1
|
Kevill JL, Herridge K, Li X, Farkas K, Malham SK, Robins P, Jones DL. Comparative impact of sunlight and salinity on human pathogenic virus survival in river, estuarine, and marine water microcosms. WATER RESEARCH 2025; 278:123411. [PMID: 40049099 DOI: 10.1016/j.watres.2025.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/04/2025] [Accepted: 02/27/2025] [Indexed: 04/14/2025]
Abstract
Urban wastewater contains a diverse array of human pathogenic viruses, often in high concentrations, presenting a significant challenge for water quality management. Sewage spills into natural water systems therefore pose a significant public health risk due to the potential to cause viral infections, yet the behaviour of viruses under dynamic environmental conditions remains poorly understood. This study investigates the decay of sewage-associated viruses (Adenovirus, Enterovirus, Hepatitis A Virus, Influenza A Virus, Norovirus GII, and Respiratory Syncytial Virus) in river, estuary, and marine water, with and without simulated sunlight. Using both qPCR and capsid integrity qPCR (CI-qPCR) methods, we found that in the absence of sunlight, time was the most significant factor influencing viral decay across all water types. The time required for a 90 % reduction in viral gene copies (T90) was observed within 0.3-24.3 days. Simulated sunlight accelerated viral decay, with significant reductions in gene copies l-1 observed within 1-3 days for all viruses studied, and T90 values ranging from 7 to 62.8 h. The effect of salinity on viral decay varied among viruses and water types. These results highlight the complex interplay between environmental water properties and viral persistence, emphasizing the critical role of solar radiation in viral inactivation. The study also demonstrates the value of using both qPCR and CI-qPCR methods to assess total and potentially infectious viral loads, respectively. These results have important implications for water quality management and public health risk assessment in diverse aquatic environments, particularly in the context of the increased frequency of sewage spills occurring in response to climate change and increasing urbanization. The data will support improvements in water quality modelling and associated risk management, contributing to more effective measures for protecting public health in coastal and inland water systems.
Collapse
Affiliation(s)
- Jessica L Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Kate Herridge
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Xiaorong Li
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Verily Life Sciences, South San Francisco, CA 94080, USA
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Peter Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Verily Life Sciences, South San Francisco, CA 94080, USA
| |
Collapse
|
2
|
Lauzier AM, Douette É, Labrie A, Jubinville É, Goulet-Beaulieu V, Hamon F, Jean J. Comparison of sample pretreatments used to distinguish between infectious and non-infectious foodborne viruses by RT-qPCR. J Virol Methods 2025; 335:115130. [PMID: 39993658 DOI: 10.1016/j.jviromet.2025.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
To detect viruses such as hepatitis A virus (HAV) and human norovirus (HuNoV) in foods, RT-qPCR or other molecular methods are used, which cannot distinguish between infectious and non-infectious virions. Samples can be pretreated to limit detection to intact and presumably infectious virions. We compared propidium monoazide (PMA or PMAxx), platinum (IV) chloride (PtCl4), magnetic silica beads and centrifugal filter using HAV or HuNoV inactivated by heat, pulsed light, or sodium hypochlorite (NaOCl). PMAxx completely or nearly eliminated (3.96 ± 1.24 log gc) the RT-qPCR signal of HAV inactivated at 100°C for 10 min. Pretreatments could not reduce significantly RT-qPCR signal of HAV after pulsed light (0.74 ± 0.36 log gc) and NaOCl (0.24 ± 0.14 log gc) inactivation. Enzymatic treatments did not improve the results obtained with PMAxx. The exudate of raspberry, strawberry or oyster used as food matrices needed dilution by at least tenfold for PMAxx to to yield results comparable to virions without a food matrix. Overall, PMAxx shows good potential to discriminate between infectious and non-infectious despite some remaining limitations.
