1
|
Sepehr A, Miri ST, Aghamohammad S, Rahimirad N, Milani M, Pourshafie MR, Rohani M. Health benefits, antimicrobial activities, and potential applications of probiotics: A review. Medicine (Baltimore) 2024; 103:e32412. [PMID: 39969286 PMCID: PMC11688011 DOI: 10.1097/md.0000000000032412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/02/2022] [Indexed: 02/20/2025] Open
Abstract
Gut microbiota and its metabolic activities can influence the physiology and pathology of the human body. It is well established that alterations in the balance of living microbiota can contribute to various health problems, such as inflammatory bowel disease and autoimmune disorders. Probiotics administered in sufficient quantities as functional food ingredients provide health benefits to hosts. They help to maintain the stability and composition of the gut microbiota and provide resistance to infection by pathogens. The most important probiotic bacteria are Lactobacillus spp. and Bifidobacteria spp., which protect the intestine through various mechanisms such as the production of organic acids and bacteriocins. Scientific and clinical research has demonstrated that probiotics play a role in modulating immune response and preventing cancer and chronic inflammatory diseases, especially in the gastrointestinal tract. This article summarizes the potential health benefits, antimicrobial activities, and purposes for which probiotics can be used as functional foods to improve human health.
Collapse
Affiliation(s)
- Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Tina Miri
- Department of Microbiology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | | | - Nazanin Rahimirad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahnaz Milani
- Department of Microbiology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | | | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Biggio F, Fattuoni C, Mostallino MC, Follesa P. Effects of Chronic Bifidobacteria Administration in Adult Male Rats on Plasma Metabolites: A Preliminary Metabolomic Study. Metabolites 2022; 12:762. [PMID: 36005634 PMCID: PMC9412907 DOI: 10.3390/metabo12080762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Probiotics are live microorganisms distributed in the gastrointestinal tract that confer health benefits to the host when administered in adequate amounts. Bifidobacteria have been widely tested as a therapeutic strategy in the prevention and treatment of a broad spectrum of gastrointestinal disorders as well as in the regulation of the "microbiota-gut-brain axis". Metabolomic techniques can provide details in the study of molecular metabolic mechanisms involved in Bifidobacteria function through the analysis of metabolites that positively contribute to human health. This study was focused on the effects of the chronic assumption of a mixture of Bifidobacteria in adult male rats using a metabolomic approach. Plasma samples were collected at the end of treatment and analyzed with a gas chromatography-mass spectrometry (GC-MS) platform. Partial least square discriminant analysis (PLS-DA) was performed to compare the metabolic pattern in control and probiotic-treated rats. Our results show, in probiotic-treated animals, an increase in metabolites involved in the energetic cycle, such as glucose, erythrose, creatinine, taurine and glycolic acid, as well as 3-hydroxybutyric acid. This is an important metabolite of short-chain fatty acids (SCFA) with multitasking roles in energy circuit balance, and it has also been proposed to have a key role in the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Francesca Biggio
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Claudia Fattuoni
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | | | - Paolo Follesa
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
3
|
Sun S, Lei OK, Nie J, Shi Q, Xu Y, Kong Z. Effects of Low-Carbohydrate Diet and Exercise Training on Gut Microbiota. Front Nutr 2022; 9:884550. [PMID: 35592627 PMCID: PMC9110973 DOI: 10.3389/fnut.2022.884550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/31/2022] [Indexed: 01/04/2023] Open
Abstract
ObjectiveThis study was aimed to evaluate the effects of low-carbohydrate diet (LC) and incorporated high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT) on gut microbiota, and the associations between changes in gut microbiota and cardiometabolic health-related profiles.MethodsFifty overweight/obese Chinese females (age 22.2 ± 3.3 years, body mass index 25.1 ± 3.1 kg/m–2) were randomized to the groups of LC, LC and HIIT (LC-HIIT, 10 repetitions of 6-s sprints and 9-s rest), and LC and MICT group (LC-MICT, cycling at 50–60% V̇O2peak for 30 min). The LC-HIIT and LC-MICT experienced 20 training sessions over 4 weeks.ResultsThe 4-week LC intervention with/without additional training failed to change the Shannon, Chao 1, and Simpson indexes (p > 0.05), LC increased Phascolarctobacterium genus, and LC-HIIT reduced Bifidobacterium genus after intervention (p < 0.05). Groups with extra exercise training increased short-chain fatty acid-producing Blautia genus (p < 0.05) and reduced type 2 diabetes-related genus Alistipes (p < 0.05) compared to LC. Sutterella (r = −0.335) and Enterobacter (r = 0.334) were associated with changes in body composition (p < 0.05). Changes in Ruminococcus, Eubacterium, and Roseburia genera were positively associated with blood pressure (BP) changes (r = 0.392–0.445, p < 0.05), whereas the changes in Bacteroides, Faecalibacterium, and Parabacteroides genera were negatively associated with BP changes (r = −0.567 to −0.362, p < 0.05).ConclusionLC intervention did not change the α-diversity and overall structure of gut microbiota. Combining LC with exercise training may have additional benefits on gut physiology. Specific microbial genera were associated with LC- and exercise-induced regulation of cardiometabolic health.
Collapse
Affiliation(s)
- Shengyan Sun
- Institute of Physical Education, Huzhou University, Huzhou, China
| | - On Kei Lei
- Faculty of Education, University of Macau, Macao, Macao SAR, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, Macao SAR, China
| | - Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, Macao SAR, China
| | - Yuming Xu
- College of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, Macao SAR, China
- *Correspondence: Zhaowei Kong,
| |
Collapse
|
4
|
Marín-Manzano MDC, Hernandez-Hernandez O, Diez-Municio M, Delgado-Andrade C, Moreno FJ, Clemente A. Prebiotic Properties of Non-Fructosylated α-Galactooligosaccharides from PEA ( Pisum sativum L.) Using Infant Fecal Slurries. Foods 2020; 9:foods9070921. [PMID: 32668744 PMCID: PMC7405007 DOI: 10.3390/foods9070921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
The interest for naturally-occurring oligosaccharides from plant origin having prebiotic properties is growing, with special focus being paid to supplemented products for infants. Currently, non-fructosylated α-galactooligosaccharides (α-GOS) from peas have peaked interest as a result of their prebiotic activity in adults and their mitigated side-effects on gas production from colonic bacterial fermentation. In this study, commercially available non-fructosylated α-GOS from peas and β-galactooligosaccharides (β-GOS) derived from lactose were fermented using fecal slurries from children aged 11 to 24 months old during 6 and 24 h. The modulatory effect of both GOS on different bacterial groups and bifidobacteria species was assessed; non-fructosylated α-GOS consumption was monitored throughout the fermentation process and the amounts of lactic acid and short-chain fatty acids (SCFA) generated were analyzed. Non-fructosylated α-GOS, composed mainly of manninotriose and verbascotetraose and small amounts of melibiose, were fully metabolized and presented remarkable bifidogenic activity, similar to that obtained with β-GOS. Furthermore, non-fructosylated α-GOS selectively caused an increase on the population of Bifidobacterium longum subsp. longum and Bifidobacterium catenulatum/pseudo-catenulatum. In conclusion, non-fructosylated α-GOS could be used as potential ingredient in infant formula supplemented with prebiotic oligosaccharides.
Collapse
Affiliation(s)
- María del Carmen Marín-Manzano
- Estación Experimental del Zaidín (CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain; (M.d.C.M.-M.); (C.D.-A.)
| | | | - Marina Diez-Municio
- Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain; (O.H.-H.); (M.D.-M.); (F.J.M.)
| | - Cristina Delgado-Andrade
- Estación Experimental del Zaidín (CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain; (M.d.C.M.-M.); (C.D.-A.)
| | - Francisco Javier Moreno
- Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain; (O.H.-H.); (M.D.-M.); (F.J.M.)
| | - Alfonso Clemente
- Estación Experimental del Zaidín (CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain; (M.d.C.M.-M.); (C.D.-A.)
- Correspondence: ; Tel.: +34-9-5857-2757
| |
Collapse
|
5
|
Rawi MH, Zaman SA, Pa'ee KF, Leong SS, Sarbini SR. Prebiotics metabolism by gut-isolated probiotics. Journal of Food Science and Technology 2020; 57:2786-2799. [PMID: 32624588 DOI: 10.1007/s13197-020-04244-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
There are numerous species of bacteria resides in the lumen of human colon. The word 'colon', resembles colony or the colonization of microbiota of which plays an important role in the fermentation of prebiotics. The standpoint of prebiotic nowadays is well reported for attenuating gut dysbiosis in many clinical studies tested on animals and human. However, because of the huge amount of gut microbiome, the attempt to connect the dots between bacterial population and the host are not plainly discernible. Thus, a need to analyse recent research on the pathways of prebiotic metabolism adopted by commonly studied probiotics i.e. Bifidobacteria and Lactobacillus. Several different substrate-dependent gene expressions are induced to break down oligosaccharide molecules shown by those probiotics. The hydrolysis can occur either by membrane bound (extracellular) or cytoplasmic (intracellular) enzyme of the enteric bacteria. Therefore, this review narrates several prebiotic metabolisms occur during gut fermentation, and metabolite production i.e. organic acids conversion.
