1
|
Sathyanarayana SH, Saunders JA, Slaughter J, Tariq K, Chakrabarti R, Sadanandappa MK, Luikart BW, Bosco G. Pten heterozygosity restores neuronal morphology in fragile X syndrome mice. Proc Natl Acad Sci U S A 2022; 119:e2109448119. [PMID: 35394871 PMCID: PMC9169627 DOI: 10.1073/pnas.2109448119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
Genetic studies of hippocampal granule neuron development have been used to elucidate cellular functions of Pten and Fmr1. While mutations in each gene cause neurodevelopmental disorders such as autism and fragile X syndrome, how Pten and Fmr1 function alone or together during normal development is not known. Moreover, Pten mRNA is bound by the fragile X mental retardation protein (FMRP) RNA binding protein, but how this physical interaction impinges on phosphatase and tensin homolog protein (PTEN) expression is not known. To understand the interaction of PTEN and FMRP, we investigated the dentate gyrus granule neuron development in Pten and Fmr1 knockout (KO) mice. Interestingly, heterozygosity of Pten restored Fmr1 KO cellular phenotypes, including dendritic arborization, and spine density, while PTEN protein expression was significantly increased in Fmr1 KO animals. However, complete deletion of both Pten and Fmr1 resulted in a dramatic increase in dendritic length, spine density, and spine length. In addition, overexpression of PTEN in Fmr1 KO Pten heterozygous background reduced dendritic length, arborization, spine density, and spine length including pS6 levels. Our findings suggest that PTEN levels are negatively regulated by FMRP, and some Fmr1 KO phenotypes are caused by dysregulation of PTEN protein. These observations provide evidence for the genetic interaction of PTEN and FMRP and a possible mechanistic basis for the pathogenesis of Fmr1-related fragile X neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Jasmine A. Saunders
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jacob Slaughter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Kamran Tariq
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Madhumala K. Sadanandappa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Bryan W. Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
2
|
Impaired Functional Connectivity Underlies Fragile X Syndrome. Int J Mol Sci 2022; 23:ijms23042048. [PMID: 35216162 PMCID: PMC8878121 DOI: 10.3390/ijms23042048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023] Open
Abstract
Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by a developmentally regulated silencing of the FMR1 gene, but its effect on human neuronal network development and function is not fully understood. Here, we isolated isogenic human embryonic stem cell (hESC) subclones—one with a full FX mutation and one that is free of the mutation (control) but shares the same genetic background—differentiated them into induced neurons (iNs) by forced expression of NEUROG-1, and compared the functional properties of the derived neuronal networks. High-throughput image analysis demonstrates that FX-iNs have significantly smaller cell bodies and reduced arborizations than the control. Both FX- and control-neurons can discharge repetitive action potentials, and FX neuronal networks are also able to generate spontaneous excitatory synaptic currents with slight differences from the control, demonstrating that iNs generate more mature neuronal networks than the previously used protocols. MEA analysis demonstrated that FX networks are hyperexcitable with significantly higher spontaneous burst-firing activity compared to the control. Most importantly, cross-correlation analysis enabled quantification of network connectivity to demonstrate that the FX neuronal networks are significantly less synchronous than the control, which can explain the origin of the development of intellectual dysfunction associated with FXS.