Collapse
Affiliation(s)
- Anne-Marie Lauzier
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Émilie Douette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Antoine Labrie
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Éric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | | | | | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada.
| |
Collapse
|
3
|
Kevill JL, Farkas K, Herridge K, Malham SK, Jones DL. Evaluation of Three Viral Capsid Integrity qPCR Methods for Wastewater-Based Viral Surveillance. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:12. [PMID: 39760935 PMCID: PMC11703991 DOI: 10.1007/s12560-024-09627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
Capsid Integrity qPCR (CI-qPCR) assays offer a promising alternative to cell culture-based infectivity assays for assessing pathogenic human virus viability in wastewater. This study compared three CI-qPCR methods: two novel (Crosslinker, TruTiter) and one established (PMAxx dye). These methods were evaluated on heat-inactivated and non-heat-inactivated 'live' viruses spiked into phosphate-buffered saline (PBS) and wastewater, as well as on viruses naturally present in wastewater samples. The viral panel included Human adenovirus 5 (HAdV), enterovirus A71 (EV), hepatitis-A virus (HAV), influenza-A H3N2 (IAV), respiratory syncytial virus A2 (RSV), norovirus GI, norovirus GII, and SARS-CoV-2. All three methods successfully differentiated between degraded, heat-inactivated, and live viruses in PBS. While all three methods were comparable for HAdV and norovirus GI, PMAxx detected significantly lower gene copies for EV and IAV. In spiked wastewater, PMAxx yielded significantly lower gene copies for all heat-inactivated viruses (HAdV, EV, HAV, IAV, and RSV) compared to the Crosslinker and TruTiter methods. For viruses naturally present in wastewater (un-spiked), no significant difference was observed between PMAxx and TruTiter methods. Intact, potentially infectious viruses were detected using both PMAxx and TruTiter on untreated and treated wastewater samples. A comparative analysis of qPCR data and TEM images revealed that viral flocculation of IAV may interfere with capsid integrity assays using intercalating dyes. In summary, our findings not only advance the development of more effective methods for assessing viral viability in wastewater, but also highlight the potential of CI-qPCR techniques to enhance early warning systems for emerging pathogens, thereby strengthening public health preparedness and response strategies.
Collapse
Affiliation(s)
- Jessica L Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Kate Herridge
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
4
|
Kevill JL, Li X, Garcia-Delgado A, Herridge K, Farkas K, Gaze W, Robins P, Malham SK, Jones DL. Microcosm experiment investigating climate-induced thermal effects on human virus viability in seawater: qPCR vs capsid integrity for enhanced risk management. MARINE POLLUTION BULLETIN 2024; 208:117006. [PMID: 39342910 DOI: 10.1016/j.marpolbul.2024.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Climate change is intensifying extreme weather events in coastal areas, leading to more frequent discharge of untreated wastewater containing human viruses into coastal waters. This poses a health risk, especially during heatwaves when bathing activity increases. A study examined the survival and viability of seven common wastewater viruses in seawater at different temperatures. Viral genomes were quantified using direct qPCR, whilst viability was assessed using Capsid Integrity qPCR. Results showed that T90 values from direct qPCR were much higher than those from CI-qPCR, suggesting that risk mitigation should be based on viral integrity tests. All viruses remained potentially viable for at least 72 h in environmental seawater and longer in sterile artificial seawater, highlighting the importance of biotic processes in viral inactivation. Viral persistence decreased with increasing temperature. Whilst heatwaves may partially reduce risks from human viral pathogens in coastal waters, they do not eliminate them entirely.