Collapse
Affiliation(s)
- Muhamad Hanif Rawi
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Siti Aisyah Zaman
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Khairul Faizal Pa'ee
- Food Technology Section, Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bio-Engineering Technology (UniKL-MICET), Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka Malaysia
| | - Sui Sien Leong
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Shahrul Razid Sarbini
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| |
Collapse
|
6
|
Peirotén A, Gaya P, Arqués JL, Medina M, Rodríguez E. Technological Properties of Bifidobacterial Strains Shared by Mother and Child. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9814623. [PMID: 30793000 PMCID: PMC6354206 DOI: 10.1155/2019/9814623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 01/23/2023]
Abstract
Technological processes in the dairy industry and the further passage through the gastrointestinal tract could impair viability and functionality of probiotic bifidobacteria. In the present work, the growth in milk of nine bifidobacterial strains shared by mother and child, their survival to freeze-drying and cold storage, and their behavior in a model cheese were investigated. All the strains exhibited high stability to the technological conditions studied when compared with two commercial strains. Bifidobacterium breve INIA P734 and Bifidobacterium bifidum INIA P671 as adjunct cultures maintained high stability during manufacture and ripening of cheese. Both strains showed, at the end of ripening period, resistance to simulated gastrointestinal conditions. Moreover, their presence did not affect negatively the quality of cheese. B. breve INIA P734 and B. bifidum INIA P671 could be considered as potential candidates for their use in cheese as adjunct cultures.
Collapse
Affiliation(s)
- Angela Peirotén
- Departamento de Tecnología de Alimentos, INIA, Ctra. de La Coruña Km 7, 28040 Madrid, Spain
| | - Pilar Gaya
- Departamento de Tecnología de Alimentos, INIA, Ctra. de La Coruña Km 7, 28040 Madrid, Spain
| | - Juan Luis Arqués
- Departamento de Tecnología de Alimentos, INIA, Ctra. de La Coruña Km 7, 28040 Madrid, Spain
| | - Margarita Medina
- Departamento de Tecnología de Alimentos, INIA, Ctra. de La Coruña Km 7, 28040 Madrid, Spain
| | - Eva Rodríguez
- Departamento de Tecnología de Alimentos, INIA, Ctra. de La Coruña Km 7, 28040 Madrid, Spain
| |
Collapse
|
7
|
Hornung B, Martins Dos Santos VAP, Smidt H, Schaap PJ. Studying microbial functionality within the gut ecosystem by systems biology. GENES AND NUTRITION 2018; 13:5. [PMID: 29556373 PMCID: PMC5840735 DOI: 10.1186/s12263-018-0594-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/13/2018] [Indexed: 12/13/2022]
Abstract
Humans are not autonomous entities. We are all living in a complex environment, interacting not only with our peers, but as true holobionts; we are also very much in interaction with our coexisting microbial ecosystems living on and especially within us, in the intestine. Intestinal microorganisms, often collectively referred to as intestinal microbiota, contribute significantly to our daily energy uptake by breaking down complex carbohydrates into simple sugars, which are fermented to short-chain fatty acids and subsequently absorbed by human cells. They also have an impact on our immune system, by suppressing or enhancing the growth of malevolent and beneficial microbes. Our lifestyle can have a large influence on this ecosystem. What and how much we consume can tip the ecological balance in the intestine. A "western diet" containing mainly processed food will have a different effect on our health than a balanced diet fortified with pre- and probiotics. In recent years, new technologies have emerged, which made a more detailed understanding of microbial communities and ecosystems feasible. This includes progress in the sequencing of PCR-amplified phylogenetic marker genes as well as the collective microbial metagenome and metatranscriptome, allowing us to determine with an increasing level of detail, which microbial species are in the microbiota, understand what these microorganisms do and how they respond to changes in lifestyle and diet. These new technologies also include the use of synthetic and in vitro systems, which allow us to study the impact of substrates and addition of specific microbes to microbial communities at a high level of detail, and enable us to gather quantitative data for modelling purposes. Here, we will review the current state of microbiome research, summarizing the computational methodologies in this area and highlighting possible outcomes for personalized nutrition and medicine.
Collapse
Affiliation(s)
- Bastian Hornung
- 1Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Vitor A P Martins Dos Santos
- 1Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Hauke Smidt
- 2Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Peter J Schaap
- 1Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
8
|
Exploring the role of the microbiota member Bifidobacterium in modulating immune-linked diseases. Emerg Top Life Sci 2017; 1:333-349. [PMID: 33525778 PMCID: PMC7288987 DOI: 10.1042/etls20170058] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022]
Abstract
The gut-associated microbiota is essential for multiple physiological processes, including immune development. Acquisition of our initial pioneer microbial communities, including the dominant early life genus Bifidobacterium, occurs at a critical period of immune maturation and programming. Bifidobacteria are resident microbiota members throughout our lifetime and have been shown to modulate specific immune cells and pathways. Notably, reductions in this genus have been associated with several diseases, including inflammatory bowel disease. In this review, we provide an overview of bifidobacteria profiles throughout life and how different strains of bifidobacteria have been implicated in immune modulation in disease states. The focus will be examining preclinical models and outcomes from clinical trials on immune-linked chronic conditions. Finally, we highlight some of the important unresolved questions in relation to Bifidobacterium-mediated immune modulation and implications for future directions, trials, and development of new therapies.
Collapse
|
9
|
Bifidobacterium bifidum Extracellular Sialidase Enhances Adhesion to the Mucosal Surface and Supports Carbohydrate Assimilation. mBio 2017; 8:mBio.00928-17. [PMID: 28974612 PMCID: PMC5626965 DOI: 10.1128/mbio.00928-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacterium is a natural inhabitant of the human gastrointestinal (GI) tract. We studied the role of the extracellular sialidase (SiaBb2, 835 amino acids [aa]) from Bifidobacterium bifidum ATCC 15696 in mucosal surface adhesion and carbohydrate catabolism. Human milk oligosaccharides (HMOs) or porcine mucin oligosaccharides as the sole carbon source enhanced B. bifidum growth. This was impaired in a B. bifidum ATCC 15696 strain harboring a mutation in the siabb2 gene. Mutant cells in early to late exponential growth phase also showed decreased adhesion to human epithelial cells and porcine mucin relative to the wild-type strain. These results indicate that SiaBb2 removes sialic acid from HMOs and mucin for metabolic purposes and may promote bifidobacterial adhesion to the mucosal surface. To further characterize SiaBb2-mediated bacterial adhesion, we examined the binding of His-tagged recombinant SiaBb2 peptide to colonic mucins and found that His-SiaBb2 as well as a conserved sialidase domain peptide (aa 187 to 553, His-Sia) bound to porcine mucin and murine colonic sections. A glycoarray assay revealed that His-Sia bound to the α2,6-linked but not to the α2,3-linked sialic acid on sialyloligosaccharide and blood type A antigen [GalNAcα1-3(Fucα1-2)Galβ] at the nonreducing termini of sugar chains. These results suggest that the sialidase domain of SiaBb2 is responsible for this interaction and that the protein recognizes two distinct carbohydrate structures. Thus, SiaBb2 may be involved in Bifidobacterium-mucosal surface interactions as well as in the assimilation of a variety of sialylated carbohydrates. Adhesion to the host mucosal surface and carbohydrate assimilation are important for bifidobacterium colonization and survival in the host gastrointestinal tract. In this study, we investigated the mechanistic basis for B. bifidum extracellular sialidase (SiaBb2)-mediated adhesion. SiaBb2 cleaved sialyl-human milk oligosaccharides and mucin glycans to produce oligosaccharides that supported B. bifidum growth. Moreover, SiaBb2 enhanced B. bifidum adhesion to mucosal surfaces via specific interactions with the α2,6 linkage of sialyloligosaccharide and blood type A antigen on mucin carbohydrates. These findings provide insight into the bifunctional role of SiaBb2 and the adhesion properties of B. bifidum strains.
