsessive-compulsive disorder (OCD) at once. Using microarray (Affymetrix CytoScan HD), we genotyped 2,691 subjects diagnosed with an NDD (204 SCZ, 1,838 ASD, 427 ADHD and 222 OCD) and 1,769 family members, mainly parents. We identified rare CNVs, defined as those found in <0.1% of 10,851 population control samples. We found clinically relevant CNVs (broadly defined) in 284 (10.5%) of total subjects, including 22 (10.8%) among subjects with SCZ, 209 (11.4%) with ASD, 40 (9.4%) with ADHD, and 13 (5.6%) with OCD. Among all NDD subjects, we identified 17 (0.63%) with aneuploidies and 115 (4.3%) with known genomic disorder variants. We searched further for genes impacted by different CNVs in multiple disorders. Examples of NDD-associated genes linked across more than one disorder (listed in order of occurrence frequency) are NRXN1, SEH1L, LDLRAD4, GNAL, GNG13, MKRN1, DCTN2, KNDC1, PCMTD2, KIF5A, SYNM, and long non-coding RNAs: AK127244 and PTCHD1-AS. We demonstrated that CNVs impacting the same genes could potentially contribute to the etiology of multiple NDDs. The CNVs identified will serve as a useful resource for both research and diagnostic laboratories for prioritization of variants.
Collapse
Affiliation(s)
- Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Christie L. Burton
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Edwin J. Young
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON Canada
| | - Edward J. Higginbotham
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Jeffrey R. MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Ada J. S. Chan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Susan Walker
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - Sylvia Lamoureux
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - Tracy Heung
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Bahareh A. Mojarad
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Barbara Kellam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - Tara Paton
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - Muhammad Faheem
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Karin Miron
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Chao Lu
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - Ting Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - Kozue Samler
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - Xiaolin Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON Canada
- Medical Genetics Residency Training Program, University of Toronto, Toronto, ON Canada
| | - Ny Hoang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - John Wei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - Rohan V. Patel
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | | | - Maian Roifman
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON Canada
- Department of Paediatrics, University of Toronto, Toronto, ON Canada
| | - Daniele Merico
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
- Deep Genomics Inc., Toronto, ON Canada
| | - Tara Goodale
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON Canada
| | - Irene Drmic
- Hamilton Health Sciences, Ron Joyce Children’s Health Centre, Hamilton, On Canada
| | - Marsha Speevak
- Trillium Health Partners Credit Valley Site, Mississauga, Ontario Canada
| | - Jennifer L. Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - Ryan K. C. Yuen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Janet A. Buchanan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - Jacob A. S. Vorstman
- Department of Psychiatry, University of Toronto, Toronto, ON Canada
- Autism Research Unit, The Hospital for Sick Children, Toronto, ON Canada
| | - Christian R. Marshall
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Richard F. Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
| | - David R. Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI USA
- The Children’s Hospital of Michigan, Detroit, MI United States
| | - Gregory L. Hanna
- Department of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Marc Woodbury-Smith
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Cheryl Cytrynbaum
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON Canada
- Dalla Lana School of Public Health and the Department of Family and Community Medicine, University of Toronto, Toronto, ON Canada
| | | | - Mayada Elsabbagh
- Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Janine Flanagan
- Department of Paediatrics, University of Toronto, Toronto, ON Canada
| | - Bridget A. Fernandez
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL Canada
| | - Melissa T. Carter
- Regional Genetics Program, The Children’s Hospital of Eastern Ontario, Ottawa, ON Canada
| | - Peter Szatmari
- Department of Psychiatry, University of Toronto, Toronto, ON Canada
- Centre for Addiction and Mental Health, Toronto, ON Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON Canada
| | - Wendy Roberts