Collapse
Affiliation(s)
- Jessica L Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Xiaorong Li
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Alvaro Garcia-Delgado
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kate Herridge
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - William Gaze
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Peter Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
5
|
Wang Y, Li H, Fang W, Wang R, Wang X, Wang X, Zheng G, Zhou L. Persistence evaluation of fecal pollution indicators in dewatered sludge and dewatering filtrate of municipal sewage sludge: The impacts of ambient temperature and conditioning treatments. WATER RESEARCH 2024; 268:122641. [PMID: 39442430 DOI: 10.1016/j.watres.2024.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sludge resource utilization is one of the important routines for transmitting fecal pollution to water and soil, and sludge dewatering is a crucial step for sludge resource utilization. However, it remains unclear the decay characteristics and persistence of fecal pollution indicators after sludge dewatering. In this study, the persistence of six fecal pollution indicators, namely E. coli (EC), human-specific HF183 Bacteroides (HF183), human adenovirus (HAdV), human JC and BK polyomavirus (JCPyV and BKPyV), and crAssphage, in dewatered sludge cake and dewatering filtrate deriving from raw sewage sludge, as well as three types of sludge conditioned with polyacrylamide (PAM), Fenton's reagent, or Fe[III] and CaO were analyzed. The quantitative polymerase chain reaction (qPCR) and viability-qPCR methods were used to analyze the variation in abundances and infectivity of fecal pollution indicators in dewatered sludge cake or dewatering filtrate over the storage time, respectively. Decay predications of fecal pollution indicators over time were modeled using either the first-order or the biphasic decay model. The qPCR results revealed that fecal pollution indicators in dewatered sludge cake persisted longer than those in dewatering filtrate at the same temperature. Increasing temperature can accelerate the decay of fecal pollution indicators in both dewatered sludge cake and dewatering filtrate. Notably, sludge conditioning treatment may prolong the persistence of fecal pollution indicators in both dewatered sludge cake and dewatering filtrate. Viability-qPCR results indicated that the fecal pollution indicators (except HAdV) in dewatered sludge cakes deriving from both raw sewage sludge and conditioned sludges remained infectious for up to 30 days. After a storage period of 40 days, the abundances of fecal pollution indicators (except for EC) in sludge conditioned with Fenton's reagent were effectively decreased and meanwhile the infectivity of EC was reduced, exhibiting the lowest levels of fecal pollution. Therefore, both ambient temperature and conditioning treatment greatly impacted the decay characteristics and persistence of fecal pollution indicators in dewatered sludge cake and dewatering filtrate, and selecting suitable conditioning method can minimize environmental risks associated with fecal pollution in sewage sludge.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| | - Hua Li
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhao Fang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ru Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
6
|
Macleod SL, Super EH, Batt LJ, Yates E, Jones ST. Plate-Based High-Throughput Fluorescence Assay for Assessing Enveloped Virus Integrity. Biomacromolecules 2024; 25:4925-4933. [PMID: 39040021 PMCID: PMC11323024 DOI: 10.1021/acs.biomac.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Viruses are a considerable threat to global health and place major burdens on economies worldwide. Manufactured viruses are also being widely used as delivery agents to treat (gene therapies) or prevent diseases (vaccines). Therefore, it is vital to study and fully understand the infectious state of viruses. Current techniques used to study viruses are often slow or nonexistent, making the development of new techniques of paramount importance. Here we present a high-throughput and robust, cell-free plate-based assay (FAIRY: Fluorescence Assay for vIRal IntegritY), capable of differentiating intact from nonintact enveloped viruses, i.e, infectious from noninfectious. Using a thiazole orange-terminated polymer, a 99% increase in fluorescence was observed between treated (heat or virucide) and nontreated. The FAIRY assay allowed for the rapid determination of the infectivity of a range of enveloped viruses, highlighting its potential as a valuable tool for the study of viruses and interventions against them.
Collapse
Affiliation(s)
- Shannan-Leigh Macleod
- Department
of Materials and Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Elana H. Super
- Department
of Materials and Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Lauren J. Batt
- Department
of Materials and Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Eleanor Yates
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Samuel T. Jones
- Department
of Materials and Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
7
|
Rachmadi AT, Gyawali P, Summers G, Jabed A, Fletcher GC, Hewitt J. PMAxx-RT-qPCR to Determine Human Norovirus Inactivation Following High-Pressure Processing of Oysters. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:171-179. [PMID: 38457095 DOI: 10.1007/s12560-024-09585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Norovirus is the leading cause of viral gastroenteritis globally. While person-to-person transmission is most commonly reported route of infection, human norovirus is frequently associated with foodborne transmission, including through consumption of contaminated bivalve molluscan shellfish. Reverse transcription (RT)-qPCR is most commonly used method for detecting human norovirus detection in foods, but does not inform on its infectivity, posing challenges for assessing intervention strategies aimed at risk elimination. In this study, RT-qPCR was used in conjunction with a derivative of the photoreactive DNA binding dye propidium monoazide (PMAxx™) (PMAxx-RT-qPCR) to evaluate the viral capsid integrity of norovirus genogroup I and II (GI and GII) in shellfish following high pressure processing (HPP). Norovirus GI.3 and GII.4 bioaccumulated oysters were subjected to HPP at pressures of 300 and 450 MPa at 15 °C, and 300, 450 and 600 MPa at 20 °C. Samples were analysed using both RT-qPCR and PMAxx-RT-qPCR. For each sample, norovirus concentration (genome copies/g digestive tissue) determined by RT-qPCR was divided by the PMAxx-RT-qPCR concentration, giving the relative non-intact (RNI) ratio. The RNI ratio values relate to the amount of non-intact (non-infectious) viruses compared to fully intact (possible infectious) viruses. Our findings revealed an increasing RNI ratio value, indicating decreasing virus integrity, with increasing pressure and decreasing pressure. At 300 MPa, for norovirus GI, the median [95% confidence interval, CI] RNI ratio values were 2.6 [1.9, 3.0] at 15 °C compared to 1.1 [0.9, 1.8] at 20 °C. At 450 MPa, the RNI ratio values were 5.5 [2.9, 7.0] at 15 °C compared to 1.3 [1.0, 1.6] at 20 °C. At 600 MPa, the RNI ratio value was 5.1 [2.9, 13.4] at 20 °C. For norovirus GII, RT-qPCR and PMAxx-RT-qPCR detections were significantly reduced at 450 and 600 MPa at both 15 °C and 20 °C, with the median [95% CI] RNI ratio value at 300 MPa being 1.1 [0.8, 1.6]. Following HPP treatment, the use of PMAxx-RT-qPCR enables the selective detection of intact and potential infectious norovirus, enhancing our understanding of the inactivation profiles and supporting the development of more effective risk assessment strategies.