Collapse
|
10
|
Charnchai P, Jantama SS, Jantama K. Genome analysis of food-processing stressful-resistant probiotic Bifidobacterium animalis subsp. lactis BF052, and its potential application in fermented soymilk. FEMS Microbiol Lett 2017; 364:4084568. [PMID: 28911187 DOI: 10.1093/femsle/fnx180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/16/2017] [Indexed: 01/13/2023] Open
Abstract
In this study, Bifidobacterium animalis subsp. lactis BF052 was demonstrated the growth capability in soymilk and could be thus supplemented as a probiotic starter that employed soymilk as one of its food vehicles. The complete genome sequence of BF052 was therefore determined to understand the genetic basis of BF052 as a technological and functional probiotic starter. The whole genome sequence of BF052 consists of a circular genome of 1938 624 bp with a G+C content of 60.50%. This research highlights relevant genes involving in its adaptive responses to industrial and/or environmental stresses and utilization of α-galacto-oligosaccharides in BF052 strain compared with other representative bifidobacterial genomes.
Collapse
Affiliation(s)
- Pattra Charnchai
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Sirima Suvarnakuta Jantama
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Sathonlamark Road, Warin chamrap, Ubon Ratchathani 34190, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
11
|
Ku S, Park MS, Ji GE, You HJ. Review on Bifidobacterium bifidum BGN4: Functionality and Nutraceutical Applications as a Probiotic Microorganism. Int J Mol Sci 2016; 17:ijms17091544. [PMID: 27649150 PMCID: PMC5037818 DOI: 10.3390/ijms17091544] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 01/20/2023] Open
Abstract
Bifidobacterium bifidum BGN4 is a probiotic strain that has been used as a major ingredient to produce nutraceutical products and as a dairy starter since 2000. The various bio-functional effects and potential for industrial application of B. bifidum BGN4 has been characterized and proven by in vitro (i.e., phytochemical bio-catalysis, cell adhesion and anti-carcinogenic effects on cell lines, and immunomodulatory effects on immune cells), in vivo (i.e., suppressed allergic responses in mouse model and anti-inflammatory bowel disease), and clinical studies (eczema in infants and adults with irritable bowel syndrome). Recently, the investigation of the genome sequencing was finished and this data potentially clarifies the biochemical characteristics of B. bifidum BGN4 that possibly illustrate its nutraceutical functionality. However, further systematic research should be continued to gain insight for academic and industrial applications so that the use of B. bifidum BGN4 could be expanded to result in greater benefit. This review deals with multiple studies on B. bifidum BGN4 to offer a greater understanding as a probiotic microorganism available in functional food ingredients. In particular, this work considers the potential for commercial application, physiological characterization and exploitation of B. bifidum BGN4 as a whole.
Collapse
Affiliation(s)
- Seockmo Ku
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 151-742, Korea.
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2022, USA.
| | - Myeong Soo Park
- Department of Hotel Culinary Arts, Yeonsung University, Anyang 430-749, Korea.
| | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 151-742, Korea.
- Research Center, BIFIDO Co., Ltd., Hongcheon 250-804, Korea.
| | - Hyun Ju You
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 151-742, Korea.
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
12
|
Ejby M, Fredslund F, Andersen JM, Vujičić Žagar A, Henriksen JR, Andersen TL, Svensson B, Slotboom DJ, Abou Hachem M. An ATP Binding Cassette Transporter Mediates the Uptake of α-(1,6)-Linked Dietary Oligosaccharides in Bifidobacterium and Correlates with Competitive Growth on These Substrates. J Biol Chem 2016; 291:20220-31. [PMID: 27502277 DOI: 10.1074/jbc.m116.746529] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Indexed: 11/06/2022] Open
Abstract
The molecular details and impact of oligosaccharide uptake by distinct human gut microbiota (HGM) are currently not well understood. Non-digestible dietary galacto- and gluco-α-(1,6)-oligosaccharides from legumes and starch, respectively, are preferentially fermented by mainly bifidobacteria and lactobacilli in the human gut. Here we show that the solute binding protein (BlG16BP) associated with an ATP binding cassette (ABC) transporter from the probiotic Bifidobacterium animalis subsp. lactis Bl-04 binds α-(1,6)-linked glucosides and galactosides of varying size, linkage, and monosaccharide composition with preference for the trisaccharides raffinose and panose. This preference is also reflected in the α-(1,6)-galactoside uptake profile of the bacterium. Structures of BlG16BP in complex with raffinose and panose revealed the basis for the remarkable ligand binding plasticity of BlG16BP, which recognizes the non-reducing α-(1,6)-diglycoside in its ligands. BlG16BP homologues occur predominantly in bifidobacteria and a few Firmicutes but lack in other HGMs. Among seven bifidobacterial taxa, only those possessing this transporter displayed growth on α-(1,6)-glycosides. Competition assays revealed that the dominant HGM commensal Bacteroides ovatus was out-competed by B. animalis subsp. lactis Bl-04 in mixed cultures growing on raffinose, the preferred ligand for the BlG16BP. By comparison, B. ovatus mono-cultures grew very efficiently on this trisaccharide. These findings suggest that the ABC-mediated uptake of raffinose provides an important competitive advantage, particularly against dominant Bacteroides that lack glycan-specific ABC-transporters. This novel insight highlights the role of glycan transport in defining the metabolic specialization of gut bacteria.
Collapse
Affiliation(s)
- Morten Ejby
- From the Protein Glycoscience and Biotechnology, Department of Bioengineering, Elektrovej, Building 375
| | - Folmer Fredslund
- MaxLab, MAX IV Laboratory, Lund University, Ole Römers väg 1, 221 00 LUND, Sweden, and
| | - Joakim Mark Andersen
- From the Protein Glycoscience and Biotechnology, Department of Bioengineering, Elektrovej, Building 375
| | - Andreja Vujičić Žagar
- Membrane Enzymology, Institute for Biomolecular Sciences and Biotechnology, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Thomas Lars Andersen
- Department of Microtechnology and Nanotechnology, Produktionstorvet Building 423, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- From the Protein Glycoscience and Biotechnology, Department of Bioengineering, Elektrovej, Building 375
| | - Dirk Jan Slotboom
- Membrane Enzymology, Institute for Biomolecular Sciences and Biotechnology, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maher Abou Hachem
- From the Protein Glycoscience and Biotechnology, Department of Bioengineering, Elektrovej, Building 375,
| |
Collapse
|
13
|
Charnchai P, Jantama SS, Prasitpuriprecha C, Kanchanatawee S, Jantama K. Effects of the Food Manufacturing Chain on the Viability and Functionality of Bifidobacterium animalis through Simulated Gastrointestinal Conditions. PLoS One 2016; 11:e0157958. [PMID: 27333286 PMCID: PMC4917081 DOI: 10.1371/journal.pone.0157958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/04/2016] [Indexed: 01/20/2023] Open
Abstract
The viability and functionality of probiotics may be influenced by industrial production processes resulting in a decrease in probiotic efficiency that benefit the health of humans. This study aimed to investigate the probiotic characteristics of Bifidobacterium strains isolated from fecal samples of healthy Thai infants. In the present work, three local strains (BF014, BF052, and BH053) belonging to Bifidobacterium animalis showed a great resistance against conditions simulating the gastrointestinal tract. Among these, B. animalis BF052 possessed considerable probiotic properties, including high acid and bile tolerance, strong adhesion capability to Caco-2 cells, and inhibitory activity against pathogens including Salmonella typhimurium and Vibrio cholerae. This strain also exhibited a high survival rate compared to commercial strains during storage in a wide variety of products, including pasteurized milk, soy milk, drinking yogurt, and orange juice. The impact of food processing processes as well as the freeze-drying process, storage of freeze-dried powders, and incorporation of freeze-dried cells in food matrix on probiotic properties was also determined. The stability of the probiotic properties of the BF052 strain was not affected by food processing chain, especially its resistance in the simulated gastrointestinal conditions and its adherence ability to Caco-2 cells. It indicates that it satisfies the criteria as a potential probiotic and may be used as an effective probiotic starter in food applications.
Collapse
Affiliation(s)
- Pattra Charnchai
- Metabolic Engineering Research Unit, Institute of Agricultural Technology, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Sirima Suvarnakuta Jantama
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
| | - Chutinun Prasitpuriprecha
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
| | - Sunthorn Kanchanatawee
- Metabolic Engineering Research Unit, Institute of Agricultural Technology, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, Institute of Agricultural Technology, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
14
|
Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis. Sci Rep 2016; 6:23971. [PMID: 27035119 PMCID: PMC4817515 DOI: 10.1038/srep23971] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/17/2016] [Indexed: 12/31/2022] Open
Abstract
Bifidobacteria are members of the human gut microbiota, being numerically dominant in the colon of infants, while also being prevalent in the large intestine of adults. In this study, we determined and analyzed the pan-genome of Bifidobacterium adolescentis, which is one of many bacteria found in the human adult gut microbiota. In silico analysis of the genome sequences of eighteen B. adolescentis strains isolated from various environments, such as human milk, human feces and bovine rumen, revealed a high level of genetic variability, resulting in an open pan-genome. Compared to other bifidobacterial taxa such as Bifidobacterium bifidum and Bifidobacterium breve, the more extensive B. adolescentis pan-genome supports the hypothesis that the genetic arsenal of this taxon expanded so as to become more adaptable to the variable and changing ecological niche of the gut. These increased genetic capabilities are particularly evident for genes required for dietary glycan-breakdown.