- Autism Research Unit, The Hospital for Sick Children, Toronto, ON Canada
| | - Jason Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON Canada
| | - Xudong Liu
- Department of Psychiatry, Queen’s University, Kinston, ON Canada
| | - Rob Nicolson
- Children’s Health Research Institute, London, ON Canada
- Western University, London, ON Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON Canada
| | - Paul D. Arnold
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB Canada
- Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Anne S. Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada
- Department of Psychiatry, University of Toronto, Toronto, ON Canada
- The Dalglish Family 22q Clinic, Toronto General Hospital, Toronto, ON Canada
| | - Jennifer Crosbie
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON Canada
- Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Russell Schachar
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON Canada
- Department of Psychiatry, University of Toronto, Toronto, ON Canada
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Dimitri J. Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON Canada
| |
Collapse
|
35
|
Phiwchai I, Chariyarangsitham W, Phatruengdet T, Pilapong C. Ferric-Tannic Nanoparticles Increase Neuronal Cellular Clearance. ACS Chem Neurosci 2019; 10:4136-4144. [PMID: 31355625 DOI: 10.1021/acschemneuro.9b00345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Targeting cellular clearance function in brain cells provides new opportunities for the prevention of dementia by clearance of potentially dangerous molecules. Herein, we present a new approach to enhancing neuroactive and neuroprotective activities in a neuronal cell line using ferric-tannic nanoparticles (FTs). Major biological functions mediated by FTs were clearly found to promote neuronal tube growth through the activation of axon guidance pathways. A number of neuronal tubes were found to increase under stimulation of amyloid beta-peptides, oxidative stress, and serum deprivation. The neuronal tubes generated play a role in clearing debris and amyloid beta-peptides. Another key function in cellular clearance mediated by FTs was their capability of inducing autophagy with the activation of lysosomes. Therefore, FTs are a promising new strategy for brain cell protection through the activation of the cellular clearance function. Hopefully, our findings will pave the way for the development of new methods for the prevention and therapy of dementia.
Collapse
Affiliation(s)
- Isara Phiwchai
- Radiologic Technology, Chiang Mai University, Chiang Mai, Thailand 50200
| | | | | | | |
Collapse
|
36
|
Zhang Y, Liu RB, Cao Q, Fan KQ, Huang LJ, Yu JS, Gao ZJ, Huang T, Zhong JY, Mao XT, Wang F, Xiao P, Zhao Y, Feng XH, Li YY, Jin J. USP16-mediated deubiquitination of calcineurin A controls peripheral T cell maintenance. J Clin Invest 2019; 129:2856-2871. [PMID: 31135381 DOI: 10.1172/jci123801] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Calcineurin acts as a calcium-activated phosphatase that dephosphorylates various substrates, including members of the nuclear factor of activated T cells (NFAT) family, to trigger their nuclear translocation and transcriptional activity. However, the detailed mechanism regulating the recruitment of NFATs to calcineurin remains poorly understood. Here, we report that calcineurin A (CNA), encoded by PPP3CB or PPP3CC, is constitutively ubiquitinated on lysine 327, and this polyubiquitin chain is rapidly removed by ubiquitin carboxyl-terminal hydrolase 16 (USP16) in response to intracellular calcium stimulation. The K29-linked ubiquitination of CNA impairs NFAT recruitment and transcription of NFAT-targeted genes. USP16 deficiency prevents calcium-triggered deubiquitination of CNA in a manner consistent with defective maintenance and proliferation of peripheral T cells. T cell-specific USP16 knockout mice exhibit reduced severity of experimental autoimmune encephalitis and inflammatory bowel disease. Our data reveal the physiological function of CNA ubiquitination and its deubiquitinase USP16 in peripheral T cells. Notably, our results highlight a critical mechanism for the regulation of calcineurin activity and a novel immunosuppressive drug target for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yu Zhang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Rong-Bei Liu
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Qian Cao
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Ke-Qi Fan
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ling-Jie Huang
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Jian-Shuai Yu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zheng-Jun Gao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Tao Huang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiang-Yan Zhong