Collapse
Affiliation(s)
- Andri Taruna Rachmadi
- Institute of Environmental Science and Research Ltd (ESR), Kenepuru Science Centre, PO Box 50348, Porirua, 5240, New Zealand
| | - Pradip Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Kenepuru Science Centre, PO Box 50348, Porirua, 5240, New Zealand
| | - Graeme Summers
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Anower Jabed
- Institute of Environmental Science and Research Ltd (ESR), Kenepuru Science Centre, PO Box 50348, Porirua, 5240, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd (ESR), Kenepuru Science Centre, PO Box 50348, Porirua, 5240, New Zealand.
| |
Collapse
|
8
|
Stoppel SM, Lunestad BT, Myrmel M. The effect of enzymatic and viability dye treatment in combination with long-range PCR on assessing Tulane virus infectivity. J Virol Methods 2024; 327:114919. [PMID: 38531509 DOI: 10.1016/j.jviromet.2024.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Human norovirus (HuNoV) is regularly involved in food-borne infections. To detect infectious HuNoV in food, RT-qPCR remains state of the art but also amplifies non-infectious virus. The present study combines pre-treatments, RNase and propidium monoazide, with three molecular analyses, including long-range PCR, to predominantly detect infectious Tulane virus (TuV), a culturable HuNoV surrogate. TuV was exposed to inactivating conditions to assess which molecular method most closely approximates the reduction in infectious virus determined by cell culture (TCID50). After thermal treatments (56 °C/5 min, 70 °C/5 min, 72 °C/20 min), TCID50 reductions of 0.3, 4.4 and 5.9 log10 were observed. UV exposure (40/100/1000 mJ/cm2) resulted in 1.1, 2.5 and 5.9 log10 reductions. Chlorine (45/100 mg/L for 1 h) reduced infectious TuV by 2.0 and 3.0 log10. After thermal inactivation standard RT-qPCR, especially with pre-treatments, showed the smallest deviation from TCID50. On average, RT-qPCR with pre-treatments deviated by 1.1-1.3 log10 from TCID50. For UV light, long-range PCR was closest to TCID50 results. Long-range reductions deviated from TCID50 by ≤0.1 log10 for mild and medium UV-conditions. However, long-range analyses often resulted in qPCR non-detects. At higher UV doses, RT-qPCR with pre-treatments differed by ≤1.0 log10 from TCID50. After chlorination the molecular methods repeatedly deviated from TCID50 by >1.0 log10, Overall, each method needs to be further optimized for the individual types of inactivation treatment.