Collapse
|
15
|
Balciunas EM, Al Arni S, Converti A, Leblanc JG, Oliveira RPDS. Production of bacteriocin-like inhibitory substances (BLIS) byBifidobacterium lactisusing whey as a substrate. INT J DAIRY TECHNOL 2015. [DOI: 10.1111/1471-0307.12247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Eduardo Marcos Balciunas
- Department of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences; University of São Paulo; Av. Lineu Prestes 580 São Paulo Brazil
| | - Saleh Al Arni
- Department of Chemical Engineering; Kind Saudi University; P.O. Box 800 11421 Riyadh Saudi Arabia
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering; Genoa University; Pole of Chemical Engineering; Via Opera Pia 15 Genoa Italy
| | - Jean Guy Leblanc
- Centro de Referencia para Lactobacillus (CERELA-CONICET); Chacabuco 145 San Miguel de Tucumán Argentina
| | - Ricardo Pinheiro de Souza Oliveira
- Department of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences; University of São Paulo; Av. Lineu Prestes 580 São Paulo Brazil
| |
Collapse
|
16
|
Varankovich NV, Nickerson MT, Korber DR. Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Front Microbiol 2015; 6:685. [PMID: 26236287 PMCID: PMC4500982 DOI: 10.3389/fmicb.2015.00685] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/22/2015] [Indexed: 12/18/2022] Open
Abstract
Probiotic bacteria offer a number of potential health benefits when administered in sufficient amounts that in part include reducing the number of harmful organisms in the intestine, producing antimicrobial substances and stimulating the body's immune response. However, precisely elucidating the probiotic effect of a specific bacterium has been challenging due to the complexity of the gut's microbial ecosystem and a lack of definitive means for its characterization. This review provides an overview of widely used and recently described probiotics, their impact on the human's gut microflora as a preventative treatment of disease, human/animal models being used to help show efficacy, and discusses the potential use of probiotics in gastrointestinal diseases associated with antibiotic administration.
Collapse
Affiliation(s)
| | | | - Darren R. Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, SaskatoonSK, Canada
| |
Collapse
|
17
|
Marzorati M, Qin B, Hildebrand F, Klosterbuer A, Roughead Z, Roessle C, Rochat F, Raes J, Possemiers S. Addition of acacia gum to a FOS/inulin blend improves its fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
18
|
Bunesova V, Vlkova E, Rada V, Killer J, Musilova S. Bifidobacteria from the gastrointestinal tract of animals: differences and similarities. Benef Microbes 2015; 5:377-88. [PMID: 24889892 DOI: 10.3920/bm2013.0081] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At present, the genus Bifidobacterium includes 48 species and subspecies, and this number is expected to increase. Bifidobacteria are found in different ecological niches. However, most were originally isolated from animals, mainly mammals, especially during the milk feeding period of life. Their presence in high numbers is associated with good health of the host. Moreover, bifidobacteria are often found in poultry and insects that exhibit a social mode of life (honeybees and bumblebees). This review is designed as a summary of currently known species of the genus Bifidobacterium, especially focused on their difference and similarities. The primary focus is on their occurrence in the digestive tract of animals, as well as the specificities of animal strains, with regard to their potential use as probiotics.
Collapse
Affiliation(s)
- V Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - E Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - V Rada
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - J Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14200 Prague 4-Krč, Czech Republic
| | - S Musilova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| |
Collapse
|
19
|
Lu X, Zeng S, Zhang Y, Guo Z, Tian Y, Miao S, Zheng B. Effects of water-soluble oligosaccharides extracted from lotus (Nelumbo nucifera Gaertn.) seeds on growth ability of Bifidobacterium adolescentis. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2462-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Viborg AH, Fredslund F, Katayama T, Nielsen SK, Svensson B, Kitaoka M, Lo Leggio L, Abou Hachem M. A β1-6/β1-3 galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 gives insight into sub-specificities of β-galactoside catabolism within Bifidobacterium. Mol Microbiol 2014; 94:1024-1040. [PMID: 25287704 DOI: 10.1111/mmi.12815] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 12/20/2022]
Abstract
The Bifidobacterium genus harbours several health promoting members of the gut microbiota. Bifidobacteria display metabolic specialization by preferentially utilizing dietary or host-derived β-galactosides. This study investigates the biochemistry and structure of a glycoside hydrolase family 42 (GH42) β-galactosidase from the probiotic Bifidobacterium animalis subsp. lactis Bl-04 (BlGal42A). BlGal42A displays a preference for undecorated β1-6 and β1-3 linked galactosides and populates a phylogenetic cluster with close bifidobacterial homologues implicated in the utilization of N-acetyl substituted β1-3 galactosides from human milk and mucin. A long loop containing an invariant tryptophan in GH42, proposed to bind substrate at subsite + 1, is identified here as specificity signature within this clade of bifidobacterial enzymes. Galactose binding at the subsite - 1 of the active site induced conformational changes resulting in an extra polar interaction and the ordering of a flexible loop that narrows the active site. The amino acid sequence of this loop provides an additional specificity signature within this GH42 clade. The phylogenetic relatedness of enzymes targeting β1-6 and β1-3 galactosides likely reflects structural differences between these substrates and β1-4 galactosides, containing an axial galactosidic bond. These data advance our molecular understanding of the evolution of sub-specificities that support metabolic specialization in the gut niche.
Collapse
Affiliation(s)
- Alexander Holm Viborg
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rapid and specific enumeration of viable Bifidobacteria in dairy products based on flow cytometry technology: A proof of concept study. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, Turroni S, Biagi E, Peano C, Severgnini M, Fiori J, Gotti R, De Bellis G, Luiselli D, Brigidi P, Mabulla A, Marlowe F, Henry AG, Crittenden AN. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 2014; 5:3654. [PMID: 24736369 PMCID: PMC3996546 DOI: 10.1038/ncomms4654] [Citation(s) in RCA: 841] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
Human gut microbiota directly influences health and provides an extra means of adaptive potential to different lifestyles. To explore variation in gut microbiota and to understand how these bacteria may have co-evolved with humans, here we investigate the phylogenetic diversity and metabolite production of the gut microbiota from a community of human hunter-gatherers, the Hadza of Tanzania. We show that the Hadza have higher levels of microbial richness and biodiversity than Italian urban controls. Further comparisons with two rural farming African groups illustrate other features unique to Hadza that can be linked to a foraging lifestyle. These include absence of Bifidobacterium and differences in microbial composition between the sexes that probably reflect sexual division of labour. Furthermore, enrichment in Prevotella, Treponema and unclassified Bacteroidetes, as well as a peculiar arrangement of Clostridiales taxa, may enhance the Hadza’s ability to digest and extract valuable nutrition from fibrous plant foods. Gut microbes influence our health and may contribute to human adaptation to different lifestyles. Here, the authors describe the gut microbiome of a community of hunter-gatherers and identify unique features that could be linked to a foraging lifestyle.
Collapse
Affiliation(s)
- Stephanie L Schnorr
- 1] Plant Foods in Hominin Dietary Ecology Research Group, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany [2]
| | - Marco Candela
- 1] Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy [2]
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Manuela Centanni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Giulia Basaglia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Jessica Fiori
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Donata Luiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, Bologna 40126, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Audax Mabulla
- College of Arts and Social Sciences, University of Dar es Salaam, 35091 Dar es Salaam, Tanzania
| | - Frank Marlowe
- Division of Biological Anthropology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Amanda G Henry
- Plant Foods in Hominin Dietary Ecology Research Group, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Alyssa N Crittenden
- Metabolism, Anthropometry, and Nutrition Laboratory, Department of Anthropology, University of Nevada, Las Vegas, Nevada 89154-5003, USA
| |
Collapse
|
23
|
Sohier D, Pavan S, Riou A, Combrisson J, Postollec F. Evolution of microbiological analytical methods for dairy industry needs. Front Microbiol 2014; 5:16. [PMID: 24570675 PMCID: PMC3916730 DOI: 10.3389/fmicb.2014.00016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/10/2014] [Indexed: 11/13/2022] Open
Abstract
Traditionally, culture-based methods have been used to enumerate microbial populations in dairy products. Recent developments in molecular methods now enable faster and more sensitive analyses than classical microbiology procedures. These molecular tools allow a detailed characterization of cell physiological states and bacterial fitness and thus, offer new perspectives to integration of microbial physiology monitoring to improve industrial processes. This review summarizes the methods described to enumerate and characterize physiological states of technological microbiota in dairy products, and discusses the current deficiencies in relation to the industry’s needs. Recent studies show that Polymerase chain reaction-based methods can successfully be applied to quantify fermenting microbes and probiotics in dairy products. Flow cytometry and omics technologies also show interesting analytical potentialities. However, they still suffer from a lack of validation and standardization for quality control analyses, as reflected by the absence of performance studies and official international standards.