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin-Tao Mao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fei Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Yuan Zhao
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yi-Yuan Li
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jin Jin
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Jiang Y, Song Y, Wang R, Hu T, Zhang D, Wang Z, Tie X, Wang M, Han S. NFAT1-Mediated Regulation of NDEL1 Promotes Growth and Invasion of Glioma Stem-like Cells. Cancer Res 2019; 79:2593-2603. [PMID: 30940662 DOI: 10.1158/0008-5472.can-18-3297] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/04/2019] [Accepted: 03/27/2019] [Indexed: 11/16/2022]
Abstract
Glioma stem-like cells (GSC) promote tumor generation and progression. However, the mechanism of GSC induction or maintenance is largely unknown. We previously demonstrated that the calcium-responsive transcription factor nuclear factor of activated T cells-1 (NFAT1) is activated in glioblastomas and regulates the invasion of tumor cells. In this study, we further explored the role of NFAT1 in GSC. We found that NFAT1 expression was associated with an aggressive phenotype and predicted poor survival in gliomas. Compared with normal glioma cells, NFAT1 was upregulated in GSC. NFAT1 knockdown reduced GSC viability, invasion, and self-renewal in vitro and inhibited tumorigenesis in vivo, whereas NFAT1 overexpression enhanced the growth and invasion of GSCs. RNA sequencing showed that NFAT1 depletion was associated with reduced neurodevelopment protein 1-like 1 (NDEL1, a potential downstream target of NFAT1) expression, whereas NFAT1 overexpression induced NDEL1 expression. In addition, NFAT1 regulated the promoter activities of NDEL1, whereas rescue of NDEL1 in NFAT1-silenced GSC partially restored tumor growth and invasion. Upregulation of NFAT1-NDEL1 signaling elevated Erk activation, increased protein levels of stemness markers in GSC, and resulted in de-differentiation of normal neuronal cells and astrocytes. Our results indicate that NFAT1 controls the growth and invasion of GSC partially through regulation of NDEL1. Targeting the NFAT1-NDEL1 axis therefore might be of potential benefit in the treatment of patients with glioma. SIGNIFICANCE: NFAT1 controls the growth and invasion of GSCs, partially by regulating NDEL1. Targeting the NFAT1-NDEL1 axis might provide opportunities in treating patients with glioma.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.,Department of Neurosurgery, Shanghai First People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Run Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | | | - Di Zhang
- Department of Pathology, China Medical University, Shenyang, China
| | - Zixun Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xinxin Tie
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Minghao Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
38
|
Amal H, Gong G, Gjoneska E, Lewis SM, Wishnok JS, Tsai LH, Tannenbaum SR. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry 2019; 9:44. [PMID: 30696811 PMCID: PMC6351542 DOI: 10.1038/s41398-019-0388-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/15/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Mutations in the MAPT gene, which encodes the tau protein, are associated with several neurodegenerative diseases, including frontotemporal dementia (FTD), dementia with epilepsy, and other types of dementia. The missense mutation in the Mapt gene in the P301S mouse model of FTD results in impaired synaptic function and microgliosis at three months of age, which are the earliest manifestations of disease. Here, we examined changes in the S-nitrosoproteome in 2-month-old transgenic P301S mice in order to detect molecular events corresponding to early stages of disease progression. S-nitrosylated (SNO) proteins were identified in two brain regions, cortex and hippocampus, in P301S and Wild Type (WT) littermate control mice. We found major changes in the S-nitrosoproteome between the groups in both regions. Several pathways converged to show that calcium regulation and non-canonical Wnt signaling are affected using GO and pathway analysis. Significant increase in 3-nitrotyrosine was found in the CA1 and entorhinal cortex regions, which indicates an elevation of oxidative stress and nitric oxide formation. There was evidence of increased Non-Canonical Wnt/Ca++ (NC-WCa) signaling in the cortex of the P301S mice; including increases in phosphorylated CaMKII, and S-nitrosylation of E3 ubiquitin-protein ligase RNF213 (RNF-213) leading to increased levels of nuclear factor of activated T-cells 1 (NFAT-1) and FILAMIN-A, which further amplify the NC-WCa and contribute to the pathology. These findings implicate activation of the NC-WCa pathway in tauopathy and provide novel insights into the contribution of S-nitrosylation to NC-WCa activation, and offer new potential drug targets for treatment of tauopathies.