Collapse
Affiliation(s)
- Sarah M Stoppel
- Institute of Marine Research, Section for Seafood Hazards, Nordnesgaten 50, Bergen 5005, Norway.
| | - Bjørn Tore Lunestad
- Institute of Marine Research, Section for Seafood Hazards, Nordnesgaten 50, Bergen 5005, Norway
| | - Mette Myrmel
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Elizabeth Stephansens vei 15, Ås 1430, Norway
| |
Collapse
|
9
|
Puchades-Colera P, Díaz-Reolid A, Girón-Guzmán I, Cuevas-Ferrando E, Pérez-Cataluña A, Sánchez G. Capsid Integrity Detection of Enteric Viruses in Reclaimed Waters. Viruses 2024; 16:816. [PMID: 38932109 PMCID: PMC11209584 DOI: 10.3390/v16060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Climate change, unpredictable weather patterns, and droughts are depleting water resources in some parts of the globe, where recycling and reusing wastewater is a strategy for different purposes. To counteract this, the EU regulation for water reuse sets minimum requirements for the use of reclaimed water for agricultural irrigation, including a reduction in human enteric viruses. In the present study, the occurrence of several human enteric viruses, including the human norovirus genogroup I (HuNoV GI), HuNoV GII, and rotavirus (RV), along with viral fecal contamination indicator crAssphage was monitored by using (RT)-qPCR methods on influent wastewater and reclaimed water samples. Moreover, the level of somatic coliphages was also determined as a culturable viral indicator. To assess the potential viral infectivity, an optimization of a capsid integrity PMAxx-RT-qPCR method was performed on sewage samples. Somatic coliphages were present in 60% of the reclaimed water samples, indicating inefficient virus inactivation. Following PMAxx-RT-qPCR optimization, 66% of the samples tested positive for at least one of the analyzed enteric viruses, with concentrations ranging from 2.79 to 7.30 Log10 genome copies (gc)/L. Overall, most of the analyzed reclaimed water samples did not comply with current EU legislation and contained potential infectious viral particles.
Collapse
Affiliation(s)
| | | | | | | | | | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (P.P.-C.); (A.D.-R.); (A.P.-C.)
| |
Collapse
|
10
|
Trudel-Ferland M, Collard MÈ, Goulet-Beaulieu V, Jubinville E, Hamon F, Jean J. Evaluation of a new automated viral RNA extraction platform for hepatitis A virus and human norovirus in testing of berries, lettuce, and oysters. Int J Food Microbiol 2024; 416:110664. [PMID: 38492524 DOI: 10.1016/j.ijfoodmicro.2024.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Fruits, vegetables, and shellfish are often associated with outbreaks of illness caused particularly by human norovirus (HuNoV) and hepatitis A virus (HAV), the leading causative agents of foodborne illness worldwide. The aim of this study was to evaluate a new automated nucleic acid extraction platform (EGENE-UP EASYPREP) for enteric viruses in several at-risk food matrices and to test its limit of detection in comparison to a semi-automated method (EGENE-UP) using Boom methodology for nucleic acid extraction as suggested in the reference method ISO 15216-2:2019. Fresh and frozen raspberries, frozen blackberries, romaine lettuce and oyster digestive glands were artificially contaminated with HAV, HuNoV GII.4 or HuNoV GI.7 at 102, 103 or 104 genome copies/sample. Virus was then recovered from the food matrix using the ISO method. Viral RNA extracted from frozen berry samples by the automated system was purified on a column for additional removal of RT-qPCR inhibitors. For fresh raspberry, oysters, and romaine lettuce, the two extraction platforms were deemed equivalent. For frozen raspberry, the automated platform appeared to be more efficient for viral recovery, particularly for HAV and HuNoV GI at lower concentrations. With frozen blackberries, the two platforms may be considered equivalent for all targeted viruses. However, the automated method led to less sample-associated inhibition of the PCR, 56.5 % of samples versus 95.0 % for the semi-automated. We thus found that the automated extraction can be performed easily by users while obtaining equivalent or even superior results to the ISO 15216-2:2019 method, and therefore appears to be suitable for routine sanitary monitoring in food processing and for tracing outbreaks of illness.