Collapse
|
3
|
Maekawa M, Ohnishi T, Toyoshima M, Shimamoto-Mitsuyama C, Hamazaki K, Balan S, Wada Y, Esaki K, Takagai S, Tsuchiya KJ, Nakamura K, Iwata Y, Nara T, Iwayama Y, Toyota T, Nozaki Y, Ohba H, Watanabe A, Hisano Y, Matsuoka S, Tsujii M, Mori N, Matsuzaki H, Yoshikawa T. A potential role of fatty acid binding protein 4 in the pathophysiology of autism spectrum disorder. Brain Commun 2020; 2:fcaa145. [PMID: 33225276 PMCID: PMC7667725 DOI: 10.1093/braincomms/fcaa145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by difficulties in social communication and interaction, as well as repetitive and characteristic patterns of behaviour. Although the pathogenesis of autism spectrum disorder is unknown, being overweight or obesity during infancy and low weight at birth are known as risks, suggesting a metabolic aspect. In this study, we investigated adipose tissue development as a pathophysiological factor of autism spectrum disorder by examining the serum levels of adipokines and other metabolic markers in autism spectrum disorder children (n = 123) and typically developing children (n = 92) at 4–12 years of age. Among multiple measures exhibiting age-dependent trajectories, the leptin levels displayed different trajectory patterns between autism spectrum disorder and typically developing children, supporting an adipose tissue-dependent mechanism of autism spectrum disorder. Of particular interest, the levels of fatty acid binding protein 4 (FABP4) were significantly lower in autism spectrum disorder children than in typically developing subjects, at preschool age (4–6 years old: n = 21 for autism spectrum disorder and n = 26 for typically developing). The receiver operating characteristic curve analysis discriminated autism spectrum disorder children from typically developing children with a sensitivity of 94.4% and a specificity of 75.0%. We re-sequenced the exons of the FABP4 gene in a Japanese cohort comprising 659 autism spectrum disorder and 1000 control samples, and identified two rare functional variants in the autism spectrum disorder group. The Trp98Stop, one of the two variants, was transmitted to the proband from his mother with a history of depression. The disruption of the Fabp4 gene in mice evoked autism spectrum disorder-like behavioural phenotypes and increased spine density on apical dendrites of pyramidal neurons, which has been observed in the postmortem brains of autism spectrum disorder subjects. The Fabp4 knockout mice had an altered fatty acid composition in the cortex. Collectively, these results suggest that an ‘adipo-brain axis’ may underlie the pathophysiology of autism spectrum disorder, with FABP4 as a potential molecule for use as a biomarker.
Collapse
Affiliation(s)
- Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
- Correspondence to: Motoko Maekawa, Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan. E-mail:
| | - Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Manabu Toyoshima
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Kei Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuina Wada
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Kayoko Esaki
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Shu Takagai
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kazuhiko Nakamura
- Department of Psychiatry, Hirosaki University School of Medicine, Aomori, Japan
| | - Yasuhide Iwata
- Department of Psychiatry and Neurology, Fukude Nishi Hospital, Shizuoka, Japan
| | - Takahiro Nara
- Department of Rehabilitation, Miyagi Children's Hospital, Miyagi, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Yayoi Nozaki
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Hisako Ohba
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Yasuko Hisano
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Shigeru Matsuoka
- Department of Clinical Pharmacology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masatsugu Tsujii
- School of Contemporary Sociology, Chukyo University, Aichi, Japan
| | - Norio Mori
- Department of Psychiatry and Neurology, Fukude Nishi Hospital, Shizuoka, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
- Correspondence may also be addressed to: Takeo Yoshikawa. E-mail:
| |
Collapse
|
4
|
McCullagh EA, Rotschafer SE, Auerbach BD, Klug A, Kaczmarek LK, Cramer KS, Kulesza RJ, Razak KA, Lovelace JW, Lu Y, Koch U, Wang Y. Mechanisms underlying auditory processing deficits in Fragile X syndrome. FASEB J 2020; 34:3501-3518. [PMID: 32039504 DOI: 10.1096/fj.201902435r] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 01/14/2023]
Abstract
Autism spectrum disorders (ASD) are strongly associated with auditory hypersensitivity or hyperacusis (difficulty tolerating sounds). Fragile X syndrome (FXS), the most common monogenetic cause of ASD, has emerged as a powerful gateway for exploring underlying mechanisms of hyperacusis and auditory dysfunction in ASD. This review discusses examples of disruption of the auditory pathways in FXS at molecular, synaptic, and circuit levels in animal models as well as in FXS individuals. These examples highlight the involvement of multiple mechanisms, from aberrant synaptic development and ion channel deregulation of auditory brainstem circuits, to impaired neuronal plasticity and network hyperexcitability in the auditory cortex. Though a relatively new area of research, recent discoveries have increased interest in auditory dysfunction and mechanisms underlying hyperacusis in this disorder. This rapidly growing body of data has yielded novel research directions addressing critical questions regarding the timing and possible outcomes of human therapies for auditory dysfunction in ASD.