Collapse
Affiliation(s)
- Haitham Amal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elizabeta Gjoneska
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sarah M Lewis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - John S Wishnok
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
39
|
Kraner SD, Norris CM. Astrocyte Activation and the Calcineurin/NFAT Pathway in Cerebrovascular Disease. Front Aging Neurosci 2018; 10:287. [PMID: 30297999 PMCID: PMC6160594 DOI: 10.3389/fnagi.2018.00287] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022] Open
Abstract
Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase with high abundance in nervous tissue. Though enriched in neurons, CN can become strongly induced in subsets of activated astrocytes under different pathological conditions where it interacts extensively with the nuclear factor of activated T cells (NFATs). Recent work has shown that regions of small vessel damage are associated with the upregulation of a proteolized, highly active form of CN in nearby astrocytes, suggesting a link between the CN/NFAT pathway and chronic cerebrovascular disease. In this Mini Review article, we discuss CN/NFAT signaling properties in the context of vascular disease and use previous cell type-specific intervention studies in Alzheimer's disease and traumatic brain injury models as a framework to understand how astrocytic CN/NFATs may couple vascular pathology to neurodegeneration and cognitive loss.
Collapse
Affiliation(s)
- Susan D. Kraner
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Christopher M. Norris
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
40
|
Hopp SC, Bihlmeyer NA, Corradi JP, Vanderburg C, Cacace AM, Das S, Clark TW, Betensky RA, Hyman BT, Hudry E. Neuronal calcineurin transcriptional targets parallel changes observed in Alzheimer disease brain. J Neurochem 2018; 147:24-39. [PMID: 29806693 DOI: 10.1111/jnc.14469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/11/2018] [Accepted: 05/09/2018] [Indexed: 01/23/2023]
Abstract
Synaptic dysfunction and loss are core pathological features in Alzheimer disease (AD). In the vicinity of amyloid-β plaques in animal models, synaptic toxicity occurs and is associated with chronic activation of the phosphatase calcineurin (CN). Indeed, pharmacological inhibition of CN blocks amyloid-β synaptotoxicity. We therefore hypothesized that CN-mediated transcriptional changes may contribute to AD neuropathology and tested this by examining the impact of CN over-expression on neuronal gene expression in vivo. We found dramatic transcriptional down-regulation, especially of synaptic mRNAs, in neurons chronically exposed to CN activation. Importantly, the transcriptional profile parallels the changes in human AD tissue. Bioinformatics analyses suggest that both nuclear factor of activated T cells and numerous microRNAs may all be impacted by CN, and parallel findings are observed in AD. These data and analyses support the hypothesis that at least part of the synaptic failure characterizing AD may result from aberrant CN activation leading to down-regulation of synaptic genes, potentially via activation of specific transcription factors and expression of repressive microRNAs. OPEN PRACTICES Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Read the Editorial Highlight for this article on page 8.
Collapse
Affiliation(s)
- Sarah C Hopp
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nathan A Bihlmeyer
- MIND Informatics, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| | - John P Corradi
- Exploratory Biology and Genomics, Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Charles Vanderburg
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Angela M Cacace
- Exploratory Biology and Genomics, Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Sudeshna Das
- MIND Informatics, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Timothy W Clark
- MIND Informatics, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Rebecca A Betensky
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bradley T Hyman
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eloise Hudry
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
41
|
NMDA receptors inhibit axonal outgrowth by inactivating Akt and activating GSK-3β via calcineurin in cultured immature hippocampal neurons. Exp Cell Res 2018; 371:389-398. [PMID: 30176218 DOI: 10.1016/j.yexcr.2018.08.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/10/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
Neurons are highly polarized cells with an axon and dendritic arbors. It is still not well studied that how formation and elaboration of axon and dendrites is controlled by diffusible signaling factors such as glutamate via specific receptors. We found that N-methyl-D-aspartate (NMDA) receptors were enriched (stage 2-3) but decreased expression (stage 4-5) at tip of axon of cultured hippocampal neurons during distinct development stages. Inhibition of NMDA receptor activity by competitive antagonist DL-2-amino-5-phosphonovalerate (APV) or channel blocker MK801 promoted axonal outgrowth at the early stages, whereas inhibited dendritic development in later stages. Meanwhile, knockdown of NMDA receptors also promoted axonal outgrowth and branch in immature neurons. Furthermore, GluN2B but not GluN2A subunit inhibited axonal outgrowth in immature hippocampal neurons. Finally, we found that NMDA receptors inhibited axonal outgrowth by inactivating Akt and activating GSK-3β signaling in a calcineurin-dependent manner. Taken together, our results demonstrate that stabilization GSK-3β activation in the axon growth cone by Ca2+ influx through NMDA receptors may be involved in regulation of axon formation in immature neurons at early stages.
