1
|
Lee JL, Yourek G. The Microbiome of Catfish ( Ictalurus punctatus) Treated with Natural Preservatives During Refrigerated Storage. Microorganisms 2025; 13:244. [PMID: 40005614 PMCID: PMC11857556 DOI: 10.3390/microorganisms13020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Fish is an essential lean protein source worldwide. Unfortunately, fresh fish food products deteriorate rapidly due to microbial spoilage. With consumers' growing concerns about using chemical preservatives, we propose using natural preservatives as safer alternatives to prevent microbial spoilage. In this study, we used Next-Generation Sequencing (NGS) metagenomics to study microbiomes on catfish fillets at early (day one for all samples), middle (day seven for control store-bought and aquaculture-raised samples, day nine for other treatment store-bought samples, and day eleven for other treatment aquaculture-raised samples), and late (day fifteen for all store-bought, day eleven for control aquaculture-raised samples, and day twenty-seven for other treatment aquaculture-raised samples) points. Store-bought and aquaculture-raised catfish were treated individually with natural preservatives (vinegar, lemon, and grapefruit seed [GSE]). We observed bacterial populations and sequenced 16S NGS libraries of catfish microbes. Vinegar treatment showed the greatest suppression of bacterial growth in both groups, and GSE and lemon treatment had similar levels of suppression in the mid and late points (-4 to -5 Log CFU/g vinegar and -0.1 to -4 Log CFU/g other treatments in aquaculture and -1 to -2 Log CFU/g vinegar and -0.2 to -0.5 Log CFU/g other treatments in store-bought). Aquaculture-raised vinegar treatment samples had similar proportional taxonomy abundance values through storage duration. Pseudomonas, Janthinobacterium, and Camobacteriaceae were the dominant bacteria species in the early point for store-bought fish. Still, Pseudomonas was suppressed by vinegar treatment in the middle point, which allowed for less biased relative abundance compared to other treatments. Chryseobacterium, CK-1C4-19, and Cetobacterium were the dominant bacteria species for early point treatments in aquaculture-raised fish. Still, they remained the predominant bacteria for only aquaculture-raised vinegar samples in the middle and late points, which allowed for a similar relative abundance to fresh catfish. Meanwhile, Pseudomonas in most lemon and GSE samples became the dominant species at a later point. This study provides a better understanding of bacterial spoilage of catfish during storage. Additionally, we showed that natural preservative treatments can effectively extend the shelf-life of fishery products.
Collapse
Affiliation(s)
- Jung-Lim Lee
- Food Science and Biotechnology Program, Food Microbiology Laboratory, College of Agriculture Science and Technology, Delaware State University, Dover, DE 19901, USA
- Delaware Nucleotide Analysis (DNA) Core Center, Delaware State University, Dover, DE 19901, USA
| | - Gregory Yourek
- Delaware Nucleotide Analysis (DNA) Core Center, Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
2
|
Reiche T, Hageskal G, Hoel S, Tøndervik A, Nærdal GK, Heggeset TMB, Haugen T, Trøen HH, Jakobsen AN. Disinfection in a salmon processing plant: Impact on bacterial communities and efficacy towards foodborne bacteria and biofilms. Int J Food Microbiol 2024; 424:110853. [PMID: 39116462 DOI: 10.1016/j.ijfoodmicro.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Salmon aquaculture is the fastest growing food production system in the world. Deficiencies in the quality or safety of salmon can have global repercussions. Controlling food safety aspects during production is therefore essential. Here, we investigate the state of hygiene in a salmon processing plant using next generation sequencing and classical culture-dependent methods to characterize the surface microbiota before and after cleaning and disinfection (C&D) at ten surface sampling points. Total aerobic counts revealed an average reduction in the bacterial loads of 1.1 log CFU/cm2 by C&D. The highest relative abundance in the core microbiota before C&D was assigned to Acinetobacter, Mycoplasmataceae, Pseudomonas and Enterobacteriaceae in descending order. After C&D, we observed a significant increase in the relative abundance of Pseudomonas (p < 0.05). However, variations were found between conveyors, processing machines and drains. To assess the efficacy of commercial disinfectants, we performed susceptibility assays using advanced robotic high-throughput technologies and included foodborne bacteria which may affect food safety and spoilage. These included 128 Pseudomonas isolates, 46 Aeromonas isolates and 59 Enterobacterales isolates sampled from the salmon processing plant. Generally, minimum inhibitory concentrations (MICs) of the disinfectants were below the user concentration recommended by the producer for most isolates. BacTiter-Glo biofilm assays revealed that 30 min exposure to six out of eight commercial disinfectants resulted in an average reduction of relative luminescence >95 % in 59 single-species biofilms selected for screening. However, disinfection alone may not always be sufficient to eradicate biofilms completely. C&D routines must therefore be continuously assessed to maintain food safety and quality. The results from this study can contribute to understand and improve the state of hygiene in salmon processing environments.
Collapse
Affiliation(s)
- Thorben Reiche
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7012, Norway.
| | - Gunhild Hageskal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7012, Norway
| | - Anne Tøndervik
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Guro Kruge Nærdal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | | | - Tone Haugen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Hanne Hein Trøen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7012, Norway
| |
Collapse
|
3
|
Xuan G, Liu X, Wang Y, Lin H, Jiang X, Wang J. Isolation, characterization, and application of a novel Pseudomonas fluorescens phage vB_PF_Y1-MI in contaminated milk. Mol Genet Genomics 2024; 299:97. [PMID: 39395039 DOI: 10.1007/s00438-024-02179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/25/2024] [Indexed: 10/14/2024]
Abstract
The food industry has incurred substantial losses from contamination by Pseudomonas fluorescens, emphasizing the critical importance of implementing effective control strategies. Phages are potential sterilizers due to their specific killing abilities and the difficulty bacteria face in developing resistance. However, a significant barrier to their development is the lack of diversity among phage types. In this study, we characterized a novel lytic P. fluorescens phage, named vB_PF_Y1-MI. Phage vB_PF_Y1-MI displayed a latent period of nearly 10 min and a high burst size of 1493 PFU/cell. This phage showed good activity over a wide range of temperature (up to 70 °C) and pH (3-12). The genome of phage vB_PF_Y1-MI spans 93,233 bp with a GC content of 45%. It encompasses 174 open-reading frames and 19 tRNA genes, while no lysogeny or virulence-associated genes were detected. Phylogenetic analysis positions it as a novel unassigned evolutionary lineage within the Caudoviricetes class among related dsDNA phages. Our study provides foundational insights into vB_PF_Y1-MI and emphasizes its potential as an effective biological control agent against P. fluorescens. This research offers crucial theoretical groundwork and technical support for subsequent efforts in preventing and controlling P. fluorescens contamination.
Collapse
Affiliation(s)
- Guanhua Xuan
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xianjun Liu
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yinfeng Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xiuping Jiang
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, 29631, USA
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
4
|
Corral-Jara KF, Skírnisdóttir S, Knobloch S, Briem H, Cobo-Díaz JF, Carlino N, Bergsten P, Armanini F, Asnicar F, Pinto F, Alvarez-Ordóñez A, Segata N, Marteinsson VÞ. Inter-facility characterization of bacteria in seafood processing plants: Exploring potential reservoirs of spoilage organisms and the resistome. Heliyon 2024; 10:e33866. [PMID: 39071556 PMCID: PMC11283002 DOI: 10.1016/j.heliyon.2024.e33866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
A study was conducted in fish processing facilities to investigate the microbial composition, microbial metabolic potential, and distribution of antibiotic resistance genes. Whole metagenomic sequencing was used to analyze microbial communities from different processing rooms, operators and fish products. Taxonomic analyses identified the genera Pseudomonas and Psychrobacter as the most prevalent bacteria. A Principal Component Analysis revealed a distinct separation between fish product and environmental samples, as well as differences between fish product samples from companies processing either Gadidae or Salmonidae fish. Some particular bacterial genera and species were associated with specific processing rooms and operators. Metabolic analysis of metagenome assembled genomes demonstrated variations in microbiota metabolic profiles of microbiota across rooms and fish products. The study also examined the presence of antibiotic-resistance genes in fish processing environments, contributing to the understanding of microbial dynamics, metabolic potential, and implications for fish spoilage.
Collapse
Affiliation(s)
| | | | - Stephen Knobloch
- Microbiology Research Group, Matís Ltd., C.P.113, Reykjavik, Iceland
- Department of Food Technology, Fulda University of Applied Sciences, C.P. 36037, Fulda, Germany
| | - Helgi Briem
- Microbiology Research Group, Matís Ltd., C.P.113, Reykjavik, Iceland
| | - José F. Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, C.P. 24071 Spain
| | - Niccolò Carlino
- Segata Lab, Department CIBIO, University of Trento (UNITN), C.P. 38122, Trento, Italy
| | - Pauline Bergsten
- Microbiology Research Group, Matís Ltd., C.P.113, Reykjavik, Iceland
| | - Federica Armanini
- Segata Lab, Department CIBIO, University of Trento (UNITN), C.P. 38122, Trento, Italy
| | - Francesco Asnicar
- Segata Lab, Department CIBIO, University of Trento (UNITN), C.P. 38122, Trento, Italy
| | - Federica Pinto
- Segata Lab, Department CIBIO, University of Trento (UNITN), C.P. 38122, Trento, Italy
| | | | - Nicola Segata
- Segata Lab, Department CIBIO, University of Trento (UNITN), C.P. 38122, Trento, Italy
| | - Viggó þór Marteinsson
- Microbiology Research Group, Matís Ltd., C.P.113, Reykjavik, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, C.P. 102, Reykjavík, Iceland
| |
Collapse
|
5
|
Li X, Wang H, Abdelrahman H, Kelly A, Roy L, Wang L. Profiling and source tracking of the microbial populations and resistome present in fish products. Int J Food Microbiol 2024; 413:110591. [PMID: 38306774 DOI: 10.1016/j.ijfoodmicro.2024.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Microorganisms in processing environments significantly impact the quality and safety of food products and can serve as potential reservoirs for antibiotic-resistant genes, contributing to public health concerns about antimicrobial resistance (AMR). Fish processing plants represent an understudied environment for microbiome mapping. This study investigated the microbial composition, prevalence of Listeria spp., and resistome structures in three catfish processing facilities in the southeastern United States. The 16S rRNA gene sequencing revealed that the observed richness and Shannon diversity index increased significantly from fish to fillet. Beta diversity analysis showed distinct clustering of microbial communities between fish, environment, and fillet samples. Fast expectation-maximization microbial source tracking (FEAST) algorithm demonstrated that the microbiota presents in the processing environment contributed 48.2 %, 62.4 %, and 53.7 % to the microbiota present on fillet in Facility 1 (F1), F2, and F3, respectively. Food contact surfaces made larger contributions compared to the non-food contact surfaces. The linear discriminant analysis of effect size (LEfSe) identified specific microbial genera (e.g., Plesiomohas, Brochothrix, Chryseobacterium and Cetobacterium) that significantly varied between Listeria spp. positive and negative samples in all three processing plants. The metagenomic sequencing results identified 212 antimicrobial resistance genes (ARGs) belonging to 72 groups from the raw fish and fish fillet samples collected from three processing plants. Although there was a significant decrease in the overall diversity of ARGs from fish to fillet samples, the total abundance of ARGs did not change significantly (P > 0.05). ARGs associated with resistance to macrolide-lincosamide-streptogramin (MLS), cationic antimicrobial peptides, aminoglycosides, and beta-lactams were found to be enriched in the fillet samples when compared to fish samples. Results of this study highlight the profound impact of processing environment on shaping the microbial populations present on the final fish product and the need for additional strategies to mitigate AMR in fish products.