Collapse
Affiliation(s)
- Elizabeth A McCullagh
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA.,Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Sarah E Rotschafer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.,Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Benjamin D Auerbach
- Center for Hearing and Deafness, Department of Communicative Disorders & Sciences, SUNY at Buffalo, Buffalo, NY, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Randy J Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, CA, USA
| | | | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin, Berlin, Germany
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
5
|
Chiu KB, Lee KM, Robillard KN, MacLean AG. A Method to Investigate Astrocyte and Microglial Morphological Changes in the Aging Brain of the Rhesus Macaque. Methods Mol Biol 2019; 1938:265-276. [PMID: 30617987 DOI: 10.1007/978-1-4939-9068-9_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
With a rapidly aging population, studies of neuroinflammation and degeneration associated with eugeric aging are becoming critical. Using the unique archive at the Tulane National Primate Research Center as a resource, we have developed tools to quantify morphological changes in astrocytes and microglia across the life span of monkeys. This method can be used for morphometric studies of multiple parameters simultaneously in an unbiased manner.
Collapse
Affiliation(s)
- Kevin B Chiu
- Tulane National Primate Research Center, Covington, LA, USA.,Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Kim M Lee
- Tulane National Primate Research Center, Covington, LA, USA.,Vanderbilt Hospital Nashville, Nashville, TN, USA.,Tulane Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Katelyn N Robillard
- Tulane National Primate Research Center, Covington, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Andrew G MacLean
- Tulane National Primate Research Center, Covington, LA, USA. .,Tulane Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA, USA. .,Tulane Brain Institute, Tulane University, New Orleans, LA, USA. .,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
6
|
Wang X, Zorio DAR, Schecterson L, Lu Y, Wang Y. Postsynaptic FMRP Regulates Synaptogenesis In Vivo in the Developing Cochlear Nucleus. J Neurosci 2018; 38:6445-6460. [PMID: 29950504 PMCID: PMC6052239 DOI: 10.1523/jneurosci.0665-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022] Open
Abstract
A global loss of the fragile X mental retardation protein (FMRP; encoded by the Fmr1 gene) leads to sensory dysfunction and intellectual disabilities. One underlying mechanism of these phenotypes is structural and functional deficits in synapses. Here, we determined the autonomous function of postsynaptic FMRP in circuit formation, synaptogenesis, and synaptic maturation. In normal cochlea nucleus, presynaptic auditory axons form large axosomatic endbulb synapses on cell bodies of postsynaptic bushy neurons. In ovo electroporation of drug-inducible Fmr1-shRNA constructs produced a mosaicism of FMRP expression in chicken (either sex) bushy neurons, leading to reduced FMRP levels in transfected, but not neighboring nontransfected, neurons. Structural analyses revealed that postsynaptic FMRP reduction led to smaller size and abnormal morphology of individual presynaptic endbulbs at both early and later developmental stages. We further examined whether FMRP reduction affects dendritic development, as a potential mechanism underlying defective endbulb formation. Normally, chicken bushy neurons grow extensive dendrites at early stages and retract these dendrites when endbulbs begin to form. Neurons transfected with Fmr1 shRNA exhibited a remarkable delay in branch retraction, failing to provide necessary somatic surface for timely formation and growth of large endbulbs. Patch-clamp recording verified functional consequences of dendritic and synaptic deficits on neurotransmission, showing smaller amplitudes and slower kinetics of spontaneous and evoked EPSCs. Together, these data demonstrate that proper levels of postsynaptic FMRP are required for timely maturation of somatodendritic morphology, a delay of which may affect synaptogenesis and thus contribute to long-lasting deficits of excitatory synapses.SIGNIFICANCE STATEMENT Fragile X mental retardation protein (FMRP) regulates a large variety of neuronal activities. A global loss of FMRP affects neural circuit development and synaptic function, leading to fragile X syndrome (FXS). Using temporally and spatially controlled genetic manipulations, this study provides the first in vivo report that autonomous FMRP regulates multiple stages of dendritic development, and that selective reduction of postsynaptic FMRP leads to abnormal development of excitatory presynaptic terminals and compromised neurotransmission. These observations demonstrate secondary influence of developmentally transient deficits in neuronal morphology and connectivity to the development of long-lasting synaptic pathology in FXS.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Diego A R Zorio
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Leslayann Schecterson
- Department of Otolaryngology, Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195, and
| | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Yuan Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, Florida 32306,