Collapse
|
42
|
Saraf J, Bhattacharya P, Kalia K, Borah A, Sarmah D, Kaur H, Dave KR, Yavagal DR. A Friend or Foe: Calcineurin across the Gamut of Neurological Disorders. ACS CENTRAL SCIENCE 2018; 4:805-819. [PMID: 30062109 PMCID: PMC6062828 DOI: 10.1021/acscentsci.8b00230] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Indexed: 05/24/2023]
Abstract
The serine/threonine phosphatase calcineurin (CaN) is a unique but confounding calcium/calmodulin-mediated enzyme. CaN has shown to play essential roles from regulating calcium homeostasis to being an intricate part of learning and memory formation. Neurological disorders, despite differing in their etiology, share similar pathological outcomes, such as mitochondrial dysfunction and apoptotic signaling brought about by excitotoxic elements. CaN, being deeply integrated in vital neuronal functions, may be implicated in various neurological disorders. Understanding the enzyme and its physiological niche in the nervous system is vital in uncovering its roles in the spectrum of brain disorders. By reviewing the crosstalk in different neurological pathologies, a possible grasp of CaN's complex signaling may lead to forming better neurotherapy. This Outlook attempts to explore the various neuronal functions of CaN and investigate its pervasive role through the gamut of neurological disorders.
Collapse
Affiliation(s)
- Jackson Saraf
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pallab Bhattacharya
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular
and Molecular Neurobiology Laboratory, Department of Life Science
and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Deepaneeta Sarmah
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Harpreet Kaur
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kunjan R Dave
- Department
of Neurology, University of Miami Miller
School of Medicine, Miami, Florida 33136, United States
| | - Dileep R Yavagal
- Department
of Neurology, University of Miami Miller
School of Medicine, Miami, Florida 33136, United States
| |
Collapse
|
43
|
Calcineurin Regulatory Subunit Calcium-Binding Domains Differentially Contribute to Calcineurin Signaling in Saccharomyces cerevisiae. Genetics 2018; 209:801-813. [PMID: 29735720 DOI: 10.1534/genetics.118.300911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
The protein phosphatase calcineurin is central to Ca2+ signaling pathways from yeast to humans. Full activation of calcineurin requires Ca2+ binding to the regulatory subunit CNB, comprised of four Ca2+-binding EF hand domains, and recruitment of Ca2+-calmodulin. Here we report the consequences of disrupting Ca2+ binding to individual Cnb1 EF hand domains on calcineurin function in Saccharomyces cerevisiae Calcineurin activity was monitored via quantitation of the calcineurin-dependent reporter gene, CDRE-lacZ, and calcineurin-dependent growth under conditions of environmental stress. Mutation of EF2 dramatically reduced CDRE-lacZ expression and failed to support calcineurin-dependent growth. In contrast, Ca2+ binding to EF4 was largely dispensable for calcineurin function. Mutation of EF1 and EF3 exerted intermediate phenotypes. Reduced activity of EF1, EF2, or EF3 mutant calcineurin was also observed in yeast lacking functional calmodulin and could not be rescued by expression of a truncated catalytic subunit lacking the C-terminal autoinhibitory domain either alone or in conjunction with the calmodulin binding and autoinhibitory segment domains. Ca2+ binding to EF1, EF2, and EF3 in response to intracellular Ca2+ signals therefore has functions in phosphatase activation beyond calmodulin recruitment and displacement of known autoinhibitory domains. Disruption of Ca2+ binding to EF1, EF2, or EF3 reduced Ca2+ responsiveness of calcineurin, but increased the sensitivity of calcineurin to immunophilin-immunosuppressant inhibition. Mutation of EF2 also increased the susceptibility of calcineurin to hydrogen peroxide inactivation. Our observations indicate that distinct Cnb1 EF hand domains differentially affect calcineurin function in vivo, and that EF4 is not essential despite conservation across taxa.