Collapse
Affiliation(s)
- Danièle Sohier
- Food Safety and Quality Unit, ADRIA Développement, Agri-Food Technical Institute, Quimper, France
| | - Sonia Pavan
- Food Safety and Quality Unit, ADRIA Développement, Agri-Food Technical Institute, Quimper, France
| | - Armelle Riou
- Food Safety and Quality Unit, ADRIA Développement, Agri-Food Technical Institute, Quimper, France
| | - Jérôme Combrisson
- Bretagne Biotechnologie Alimentaire dairy association member, Analytical Sciences, Danone Research, Palaiseau, France
| | - Florence Postollec
- Food Safety and Quality Unit, ADRIA Développement, Agri-Food Technical Institute, Quimper, France
| |
Collapse
|
24
|
Aires J, Butel MJ. Proteomics, human gut microbiota and probiotics. Expert Rev Proteomics 2014; 8:279-88. [DOI: 10.1586/epr.11.5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Prasanna P, Grandison A, Charalampopoulos D. Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
O'Connell KJ, O'Connell Motherway M, O'Callaghan J, Fitzgerald GF, Ross RP, Ventura M, Stanton C, van Sinderen D. Metabolism of four α-glycosidic linkage-containing oligosaccharides by Bifidobacterium breve UCC2003. Appl Environ Microbiol 2013; 79:6280-92. [PMID: 23913435 PMCID: PMC3811189 DOI: 10.1128/aem.01775-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/01/2013] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Bifidobacterium are common inhabitants of the gastrointestinal tracts of humans and other mammals, where they ferment many diet-derived carbohydrates that cannot be digested by their hosts. To extend our understanding of bifidobacterial carbohydrate utilization, we investigated the molecular mechanisms by which 11 strains of Bifidobacterium breve metabolize four distinct α-glucose- and/or α-galactose-containing oligosaccharides, namely, raffinose, stachyose, melibiose, and melezitose. Here we demonstrate that all B. breve strains examined possess the ability to utilize raffinose, stachyose, and melibiose. However, the ability to metabolize melezitose was not common to all B. breve strains tested. Transcriptomic and functional genomic approaches identified a gene cluster dedicated to the metabolism of α-galactose-containing carbohydrates, while an adjacent gene cluster, dedicated to the metabolism of α-glucose-containing melezitose, was identified in strains that are able to use this carbohydrate.
Collapse
Affiliation(s)
- Kerry Joan O'Connell
- Department of Microbiology
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Mary O'Connell Motherway
- Department of Microbiology
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - John O'Callaghan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Teagasc Research Centre Moorepark, Fermoy, Cork, Ireland
| | - Gerald F. Fitzgerald
- Department of Microbiology
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - R. Paul Ross
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Teagasc Research Centre Moorepark, Fermoy, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parma, Italy
| | - Catherine Stanton
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Teagasc Research Centre Moorepark, Fermoy, Cork, Ireland
| | - Douwe van Sinderen
- Department of Microbiology
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
O'Connell KJ, Motherway MO, Hennessey AA, Brodhun F, Ross RP, Feussner I, Stanton C, Fitzgerald GF, van Sinderen D. Identification and characterization of an oleate hydratase-encoding gene from Bifidobacterium breve. Bioengineered 2013; 4:313-21. [PMID: 23851389 PMCID: PMC3813531 DOI: 10.4161/bioe.24159] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bifidobacteria are common commensals of the mammalian gastrointestinal tract. Previous studies have suggested that a bifidobacterial myosin cross reactive antigen (MCRA) protein plays a role in bacterial stress tolerance, while this protein has also been linked to the biosynthesis of conjugated linoleic acid (CLA) in bifidobacteria. In order to increase our understanding on the role of MCRA in bifidobacteria we created and analyzed an insertion mutant of the MCRA-encoding gene of B. breve NCFB 2258. Our results demonstrate that the MCRA protein of B. breve NCFB 2258 does not appear to play a role in CLA production, yet is an oleate hydratase, which contributes to bifidobacterial solvent stress protection.
Collapse
Affiliation(s)
- Kerry Joan O'Connell
- Department of Microbiology; University College Cork; Cork, Ireland; Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland; Teagasc Research Centre Moorepark; Fermoy; Cork, Ireland; Department of Plant Biochemistry; Georg-August-University; Goettingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
F S Teixeira T, Grześkowiak LM, Salminen S, Laitinen K, Bressan J, Gouveia Peluzio MDC. Faecal levels of Bifidobacterium and Clostridium coccoides but not plasma lipopolysaccharide are inversely related to insulin and HOMA index in women. Clin Nutr 2013; 32:1017-22. [PMID: 23538004 DOI: 10.1016/j.clnu.2013.02.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/16/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS The abundance of specific microbes might be associated with plasma lipopolysaccharide and insulin levels. The aims were to quantify the abundance of specific microbes and plasma LPS in females and assess their association with anthropometric, body composition and biochemical measurements. METHODS Seventeen lean (BMI 19-24.99 kg/m(2)) and fifteen obese females (BMI > 30 kg/m(2)) participated. Anthropometry, body composition, food intake and biochemical analyses were assessed. Bacterial groups in faeces were analysed by qPCR method. RESULTS Lactobacillus plantarum prevalence was higher (p = 0.005) and its counts tended to be higher in lean vs. obese group (p = 0.06). Bifidobacterium genus, Bifidobacterium longum, Clostridium coccoides and Clostridium leptum counts were higher in lean women (p < 0.05); prevalence and counts of Akkermansia muciniphila tended to be higher in lean group (p = 0.09, p = 0.06, respectively). Plasma LPS levels were similar between the study groups (p > 0.05). No association was found between LPS and bacterial levels or insulin. Bifidobacteria and C. coccoides counts were inversely associated with insulin and HOMA index. CONCLUSIONS Abundance of specific microbes is distinct between obese and lean women, but is not associated with LPS level. Bifidobacterial and C. coccoides levels are associated with insulin sensitivity. These bacterial groups may be capable of modulating insulin action.
Collapse
Affiliation(s)
- T F S Teixeira
- Laboratory of Nutritional Biochemistry, Department of Nutrition and Health, Federal University of Viçosa, University Campus, 36.570-000 Viçosa, Minas Gerais, Brazil.
| | | | | | | | | | | |
Collapse
|
29
|
O'Connell Motherway M, Kinsella M, Fitzgerald GF, van Sinderen D. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Microb Biotechnol 2012. [PMID: 23199239 PMCID: PMC3815386 DOI: 10.1111/1751-7915.12011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Several prebiotics, such as inulin, fructo-oligosaccharides and galacto-oligosaccharides, are widely used commercially in foods and there is convincing evidence, in particular for galacto-oligosaccharides, that prebiotics can modulate the microbiota and promote bifidobacterial growth in the intestinal tract of infants and adults. In this study we describe the identification and functional characterization of the genetic loci responsible for the transport and metabolism of purified galacto-oligosaccharides (PGOS) by Bifidobacterium breve UCC2003. We further demonstrate that an extracellular endogalactanase specified by several B. breve strains, including B. breve UCC2003, is essential for partial degradation of PGOS components with a high degree of polymerization. These partially hydrolysed PGOS components are presumed to be transported into the bifidobacterial cell via various ABC transport systems and sugar permeases where they are further degraded to galactose and glucose monomers that feed into the bifid shunt. This work significantly advances our molecular understanding of bifidobacterial PGOS metabolism and its associated genetic machinery to utilize this prebiotic.