Collapse
Affiliation(s)
- Xiran Li
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States
| | - Hongye Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States
| | - Hisham Abdelrahman
- Alabama Fish Farming Center, Greensboro, AL 36744, United States; School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, AL 3684, United States
| | - Anita Kelly
- Alabama Fish Farming Center, Greensboro, AL 36744, United States; School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, AL 3684, United States
| | - Luke Roy
- Alabama Fish Farming Center, Greensboro, AL 36744, United States; School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, AL 3684, United States
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
6
|
Ying X, Li T, Deng S, Brennan C, Benjakul S, Liu H, Wang F, Xie X, Liu D, Li J, Xiao G, Ma L. Advancements in nonthermal physical field technologies for prefabricated aquatic food: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13290. [PMID: 38284591 DOI: 10.1111/1541-4337.13290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Aquatic foods are nutritious, enjoyable, and highly favored by consumers. In recent years, young consumers have shown a preference for prefabricated food due to its convenience, nutritional value, safety, and increasing market share. However, aquatic foods are prone to microbial spoilage due to their high moisture content, protein content, and unsaturated fatty acids. Furthermore, traditional processing methods of aquatic foods can lead to issues such as protein denaturation, lipid peroxidation, and other food safety and nutritional health problems. Therefore, there is a growing interest in exploring new technologies that can achieve a balance between antimicrobial efficiency and food quality. This review examines the mechanisms of cold plasma, high-pressure processing, photodynamic inactivation, pulsed electric field treatment, and ultraviolet irradiation. It also summarizes the research progress in nonthermal physical field technologies and their application combined with other technologies in prefabricated aquatic food. Additionally, the review discusses the current trends and developments in the field of prefabricated aquatic foods. The aim of this paper is to provide a theoretical basis for the development of new technologies and their implementation in the industrial production of prefabricated aquatic food.
Collapse
Affiliation(s)
- Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Taiyu Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Huifan Liu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng Wang
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xi Xie
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongjie Liu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jun Li
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lukai Ma
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
7
|
Chan SS, Moen B, Løvdal T, Roth B, Nilsson A, Pettersen MK, Rotabakk BT. Extending the Shelf Life of Atlantic Salmon ( Salmo salar) with Sub-Chilled Storage and Modified Atmosphere Packaging in Recyclable Mono-Material Trays. Foods 2023; 13:19. [PMID: 38201047 PMCID: PMC10778411 DOI: 10.3390/foods13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
This study investigated the effect of sub-chilling whole gutted salmon and sub-chilled storage at -1 °C in modified-atmosphere packaging in two recyclable mono-material trays (CPET, HDPE). Quality parameters were measured, including water-holding properties, salt content, color, texture, lipid oxidation, and sensory and microbiological shelf life. The oxygen transmission rate was measured for the packages. Compared to traditional fish storage on ice, sub-chilling gave a 0.4% weight gain, better water-holding capacity, and higher salt content. The sub-chilled fish gave a significantly better sensory quality and microbiological shelf life of up to 49 days. Photobacterium was the dominating bacteria during storage. Salmon packaged in CPET trays had a higher drip loss than HDPE trays, but a lower rate of lipid oxidation (1-penten-3-ol). Our results showed the feasibility of significantly extending shelf life with sub-chilling, removing the need for ice. Moreover, using recyclable trays for packaging contributes to a circular economy without compromising food quality.
Collapse
Affiliation(s)
- Sherry Stephanie Chan
- Department of Processing Technology, Nofima AS, 4021 Stavanger, Norway; (S.S.C.); (T.L.); (B.R.)
| | - Birgitte Moen
- Department of Food Safety and Quality, Nofima AS, 1433 Ås, Norway; (B.M.); (M.K.P.)
| | - Trond Løvdal
- Department of Processing Technology, Nofima AS, 4021 Stavanger, Norway; (S.S.C.); (T.L.); (B.R.)
| | - Bjørn Roth
- Department of Processing Technology, Nofima AS, 4021 Stavanger, Norway; (S.S.C.); (T.L.); (B.R.)
| | - Astrid Nilsson
- Department of Food and Health, Nofima AS, 1433 Ås, Norway;
| | | | - Bjørn Tore Rotabakk
- Department of Processing Technology, Nofima AS, 4021 Stavanger, Norway; (S.S.C.); (T.L.); (B.R.)
| |
Collapse
|
8
|
Kocurek B, Ramachandran P, Grim CJ, Morin P, Howard L, Ottesen A, Timme R, Leonard SR, Rand H, Strain E, Tadesse D, Pettengill JB, Lacher DW, Mammel M, Jarvis KG. Application of quasimetagenomics methods to define microbial diversity and subtype Listeria monocytogenes in dairy and seafood production facilities. Microbiol Spectr 2023; 11:e0148223. [PMID: 37812012 PMCID: PMC10714831 DOI: 10.1128/spectrum.01482-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE In developed countries, the human diet is predominated by food commodities, which have been manufactured, processed, and stored in a food production facility. Little is known about the application of metagenomic sequencing approaches for detecting foodborne pathogens, such as L. monocytogenes, and characterizing microbial diversity in food production ecosystems. In this work, we investigated the utility of 16S rRNA amplicon and quasimetagenomic sequencing for the taxonomic and phylogenetic classification of Listeria culture enrichments of environmental swabs collected from dairy and seafood production facilities. We demonstrated that single-nucleotide polymorphism (SNP) analyses of L. monocytogenes metagenome-assembled genomes (MAGs) from quasimetagenomic data sets can achieve similar resolution as culture isolate whole-genome sequencing. To further understand the impact of genome coverage on MAG SNP cluster resolution, an in silico downsampling approach was employed to reduce the percentage of target pathogen sequence reads, providing an initial estimate of required MAG coverage for subtyping resolution of L. monocytogenes.
Collapse
Affiliation(s)
- Brandon Kocurek
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Paul Morin
- Office of Regulatory Science, Northeast Food and Feed Laboratory, U.S. Food and Drug Administration, Jamaica, New York, USA
| | - Laura Howard
- Office of Regulatory Science, Northeast Food and Feed Laboratory, U.S. Food and Drug Administration, Jamaica, New York, USA
| | - Andrea Ottesen
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Ruth Timme
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Susan R. Leonard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Hugh Rand
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Errol Strain
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Daniel Tadesse
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - James B. Pettengill
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - David W. Lacher
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Mark Mammel
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Karen G. Jarvis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| |
Collapse
|
9
|
Pakdel M, Olsen A, Bar EMS. A Review of Food Contaminants and Their Pathways Within Food Processing Facilities Using Open Food Processing Equipment. J Food Prot 2023; 86:100184. [PMID: 37865163 DOI: 10.1016/j.jfp.2023.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
This study focuses on the chemical, physical, and biological hazards that pose food contamination risks during the processing of food in facilities using open food processing equipment through a review of published literature from 2015 to 2023. Ten main pathways for food contamination were developed and a list of chemical, physical, and biological food hazards, along with descriptions of process parameters and inputs that can contribute to food contamination, and prevention strategies associated with each pathway were compiled. The paper briefly discusses the relation between food contamination and the sustainable development goals (SDGs). The presented overview of contamination pathways and their associated food hazards can provide insights for food safety management plans, food processing equipment design, food processing facility layout, HACCP programs, and further studies on hygienic monitoring methods.
Collapse
Affiliation(s)
- Mahsa Pakdel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Anna Olsen
- Department of Mechanical Engineering and Production, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Eirin Marie Skjøndal Bar
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
10
|
Wang W, Yi Z, Cai W, Ma J, Yang H, Zhou M, Xiao X. Differences in Bacterial Communities of Retail Raw Pork in Different Market Types in Hangzhou, China. Foods 2023; 12:3357. [PMID: 37761065 PMCID: PMC10529276 DOI: 10.3390/foods12183357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Pork is widely consumed globally, and pigs' microbiota can potentially harbor foodborne pathogens. Contaminated pork in retail markets poses significant implications for food quality and safety. However, limited studies have compared pork microbiomes in various marketing environments. In this study, we utilized traditional microbial culture methods and high-throughput 16S rRNA sequencing to assess pathogen contamination and bacterial diversity in raw pork samples purchased from farmers' markets and two types of supermarkets (upscale and ordinary) in Hangzhou, China. Traditional microbial plate cultures identified E. coli and Salmonella spp. in 32.1% (27/84) and 15.5% (13/84) of the collected pork samples, respectively. Moreover, 12 out of 13 Salmonella strains were found in farmers' markets. The MIC results indicated a high prevalence of MDR strains, accounting for 51.9% in E. coli and 53.8% in Salmonella. The prevalence of NaClO tolerant strains was 33.3% and 92.3% for E. coli and Salmonella, respectively. Sequencing results indicated significantly higher microbial diversity in farmers' market samples compared to supermarket samples. Farmers' market pork samples exhibited a greater abundance of Acinetobacter, while Pseudomonas and Brochothrix were predominant in supermarket samples. The total abundance of pathogenic and spoilage bacteria was also higher for the farmers' market samples. Cross-contamination during market trading was evident through a high correlation between bacterial abundance in pork from different stalls within the same farmers' market. PICRUSt2 analysis identified significant differences in the average proportions of genes for carbohydrate, energy, and lipid metabolism from the farmers' markets, suggesting an exacerbation of microbial metabolic activity and increased perishability of pork in this environment. In conclusion, this study revealed variations in the characteristics of raw pork bacterial contamination across different types of retail stores, as well as differences in the composition and diversity of their respective bacterial communities.