Collapse
Affiliation(s)
- Mathilde Trudel-Ferland
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Marie-Ève Collard
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Valérie Goulet-Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Eric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | | | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
11
|
Johne R, Scholz J, Falkenhagen A. Heat stability of foodborne viruses - Findings, methodological challenges and current developments. Int J Food Microbiol 2024; 413:110582. [PMID: 38290272 DOI: 10.1016/j.ijfoodmicro.2024.110582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
Heat treatment of food represents an important measure to prevent pathogen transmission. Thus far, evaluation of heat treatment processes is mainly based on data from bacteria. However, foodborne viruses have gained increasing attention during the last decades. Here, the published literature on heat stability and inactivation of human norovirus (NoV), hepatitis A virus (HAV) and hepatitis E virus (HEV) was reviewed. Data for surrogate viruses were not included. As stability assessment for foodborne viruses is often hampered by missing infectivity assays, an overview of applied methods is also presented. For NoV, molecular capsid integrity assays were mainly applied, but data from initial studies utilizing novel intestinal enteroid or zebrafish larvae assays are available now. However, these methods are still limited in applicability and sensitivity. For HAV, sufficient cell culture-based inactivation data are available, but almost exclusively for one single strain, thus limiting interpretation of the data for the wide range of field strains. For HEV, data are now available from studies using pig inoculation or cell culture. The results of the reviewed studies generally indicate that NoV, HAV and HEV possess a high heat stability. Heating at 70-72 °C for 2 min significantly reduces infectious titers, but often does not result in a >4 log10 decrease. However, heat stability greatly varied dependent on virus strain, matrix and heating regime. In addition, the applied method largely influenced the result, e.g. capsid integrity assays tend to result in higher measured stabilities than cell culture approaches. It can be concluded that the investigated foodborne viruses show a high heat stability, but can be inactivated by application of appropriate heating protocols. For HAV, suggestions for safe time/temperature combinations for specific foods can be derived from the published studies, with the limitation that they are mostly based on one strain only. Although significant improvement of infectivity assays for NoV and HEV have been made during the last years, further method development regarding sensitivity, robustness and broader applicability is important to generate more reliable heat inactivation data for these foodborne viruses in future.
Collapse
Affiliation(s)
- Reimar Johne
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Johannes Scholz
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Alexander Falkenhagen
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
12
|
Wales SQ, Pandiscia A, Kulka M, Sanchez G, Randazzo W. Challenges for estimating human norovirus infectivity by viability RT-qPCR as compared to replication in human intestinal enteroids. Int J Food Microbiol 2024; 411:110507. [PMID: 38043474 DOI: 10.1016/j.ijfoodmicro.2023.110507] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Viability RT-qPCR, a molecular detection method combining viability marker pre-treatment with RT-qPCR, has been proposed to infer infectivity of viruses which is particularly relevant for non-culturable viruses or sophisticated cell culture systems. Being human noroviruses (HuNoV) most frequently associated with foodborne outbreaks, this study compared different viability techniques and infectivity in human intestinal enteroids (HIE) to ultimately determine whether the molecular approaches could serve as rapid assays to predict HuNoV inactivation in high-risk food. To this end, the performance of three viability RT-qPCR assays with different intercalating markers ((Viability PCR Crosslinker Kit (CL), propidium monoazide (PMAxx™), and platinum chloride (PtCl4)) in estimating survival of HuNoV exposed to thermal and high pressure (HPP) treatments was compared to replication tested in the HIE cell culture model. A nearly full-length genomic molecular assay coupled with PMAxx™ to infer HuNoV thermal inactivation was also assessed. The experimental design included HuNoV genogroup I.3 [P13], GII.4 Sydney [P16], GII.6 [P7], along with Tulane virus (TV) serving as surrogate. Finally, viability RT-qPCR was tested in HPP-treated strawberry puree, selected as a food matrix with high viral contamination risk. PMAxx™ and CL performed evenly, while PtCl4 affected HuNoV infectivity. Taking all experimental data together, viability RT-qPCR was demonstrated to be an improved method over direct RT-qPCR to estimate viral inactivation at extreme thermal (95 °C) and HPP (450 MPa) exposures, but not under milder conditions as amplification signals were detected. Despite its complexity and limitations, the HIE demonstrated a more robust model than viability RT-qPCR to assess HuNoV infectivity.
Collapse
Affiliation(s)
- Samantha Q Wales
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States
| | - Annamaria Pandiscia
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain; Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, Bari, Valenzano 70010, Italy
| | - Michael Kulka
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States
| | - Gloria Sanchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain.