Collapse
Affiliation(s)
- Mary O'Connell Motherway
- Alimentary Pharmabiotic Centre, National University of Ireland, Western Road, Cork, Ireland; Departments of Microbiology, National University of Ireland, Western Road, Cork, Ireland
| | | | | | | |
Collapse
|
30
|
Prakash T, Taylor TD. Functional assignment of metagenomic data: challenges and applications. Brief Bioinform 2012; 13:711-27. [PMID: 22772835 PMCID: PMC3504928 DOI: 10.1093/bib/bbs033] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/26/2012] [Indexed: 12/14/2022] Open
Abstract
Metagenomic sequencing provides a unique opportunity to explore earth's limitless environments harboring scores of yet unknown and mostly unculturable microbes and other organisms. Functional analysis of the metagenomic data plays a central role in projects aiming to explore the most essential questions in microbiology, namely 'In a given environment, among the microbes present, what are they doing, and how are they doing it?' Toward this goal, several large-scale metagenomic projects have recently been conducted or are currently underway. Functional analysis of metagenomic data mainly suffers from the vast amount of data generated in these projects. The shear amount of data requires much computational time and storage space. These problems are compounded by other factors potentially affecting the functional analysis, including, sample preparation, sequencing method and average genome size of the metagenomic samples. In addition, the read-lengths generated during sequencing influence sequence assembly, gene prediction and subsequently the functional analysis. The level of confidence for functional predictions increases with increasing read-length. Usually, the most reliable functional annotations for metagenomic sequences are achieved using homology-based approaches against publicly available reference sequence databases. Here, we present an overview of the current state of functional analysis of metagenomic sequence data, bottlenecks frequently encountered and possible solutions in light of currently available resources and tools. Finally, we provide some examples of applications from recent metagenomic studies which have been successfully conducted in spite of the known difficulties.
Collapse
|
31
|
Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012; 76:66-112. [PMID: 22390973 PMCID: PMC3294427 DOI: 10.1128/mmbr.05011-11] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.
Collapse
Affiliation(s)
- Beile Gao
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
32
|
Metabolic activities and probiotic potential of bifidobacteria. Int J Food Microbiol 2011; 149:88-105. [DOI: 10.1016/j.ijfoodmicro.2011.06.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 02/06/2023]
|
33
|
Ability of Bifidobacterium breve to grow on different types of milk: exploring the metabolism of milk through genome analysis. Appl Environ Microbiol 2011; 77:7408-17. [PMID: 21856831 DOI: 10.1128/aem.05336-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have investigated the occurrence of bifidobacteria in human milk samples, and we provide evidence regarding the predominance of members of the Bifidobacterium breve species in this environment. Moreover, evaluation of the growth capabilities and transcriptomic analyses of one representative isolate of this species, i.e., B. breve 4L, on different milk types were performed.
Collapse
|
34
|
Relevance of Bifidobacterium animalis subsp. lactis plasminogen binding activity in the human gastrointestinal microenvironment. Appl Environ Microbiol 2011; 77:7072-6. [PMID: 21821753 DOI: 10.1128/aem.00413-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human plasmin(ogen) is regarded as a component of the molecular cross talk between the probiotic species Bifidobacterium animalis subsp. lactis and the human host. However, up to now, only in vitro studies have been reported. Here, we demonstrate that the probiotic strain B. animalis subsp. lactis BI07 is capable of recruiting plasmin(ogen) present at physiological concentrations in crude extracts from human feces. Our results provide evidence that supports the significance of the B. lactis-plasmin(ogen) interaction in the human gastrointestinal tract.
Collapse
|
35
|
Mayo B, van Sinderen D, Ventura M. Genome analysis of food grade lactic Acid-producing bacteria: from basics to applications. Curr Genomics 2011; 9:169-83. [PMID: 19440514 PMCID: PMC2679651 DOI: 10.2174/138920208784340731] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 03/24/2008] [Accepted: 03/26/2008] [Indexed: 12/27/2022] Open
Abstract
Whole-genome sequencing has revolutionized and accelerated scientific research that aims to study the genetics, biochemistry and molecular biology of bacteria. Lactic acid-producing bacteria, which include lactic acid bacteria (LAB) and bifidobacteria, are typically Gram-positive, catalase-negative organisms, which occupy a wide range of natural plant- and animal-associated environments. LAB species are frequently involved in the transformation of perishable raw materials into more stable, pleasant, palatable and safe fermented food products. LAB and bifidobacteria are also found among the resident microbiota of the gastrointestinal and/or genitourinary tracts of vertebrates, where they are believed to exert health-promoting effects. At present, the genomes of more than 20 LAB and bifidobacterial species have been completely sequenced. Their genome content reflects its specific metabolism, physiology, biosynthetic capabilities, and adaptability to varying conditions and environments. The typical LAB/bifidobacterial genome is relatively small (from 1.7 to 3.3 Mb) and thus harbors a limited assortment of genes (from around 1,600 to over 3,000). These small genomes code for a broad array of transporters for efficient carbon and nitrogen assimilation from the nutritionally-rich niches they usually inhabit, and specify a rather limited range of biosynthetic and degrading capabilities. The variation in the number of genes suggests that the genome evolution of each of these bacterial groups involved the processes of extensive gene loss from their particular ancestor, diversification of certain common biological activities through gene duplication, and acquisition of key functions via horizontal gene transfer. The availability of genome sequences is expected to revolutionize the exploitation of the metabolic potential of LAB and bifidobacteria, improving their use in bioprocessing and their utilization in biotechnological and health-related applications.
Collapse
Affiliation(s)
- B Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (CSIC), 33300-Villaviciosa, Asturias, Spain
| | | | | |
Collapse
|
36
|
Microbial utilization and selectivity of pectin fractions with various structures. Appl Environ Microbiol 2011; 77:5747-54. [PMID: 21724897 DOI: 10.1128/aem.00179-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the fermentation properties of oligosaccharides derived from pectins and their parent polysaccharides, a 5-ml-working-volume, pH- and temperature-controlled fermentor was tested. Six pectic oligosaccharides representing specific substructures found within pectins were prepared. These consisted of oligogalacturonides (average degrees of polymerization [DP] of 5 and 9), methylated oligogalacturonides (average DP of 5), oligorhamnogalacturonides (average DP of 10 as a disaccharide unit of galacturonic acid and rhamnose), oligogalactosides (average DP of 5), and oligoarabinosides (average DP of 6). The influence of these carbohydrates on the human fecal microbiota was evaluated. Use of neutral sugar fractions resulted in an increase in Bifidobacterium populations and gave higher organic acid yields. The Bacteroides-Prevotella group significantly increased on all oligosaccharides except oligogalacturonides with an average DP of 5. The most selective substrates for bifidobacteria were arabinan, galactan, oligoarabinosides, and oligogalactosides.
Collapse
|
37
|
Analysis of infant isolates of Bifidobacterium breve by comparative genome hybridization indicates the existence of new subspecies with marked infant specificity. Res Microbiol 2011; 162:664-70. [PMID: 21726634 DOI: 10.1016/j.resmic.2011.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 04/29/2011] [Indexed: 11/21/2022]
Abstract
A total of 20 Bifidobacterium strains were isolated from fecal samples of 4 breast- and bottle-fed infants and all were characterized as Bifidobacterium breve based on 16S rRNA gene sequence and metabolic analysis. These isolates were further characterized and compared to the type strains of B. breve and 7 other Bifidobacterium spp. by comparative genome hybridization. For this purpose, we constructed and used a DNA-based microarray containing over 2000 randomly cloned DNA fragments from B. breve type strain LMG13208. This molecular analysis revealed a high degree of genomic variation between the isolated strains and allowed the vast majority to be grouped into 4 clusters. One cluster contained a single isolate that was virtually indistinguishable from the B. breve type strain. The 3 other clusters included 19 B. breve strains that differed considerably from all type strains. Remarkably, each of the 4 clusters included strains that were isolated from a single infant, indicating that a niche adaptation may contribute to variation within the B. breve species. Based on genomic hybridization data, the new B. breve isolates were estimated to contain approximately 60-90% of the genes of the B. breve type strain, attesting to the existence of various subspecies within the species B. breve. Further bioinformatic analysis identified several hundred diagnostic clones specific to the genomic clustering of the B. breve isolates. Molecular analysis of representatives of these revealed that annotated genes from the conserved B. breve core encoded mainly housekeeping functions, while the strain-specific genes were predicted to code for functions related to life style, such as carbohydrate metabolism and transport. This is compatible with genetic adaptation of the strains to their niche, a combination of infants and diet.
Collapse
|
38
|
Affiliation(s)
- Roland J Siezen
- Kluyver Centre for Genomics of Industrial Fermentation, TI Food and Nutrition, 6700AN Wageningen, the Netherlands.
| | | |
Collapse
|
39
|
Garrido D, Kim JH, German JB, Raybould HE, Mills DA. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS One 2011; 6:e17315. [PMID: 21423604 PMCID: PMC3057974 DOI: 10.1371/journal.pone.0017315] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/27/2011] [Indexed: 12/30/2022] Open
Abstract
Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process.