| |
Collapse
|
7
|
Martínez-Cerdeño V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Dev Neurobiol 2017; 77:393-404. [PMID: 27390186 PMCID: PMC5219951 DOI: 10.1002/dneu.22417] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
Dendrites and spines are the main neuronal structures receiving input from other neurons and glial cells. Dendritic and spine number, size, and morphology are some of the crucial factors determining how signals coming from individual synapses are integrated. Much remains to be understood about the characteristics of neuronal dendrites and dendritic spines in autism and related disorders. Although there have been many studies conducted using autism mouse models, few have been carried out using postmortem human tissue from patients. Available animal models of autism include those generated through genetic modifications and those non-genetic models of the disease. Here, we review how dendrite and spine morphology and number is affected in autism and related neurodevelopmental diseases, both in human, and genetic and non-genetic animal models of autism. Overall, data obtained from human and animal models point to a generalized reduction in the size and number, as well as an alteration of the morphology of dendrites; and an increase in spine densities with immature morphology, indicating a general spine immaturity state in autism. Additional human studies on dendrite and spine number and morphology in postmortem tissue are needed to understand the properties of these structures in the cerebral cortex of patients with autism. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis, Sacramento, California
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, North California, Sacramento, California
- MIND Institute, UC Davis School of Medicine, Sacramento, California
| |
Collapse
|
8
|
Rigoulot S, Knoth IS, Lafontaine M, Vannasing P, Major P, Jacquemont S, Michaud JL, Jerbi K, Lippé S. Altered visual repetition suppression in Fragile X Syndrome: New evidence from ERPs and oscillatory activity. Int J Dev Neurosci 2017; 59:52-59. [DOI: 10.1016/j.ijdevneu.2017.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/31/2016] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Simon Rigoulot
- Departement de PsychologieUniversité de MontréalMontrealCanada
- Neuroscience of Early Development (NED)MontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
- International Laboratory for Brain, Music and Sound Research (BRAMS)MontrealQuebecCanada
| | - Inga S. Knoth
- Neuroscience of Early Development (NED)MontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Marc‐Philippe Lafontaine
- Departement de PsychologieUniversité de MontréalMontrealCanada
- Neuroscience of Early Development (NED)MontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Phetsamone Vannasing
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Philippe Major
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Sébastien Jacquemont
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Jacques L. Michaud
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Karim Jerbi
- Departement de PsychologieUniversité de MontréalMontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- International Laboratory for Brain, Music and Sound Research (BRAMS)MontrealQuebecCanada
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal (CRIUSMM)
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM)
| | - Sarah Lippé
- Departement de PsychologieUniversité de MontréalMontrealCanada
- Neuroscience of Early Development (NED)MontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
- International Laboratory for Brain, Music and Sound Research (BRAMS)MontrealQuebecCanada
| |
Collapse
|
9
|
Zorio DAR, Jackson CM, Liu Y, Rubel EW, Wang Y. Cellular distribution of the fragile X mental retardation protein in the mouse brain. J Comp Neurol 2017; 525:818-849. [PMID: 27539535 PMCID: PMC5558202 DOI: 10.1002/cne.24100] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/07/2022]
Abstract
The fragile X mental retardation protein (FMRP) plays an important role in normal brain development. Absence of FMRP results in abnormal neuronal morphologies in a selected manner throughout the brain, leading to intellectual deficits and sensory dysfunction in the fragile X syndrome (FXS). Despite FMRP importance for proper brain function, its overall expression pattern in the mammalian brain at the resolution of individual neuronal cell groups is not known. In this study we used FMR1 knockout and isogenic wildtype mice to systematically map the distribution of FMRP expression in the entire mouse brain. Using immunocytochemistry and cellular quantification analyses, we identified a large number of prominent cell groups expressing high levels of FMRP at the subcortical levels, in particular sensory and motor neurons in the brainstem and thalamus. In contrast, many cell groups in the midbrain and hypothalamus exhibit low FMRP levels. More important, we describe differential patterns of FMRP distribution in both cortical and subcortical brain regions. Almost all major brain areas contain high and low levels of FMRP cell groups adjacent to each other or between layers of the same cortical areas. These differential patterns indicate that FMRP expression appears to be specific to individual neuronal cell groups instead of being associated with all neurons in distinct brain regions, as previously considered. Taken together, these findings support the notion of FMRP differential neuronal regulation and strongly implicate the contribution of fundamental sensory and motor processing at subcortical levels to FXS pathology. J. Comp. Neurol. 525:818-849, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diego A. R. Zorio