Collapse
Affiliation(s)
- Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| | - Zhengkai Yi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| | - Wei Cai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China;
| | - Jiele Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| | - Min Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China;
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| |
Collapse
|
11
|
Uhland FC, Li XZ, Mulvey MR, Reid-Smith R, Sherk LM, Ziraldo H, Jin G, Young KM, Reist M, Carson CA. Extended Spectrum β-Lactamase-Producing Enterobacterales of Shrimp and Salmon Available for Purchase by Consumers in Canada-A Risk Profile Using the Codex Framework. Antibiotics (Basel) 2023; 12:1412. [PMID: 37760708 PMCID: PMC10525137 DOI: 10.3390/antibiotics12091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The extended-spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-EB) encompass several important human pathogens and are found on the World Health Organization (WHO) priority pathogens list of antibiotic-resistant bacteria. They are a group of organisms which demonstrate resistance to third-generation cephalosporins (3GC) and their presence has been documented worldwide, including in aquaculture and the aquatic environment. This risk profile was developed following the Codex Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance with the objectives of describing the current state of knowledge of ESBL-EB in relation to retail shrimp and salmon available to consumers in Canada, the primary aquacultured species consumed in Canada. The risk profile found that Enterobacterales and ESBL-EB have been found in multiple aquatic environments, as well as multiple host species and production levels. Although the information available did not permit the conclusion as to whether there is a human health risk related to ESBLs in Enterobacterales in salmon and shrimp available for consumption by Canadians, ESBL-EB in imported seafood available at the retail level in Canada have been found. Surveillance activities to detect ESBL-EB in seafood are needed; salmon and shrimp could be used in initial surveillance activities, representing domestic and imported products.
Collapse
Affiliation(s)
- F. Carl Uhland
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Xian-Zhi Li
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Richard Reid-Smith
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Lauren M. Sherk
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Hilary Ziraldo
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Grace Jin
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Kaitlin M. Young
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Mark Reist
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carolee A. Carson
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| |
Collapse
|
12
|
Yan N, Xia H, Hou W, Wang H, Wang H, Zhou M. Biological Characterization of Pseudomonas fluorescens Phage Pf17397_F_PD1 and Its Application in Food Preservation. J Food Prot 2023; 86:100125. [PMID: 37406883 DOI: 10.1016/j.jfp.2023.100125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
In order to explore the application prospects of phages for controlling bacterial contamination, a lytic phage Pf17397_F_PD1 (Later abbreviated as PD1) was isolated from fish guts using Pseudomonas fluorescens ATCC 17397 as the host bacterium. The phage displayed short latency (18 min), long lysis period (212 min), and high lysis volume (1.47 × 102 PFU/each cell). It displayed wide temperature (30-70°C) and pH (4-11) tolerance. Genomic comparison revealed a maximum sequence identity of 48.65% between phage PD1 and other identified phages, indicating that PD1 was a new phage. The phage PD1 significantly inhibited the growth of P. fluorescens in milk and grass carp at 4°C and 25°C. Compared to the negative control, bacterial levels in milk stored at 25°C for 48 h were reduced by 2.71 log CFU/mL and 2.84 log CFU/mL at the multiplicity of infection (MOI) of 100 and 1,000, respectively. In contrast, when grass carp were stored at 25°C for 24 h, the bacterial load was reduced by 1.28 log CFU/g and 2.64 log CFU/g compared to the control (MOI of 100 and 1,000). When the phage was applied for preservation of grass carp blocks, total volatile salt nitrogen (TVB-N) values of phage-treated samples increased by 6.8 mg/100 g and 7.5 mg/100 g at MOI of 100 and 1,000, respectively, after 7 days of storage, which was significantly lower than that of the control group (15.83 mg/100 g). This study showed that phage PD1 was a good natural biological antimicrobial agent against P. fluorescens ATCC 17397.
Collapse
Affiliation(s)
- Na Yan
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430000, China
| | - Hai Xia
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, China
| | - Wenfu Hou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430000, China
| | - Huajuan Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430000, China
| | - Hongxun Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430000, China.
| | - Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430000, China.
| |
Collapse
|
13
|
Lemos ML, Prata JC, Rodrigues IC, Martins-Costa S, Archer B, Machado J, Dilão R, Vaz-Pires P, Martins da Costa P. An Exploratory Study on Spoilage Bacteria and Listeria monocytogenes in Fresh Salmon: Extending Shelf-Life Using Vacuum and Seasonings as Natural Preservatives. Vet Sci 2023; 10:423. [PMID: 37505828 PMCID: PMC10383938 DOI: 10.3390/vetsci10070423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
A growing population increases the demand for food, but short shelf-lives and microbial hazards reduce supply and increase food waste. Fresh fish is highly perishable and may be consumed raw, such as salmon in sushi. This work aims to identify strategies to improve the shelf-life and safety of fresh salmon, using available methods (i.e., vacuum) and exploring the use of natural preservatives (i.e., seasonings). Vacuum packaging and good hygiene practices (which reduce initial flora) extended shelf-life up to 20 days. Carnobacterium maltaromaticum was dominant in vacuum packaging conditions and showed potential for inhibiting Listeria monocytogenes. For natural preservatives, L. monocytogenes required higher inhibitory concentrations in vitro when compared to the 10 spoilage bacteria isolated from fresh salmon fillets, presenting a minimum inhibitory concentration (MIC) of 0.13% for oregano essential oil (OEO), 10% for lemon juice, 50 mg mL-1 for garlic powder, and >10% for NaCl. A good bacteriostatic and bactericidal effect was observed for a mixture containing 5% NaCl, 0.002% OEO, 2.5% lemon juice, and 0.08 mg mL-1 garlic powder. Finally, using the salmon medium showed an adequate correlation with the commercial culture medium.
Collapse
Affiliation(s)
- Maria-Leonor Lemos
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Joana C Prata
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences-CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Inês C Rodrigues
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Sofia Martins-Costa
- Department of Physics, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Bernardo Archer
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Soguima-Comércio e Indústria Alimentar S.A., Zona Industrial II, 4805-559 Guimarães, Portugal
| | - Jorge Machado
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Rui Dilão
- Department of Physics, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paulo Vaz-Pires
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Paulo Martins da Costa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
14
|
Karanth S, Feng S, Patra D, Pradhan AK. Linking microbial contamination to food spoilage and food waste: the role of smart packaging, spoilage risk assessments, and date labeling. Front Microbiol 2023; 14:1198124. [PMID: 37426008 PMCID: PMC10325786 DOI: 10.3389/fmicb.2023.1198124] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Ensuring a safe and adequate food supply is a cornerstone of human health and food security. However, a significant portion of the food produced for human consumption is wasted annually on a global scale. Reducing harvest and postharvest food waste, waste during food processing, as well as food waste at the consumer level, have been key objectives of improving and maintaining sustainability. These issues can range from damage during processing, handling, and transport, to the use of inappropriate or outdated systems, and storage and packaging-related issues. Microbial growth and (cross)contamination during harvest, processing, and packaging, which causes spoilage and safety issues in both fresh and packaged foods, is an overarching issue contributing to food waste. Microbial causes of food spoilage are typically bacterial or fungal in nature and can impact fresh, processed, and packaged foods. Moreover, spoilage can be influenced by the intrinsic factors of the food (water activity, pH), initial load of the microorganism and its interaction with the surrounding microflora, and external factors such as temperature abuse and food acidity, among others. Considering this multifaceted nature of the food system and the factors driving microbial spoilage, there is an immediate need for the use of novel approaches to predict and potentially prevent the occurrence of such spoilage to minimize food waste at the harvest, post-harvest, processing, and consumer levels. Quantitative microbial spoilage risk assessment (QMSRA) is a predictive framework that analyzes information on microbial behavior under the various conditions encountered within the food ecosystem, while employing a probabilistic approach to account for uncertainty and variability. Widespread adoption of the QMSRA approach could help in predicting and preventing the occurrence of spoilage along the food chain. Alternatively, the use of advanced packaging technologies would serve as a direct prevention strategy, potentially minimizing (cross)contamination and assuring the safe handling of foods, in order to reduce food waste at the post-harvest and retail stages. Finally, increasing transparency and consumer knowledge regarding food date labels, which typically are indicators of food quality rather than food safety, could also contribute to reduced food waste at the consumer level. The objective of this review is to highlight the impact of microbial spoilage and (cross)contamination events on food loss and waste. The review also discusses some novel methods to mitigate food spoilage and food loss and waste, and ensure the quality and safety of our food supply.
Collapse
Affiliation(s)
- Shraddha Karanth
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Shuyi Feng
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Debasmita Patra
- University of Maryland Extension, College of Agriculture and Natural Resources, College Park, MD, United States
| | - Abani K. Pradhan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
- Center for Food Safety and Security Systems, University of Maryland, College Park, MD, United States
| |
Collapse
|
15
|
Xu ZS, Ju T, Yang X, Gänzle M. A Meta-Analysis of Bacterial Communities in Food Processing Facilities: Driving Forces for Assembly of Core and Accessory Microbiomes across Different Food Commodities. Microorganisms 2023; 11:1575. [PMID: 37375077 DOI: 10.3390/microorganisms11061575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Microbial spoilage is a major cause of food waste. Microbial spoilage is dependent on the contamination of food from the raw materials or from microbial communities residing in food processing facilities, often as bacterial biofilms. However, limited research has been conducted on the persistence of non-pathogenic spoilage communities in food processing facilities, or whether the bacterial communities differ among food commodities and vary with nutrient availability. To address these gaps, this review re-analyzed data from 39 studies from various food facilities processing cheese (n = 8), fresh meat (n = 16), seafood (n = 7), fresh produce (n = 5) and ready-to-eat products (RTE; n = 3). A core surface-associated microbiome was identified across all food commodities, including Pseudomonas, Acinetobacter, Staphylococcus, Psychrobacter, Stenotrophomonas, Serratia and Microbacterium. Commodity-specific communities were additionally present in all food commodities except RTE foods. The nutrient level on food environment surfaces overall tended to impact the composition of the bacterial community, especially when comparing high-nutrient food contact surfaces to floors with an unknown nutrient level. In addition, the compositions of bacterial communities in biofilms residing in high-nutrient surfaces were significantly different from those of low-nutrient surfaces. Collectively, these findings contribute to a better understanding of the microbial ecology of food processing environments, the development of targeted antimicrobial interventions and ultimately the reduction of food waste and food insecurity and the promotion of food sustainability.