| |
Collapse
|
13
|
Bichet MC, Gardette M, Das Neves B, Challant J, Erbs A, Roman V, Robin M, La Carbona S, Gantzer C, Boudaud N, Bertrand I. A new understanding of somatic coliphages belonging to the Microviridae family in urban wastewater. WATER RESEARCH 2024; 249:120916. [PMID: 38043350 DOI: 10.1016/j.watres.2023.120916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Somatic coliphages (SC) and F-specific RNA coliphages (FRNAPH) have been included in regulations or guidelines by several developed countries as a way of monitoring water safety and the microbiological quality of shellfish harvesting waters. SC are highly diverse in their morphology, size and genome. The Microviridae family contains three genera of phages (Alphatrevirus, Gequatrovirus, and Sinsheimervirus), all having a capsid of similar morphology (icosahedral) and size (25-30 nm in diameter) to that of common pathogenic enteric viruses. Three PCR assays specific for each genus of Microviridae were designed to study these phages in raw and treated wastewater (WW) in order to gain knowledge about the diversity and prevalence of Microviridae among SC, as well as their inactivation and removal during WW treatments. Among the four wastewater treatment plants (WWTPs) monitored here, two WWTPs applied disinfection by UV light as tertiary treatment. First, we noticed that Microviridae represented 10 to 30 % of infectious SC in both raw and treated WW. Microviridae appeared to behave in the same way as all SC during these WW treatments. As expected, the highest inactivation, at least 4 log10, was achieved for infectious Microviridae and SC in both WWTPs using UV disinfection. PCR assays showed that the highest removal of Microviridae reached about 4 log10, but the phage removal can vary greatly between WWTPs using similar treatments. This work forms the basis for a broader evaluation of Microviridae as a viral indicator of water treatment efficiency and WW reuse.
Collapse
Affiliation(s)
- Marion C Bichet
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Marion Gardette
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | - Julie Challant
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Anaïs Erbs
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Véronica Roman
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Maëlle Robin
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France
| | | | | | | | | |
Collapse
|
14
|
Kevill JL, Farkas K, Ridding N, Woodhall N, Malham SK, Jones DL. Use of Capsid Integrity-qPCR for Detecting Viral Capsid Integrity in Wastewater. Viruses 2023; 16:40. [PMID: 38257740 PMCID: PMC10819219 DOI: 10.3390/v16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Quantifying viruses in wastewater via RT-qPCR provides total genomic data but does not indicate the virus capsid integrity or the potential risk for human infection. Assessing virus capsid integrity in sewage is important for wastewater-based surveillance, since discharged effluent may pose a public health hazard. While integrity assays using cell cultures can provide this information, they require specialised laboratories and expertise. One solution to overcome this limitation is the use of photo-reactive monoazide dyes (e.g., propidium monoazide [PMAxx]) in a capsid integrity-RT-qPCR assay (ci-RT-qPCR). In this study, we tested the efficiency of PMAxx dye at 50 μM and 100 μM concentrations on live and heat-inactivated model viruses commonly detected in wastewater, including adenovirus (AdV), hepatitis A (HAV), influenza A virus (IAV), and norovirus GI (NoV GI). The 100 μM PMAxx dye concentration effectively differentiated live from heat-inactivated viruses for all targets in buffer solution. This method was then applied to wastewater samples (n = 19) for the detection of encapsulated AdV, enterovirus (EV), HAV, IAV, influenza B virus (IBV), NoV GI, NoV GII, and SARS-CoV-2. Samples were negative for AdV, HAV, IAV, and IBV but positive for EV, NoV GI, NoV GII, and SARS-CoV-2. In the PMAxx-treated samples, EV, NoV GI, and NoV GII showed -0.52-1.15, 0.9-1.51, and 0.31-1.69 log reductions in capsid integrity, indicating a high degree of potentially infectious virus in wastewater. In contrast, SARS-CoV-2 was only detected using RT-qPCR but not after PMAxx treatment, indicating the absence of encapsulated and potentially infectious virus. In conclusion, this study demonstrates the utility of PMAxx dyes to evaluate capsid integrity across a diverse range of viruses commonly monitored in wastewater.