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Christine M. Jackson
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yong Liu
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Box 357923, Seattle, WA 98195, USA
| | - Yuan Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
10
|
De Giorgio A. The roles of motor activity and environmental enrichment in intellectual disability. Somatosens Mot Res 2017; 34:34-43. [PMID: 28140743 DOI: 10.1080/08990220.2016.1278204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In people with intellectual disabilities, an enriched environment can stimulate the acquisition of motor skills and could partially repair neuronal impairment thanks to exploration and motor activity. A deficit in environmental and motor stimulation leads to low scores in intelligence tests and can cause serious motor skill problems. Although studies in humans do not give much evidence for explaining basic mechanisms of intellectual disability and for highlighting improvements due to enriched environmental stimulation, animal models have been valuable in the investigation of these conditions. Here, we discuss the role of environmental enrichment in four intellectual disabilities: Foetal Alcohol Spectrum Disorder (FASD), Down, Rett, and Fragile X syndromes.
Collapse
Affiliation(s)
- Andrea De Giorgio
- a Department of Psychology , eCampus University , Novedrate , Italy.,b Department of Psychology , Universita Cattolica del Sacro Cuore , Milano , Italy
| |
Collapse
|
11
|
Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev 2016; 68:946-978. [PMID: 27143622 DOI: 10.1016/j.neubiorev.2016.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Dendrite morphology is pivotal for neural circuitry functioning. While the causative relationship between small-scale dendrite morphological abnormalities (shape, density of dendritic spines) and neurodevelopmental disorders is well established, such relationship remains elusive for larger-scale dendrite morphological impairments (size, shape, branching pattern of dendritic trees). Here, we summarize published data on dendrite morphological irregularities in human patients and animal models for neurodevelopmental disorders, with focus on autism and schizophrenia. We next discuss high-risk genes for these disorders and their role in dendrite morphogenesis. We finally overview recent developments in therapeutic attempts and we discuss how they relate to dendrite morphology. We find that both autism and schizophrenia are accompanied by dendritic arbor morphological irregularities, and that majority of their high-risk genes regulate dendrite morphogenesis. Thus, we present a compelling argument that, along with smaller-scale morphological impairments in dendrites (spines and synapse), irregularities in larger-scale dendrite morphology (arbor shape, size) may be an important part of neurodevelopmental disorders' etiology. We suggest that this should not be ignored when developing future therapeutic treatments.
Collapse
|
12
|
Abstract
UNLABELLED Fragile X syndrome (FXS), the most common form of inherited mental retardation, is a neurodevelopmental disorder caused by silencing of the FMR1 gene, which in FXS becomes inactivated during human embryonic development. We have shown recently that this process is recapitulated by in vitro neural differentiation of FX human embryonic stem cells (FX-hESCs), derived from FXS blastocysts. In the present study, we analyzed morphological and functional properties of neurons generated from FX-hESCs. Human FX neurons can fire single action potentials (APs) to depolarizing current commands, but are unable to discharge trains of APs. Their APs are of a reduced amplitudes and longer durations than controls. These are reflected in reduced inward Na(+) and outward K(+) currents. In addition, human FX neurons contain fewer synaptic vesicles and lack spontaneous synaptic activity. Notably, synaptic activity in these neurons can be restored by coculturing them with normal rat hippocampal neurons, demonstrating a critical role for synaptic mechanisms in FXS pathology. This is the first extensive functional analysis of human FX neurons derived in vitro from hESCs that provides a convenient tool for studying molecular mechanisms underlying the impaired neuronal functions in FXS. SIGNIFICANCE STATEMENT Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by silencing of the FMR1 gene. In this study, we describe for the first time the properties of neurons developed from human embryonic stem cells (hESCs) that carry the FMR1 mutation and are grown in culture for extended periods. These neurons are retarded compared with controls in several morphological and functional properties. In vitro neural differentiation of FX hESCs can thus serve as a most relevant system for the analysis of molecular mechanisms underlying the impaired neuronal functions in FXS.