Collapse
Affiliation(s)
- Zhaohui S Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Xianqin Yang
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
16
|
Thomassen GMB, Reiche T, Hjørungnes M, Mehli L. High Disinfectant Tolerance in Pseudomonas spp. Biofilm Aids the Survival of Listeria monocytogenes. Microorganisms 2023; 11:1414. [PMID: 37374916 DOI: 10.3390/microorganisms11061414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Pseudomonas spp. are the most commonly found bacteria in food-processing environments due to properties such as a high growth rate at low temperatures, a high tolerance of antimicrobial agents, and biofilm formation. In this study, a set of Pseudomonas isolates originating from cleaned and disinfected surfaces in a salmon processing facility were screened for biofilm formation at 12 °C. A high variation in biofilm formation between the isolates was observed. Selected isolates, in both planktonic and biofilm states, were tested for resistance/tolerance to a commonly used disinfectant (peracetic acid-based) and antibiotic florfenicol. Most isolates showed a much higher tolerance in the biofilm state than in the planktonic state. In a multi-species biofilm experiment with five Pseudomonas strains with and without a Listeria monocytogenes strain, the Pseudomonas biofilm appeared to aid the survival of L. monocytogenes cells after disinfection, underscoring the importance of controlling the bacterial load in food-processing environments.
Collapse
Affiliation(s)
- Gunn Merethe Bjørge Thomassen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Thorben Reiche
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Martinus Hjørungnes
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Lisbeth Mehli
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
17
|
Ulleberg D, Sletten IB, Jakobsen AN, Svenning JB, Lerfall J. Co-products from the Atlantic salmon filleting industry – Their properties, stability and potential as human food ingredients. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
Bjørge Thomassen GM, Krych L, Knøchel S, Mehli L. Bacterial community development and diversity during the first year of production in a new salmon processing plant. Food Microbiol 2023; 109:104138. [DOI: 10.1016/j.fm.2022.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022]
|
19
|
Vasquez-Cardenas D, Hidalgo-Martinez S, Hulst L, Thorleifsdottir T, Helgason GV, Eiriksson T, Geelhoed JS, Agustsson T, Moodley L, Meysman FJR. Biogeochemical impacts of fish farming on coastal sediments: Insights into the functional role of cable bacteria. Front Microbiol 2022; 13:1034401. [PMID: 36620049 PMCID: PMC9814725 DOI: 10.3389/fmicb.2022.1034401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Fish farming in sea cages is a growing component of the global food industry. A prominent ecosystem impact of this industry is the increase in the downward flux of organic matter, which stimulates anaerobic mineralization and sulfide production in underlying sediments. When free sulfide is released to the overlying water, this can have a toxic effect on local marine ecosystems. The microbially-mediated process of sulfide oxidation has the potential to be an important natural mitigation and prevention strategy that has not been studied in fish farm sediments. We examined the microbial community composition (DNA-based 16S rRNA gene) underneath two active fish farms on the Southwestern coast of Iceland and performed laboratory incubations of resident sediment. Field observations confirmed the strong geochemical impact of fish farming on the sediment (up to 150 m away from cages). Sulfide accumulation was evidenced under the cages congruent with a higher supply of degradable organic matter from the cages. Phylogenetically diverse microbes capable of sulfide detoxification were present in the field sediment as well as in lab incubations, including cable bacteria (Candidatus Electrothrix), which display a unique metabolism based on long-distance electron transport. Microsensor profiling revealed that the activity of cable bacteria did not exert a dominant impact on the geochemistry of fish farm sediment at the time of sampling. However, laboratory incubations that mimic the recovery process during fallowing, revealed successful enrichment of cable bacteria within weeks, with concomitant high sulfur-oxidizing activity. Overall our results give insight into the role of microbially-mediated sulfide detoxification in aquaculture impacted sediments.
Collapse
Affiliation(s)
- Diana Vasquez-Cardenas
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands,Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium,*Correspondence: Diana Vasquez-Cardenas,
| | | | - Lucas Hulst
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | | | | | | | | | - Leon Moodley
- NORCE Norwegian Research Centre, Randaberg, Norway
| | - Filip J. R. Meysman
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands,Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
20
|
Saelens G, Houf K. Systematic review and critical reflection on the isolation and identification methods for spoilage associated bacteria in fresh marine fish. J Microbiol Methods 2022; 203:106599. [PMID: 36243229 DOI: 10.1016/j.mimet.2022.106599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Consumers demand more fresh, safe, and high-quality food. As this is partiallycorrelated to the microbial profile, several microbiological examination tools are available. Incontrast to meat, no microbiological normalized methods to assess the microbiological quality of fresh marine fish have been agreed on. As a result, studies on the detection and diversity of spoilage associated organisms (SAOs) in fish often apply various detection, isolation, and identification techniques. This complicates the comparison and interpretation of data reported, and often results in different or inconclusive results. Therefore, the present review aimed to present a critical overview of the isolation/cultivation and detection techniques currently applied in fish microbiology. After a comprehensive search in the PubMed, Web of Science and Scopus databases, a total of 111 studies fulfilled the review selection criteria. Results revealed that when relying on culture media for the isolation of SAOs in fish, it is essential to include a salt-containing medium next to plate count agar that is currently used as the reference medium for the enumeration of bacteria on fish. In terms of identification, MALDI-TOF MS and 16S rRNA gene sequencing are currently the most promising tools, though other housekeeping genes should be targeted as well, and, the biggest challenge at this point is still the lack of comprehensive proteomic and sequence databases for SAOs. A full replacement of cultivation by next generation sequencing is difficult to recommend due to the absence of a standardized experimental methodology, especially for fish, and the relatively high sequencing costs. Additionally, a discrepancy between culture-dependent and independent methods in revealing the bacterial diversity, and abundancy, from marine fish was demonstrated by several authors. It is therefore recommended to consider both approaches as complements of one another, rather than substitutes, and to include them simultaneously to yield more complete results regarding the SAOs in fresh marine fish. As such, a thorough understanding of the biology of spoilage organisms and process will be obtained to prolong the shelf-life and deliver a high-quality product.
Collapse
Affiliation(s)
- Ganna Saelens
- Laboratory of Foodborne Parasites, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Zhu Y, Wang W, Li M, Zhang J, Ji L, Zhao Z, Zhang R, Cai D, Chen L. Microbial diversity of meat products under spoilage and its controlling approaches. Front Nutr 2022; 9:1078201. [PMID: 36532544 PMCID: PMC9752900 DOI: 10.3389/fnut.2022.1078201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 09/29/2023] Open
Abstract
Meat spoilage (MS) is a complex microbial ecological process involving multiple specific microbial interactions. MS is detrimental to people's health and leads to the waste of meat products which caused huge losses during production, storage, transportation, and marketing. A thorough understanding of microorganisms related to MS and their controlling approaches is a necessary prerequisite for delaying the occurrence of MS and developing new methods and strategies for meat product preservation. This mini-review summarizes the diversity of spoilage microorganisms in livestock, poultry, and fish meat, and the approaches to inhibit MS. This would facilitate the targeted development of technologies against MS, to extend meat's shelf life, and effectively diminish food waste and economic losses.
Collapse
Affiliation(s)
- Yanli Zhu
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Wei Wang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Ming Li
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Lili Ji
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Zhiping Zhao
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Rui Zhang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lin Chen
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|
22
|
da Silva Dias N, de Melo Tavares R, da Cunha Neto A, de Souza Figueiredo EE, Camargo AC, Tavares Carvalho RC, Nero LA. Listeria monocytogenes and Pseudomonas spp. Distribution in a Processing Facility of Spotted Sorubim (Pseudoplatystoma corruscans) in Brazil. J Food Prot 2022; 85:1640-1645. [PMID: 36099545 DOI: 10.4315/jfp-22-171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/12/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The ecology of Listeria monocytogenes and Pseudomonas spp. during the slaughtering of spotted sorubim (Pseudoplatystoma corruscans) in a fish processing facility was assessed. Fish samples (n = 28) were obtained in different points of slaughtering (A, arrival; B, washing; C, gutting; and D, cooling) and subjected to detection of L. monocytogenes and enumeration of Pseudomonas spp. High frequencies of Listeria spp. (17 of 28 to 22 of 28) and L. monocytogenes (6 of 28 to 9 of 28) were identified in all slaughtering points but were not significantly different (P ≥ 0.05). All L. monocytogenes isolates (n = 33) were identified as belonging to serogroup IVb (serotype 4b) and subjected to macrorestriction with ApaI and AscI. The results indicated a continuous entry of L. monocytogenes in the facility, as well as a temporary persistence of a specific pulsotype. Pseudomonas spp. counts significantly decreased between points A and D (P < 0.05), but the mean counts in the end products (D) remained higher than 3 log CFU/g, suggesting the potential for fast spoilage. The obtained results show that L. monocytogenes and Pseudomonas spp. are widely distributed during spotted sorubim slaughtering, indicating the need for proper hygienic procedures to control these bacteria in the processing facility. HIGHLIGHTS
Collapse
Affiliation(s)
| | - Rafaela de Melo Tavares
- Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Mato Grosso 78060-900, Brazil
| | | | | | - Anderson Carlos Camargo
- Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Mato Grosso 78060-900, Brazil.,Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | | | - Luís Augusto Nero
- Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Mato Grosso 78060-900, Brazil
| |
Collapse
|
23
|
Weihe T, Wagner R, Schnabel U, Andrasch M, Su Y, Stachowiak J, Noll HJ, Ehlbeck J. Microbial Control of Raw and Cold-Smoked Atlantic Salmon ( Salmo salar) through a Microwave Plasma Treatment. Foods 2022; 11:3356. [PMID: 36359968 PMCID: PMC9655028 DOI: 10.3390/foods11213356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
The control of the pathogenic load on foodstuffs is a key element in food safety. Particularly, seafood such as cold-smoked salmon is threatened by pathogens such as Salmonella sp. or Listeria monocytogenes. Despite strict existing hygiene procedures, the production industry constantly demands novel, reliable methods for microbial decontamination. Against that background, a microwave plasma-based decontamination technique via plasma-processed air (PPA) is presented. Thereby, the samples undergo two treatment steps, a pre-treatment step where PPA is produced when compressed air flows over a plasma torch, and a post-treatment step where the PPA acts on the samples. This publication embraces experiments that compare the total viable count (tvc) of bacteria found on PPA-treated raw (rs) and cold-smoked salmon (css) samples and their references. The tvc over the storage time is evaluated using a logistic growth model that reveals a PPA sensitivity for raw salmon (rs). A shelf-life prolongation of two days is determined. When cold-smoked salmon (css) is PPA-treated, the treatment reveals no further impact. When PPA-treated raw salmon (rs) is compared with PPA-untreated cold-smoked salmon (css), the PPA treatment appears as reliable as the cold-smoking process and retards the growth of cultivable bacteria in the same manner. The experiments are flanked by quality measurements such as color and texture measurements before and after the PPA treatment. Salmon samples, which undergo an overtreatment, solely show light changes such as a whitish surface flocculation. A relatively mild treatment as applied in the storage experiments has no further detected impact on the fish matrix.