Collapse
|
44
|
Zhang Q, Li X, He R, Ma Q, Sun R, Ji S, Wang B, Tian Y. The effect of brain-derived neurotrophic factor on radiation-induced neuron architecture impairment is associated with the NFATc4/3 pathway. Brain Res 2018; 1681:21-27. [PMID: 29288061 DOI: 10.1016/j.brainres.2017.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 11/25/2022]
Abstract
Irradiation to developing brains results in progressive cognitive dysfunction. Changes in the morphology of mature neurons are thought to be related to impairments of cognitive function. However, little is known about the effects of radiation on neurite outgrowth of immature neurons. Therefore, we sought to evaluate the structural alterations of immature neurons following X-ray irradiation and determine potential strategies to reverse it. Our data revealed damage to the neurite outgrowths of cultured neurons after 2 Gy and 8 Gy irradiation at 1 d and 3 d, respectively. De-phosphorylation of nuclear factor of activated T-cells c4/3 (NFATc4/3) was inhibited post-irradiation. Extraneous brain-derived neurotrophic factor (BDNF) ameliorated impairment of neurite growth and activated the NFATc4/3 signaling pathway. These data indicate that BDNF confers neuroprotective effects against irradiation by modulating the NFATc4/3 pathway.
Collapse
Affiliation(s)
- Qixian Zhang
- The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu, China; Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu, China; Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu, China
| | - Xiaoyang Li
- The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu, China; Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu, China; Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu, China
| | - Ru He
- The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu, China; Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu, China
| | - Quanhong Ma
- Institute of Neuroscience, Soochow University, Ren Ai Road No. 199, Suzhou, Jiangsu, China
| | - Rui Sun
- The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu, China; Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu, China; Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu, China
| | - Shengjun Ji
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu, China; Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China
| | - Bei Wang
- The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu, China.
| | - Ye Tian
- The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu, China; Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu, China; Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu, China.
| |
Collapse
|
45
|
van der Stijl R, Withoff S, Verbeek DS. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration. Neurobiol Dis 2017; 108:148-158. [PMID: 28823930 DOI: 10.1016/j.nbd.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/21/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023] Open
Abstract
Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs.
Collapse
Affiliation(s)
- Rogier van der Stijl
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
46
|
Kurauchi Y, Kinoshita R, Mori A, Sakamoto K, Nakahara T, Ishii K. MEK/ERK- and calcineurin/NFAT-mediated mechanism of cerebral hyperemia and brain injury following NMDA receptor activation. Biochem Biophys Res Commun 2017; 488:329-334. [PMID: 28495529 DOI: 10.1016/j.bbrc.2017.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
Abstract
N-methyl-d-aspartate (NMDA) receptor activation increases regional cerebral blood flow (rCBF) and induces neuronal injury, but similarities between these processes are poorly understood. In this study, by measuring rCBF in vivo, we identified a clear correlation between cerebral hyperemia and brain injury. NMDA receptor activation induced brain injury as a result of rCBF increase, which was attenuated by an inhibitor of mitogen-activated protein kinase or calcineurin. Moreover, NMDA induced phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear translocation of nuclear factor of activated T-cell (NFAT) in neurons. Therefore, a MEK/ERK- and calcineurin/NFAT-mediated mechanism of neurovascular coupling underlies the pathophysiology of neurovascular disorders.