Collapse
|
13
|
Tan AM. Dendritic spine dysgenesis in neuropathic pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:385-408. [PMID: 25744680 DOI: 10.1016/bs.pmbts.2014.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The failure of neuropathic pain to abate even years after trauma suggests that adverse changes to synaptic function must exist in a chronic pathological state in nociceptive pathways. The chronicity of neuropathic pain therefore underscores the importance of understanding the contribution of dendritic spines--micron-sized postsynaptic structures that represent modifiable sites of synaptic contact. Historically, dendritic spines have been of great interest to the learning and memory field. More recent evidence points to the exciting implication that abnormal dendritic spine structure following disease or injury may represent a "molecular memory" for maintaining chronic pain. Dendritic spine dysgenesis in dorsal horn neurons contributes to nociceptive hyperexcitability associated with neuropathic pain, as demonstrated in multiple pain models, i.e., spinal cord injury, peripheral nerve injury, diabetic neuropathy, and thermal burn injury. Because of the relationship between dendritic spine structure and neuronal function, a thorough investigation of dendritic spine behavior in the spinal cord is a unique opportunity to better understand the mechanisms of sensory dysfunction after injury or disease. At a conceptual level, a spinal memory mechanism that engages dendritic spine remodeling would also contribute to a broad range of intractable neurological conditions. Molecules involved in regulating dendritic spine plasticity may offer novel targets for the development of effective and durable therapies for neurological disease.
Collapse
Affiliation(s)
- Andrew Michael Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA; Hopkins School, New Haven, Connecticut, USA.
| |
Collapse
|
14
|
Wang Y, Sakano H, Beebe K, Brown MR, de Laat R, Bothwell M, Kulesza RJ, Rubel EW. Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: a comparative study in the alligator, chicken, gerbil, and human. J Comp Neurol 2015; 522:2107-28. [PMID: 24318628 DOI: 10.1002/cne.23520] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/09/2022]
Abstract
Neuronal dendrites are structurally and functionally dynamic in response to changes in afferent activity. The fragile X mental retardation protein (FMRP) is an mRNA binding protein that regulates activity-dependent protein synthesis and morphological dynamics of dendrites. Loss and abnormal expression of FMRP occur in fragile X syndrome (FXS) and some forms of autism spectrum disorders. To provide further understanding of how FMRP signaling regulates dendritic dynamics, we examined dendritic expression and localization of FMRP in the reptilian and avian nucleus laminaris (NL) and its mammalian analogue, the medial superior olive (MSO), in rodents and humans. NL/MSO neurons are specialized for temporal processing of low-frequency sounds for binaural hearing, which is impaired in FXS. Protein BLAST analyses first demonstrate that the FMRP amino acid sequences in the alligator and chicken are highly similar to human FMRP with identical mRNA-binding and phosphorylation sites, suggesting that FMRP functions similarly across vertebrates. Immunocytochemistry further reveals that NL/MSO neurons have very high levels of dendritic FMRP in low-frequency hearing vertebrates including alligator, chicken, gerbil, and human. Remarkably, dendritic FMRP in NL/MSO neurons often accumulates at branch points and enlarged distal tips, loci known to be critical for branch-specific dendritic arbor dynamics. These observations support an important role for FMRP in regulating dendritic properties of binaural neurons that are essential for low-frequency sound localization and auditory scene segregation, and support the relevance of studying this regulation in nonhuman vertebrates that use low frequencies in order to further understand human auditory processing disorders.