Collapse
Affiliation(s)
- Thomas Weihe
- Leibniz-Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| | - Robert Wagner
- Leibniz-Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| | - Uta Schnabel
- Leibniz-Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| | | | - Yukun Su
- Institute for Sports Science, University of Rostock, 18051 Rostock, Germany
| | - Jörg Stachowiak
- Leibniz-Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| | | | - Jörg Ehlbeck
- Leibniz-Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| |
Collapse
|
24
|
Yin H, Yuanrong Z, Li Y, Zijing X, Yongli J, Yun D, Danfeng W, Yu Z. Optimization of antibacterial and physical properties of chitosan/citronella oil film by electrostatic spraying and evaluation of its preservation effectiveness on salmon fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Thomassen GMB, Reiche T, Tennfjord CE, Mehli L. Antibiotic Resistance Properties among Pseudomonas spp. Associated with Salmon Processing Environments. Microorganisms 2022; 10:1420. [PMID: 35889139 PMCID: PMC9319762 DOI: 10.3390/microorganisms10071420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Continuous monitoring of antimicrobial resistance in bacteria along the food chain is crucial for the assessment of human health risks. Uncritical use of antibiotics in farming over years can be one of the main reasons for increased antibiotic resistance in bacteria. In this study, we aimed to classify 222 presumptive Pseudomonas isolates originating from a salmon processing environment, and to examine the phenotypic and genotypic antibiotic resistance profiles of these isolates. Of all the analyzed isolates 68% belonged to Pseudomonas, and the most abundant species were Pseudomonas fluorescens, Pseudomonas azotoformans, Pseudomonas gessardii, Pseudomonas libanesis, Pseudomonas lundensis, Pseudomonas cedrina and Pseudomonas extremaustralis based on sequencing of the rpoD gene. As many as 27% of Pseudomonas isolates could not be classified to species level. Phenotypic susceptibility analysis by disc diffusion method revealed a high level of resistance towards the antibiotics ampicillin, amoxicillin, cefotaxime, ceftriaxone, imipenem, and the fish farming relevant antibiotics florfenicol and oxolinic acid among the Pseudomonas isolates. Whole genome sequencing and subsequent analysis of AMR determinants by ResFinder and CARD revealed that no isolates harbored any acquired resistance determinants, but all isolates carried variants of genes known from P. aeruginosa to be involved in multidrug efflux pump systems.
Collapse
Affiliation(s)
- Gunn Merethe Bjørge Thomassen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (T.R.); (C.E.T.)
| | | | | | - Lisbeth Mehli
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (T.R.); (C.E.T.)
| |
Collapse
|
26
|
Effects of gaseous ozone treatment on the quality and microbial community of salmon (Salmo salar) during cold storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Microbial Safety and Sensory Analyses of Cold-Smoked Salmon Produced with Sodium-Reduced Mineral Salts and Organic Acid Salts. Foods 2022; 11:foods11101483. [PMID: 35627053 PMCID: PMC9141012 DOI: 10.3390/foods11101483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Cold-smoked (CS) salmon contains high levels of sodium salts, and excess dietary sodium intake is associated with an array of health complications. CS salmon may also represent a food safety risk due to possible presence and growth of the foodborne pathogen Listeria monocytogenes which may cause fatal human infections. Here we determine how reformulated CS salmon using commercial sodium-reduced salt replacers containing KCl (e.g., Nutek, Smart Salt, SOLO-LITE) and acetate-based preservative salts (Provian K, proviant NDV) affect sensory properties, quality, and microbial safety. Initial sensory screening of sodium-reduced CS salmon was followed by L. monocytogenes growth analyses in selected variants of reformulated CS salmon, and finally by analyses of CS salmon variants produced in an industrial smokehouse. Projective mapping indicated overall minor sensory changes in sodium-replaced samples compared with a conventional product with NaCl. Growth of L. monocytogenes was temperature-dependent (4 °C vs. 8 °C storage) with similar growth in sodium-reduced and conventional CS salmon. The addition of 0.9% of the preservative salts Provian K or Provian NDV gave up to 4 log lower L. monocytogenes counts in both sodium-reduced and conventional cold-smoked salmon after 29 days of chilled storage. No changes in pH (range 6.20−6.33), aw levels (range 0.960−0.973), or weight yield (96.8 ± 0.2%) were evident in CS salmon with salt replacers or Provian preservative salts. Analyses of CS salmon produced with selected mineral salt and preservative salt combinations in an industrial salmon smokery indicated marginal differences in sensory properties. Samples with the preservative salt Provian NDV provided L. monocytogenes growth inhibition and low-level total viable counts (<2.8 log/g) dominated by Photobacterium and Carnobacterium during storage. Production of sodium-reduced CS salmon with inhibiting salts provides a simple method to achieve a healthier food product with increased food safety.
Collapse
|
28
|
Møretrø T, Ferreira VB, Moen B, Almli VL, Teixeira P, Kasbo IM, Langsrud S. Bacterial levels and diversity in kitchen sponges and dishwashing brushes used by consumers. J Appl Microbiol 2022; 133:1378-1391. [PMID: 35560961 PMCID: PMC9542536 DOI: 10.1111/jam.15621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 10/29/2022]
Abstract
AIMS The purpose of the work was to investigate bacterial levels and diversity as well as survival of Salmonella in used dish washing sponges and brushes and identify consumer practices that can potentially explain bacterial status of these items. METHODS AND RESULTS Used washing up utensils were collected from consumers. The bacterial numbers (TVC) were very variable with an extremely high median level (10.3 log cfu/item) in Portuguese sponges and lower levels in Norwegian items (7.3 and 7.0 cfu/item for sponges and brushes). No self-reported practices or household composition could explain differences found in TVC levels among the collected sponges. Lower mean TVC levels were found in unworn brushes and brushes regularly cleaned with soap, but the differences were modest (1.5 log or less). A common set of bacteria was found in brushes and sponges, dominated by Acinetobacter, Chryseobacterium, Enhydrobacter, Enterobacteriaceae and Pseudomonas. There was no difference in TVC or bacterial diversity between conventional and antimicrobial sponges containing silver after four weeks of use. For used brushes inoculated with Salmonella and allowed to dry overnight, a significant reduction in Salmonella numbers was observed. No reduction was observed for brushes stored humid (in a plastic bag) or for sponges regardless of storing conditions. CONCLUSIONS Overall, lower bacterial levels were observed in used brushes than in sponges, and Salmonella died more rapidly in brushes. A common set of non-pathogenic bacteria dominated in brushes and sponges. SIGNIFICANCE AND IMPACT OF STUDY The study demonstrates that the use of brushes may be more hygienic than the use of sponges.
Collapse
Affiliation(s)
- Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Vânia B Ferreira
- University Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, Portugal
| | - Birgitte Moen
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Valérie L Almli
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Paula Teixeira
- University Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, Portugal
| | - Ida M Kasbo
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
29
|
Pinto de Rezende L, Barbosa J, Teixeira P. Analysis of Alternative Shelf Life-Extending Protocols and Their Effect on the Preservation of Seafood Products. Foods 2022; 11:foods11081100. [PMID: 35454688 PMCID: PMC9025290 DOI: 10.3390/foods11081100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/25/2022] Open
Abstract
Seafood is essential to a healthy and varied diet due to its highly nutritious characteristics. However, seafood products are highly perishable, which results in financial losses and quality concerns for consumers and the industry. Due to changes in consumer concerns, demand for healthy products has increased. New trends focusing on reducing synthetic preservatives require innovation and the application of additional or alternative strategies to extend the shelf life of this type of product. Currently, refrigeration and freezing storage are the most common methods for fish preservation. However, refrigeration alone cannot provide long shelf-life periods for fish, and freezing worsens sensorial characteristics and consumer interest. Therefore, the need to preserve seafood for long periods without exposing it to freezing temperatures exists. This review focuses on the application of other approaches to seafood products, such as biodegradable films and coating technology; superchilling; irradiation; high-pressure processing; hyperbaric storage; and biopreservation with lactic acid bacteria, bacteriocins, or bacteriophages. The efficiency of these techniques is discussed based on their impact on microbiological quality, sensorial degradation, and overall preservation of the product’s nutritional properties. Although these techniques are already known, their use in the industrial processing of seafood is not widespread. Thus, the novelty of this review is the aggregation of recent studies on shelf life extension approaches, which provide useful information for the selection of the most appropriate technology and procedures and industrial innovation. Despite the fact that all techniques inhibit or delay bacterial proliferation and product decay, an undesirable sensory impact may occur depending on the treatment conditions. Although no technique appears to replace refrigeration, the implementation of additional treatments in the seafood processing operation could reduce the need for freezing, extending the shelf life of fresh unfrozen products.