Collapse
Affiliation(s)
- Daniel Garrido
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
- Foods for Health Institute, University of California Davis, Davis, California, United States of America
- Functional Glycobiology Program, University of California Davis, Davis, California, United States of America
- Robert Mondavi Institute for Wine and Food Sciences, University of California Davis, Davis, California, United States of America
| | - Jae Han Kim
- Foods for Health Institute, University of California Davis, Davis, California, United States of America
- Functional Glycobiology Program, University of California Davis, Davis, California, United States of America
- Robert Mondavi Institute for Wine and Food Sciences, University of California Davis, Davis, California, United States of America
- Department of Viticulture and Enology, University of California Davis, Davis, California, United States of America
| | - J. Bruce German
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
- Foods for Health Institute, University of California Davis, Davis, California, United States of America
- Functional Glycobiology Program, University of California Davis, Davis, California, United States of America
- Robert Mondavi Institute for Wine and Food Sciences, University of California Davis, Davis, California, United States of America
| | - Helen E. Raybould
- Foods for Health Institute, University of California Davis, Davis, California, United States of America
- Functional Glycobiology Program, University of California Davis, Davis, California, United States of America
- Department of Anatomy, Physiology and Cell Biology, University of California Davis, Davis, California, United States of America
| | - David A. Mills
- Foods for Health Institute, University of California Davis, Davis, California, United States of America
- Functional Glycobiology Program, University of California Davis, Davis, California, United States of America
- Robert Mondavi Institute for Wine and Food Sciences, University of California Davis, Davis, California, United States of America
- Department of Viticulture and Enology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Pokusaeva K, Fitzgerald GF, van Sinderen D. Carbohydrate metabolism in Bifidobacteria. GENES AND NUTRITION 2011; 6:285-306. [PMID: 21484167 DOI: 10.1007/s12263-010-0206-6] [Citation(s) in RCA: 524] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/15/2010] [Indexed: 12/17/2022]
Abstract
Members of the genus Bifidobacterium can be found as components of the gastrointestinal microbiota, and are believed to play an important role in maintaining and promoting human health by eliciting a number of beneficial properties. Bifidobacteria can utilize a diverse range of dietary carbohydrates that escape degradation in the upper parts of the intestine, many of which are plant-derived oligo- and polysaccharides. The gene content of a bifidobacterial genome reflects this apparent metabolic adaptation to a complex carbohydrate-rich gastrointestinal tract environment as it encodes a large number of predicted carbohydrate-modifying enzymes. Different bifidobacterial strains may possess different carbohydrate utilizing abilities, as established by a number of studies reviewed here. Carbohydrate-degrading activities described for bifidobacteria and their relevance to the deliberate enhancement of number and/or activity of bifidobacteria in the gut are also discussed in this review.
Collapse
Affiliation(s)
- Karina Pokusaeva
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Western Road, Cork, Ireland
| | | | | |
Collapse
|
41
|
Cronin M, Ventura M, Fitzgerald GF, van Sinderen D. Progress in genomics, metabolism and biotechnology of bifidobacteria. Int J Food Microbiol 2011; 149:4-18. [PMID: 21320731 DOI: 10.1016/j.ijfoodmicro.2011.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 12/16/2022]
Abstract
Members of the genus Bifidobacterium were first described over a century ago and were quickly associated with a healthy intestinal tract due to their numerical dominance in breast-fed babies as compared to bottle-fed infants. Health benefits elicited by bifidobacteria to its host, as supported by clinical trials, have led to their wide application as probiotic components of health-promoting foods, especially in fermented dairy products. However, the relative paucity of genetic tools available for bifidobacteria has impeded development of a comprehensive molecular understanding of this genus. In this review we present a summary of current knowledge on bifidobacterial metabolism, classification, physiology and genetics and outline the currently available methods for genetically accessing and manipulating the genus.
Collapse
Affiliation(s)
- Michelle Cronin
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C. Quick Jnr. Laboratory, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
42
|
Cellodextrin utilization by bifidobacterium breve UCC2003. Appl Environ Microbiol 2011; 77:1681-90. [PMID: 21216899 DOI: 10.1128/aem.01786-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellodextrins, the incomplete hydrolysis products from insoluble cellulose, are accessible as a carbon source to certain members of the human gut microbiota, such as Bifidobacterium breve UCC2003. Transcription of the cldEFGC gene cluster of B. breve UCC2003 was shown to be induced upon growth on cellodextrins, implicating this cluster in the metabolism of these sugars. Phenotypic analysis of a B. breve UCC2003::cldE insertion mutant confirmed that the cld gene cluster is exclusively required for cellodextrin utilization by this commensal. Moreover, our results suggest that transcription of the cld cluster is controlled by a LacI-type regulator encoded by cldR, located immediately upstream of cldE. Gel mobility shift assays using purified CldR(His) (produced by the incorporation of a His(12)-encoding sequence into the 3' end of the cldC gene) indicate that the cldEFGC promoter is subject to negative control by CldR(His), which binds to two inverted repeats. Analysis by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) of medium samples obtained during growth of B. breve UCC2003 on a mixture of cellodextrins revealed its ability to utilize cellobiose, cellotriose, cellotetraose, and cellopentaose, with cellotriose apparently representing the preferred substrate. The cldC gene of the cld operon of B. breve UCC2003 is, to the best of our knowledge, the first described bifidobacterial β-glucosidase exhibiting hydrolytic activity toward various cellodextrins.
Collapse
|
43
|
O'Connell Motherway M, Fitzgerald GF, van Sinderen D. Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003. Microb Biotechnol 2010; 4:403-16. [PMID: 21375716 PMCID: PMC3818998 DOI: 10.1111/j.1751-7915.2010.00218.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we describe the functional characterization of the Bifidobacterium breve UCC2003 gal locus, which is dedicated to the utilization of galactan, a plant‐derived polysaccharide. Using a combination of molecular approaches we conclude that the galA gene of B. breve UCC2003 encodes a β‐1,4‐endogalactanase producing galacto‐oligosaccharides, which are specifically internalized by an ABC transport system, encoded by galBCDE, and which are then hydrolysed to galactose moieties by a dedicated intracellular β‐galactosidase, specified by galG. The generated galactose molecules are presumed to be fed into the fructose‐6‐phosphate phosphoketolase pathway via the Leloir pathway, thereby allowing B. breve UCC2003 to use galactan as its sole carbon and energy source. In addition to these findings we demonstrate that GalR is a LacI‐type DNA‐binding protein, which not only appears to control transcription of the galCDEGR operon, but also that of the galA gene.
Collapse
Affiliation(s)
- Mary O'Connell Motherway
- Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Western Road, Cork, Ireland
| | | | | |
Collapse
|
44
|
Polymorphism and distribution of putative cell-surface adhesin-encoding ORFs among human fecal isolates of Bifidobacterium longum subsp. longum. Antonie van Leeuwenhoek 2010; 99:457-71. [PMID: 20862609 DOI: 10.1007/s10482-010-9506-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/03/2010] [Indexed: 12/21/2022]
Abstract
The polymorphism of ORFs encoding putative cell-surface adhesins was investigated in Bifidobacterium longum subsp. longum. Firstly, we performed a PCR assay targeting 15 ORFs encoding putative adhesion proteins, which included 8 ORFs with a sortase targeting LPXTG motif, in 42 strains of different pulsotypes isolated from fecal samples from 12 human individuals. We found a variability in the presence of an ORF, BL0675, which encodes a putative fimbrial subunit protein. We sequenced ORFs corresponding to BL0675 in the 42 strains and adjacent ORFs corresponding to BL0674 and BL0676. The results indicated that ORFs corresponding to BL0675 were highly polymorphic with five variant types (i.e. A-, B-, C-, D-, and E-types). Meanwhile, BL0674 and BL0676, which encode an additional putative fimbrial subunit protein and a fimbrial-associated sortase-like protein, were highly conserved. Subsequent quantitative polymerase chain reaction (qPCR) assays targeting the variant types in 89 human fecal samples revealed that A-type was the most commonly distributed (74.2%), followed by B-type (59.6%), D-type (31.5%), E-type (32.6%) and C-type (5.6% prevalence). Since BL0675 is considered to be a fimbrial protein with glycoprotein-binding ability, the proteins encoded by the five variant types of BL0675 may have specific binding properties to various carbohydrate structures expressed on the human intestinal wall, thereby allowing B. longum to colonize the intestine in a host-specific manner.