Collapse
Affiliation(s)
- Yuan Wang
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, 98195-7923
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Fragile X Syndrome (FXS) is commonly thought to arise from dysfunction of the synapse, the site of communication between neurons. However, loss of the protein that results in FXS occurs early in embryonic development, while synapses are formed relatively late. Fragile X Syndrome (FXS) is the leading known monogenic form of autism and the most common form of inherited intellectual disability. FXS results from silencing the FMR1 gene during embryonic development, leading to loss of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein that regulates mRNA transport, stability, and translation. FXS is commonly thought of as a disease of synaptic dysfunction; however, FMRP expression is lost early in embryonic development, well before most synaptogenesis occurs. Recent studies suggest that loss of FMRP results in aberrant neurogenesis, but neurogenic defects have been variable. We investigated whether FMRP affects neurogenesis in Xenopus laevis tadpoles that express a homolog of FMR1. We used in vivo time-lapse imaging of neural progenitor cells and their neuronal progeny to evaluate the effect of acute loss or overexpression of FMRP on neurogenesis in the developing optic tectum. We complimented the time-lapse studies with SYTOX labeling to quantify apoptosis and CldU labeling to measure cell proliferation. Animals with increased or decreased levels of FMRP have significantly decreased neuronal proliferation and survival. They also have increased neuronal differentiation, but deficient dendritic arbor elaboration. The presence and severity of these defects was highly sensitive to FMRP levels. These data demonstrate that FMRP plays an important role in neurogenesis and suggest that endogenous FMRP levels are carefully regulated. These studies show promise in using Xenopus as an experimental system to study fundamental deficits in brain development with loss of FMRP and give new insight into the pathophysiology of FXS.
Collapse
|
16
|
Hébert B, Pietropaolo S, Même S, Laudier B, Laugeray A, Doisne N, Quartier A, Lefeuvre S, Got L, Cahard D, Laumonnier F, Crusio WE, Pichon J, Menuet A, Perche O, Briault S. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by a BKCa channel opener molecule. Orphanet J Rare Dis 2014; 9:124. [PMID: 25079250 PMCID: PMC4237919 DOI: 10.1186/s13023-014-0124-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is also associated with autism spectrum disorders. Previous studies implicated BKCa channels in the neuropathogenesis of FXS, but the main question was whether pharmacological BKCa stimulation would be able to rescue FXS neurobehavioral phenotypes. METHODS AND RESULTS We used a selective BKCa channel opener molecule (BMS-204352) to address this issue in Fmr1 KO mice, modeling the FXS pathophysiology. In vitro, acute BMS-204352 treatment (10 μM) restored the abnormal dendritic spine phenotype. In vivo, a single injection of BMS-204352 (2 mg/kg) rescued the hippocampal glutamate homeostasis and the behavioral phenotype. Indeed, disturbances in social recognition and interaction, non-social anxiety, and spatial memory were corrected by BMS-204352 in Fmr1 KO mice. CONCLUSION These results demonstrate that the BKCa channel is a new therapeutic target for FXS. We show that BMS-204352 rescues a broad spectrum of behavioral impairments (social, emotional and cognitive) in an animal model of FXS. This pharmacological molecule might open new ways for FXS therapy.
Collapse
|
17
|
Beebe K, Wang Y, Kulesza R. Distribution of fragile X mental retardation protein in the human auditory brainstem. Neuroscience 2014; 273:79-91. [PMID: 24838064 DOI: 10.1016/j.neuroscience.2014.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 01/20/2023]
Abstract
Fragile X mental retardation protein (FMRP) binds select mRNAs, functions in intracellular transport of these mRNAs and represses their translation. FMRP is highly expressed in neurons and lack of FMRP has been shown to result in dendritic dysmorphology and altered synaptic function. FMRP is known to interact with mRNAs for the Kv3.1b potassium channel which is required for neurons to fire action potentials at high rates with remarkable temporal precision. Auditory brainstem neurons are known for remarkably high spike rates and expression of Kv3.1b potassium channels. Fragile X syndrome (FXS) is a genetic disorder caused by a mutation in the fragile X mental retardation 1 gene (Fmr1) resulting in decreased expression of FMRP and subsequent intellectual disability, seizures, attention deficit and hypersensitivity to auditory and other sensory stimuli. We therefore hypothesize that the auditory difficulties in FXS result, at least in part, from dysfunction of auditory brainstem neurons. To examine this hypothesis, we have studied normal human brainstem tissue with immunohistochemical techniques and confocal microscopy. Our results demonstrate that FMRP is widely expressed in cell bodies and dendritic arbors of neurons in the human cochlear nucleus and superior olivary complex and also that coincidence detector neurons of the medial superior olive colocalization of FMRP and Kv3.1b. We interpret these observations to suggest that the lower auditory brainstem is a potential site of dysfunction in FXS.