Collapse
|
30
|
Li M, Shi JN, You GM, Ma YS, Zhao QC. Characterization of bacterial communities in Coregonus peled fillets during chilled storage and interactions between selected bacterial strains. J Appl Microbiol 2022; 132:4359-4370. [PMID: 35393712 DOI: 10.1111/jam.15569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
AIM Coregonus peled fillets were used as a model to evaluate the dominant bacterial growth of chilled fish during storage after shipping and interactions of selected bacterial strains. METHODS AND RESULTS C. peled fillets were transported by air and land in ice boxes about 48 h from aquatic products company in Xinjiang, China to the laboratory located in Dalian, China. Both culture-dependent methods (plate counts on nonselective media) based on 16S rRNA gene sequencing and culture-independent methods (Illumina-MiSeq high-throughput sequencing) were used. To detect interactions among bacterial populations from chilled fish, the influence of 18 test strains on the growth of 12 indicator isolates was measured by a drop assay and in liquid culture medium broth. The results showed that bacterial counts exceeded 7.0 log CFU/g following 4 days storage at 4 °C. When the bacterial counts exceeded 8.5 log CFU/g after 12 days, the predominant microorganisms were Aeromonas, Pseudomonas, Carnobacterium, Psychrobacter and Shewanella, as measured by culture-independent methods. All test strains showed inhibiting effects on the growth of other strains in liquid culture. Pseudomonas isolates showed antibacterial activity for approximately 60% of the indicator strains on nutritional agar plates. The majority of test isolates enhancing indicator strain growth were the strains isolated on day 0. CONCLUSIONS High-throughput sequencing approach gives whole picture of bacterial communities in C.peled fillets during storage, while growth interferences between selected bacterial strains illustrate the complexity of microbial interactions. SIGNIFICANCE AND IMPACT OF THE STUDY We determined the bacterial communities and growth interferences in chilled C.peled after shipping and these are the first data concerning microbiota in C.peled using a culture-independent analysis. The present study will be useful for manufacture and preservation of C.peled products by providing with valuable information regarding microbiological spoilage of C.peled.
Collapse
Affiliation(s)
- Meng Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China.,Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jia-Ning Shi
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Gao-Ming You
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Yong-Sheng Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China.,Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qian-Cheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China.,Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
31
|
Inhibition of Several Bacterial Species Isolated from Squid and Shrimp Skewers by Different Natural Edible Compounds. Foods 2022; 11:foods11050757. [PMID: 35267390 PMCID: PMC8909736 DOI: 10.3390/foods11050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Seafood is an excellent source of nutrients, essential for a healthy diet, ranging from proteins and fatty acids to vitamins and minerals. Seafood products are highly perishable foods due to their nutritional characteristics and composition. The application of nontoxic, natural, and edible preservatives to extend the shelf-life and inhibit bacterial proliferation of several foods has been a hot topic. Consequently, this work aimed to perform the microbiological characterization of squid and shrimp skewers during their shelf-life (five days) and evaluate the susceptibility of randomly isolated microorganisms to several natural edible compounds so that their application for the preservation and shelf-life extension of the product might be analyzed in the future. The product had considerably high total microorganisms loads of about 5 log CFU/g at day zero and 9 log CFU/g at day five. In addition, high bacterial counts of Pseudomonas spp., Enterobacterales, and lactic acid bacteria (LAB) were found, especially on the last day of storage, being Pseudomonas the dominant genus. However, no Escherichia coli or Listeria monocytogenes were detected on the analyzed samples. One hundred bacterial isolates were randomly selected and identified through 16s rRNA sequencing, resulting in the detection of several Enterobacterales, Pseudomonas spp., and LAB. The antibacterial activity of carvacrol, olive leaf extract, limonene, Citrox®, different chitosans, and ethanolic propolis extracts was evaluated by the agar diffusion method, and the minimum inhibitory concentration was determined only for Citrox® since only this solution could inhibit all the identified isolates. At concentrations higher than or equal to 1.69% (v/v), Citrox® demonstrated bacteriostatic and bactericidal activity to 97% and 3% of the isolates, respectively. To our knowledge, there are no available data about the effectiveness of this commercial product on seafood isolates. Although preliminary, this study showed evidence that Citrox® has the potential to be used as a natural preservative in these seafood products, improving food safety and quality while reducing waste. However, further studies are required, such as developing a Citrox®-based coating and its application on this matrix to validate its antimicrobial effect.
Collapse
|
32
|
Wang D, Chen H, Li J, Li T, Ren L, Liu J, Shen Y. Screening and validation of quorum quenching enzyme PF2571 from Pseudomonas fluorescens strain PF08 to inhibit the spoilage of red sea bream filets. Int J Food Microbiol 2022; 362:109476. [PMID: 34798478 DOI: 10.1016/j.ijfoodmicro.2021.109476] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023]
Abstract
Bacteria are the main cause of spoilage for fish and fishery products. Through the inactivation of the quorum sensing (QS) system, quorum quenching (QQ) enzymes can block the synthesis of bacterial virulence factors and effectively inhibit bacteria-induced food spoilage. This study analyzed the changes of microbiota in red sea bream filets during refrigerated storage. The results showed a decrease in microbial diversity with storage time, with Aeromonas veronii becoming the dominant bacteria on day 4. A novel N-acyl homoserine lactones (AHL) acylase PF2571, from the screened QQ bacterium Pseudomonas fluorescens PF08, was identified and expressed in Escherichia coli to evaluate its QQ efficiency and effects on spoilage potential. Spoilage-related QS factors of A. veronii BY-8, including biofilm formation, motility, and protease, lipase, and alginate production, were inhibited by PF2571. Its inhibitory effect on red sea bream spoilage was demonstrated by the lower freshness indicators for PF2571 treated filets. Our study demonstrates the potential of the QQ enzyme for prolonging the shelf life of fish and fishery products.
Collapse
Affiliation(s)
- Dangfeng Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianrong Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresource Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China
| | - Likun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150076, China
| | - Jingyun Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yue Shen
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| |
Collapse
|
33
|
Anagnostopoulos DA, Parlapani FF, Boziaris IS. The evolution of knowledge on seafood spoilage microbiota from the 20th to the 21st century: Have we finished or just begun? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Katsigiannis AS, Bayliss DL, Walsh JL. Cold plasma for the disinfection of industrial food‐contact surfaces: An overview of current status and opportunities. Compr Rev Food Sci Food Saf 2022; 21:1086-1124. [DOI: 10.1111/1541-4337.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Affiliation(s)
| | - Danny L. Bayliss
- Processing & Production Research Department Campden BRI Gloucestershire UK
| | - James L. Walsh
- Department of Electrical Engineering & Electronics University of Liverpool Liverpool UK
| |
Collapse
|
35
|
Lerfall J, Shumilina E, Jakobsen AN. The significance of Shewanella sp. strain HSO12, Photobacterium phosphoreum strain HS254 and packaging gas composition in quality deterioration of fresh saithe fillets. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Abd El-Hay MM. Processing and preparation of fish. POSTHARVEST AND POSTMORTEM PROCESSING OF RAW FOOD MATERIALS 2022:315-342. [DOI: 10.1016/b978-0-12-818572-8.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
37
|
Surveillance of Listeria monocytogenes: Early Detection, Population Dynamics, and Quasimetagenomic Sequencing during Selective Enrichment. Appl Environ Microbiol 2021; 87:e0177421. [PMID: 34613762 PMCID: PMC8612253 DOI: 10.1128/aem.01774-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, we addressed different aspects regarding the implementation of quasimetagenomic sequencing as a hybrid surveillance method in combination with enrichment for early detection of Listeria monocytogenes in the food industry. Different experimental enrichment cultures were used, comprising seven L. monocytogenes strains of different sequence types (STs), with and without a background microbiota community. To assess whether the proportions of the different STs changed over time during enrichment, the growth and population dynamics were assessed using dapE colony sequencing and dapE and 16S rRNA amplicon sequencing. There was a tendency of some STs to have a higher relative abundance during the late stage of enrichment when L. monocytogenes was enriched without background microbiota. When coenriched with background microbiota, the population dynamics of the different STs was more consistent over time. To evaluate the earliest possible time point during enrichment that allows the detection of L. monocytogenes and at the same time the generation of genetic information that enables an estimation regarding the strain diversity in a sample, quasimetagenomic sequencing was performed early during enrichment in the presence of the background microbiota using Oxford Nanopore Technologies Flongle and Illumina MiSeq sequencing. The application of multiple displacement amplification (MDA) enabled detection of L. monocytogenes (and the background microbiota) after only 4 h of enrichment using both applied sequencing approaches. The MiSeq sequencing data additionally enabled the prediction of cooccurring L. monocytogenes strains in the samples. IMPORTANCE We showed that a combination of a short primary enrichment combined with MDA and Nanopore sequencing can accelerate the traditional process of cultivation and identification of L. monocytogenes. The use of Illumina MiSeq sequencing additionally allowed us to predict the presence of cooccurring L. monocytogenes strains. Our results suggest quasimetagenomic sequencing is a valuable and promising hybrid surveillance tool for the food industry that enables faster identification of L. monocytogenes during early enrichment. Routine application of this approach could lead to more efficient and proactive actions in the food industry that prevent contamination and subsequent product recalls and food destruction, economic and reputational losses, and human listeriosis cases.
Collapse
|
38
|
Oberlé K, Bouju-Albert A, Helsens N, Pangga G, Prevost H, Magras C, Calvez S. No evidence for a relationship between farm or transformation process locations and antibiotic resistance patterns of Pseudomonas population associated with rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 2021; 132:1738-1750. [PMID: 34719087 PMCID: PMC9299046 DOI: 10.1111/jam.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
Abstract
AIMS Study the relationship between antibiotic resistance patterns of Pseudomonas isolated from farmed rainbow trout fillets and farm or transformation process locations. METHODS AND RESULTS Pseudomonas strains were isolated from rainbow trout sampled in two differently located farms and filleted in laboratory or in a processing factory. One hundred and twenty-five isolates were confirmed as belonging to Pseudomonas using CFC selective media, Gram staining, oxidase test and quantitative polymerase chain reaction methods. Fifty-one isolates from separate fish fillets were further identified using MALDI-TOF mass spectrometry, and the minimal inhibitory concentrations (MIC) of 11 antibiotics were also determined by microdilution method. Most of the isolates belonged to the Pseudomonas fluorescens group (94.1%), and no relationship was established between antibiotic resistance patterns and sampling locations (farms or filleting areas). Multiple resistance isolates with high MIC values (from 64 µg ml-1 to more than 1024 µg ml-1 ) were identified. CONCLUSIONS Antibiotic resistance patterns found in Pseudomonas isolates were not influenced by farms or transformation process locations. Seven isolates were found highly resistant to four different antibiotic classes. SIGNIFICANCE AND IMPACT OF THE STUDY This study does not provide evidence of a relationship between farm or transformation process locations on antibiotic resistance patterns of Pseudomonas population.