Collapse
Affiliation(s)
- Yuki Kurauchi
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | - Rintaro Kinoshita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kunio Ishii
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
47
|
Cordero P, Stuart JM. TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, SINGLE-CELL TRANSCRIPTOME TRAJECTORIES. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017; 22:576-587. [PMID: 27897008 DOI: 10.1142/9789813207813_0053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The availability of gene expression data at the single cell level makes it possible to probe the molecular underpinnings of complex biological processes such as differentiation and oncogenesis. Promising new methods have emerged for reconstructing a progression 'trajectory' from static single-cell transcriptome measurements. However, it remains unclear how to adequately model the appreciable level of noise in these data to elucidate gene regulatory network rewiring. Here, we present a framework called Single Cell Inference of MorphIng Trajectories and their Associated Regulation (SCIMITAR) that infers progressions from static single-cell transcriptomes by employing a continuous parametrization of Gaussian mixtures in high-dimensional curves. SCIMITAR yields rich models from the data that highlight genes with expression and co-expression patterns that are associated with the inferred progression. Further, SCIMITAR extracts regulatory states from the implicated trajectory-evolvingco-expression networks. We benchmark the method on simulated data to show that it yields accurate cell ordering and gene network inferences. Applied to the interpretation of a single-cell human fetal neuron dataset, SCIMITAR finds progression-associated genes in cornerstone neural differentiation pathways missed by standard differential expression tests. Finally, by leveraging the rewiring of gene-gene co-expression relations across the progression, the method reveals the rise and fall of co-regulatory states and trajectory-dependent gene modules. These analyses implicate new transcription factors in neural differentiation including putative co-factors for the multi-functional NFAT pathway.
Collapse
Affiliation(s)
- Pablo Cordero
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, USA
| | | |
Collapse
|
48
|
Shah SZA, Hussain T, Zhao D, Yang L. A central role for calcineurin in protein misfolding neurodegenerative diseases. Cell Mol Life Sci 2017; 74:1061-1074. [PMID: 27682820 PMCID: PMC11107525 DOI: 10.1007/s00018-016-2379-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 09/23/2016] [Indexed: 12/25/2022]
Abstract
Accumulation of misfolded/unfolded aggregated proteins in the brain is a hallmark of many neurodegenerative diseases affecting humans and animals. Dysregulation of calcium (Ca2+) and disruption of fast axonal transport (FAT) are early pathological events that lead to loss of synaptic integrity and axonal degeneration in early stages of neurodegenerative diseases. Dysregulated Ca2+ in the brain is triggered by accumulation of misfolded/unfolded aggregated proteins in the endoplasmic reticulum (ER), a major Ca2+ storing organelle, ultimately leading to neuronal dysfunction and apoptosis. Calcineurin (CaN), a Ca2+/calmodulin-dependent serine/threonine phosphatase, has been implicated in T cells activation through the induction of nuclear factor of activated T cells (NFAT). In addition to the involvement of several other signaling cascades, CaN has been shown to play a role in early synaptic dysfunction and neuronal death. Therefore, inhibiting hyperactivated CaN in early stages of disease might be a promising therapeutic strategy for treating patients with protein misfolding diseases. In this review, we briefly summarize the structure of CaN, inhibition mechanisms by which immunosuppressants inhibit CaN, role of CaN in maintaining neuronal and synaptic integrity and homeostasis and the role played by CaN in protein unfolding/misfolding neurodegenerative diseases.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
49
|
Asai M, Kinjo A, Kimura S, Mori R, Kawakubo T, Shirotani K, Yagishita S, Maruyama K, Iwata N. Perturbed Calcineurin-NFAT Signaling Is Associated with the Development of Alzheimer's Disease. Biol Pharm Bull 2017; 39:1646-1652. [PMID: 27725441 DOI: 10.1248/bpb.b16-00350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Down syndrome (DS), the most common genetic disorder, is caused by trisomy 21. DS is accompanied by heart defects, hearing and vision problems, obesity, leukemia, and other conditions, including Alzheimer's disease (AD). In comparison, most cancers are rare in people with DS. Overexpression of dual specificity tyrosine-phosphorylation-regulated kinase 1A and a regulator of calcineurin 1 located on chromosome 21 leads to excessive suppression of the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, resulting in reduced expression of a critical angiogenic factor. However, it is unclear whether the calcineurin-NFAT signaling pathway is involved in AD pathology in DS patients. Here, we investigated the association between the calcineurin-NFAT signaling pathway and AD using neuronal cells. Short-term pharmacological stimulation decreased gene expression of tau and neprilysin, and long-term inhibition of the signaling pathway decreased that of amyloid precursor protein. Moreover, a calcineurin inhibitor, cyclosporine A, also decreased neprilysin activity, leading to increases in amyloid-β peptide levels. Taken together, our results suggest that a dysregulation in calcineurin-NFAT signaling may contribute to the early onset of AD in people with DS.