Collapse
|
45
|
Rapid and direct quantitative detection of viable bifidobacteria in probiotic yogurt by combination of ethidium monoazide and real-time PCR using a molecular beacon approach. J DAIRY RES 2010; 77:498-504. [DOI: 10.1017/s0022029910000658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The potential of ethidium monoazide (EMA) real-time PCR method based on molecular beacon probe for rapid detection of viable bifidobacteria present in probiotic yogurt was evaluated in this work. A real-time PCR with molecular beacon assay was developed to determine genusBifidobacteriumquantitatively in order to increase the sensitivity and specificity of assay. EMA was used to treat probiotic yogurt prior to DNA extraction and real-time PCR detection to allow detection of only viable bacteria. The primer set of Bif-F/Bif-R which is genus-specific forBifid. was designed. The specificity of the probes ensures that no signal is generated by non-target amplicons. Linear regression analysis demonstrated a good correlation (R2=0·9948) between the EMA real-time PCR results and the plate counting, and real-time quantitative PCR results correlated adequately with enumeration of bifidobacteria by culture for commercial probiotic yogurt. This culture-independent approach is promising for the direct and rapid detection of viable bifidobacteria in commercial probiotic yogurt, and the detection can be carried out within 4 h. The detection limit for this method is about 104cell/ml. In conclusion, the direct quantitative EMA real-time PCR assay based on molecular beacon described in this research is a rapid and quantitative method.
Collapse
|
46
|
Turroni S, Bendazzoli C, Dipalo SCF, Candela M, Vitali B, Gotti R, Brigidi P. Oxalate-degrading activity in Bifidobacterium animalis subsp. lactis: impact of acidic conditions on the transcriptional levels of the oxalyl coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes. Appl Environ Microbiol 2010; 76:5609-20. [PMID: 20601517 PMCID: PMC2918965 DOI: 10.1128/aem.00844-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/22/2010] [Indexed: 01/28/2023] Open
Abstract
Oxalic acid occurs extensively in nature and plays diverse roles, especially in pathological processes. Due to its highly oxidizing effects, hyperabsorption or abnormal synthesis of oxalate can cause serious acute disorders in mammals and can be lethal in extreme cases. Intestinal oxalate-degrading bacteria could therefore be pivotal in maintaining oxalate homeostasis and reducing the risk of kidney stone development. In this study, the oxalate-degrading activities of 14 bifidobacterial strains were measured by a capillary electrophoresis technique. The oxc gene, encoding oxalyl-coenzyme A (CoA) decarboxylase, a key enzyme in oxalate catabolism, was isolated by probing a genomic library of Bifidobacterium animalis subsp. lactis BI07, which was one of the most active strains in the preliminary screening. The genetic and transcriptional organization of oxc flanking regions was determined, unraveling the presence of two other independently transcribed open reading frames, potentially responsible for the ability of B. animalis subsp. lactis to degrade oxalate. pH-controlled batch fermentations revealed that acidic conditions were a prerequisite for a significant oxalate degradation rate, which dramatically increased in cells first adapted to subinhibitory concentrations of oxalate and then exposed to pH 4.5. Oxalate-preadapted cells also showed a strong induction of the genes potentially involved in oxalate catabolism, as demonstrated by a transcriptional analysis using quantitative real-time reverse transcription-PCR. These findings provide new insights into the characterization of oxalate-degrading probiotic bacteria and may support the use of B. animalis subsp. lactis as a promising adjunct for the prophylaxis and management of oxalate-related kidney disease.
Collapse
Affiliation(s)
- Silvia Turroni
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Claudia Bendazzoli
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Samuele C. F. Dipalo
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Marco Candela
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Gotti
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
47
|
Cheikhyoussef A, Cheikhyoussef N, Chen H, Zhao J, Tang J, Zhang H, Chen W. Bifidin I – A new bacteriocin produced by Bifidobacterium infantis BCRC 14602: Purification and partial amino acid sequence. Food Control 2010. [DOI: 10.1016/j.foodcont.2009.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Aires J, Anglade P, Baraige F, Zagorec M, Champomier-Vergès MC, Butel MJ. Proteomic comparison of the cytosolic proteins of three Bifidobacterium longum human isolates and B. longum NCC2705. BMC Microbiol 2010; 10:29. [PMID: 20113481 PMCID: PMC2824696 DOI: 10.1186/1471-2180-10-29] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/29/2010] [Indexed: 11/16/2022] Open
Abstract
Background Bifidobacteria are natural inhabitants of the human gastrointestinal tract. In full-term newborns, these bacteria are acquired from the mother during delivery and rapidly become the predominant organisms in the intestinal microbiota. Bifidobacteria contribute to the establishment of healthy intestinal ecology and can confer health benefits to their host. Consequently, there is growing interest in bifidobacteria, and various strains are currently used as probiotic components in functional food products. However, the probiotic effects have been reported to be strain-specific. There is thus a need to better understand the determinants of the observed benefits provided by these probiotics. Our objective was to compare three human B. longum isolates with the sequenced model strain B. longum NCC2705 at the chromosome and proteome levels. Results Pulsed field electrophoresis genotyping revealed genetic heterogeneity with low intraspecies strain relatedness among the four strains tested. Using two-dimensional gel electrophoresis, we analyzed qualitative differences in the cytosolic protein patterns. There were 45 spots that were present in some strains and absent in others. Spots were excised from the gels and subjected to peptide mass fingerprint analysis for identification. The 45 spots represented 37 proteins, most of which were involved in carbohydrate metabolism and cell wall or cell membrane synthesis. Notably, the protein patterns were correlated with differences in cell membrane properties like surface hydrophobicity and cell agglutination. Conclusion These results showed that proteomic analysis can be valuable for investigating differences in bifidobacterial species and may provide a better understanding of the diversity of bifidobacteria and their potential use as probiotics.
Collapse
Affiliation(s)
- Julio Aires
- Université Paris Descartes, EA 4065, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France.
| | | | | | | | | | | |
Collapse
|
49
|
Delétoile A, Passet V, Aires J, Chambaud I, Butel MJ, Smokvina T, Brisse S. Species delineation and clonal diversity in four Bifidobacterium species as revealed by multilocus sequencing. Res Microbiol 2010; 161:82-90. [PMID: 20060895 DOI: 10.1016/j.resmic.2009.12.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/16/2009] [Accepted: 12/22/2009] [Indexed: 11/18/2022]
Abstract
The genus Bifidobacterium comprises several species that are important contributors to the gut microbiome, with some strains having beneficial health effects. Understanding the evolutionary emergence of advantageous biological properties requires knowledge of the genetic diversity and clonal structure of species. We sequenced seven housekeeping genes in 119 Bifidobacterium strains of Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium breve and Bifidobacterium longum. Phylogenetic analysis of concatenated sequences delineated sequence clusters that correspond to previously named taxa, and suggested that B. longum subsp. infantis is a nascent lineage emerging from within B. longum subsp. longum. Clear traces of recombination among distant bifidobacterial species indicate leaky species borders and warn against the practice of single gene-based identification. Multilocus sequence typing achieved precise strain genotyping, with discrimination indices above 99% in B. bifidum, B. breve and B. longum, providing a powerful tool for strain traceability, colonization dynamics and ecological studies. Frequent homologous recombination accelerates clonal diversification and may facilitate the transfer of biological properties among bifidobacterial strains.
Collapse
Affiliation(s)
- Alexis Delétoile
- Institut Pasteur, Genotyping of Pathogens and Public Health (PF8), 28 rue du Dr Roux, F-75724 Paris Cedex, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Pokusaeva K, Neves AR, Zomer A, O'Connell-Motherway M, MacSharry J, Curley P, Fitzgerald GF, van Sinderen D. Ribose utilization by the human commensal Bifidobacterium breve UCC2003. Microb Biotechnol 2009; 3:311-23. [PMID: 21255330 PMCID: PMC3815373 DOI: 10.1111/j.1751-7915.2009.00152.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Growth of Bifidobacterium breve UCC2003 on ribose leads to the transcriptional induction of the rbsACBDK gene cluster. Generation and phenotypic analysis of an rbsA insertion mutant established that the rbs gene cluster is essential for ribose utilization, and that its transcription is likely regulated by a LacI‐type regulator encoded by rbsR, located immediately upstream of rbsA. Gel mobility shift assays using purified RbsRHis indicate that the promoter upstream of rbsABCDK is negatively controlled by RbsRHis binding to an 18 bp inverted repeat and that RbsRHis binding activity is modulated by d‐ribose. The rbsK gene of the rbs operon of B. breve UCC2003 was shown to specify a ribokinase (EC 2.7.1.15), which specifically directs its phosphorylating activity towards d‐ribose, converting this pentose sugar to ribose‐5‐phosphate.
Collapse
Affiliation(s)
- Karina Pokusaeva
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Western Road, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|