Collapse
Affiliation(s)
| | | | - Nicolas Helsens
- INRAE, Oniris, BIOEPAR, Nantes, France.,INRAE, Oniris, SECALIM, Nantes, France
| | | | | | | | | |
Collapse
|
39
|
Hansen AÅ, Langsrud S, Berget I, Gaarder MØ, Moen B. High Oxygen Packaging of Atlantic Cod Fillets Inhibits Known Spoilage Organisms, but Sensory Quality Is Not Improved Due to the Growth of Carnobacterium/Carnobacteriaceae. Foods 2021; 10:foods10081754. [PMID: 34441531 PMCID: PMC8393966 DOI: 10.3390/foods10081754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Improved quality control and prolonged shelf life are important actions in preventing food waste. To get an overview of the bacterial diversity of fillets from live stored mature Atlantic cod, bacterial isolates were identified before and after storage (air and vacuum) and freezing/thawing. Based on the load of dominating bacteria, the effect of different packaging methods and a short freezing/thawing process on prolonged shelf-life was evaluated (total viable counts, bacteriota, sensory attributes, and volatile components). Hand filleted (strict hygiene) cod fillets had a low initial bacterial load dominated by the spoilage organism Photobacterium, whereas industrially produced fillets had higher bacterial loads and diversity (Pseudomonas, Arthrobacter, Psychrobacter, Shewanella). The identified bacteria after storage in vacuum or air were similar to the initially identified bacteria. Bacteriota analysis showed that a short time freezing/thawing process reduced Photobacterium while modified atmosphere packaging (MAP; 60% CO2/40% O2 or 60% CO2/40% N2) inhibited the growth of important spoilage bacteria (Photobacterium,Shewanella, Pseudomonas) and allowed the growth of Carnobacterium/Carnobacteriaceae and Acinetobacter. Despite being dominated by Photobacterium, fresh fillets stored in MAP 60% CO2/40% N2 demonstrated better sensory quality after 13 days of storage than fillets stored in MAP 60% CO2/40% O2 (dominated by Carnobacterium/Carnobacteriaceae). Carnobacterium spp. or other members of Carnobacteriaceae may therefore be potential spoilage organisms in cod when other spoilage bacteria are reduced or inhibited.
Collapse
|
40
|
Evaluation of physical and instrumentally determined sensory attributes of Atlantic salmon portions packaged in modified atmosphere and vacuum skin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Myszka K, Tomaś N, Wolko Ł, Szwengiel A, Grygier A, Nuc K, Majcher M. In situ approaches show the limitation of the spoilage potential of Juniperus phoenicea L. essential oil against cold-tolerant Pseudomonas fluorescens KM24. Appl Microbiol Biotechnol 2021; 105:4255-4268. [PMID: 33988734 PMCID: PMC8140959 DOI: 10.1007/s00253-021-11338-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022]
Abstract
Abstract The present study aimed to elucidate the effect of subinhibitory concentrations (sub-MICs) of juniper essential oil (EO), α-pinene, and sabinene on the quorum-sensing (QS)–mediated proteolytic and lipolytic properties of Pseudomonas fluorescens KM24. These activities were verified under in situ conditions, in which sub-MICs of the agents altered the morphology of KM24 cells. RNA-Seq studies revealed key coding sequences (CDSs)/genes related to QS and the proteolytic/lipolytic activities of pseudomonads. In this work, all the examined agents decreased autoinducer synthesis and influenced the mRNA expression of the encoding acyltransferase genes lptA, lptD, and plsB. The highest reduction on the 3rd and 5th days of cultivation was observed for the genes lptD (−5.5 and −5.61, respectively) and lptA (−3.5 and −4.0, respectively) following treatment with EO. Inhibition of the lptA, lptD, and plsB genes by singular constituents of EO was on average, from −0.4 to −0.7. At 5 days of cultivation the profile of AHLs of the reference P. fluorescens KM24 strain consisted of 3-oxo-C14-HSL, 3-oxo-C6-HSL, C4-HSL, and N-[(RS)-3-hydroxybutyryl]-HSL, the concentrations of which were 0.570, 0.018, 3.744, and 0.554 μg ml−1, respectively. Independent of the incubation time, EO, α-pinene, and sabinene also suppressed the protease genes prlC (−1.5, −0.5, and −0.5, respectively) and ctpB (−1.5, −0.7, and −0.4, respectively). Lipolysis and transcription of the lipA/lipB genes were downregulated by the agents on average from −0.3 to −0.6. α-Pinene- and sabinene-rich juniper EO acts as an anti-quorum-sensing agent and can repress the spoilage phenotype of pseudomonads. Key points: Juniper EO, α-pinene, sabinene exhibited anti-QS potential toward KM24. RNA-Seq revealed key CDSs/genes related to QS/proteolytic/lipolytic activities of KM24. Agents at sub-MIC levels influenced the mRNA expression of QS/lipase/protease genes.
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11338-3.
Collapse
Affiliation(s)
- Kamila Myszka
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60,627, Poznan, Poland.
| | - Natalia Tomaś
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60,627, Poznan, Poland
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, PL-60-632, Poznan, Poland
| | - Artur Szwengiel
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, PL-60-624, Poznan, Poland
| | - Anna Grygier
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, PL-60-624, Poznan, Poland
| | - Katarzyna Nuc
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, PL-60-632, Poznan, Poland
| | - Małgorzata Majcher
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, PL-60-624, Poznan, Poland
| |
Collapse
|
42
|
De Filippis F, Valentino V, Alvarez-Ordóñez A, Cotter PD, Ercolini D. Environmental microbiome mapping as a strategy to improve quality and safety in the food industry. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Characterization of Bacterial Communities of Cold-Smoked Salmon during Storage. Foods 2021; 10:foods10020362. [PMID: 33562402 PMCID: PMC7914861 DOI: 10.3390/foods10020362] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 02/03/2023] Open
Abstract
Cold-smoked salmon is a widely consumed ready-to-eat seafood product that is a fragile commodity with a long shelf-life. The microbial ecology of cold-smoked salmon during its shelf-life is well known. However, to our knowledge, no study on the microbial ecology of cold-smoked salmon using next-generation sequencing has yet been undertaken. In this study, cold-smoked salmon microbiotas were investigated using a polyphasic approach composed of cultivable methods, V3—V4 16S rRNA gene metabarcoding and chemical analyses. Forty-five cold-smoked salmon products processed in three different factories were analyzed. The metabarcoding approach highlighted 12 dominant genera previously reported as fish spoilers: Firmicutes Staphylococcus, Carnobacterium, Lactobacillus, β-Proteobacteria Photobacterium, Vibrio, Aliivibrio, Salinivibrio, Enterobacteriaceae Serratia,Pantoea, γ-Proteobacteria Psychrobacter, Shewanella and Pseudomonas. Specific operational taxonomic units were identified during the 28-day storage study period. Operational taxonomic units specific to the processing environment were also identified. Although the 45 cold-smoked salmon products shared a core microbiota, a processing plant signature was found. This suggest that the bacterial communities of cold-smoked salmon products are impacted by the processing environment, and this environment could have a negative effect on product quality. The use of a polyphasic approach for seafood products and food processing environments could provide better insights into residential bacteria dynamics and their impact on food safety and quality.
Collapse
|
44
|
Jarvis KG, Hsu CK, Pettengill JB, Ihrie J, Karathia H, Hasan NA, Grim CJ. Microbiome Population Dynamics of Cold-Smoked Sockeye Salmon during Refrigerated Storage and after Culture Enrichment. J Food Prot 2021; 85:238-253. [PMID: 34614175 DOI: 10.4315/jfp-21-228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/05/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cold-smoked salmon is a ready-to-eat seafood product of high commercial importance. The processing and storage steps facilitate the introduction, growth, and persistence of foodborne pathogens and spoilage bacteria. The growth of commensal bacteria during storage and once the product is opened also influence the quality and safety of cold-smoked salmon. Here we investigated the microbial community through targeted 16S rRNA gene and shotgun metagenomic sequencing as means to better understand the interactions among bacteria in cold-smoked salmon. Cold-smoked salmon samples were tested over 30 days of aerobic storage at 4°C and cultured at each time point in a buffered Listeria enrichment broth (BLEB) commonly used to detect Listeria in foods. The microbiomes were composed of Firmicutes and Proteobacteria, namely, Carnobacterium, Brochothrix, Pseudomonas, Serratia, and Psychrobacter. Pseudomonas species were the most diverse species, with 181 taxa identified. In addition, we identified potential homologs to 10 classes of bacteriocins in microbiomes of cold-smoked salmon stored at 4°C and corresponding BLEB culture enrichments. The findings presented here contribute to our understanding of microbiome population dynamics in cold-smoked salmon, including changes in bacterial taxa during aerobic cold storage and after culture enrichment. This may facilitate improvements to pathogen detection and quality preservation of this food. HIGHLIGHTS
Collapse
Affiliation(s)
- Karen G Jarvis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland 20708
| | - Chiun-Kang Hsu
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland 20708
| | - James B Pettengill
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20742
| | - John Ihrie
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20742
| | - Hiren Karathia
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Nur A Hasan
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Christopher J Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland 20708
| |
Collapse
|
45
|
Maillet A, Bouju-Albert A, Roblin S, Vaissié P, Leuillet S, Dousset X, Jaffrès E, Combrisson J, Prévost H. Impact of DNA extraction and sampling methods on bacterial communities monitored by 16S rDNA metabarcoding in cold-smoked salmon and processing plant surfaces. Food Microbiol 2020; 95:103705. [PMID: 33397623 DOI: 10.1016/j.fm.2020.103705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/15/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
Amplicon sequencing approaches have been widely used in food bacterial ecology. However, choices regarding the methodology can bias results. In this study, bacterial communities associated with cold-smoked salmon products and their processing plant surfaces were monitored via sequencing of the V3-V4 region of the 16S rRNA gene. The impact of DNA extraction protocols, sampling methods (swabbing or sponging) and surface materials on bacterial communities were investigated. α and β diversity analyses revealed that DNA extraction methods mainly influence the observed cold-smoked salmon microbiota composition. Moreover, different DNA extraction methods revealed significant differences in observed community richness and evenness. β-Proteobacteria: Photobacterium, Serratia and Firmicutes: Brochothrix, Carnobacterium and Staphylococcus were identified as the dominant genera. Surface microbiota richness, diversity and composition were mainly affected by cleaning and disinfection procedures but not by DNA extraction methods. Surface community richness and evenness appeared higher when sampled by sponging compared to swabbing. β-diversity analyses highlighted that surface topology, cleaning and disinfection and sampling devices seemed to affect the bacterial community composition. The dominant surface bacteria identified were mainly Flavobacteriaceae, β-Proteobacteria and γ-Proteobacteria described as fish spoilers such as Acinetobacter, Pseudomonas and Shewanella. DNA extraction and sampling methods can have an impact on sequencing results and the ecological analysis of bacterial community structures. This study confirmed the importance of methodology standardization and the need for analytical validation before 16S rDNA metabarcoding surveys.