Collapse
Affiliation(s)
- Masashi Asai
- School of Pharmaceutical Sciences, Nagasaki University
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chatterton Z, Hartley BJ, Seok MH, Mendelev N, Chen S, Milekic M, Rosoklija G, Stankov A, Trencevsja-Ivanovska I, Brennand K, Ge Y, Dwork AJ, Haghighi F. In utero exposure to maternal smoking is associated with DNA methylation alterations and reduced neuronal content in the developing fetal brain. Epigenetics Chromatin 2017; 10:4. [PMID: 28149327 PMCID: PMC5270321 DOI: 10.1186/s13072-017-0111-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022] Open
Abstract
Background Intrauterine exposure to maternal smoking is linked to impaired executive function and behavioral problems in the offspring. Maternal smoking is associated with reduced fetal brain growth and smaller volume of cortical gray matter in childhood, indicating that prenatal exposure to tobacco may impact cortical development and manifest as behavioral problems. Cellular development is mediated by changes in epigenetic modifications such as DNA methylation, which can be affected by exposure to tobacco. Results In this study, we sought to ascertain how maternal smoking during pregnancy affects global DNA methylation profiles of the developing dorsolateral prefrontal cortex (DLPFC) during the second trimester of gestation. When DLPFC methylation profiles (assayed via Illumina, HM450) of smoking-exposed and unexposed fetuses were compared, no differentially methylated regions (DMRs) passed the false discovery correction (FDR ≤ 0.05). However, the most significant DMRs were hypomethylated CpG Islands within the promoter regions of GNA15 and SDHAP3 of smoking-exposed fetuses. Interestingly, the developmental up-regulation of SDHAP3 mRNA was delayed in smoking-exposed fetuses. Interaction analysis between gestational age and smoking exposure identified significant DMRs annotated to SYCE3, C21orf56/LSS, SPAG1 and RNU12/POLDIP3 that passed FDR. Furthermore, utilizing established methods to estimate cell proportions by DNA methylation, we found that exposed DLPFC samples contained a lower proportion of neurons in samples from fetuses exposed to maternal smoking. We also show through in vitro experiments that nicotine impedes the differentiation of neurons independent of cell death. Conclusions We found evidence that intrauterine smoking exposure alters the developmental patterning of DNA methylation and gene expression and is associated with reduced mature neuronal content, effects that are likely driven by nicotine. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0111-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zac Chatterton
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Medical Epigenetics, James J. Peters VA Medical Center, Bronx, NY 10468 USA
| | - Brigham J Hartley
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Man-Ho Seok
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Natalia Mendelev
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Medical Epigenetics, James J. Peters VA Medical Center, Bronx, NY 10468 USA
| | - Sean Chen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Medical Epigenetics, James J. Peters VA Medical Center, Bronx, NY 10468 USA
| | - Maria Milekic
- Department of Psychiatry, Columbia University, New York, NY 10032 USA
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, NY 10032 USA.,Macedonian Academy of Sciences and Arts, Skopje, Macedonia.,School of Medicine, Skopje, Macedonia
| | | | | | - Kristen Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY 10032 USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032 USA.,Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | - Fatemeh Haghighi
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Medical Epigenetics, James J. Peters VA Medical Center, Bronx, NY 10468 USA
| |
Collapse
|