Collapse
Affiliation(s)
- K Beebe
- Lake Erie College of Osteopathic Medicine, Auditory Research Center, Erie, PA, USA
| | - Y Wang
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - R Kulesza
- Lake Erie College of Osteopathic Medicine, Auditory Research Center, Erie, PA, USA.
| |
Collapse
|
18
|
Smith LN, Jedynak JP, Fontenot MR, Hale CF, Dietz KC, Taniguchi M, Thomas FS, Zirlin BC, Birnbaum SG, Huber KM, Thomas MJ, Cowan CW. Fragile X mental retardation protein regulates synaptic and behavioral plasticity to repeated cocaine administration. Neuron 2014; 82:645-58. [PMID: 24811383 PMCID: PMC4052976 DOI: 10.1016/j.neuron.2014.03.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2014] [Indexed: 12/31/2022]
Abstract
Repeated cocaine exposure causes persistent, maladaptive alterations in brain and behavior, and hope for effective therapeutics lies in understanding these processes. We describe here an essential role for fragile X mental retardation protein (FMRP), an RNA-binding protein and regulator of dendritic protein synthesis, in cocaine conditioned place preference, behavioral sensitization, and motor stereotypy. Cocaine reward deficits in FMRP-deficient mice stem from elevated mGluR5 (or GRM5) function, similar to a subset of fragile X symptoms, and do not extend to natural reward. We find that FMRP functions in the adult nucleus accumbens (NAc), a critical addiction-related brain region, to mediate behavioral sensitization but not cocaine reward. FMRP-deficient mice also exhibit several abnormalities in NAc medium spiny neurons, including reduced presynaptic function and premature changes in dendritic morphology and glutamatergic neurotransmission following repeated cocaine treatment. Together, our findings reveal FMRP as a critical mediator of cocaine-induced behavioral and synaptic plasticity.
Collapse
Affiliation(s)
- Laura N. Smith
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Jakub P. Jedynak
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Departments of Neuroscience and Psychology, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Miles R. Fontenot
- Medical Science Training Program, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Carly F. Hale
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Karen C. Dietz
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Makoto Taniguchi
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Feba S. Thomas
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Benjamin C. Zirlin
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Shari G. Birnbaum
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Kimberly M. Huber
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Mark J. Thomas
- Departments of Neuroscience and Psychology, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building, 2101 Sixth Street SE, Minneapolis, MN 55455, USA
| | - Christopher W. Cowan
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| |
Collapse
|
19
|
Cook D, Nuro E, Murai KK. Increasing our understanding of human cognition through the study of Fragile X Syndrome. Dev Neurobiol 2013; 74:147-77. [PMID: 23723176 PMCID: PMC4216185 DOI: 10.1002/dneu.22096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior.
Collapse
Affiliation(s)
- Denise Cook
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
20
|
Sensitive time-windows for susceptibility in neurodevelopmental disorders. Trends Neurosci 2012; 35:335-44. [PMID: 22542246 DOI: 10.1016/j.tins.2012.03.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/22/2012] [Accepted: 03/09/2012] [Indexed: 11/20/2022]
Abstract
Many neurodevelopmental disorders (NDDs) are characterized by age-dependent symptom onset and regression, particularly during early postnatal periods of life. The neurobiological mechanisms preceding and underlying these developmental cognitive and behavioral impairments are, however, not clearly understood. Recent evidence using animal models for monogenic NDDs demonstrates the existence of time-regulated windows of neuronal and synaptic impairments. We propose that these developmentally-dependent impairments can be unified into a key concept: namely, time-restricted windows for impaired synaptic phenotypes exist in NDDs, akin to critical periods during normal sensory development in the brain. Existence of sensitive time-windows has significant implications for our understanding of early brain development underlying NDDs and may indicate vulnerable periods when the brain is more susceptible to current therapeutic treatments.
Collapse
|