Collapse
Affiliation(s)
- Aurélien Maillet
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France; UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France
| | - Agnès Bouju-Albert
- UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France
| | - Steven Roblin
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France
| | - Pauline Vaissié
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France
| | - Sébastien Leuillet
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France
| | - Xavier Dousset
- UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France
| | - Emmanuel Jaffrès
- UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France
| | - Jérôme Combrisson
- Mérieux NutriSciences, Biofortis, 3 route de la Chatterie, 44800, Saint-Herblain, France
| | - Hervé Prévost
- UMR 1014, Secalim, INRAE, Oniris, 101, Route de Gachet, 44300, Nantes, France.
| |
Collapse
|
46
|
Helsens N, Calvez S, Prevost H, Bouju-Albert A, Maillet A, Rossero A, Hurtaud-Pessel D, Zagorec M, Magras C. Antibiotic Resistance Genes and Bacterial Communities of Farmed Rainbow Trout Fillets ( Oncorhynchus mykiss). Front Microbiol 2020; 11:590902. [PMID: 33343530 PMCID: PMC7744637 DOI: 10.3389/fmicb.2020.590902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/11/2020] [Indexed: 01/28/2023] Open
Abstract
The rise of antibiotic resistance is not only a challenge for human and animal health treatments, but is also posing the risk of spreading among bacterial populations in foodstuffs. Farmed fish-related foodstuffs, the food of animal origin most consumed worldwide, are suspected to be a reservoir of antibiotic resistance genes and resistant bacterial hazards. However, scant research has been devoted to the possible sources of diversity in fresh fillet bacterial ecosystems (farm environment including rivers and practices, and factory environment). In this study bacterial communities and the antibiotic resistance genes of fresh rainbow trout fillet were described using amplicon sequencing of the V3-V4 region of the 16S rRNA gene and high-throughput qPCR assay. The antibiotic residues were quantified using liquid chromatography/mass spectrometry methods. A total of 56 fillets (composed of muscle and skin tissue) from fish raised on two farms on the same river were collected and processed under either factory or laboratory sterile filleting conditions. We observed a core-bacterial community profile on the fresh rainbow trout fillets, but the processing conditions of the fillets has a great influence on their mean bacterial load (3.38 ± 1.01 log CFU/g vs 2.29 ± 0.72 log CFU/g) and on the inter-individual diversity of the bacterial community. The bacterial communities were dominated by Gamma- and Alpha-proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. The most prevalent genera were Pseudomonas, Escherichia-Shigella, Chryseobacterium, and Carnobacterium. Of the 73 antibiotic residues searched, only oxytetracycline residues were detected in 13/56 fillets, all below the European Union maximum residue limit (6.40–40.20 μg/kg). Of the 248 antibiotic resistance genes searched, 11 were found to be present in at least 20% of the fish population (tetracycline resistance genes tetM and tetV, β-lactam resistance genes blaDHA and blaACC, macrolide resistance gene mphA, vancomycin resistance genes vanTG and vanWG and multidrug-resistance genes mdtE, mexF, vgaB and msrA) at relatively low abundances calculated proportionally to the 16S rRNA gene.
Collapse
Affiliation(s)
- Nicolas Helsens
- INRAE, Oniris, SECALIM, Nantes, France.,INRAE, Oniris, BIOEPAR, Nantes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Characterization of the microbiota of commercially traded finfish fillets. Food Res Int 2020; 137:109373. [PMID: 33233075 DOI: 10.1016/j.foodres.2020.109373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
Abstract
The profile of human gut microbiota is known to be affected by diet and is linked to human health. Seafood is a highly consumed food and it accounts for a large proportion of food-borne illness. The objective of this study is to characterise the microbiota of fish fillets of various species sold in the Canadian market. We test 19 fish fillet samples from nine species in five fish families, ten of which were previously determined to be mislabeled as different species. The microbiota profiles were characterized using 16S rRNA gene high-throughput sequencing. Despite the complexities of the supply chain to produce these fillets, the major microbial groups were fairly consistent across samples. Significant differences in microbial taxa were observed between species, families, and based on labelling accuracy. Several putative spoilage and putative pathogenic taxa were identified. Studying food-associated microbiota can provide comprehensive information on food safety, authenticity, and traceability.
Collapse
|
48
|
Longitudinal Metatranscriptomic Analysis of a Meat Spoilage Microbiome Detects Abundant Continued Fermentation and Environmental Stress Responses during Shelf Life and Beyond. Appl Environ Microbiol 2020; 86:AEM.01575-20. [PMID: 32978125 DOI: 10.1128/aem.01575-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 01/01/2023] Open
Abstract
Microbial food spoilage is a complex phenomenon associated with the succession of the specific spoilage organisms (SSO) over the course of time. We performed a longitudinal metatranscriptomic study on one modified-atmosphere-packaged (MAP) beef product to increase understanding of the longitudinal behavior of a spoilage microbiome during shelf life and beyond. Based on the annotation of the mRNA reads, we recognized three stages related to the active microbiome that were descriptive of the sensory quality of the beef: acceptable product (AP), early spoilage (ES), and late spoilage (LS). Both the 16S RNA taxonomic assignments from the total RNA and functional annotations of the active genes showed that these stages were significantly different from each other. However, the functional gene annotations showed more pronounced differences than the taxonomy assignments. Psychrotrophic lactic acid bacteria (LAB) formed the core of the SSO, according to the transcribed reads. Leuconostoc species were the most abundant active LAB throughout the study period, whereas the transcription activity of Streptococcaceae (mainly Lactococcus) increased after the product had spoiled. In the beginning of the experiment, the community managed environmental stress by cold-shock responses, which were followed by expression of the genes involved in managing oxidative stress. Glycolysis, the pentose phosphate pathway, and pyruvate metabolism were active throughout the study at a relatively stable level. However, the proportional transcription activities of the enzymes in these pathways changed over time.IMPORTANCE It is generally known which organisms are the typical SSO in foods, whereas the actively transcribed genes and pathways during microbial succession are poorly understood. This knowledge is important, since better approaches to food quality evaluation and shelf life determination are needed. Therefore, we conducted this study to find longitudinal markers that are connected to quality deterioration in a MAP beef product. This kind of RNA marker could be used to develop novel types of rapid quality analysis tools in the future. New tools are needed, since even though SSO can be detected and their concentrations determined using the current microbiological methods, results from these analyses cannot predict how close in time a spoilage community is to the production of clear sensory defects. The main reason for this is that the species composition of a spoilage community does not change dramatically during late shelf life, whereas the ongoing metabolic activities lead to the development of notable sensory deterioration.
Collapse
|
49
|
Qiu L, Zhang M, Bhandari B, Yang C. Shelf life extension of aquatic products by applying nanotechnology: a review. Crit Rev Food Sci Nutr 2020; 62:1521-1535. [PMID: 33167694 DOI: 10.1080/10408398.2020.1844139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aquatic products are extremely perishable due to their biological composition. Conventional preservation methods such as freezing, chemical treatments, packaging, and so forth are unable to inhibit enzymatic and microbiological spoilage efficiently and/or energy intensive and/or potentially toxic. However, the demand of consumers for aquatic products with long shelf life and high quality has urged the food industries to pursuit highly effective preservation methods for shelf life extension of aquatic products. Nanotechnology-related shelf life prolongation process possess the ability to overcome the drawbacks of conventional preservation technologies due to its unique properties. In this article, the aquatic products spoilage mechanisms, recent application of nanotechnology-related preservation techniques for aquatic products as well as the risk and regulation of nanomaterials have been reviewed. It has been shown that nanotechnology-related preservation techniques can effectively extend the shelf life without impairing the quality of aquatic products. However, the safety of nanotechnology is still remained controversial, therefore, the application of nanotechnology should be considered cautiously.
Collapse
Affiliation(s)
- Liqing Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China.,Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Chaohui Yang
- Yangzhou Ye Chun Food Production and Distribution Company, Yangzhou, Jiangsu, P.R. China
| |
Collapse
|
50
|
Sheng L, Wang L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr Rev Food Sci Food Saf 2020; 20:738-786. [PMID: 33325100 DOI: 10.1111/1541-4337.12671] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms play a crucial and unique role in fish and fish product safety. The presence of human pathogens and the formation of histamine caused by spoilage bacteria make the control of both pathogenic and spoilage microorganisms critical for fish product safety. To provide a comprehensive and updated overview of the involvement of microorganisms in fish and fish product safety, this paper reviewed outbreak and recall surveillance data obtained from government agencies from 1998 to 2018 and identified major safety concerns associated with both domestic and imported fish products. The review also summarized all available literature about the prevalence of major and emerging microbial safety concerns, including Salmonella spp., Listeria monocytogenes, and Aeromonas hydrophila, in different fish and fish products and the survival of these pathogens under different storage conditions. The prevalence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs), two emerging food safety concerns, is also reviewed. Pathogenic and spoilage microorganisms as well as ARB and ARGs can be introduced into fish and fish products in both preharvest and postharvest stages. Many novel intervention strategies have been proposed and tested for the control of different microorganisms on fish and fish products. One key question that needs to be considered when developing and implementing novel control measures is how to ensure that the measures are cost and environment friendly as well as sustainable. Over the years, regulations have been established to provide guidance documents for good farming and processing practices. To be more prepared for the globalization of the food chain, harmonization of regulations is still needed.
Collapse
Affiliation(s)
- Lina Sheng
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| |
Collapse
|