Collapse
Affiliation(s)
- Jessica L. Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Nicola Ridding
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Nicholas Woodhall
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Shelagh K. Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK;
| | - Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
- Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
15
|
Locus T, Lambrecht E, Lamoral S, Willems S, Van Gucht S, Vanwolleghem T, Peeters M. A Multifaceted Approach for Evaluating Hepatitis E Virus Infectivity In Vitro: Cell Culture and Innovative Molecular Methods for Integrity Assessment. Vet Sci 2023; 10:676. [PMID: 38133227 PMCID: PMC10748075 DOI: 10.3390/vetsci10120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatitis E virus is a prominent cause of viral hepatitis worldwide. In Western countries, most infections are asymptomatic. However, acute self-limiting hepatitis and chronic cases in immunocompromised individuals can occur. Studying HEV is challenging due to its difficulty to grow in cell culture. Consequently, the detection of the virus mainly relies on RT-qPCR, which cannot differentiate between infectious and non-infectious particles. To overcome this problem, methods assessing viral integrity offer a possible solution to differentiate between intact and damaged viruses. This study aims at optimizing existing HEV cell culture models and RT-qPCR-based assays for selectively detecting intact virions to establish a reliable model for assessing HEV infectivity. In conclusion, these newly developed methods hold promise for enhancing food safety by identifying approaches for inactivating HEV in food processing, thereby increasing food safety measures.
Collapse
Affiliation(s)
- Tatjana Locus
- Fisheries and Food, Technology and Food Unit, Flemish Research Institute for Agriculture (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium or (T.L.); (E.L.)
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Viral Hepatitis Research Group, University of Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Ellen Lambrecht
- Fisheries and Food, Technology and Food Unit, Flemish Research Institute for Agriculture (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium or (T.L.); (E.L.)
| | - Sophie Lamoral
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
| | - Sjarlotte Willems
- Fisheries and Food, Technology and Food Unit, Flemish Research Institute for Agriculture (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium or (T.L.); (E.L.)
| | - Steven Van Gucht
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
| | - Thomas Vanwolleghem
- Laboratory of Experimental Medicine and Pediatrics, Viral Hepatitis Research Group, University of Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Michael Peeters
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
| |
Collapse
|
16
|
Desdouits M, Reynaud Y, Philippe C, Guyader FSL. A Comprehensive Review for the Surveillance of Human Pathogenic Microorganisms in Shellfish. Microorganisms 2023; 11:2218. [PMID: 37764063 PMCID: PMC10537662 DOI: 10.3390/microorganisms11092218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Bivalve molluscan shellfish have been consumed for centuries. Being filter feeders, they may bioaccumulate some microorganisms present in coastal water, either naturally or through the discharge of human or animal sewage. Despite regulations set up to avoid microbiological contamination in shellfish, human outbreaks still occur. After providing an overview showing their implication in disease, this review aims to highlight the diversity of the bacteria or enteric viruses detected in shellfish species, including emerging pathogens. After a critical discussion of the available methods and their limitations, we address the interest of technological developments using genomics to anticipate the emergence of pathogens. In the coming years, further research needs to be performed and methods need to be developed in order to design the future of surveillance and to help risk assessment studies, with the ultimate objective of protecting consumers and enhancing the microbial safety of bivalve molluscan shellfish as a healthy food.
Collapse
Affiliation(s)
| | | | | | - Françoise S. Le Guyader
- Ifremer, Unité Microbiologie Aliment Santé et Environnement, RBE/LSEM, 44311 Nantes, France; (M.D.); (Y.R.); (C.P.)
| |
Collapse
|
17
|
Di Salvo E, Panebianco F, Panebianco A, Ziino G. Quantitative Detection of Viable but Nonculturable Vibrio parahaemolyticus in Frozen Bivalve Molluscs. Foods 2023; 12:2373. [PMID: 37372584 DOI: 10.3390/foods12122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Vibrio parahaemolyticus is a foodborne pathogen diffusely distributed in the marine environment and often isolated from raw seafood belonging to different species, mostly shellfish. Ingestion of under- or uncooked seafood contaminated by V. parahaemolyticus can cause severe gastrointestinal symptoms in humans. Due to its ability to withstand low temperatures, Vibrio spp. could survive in frozen seafoods for long periods by entering the viable but nonculturable state (VBNC) and may constitute an unrecognized source of food contamination and infection. In the present study, seventy-seven frozen bivalve molluscs (35 mussels; 42 clams) were subjected to the detection and enumeration of viable V. parahaemolyticus using standard culture methods. VBNC forms were detected and quantified by applying an optimized protocol based on Propidium Monoazide (PMA) and Quantitative PCR (qPCR). All samples were negative for both the detection and enumeration of V. parahaemolyticus by the standard culture methods. VBNC forms were detected in 11.7% of the samples (9/77), with values ranging from 1.67 to 2.29 Log CFU/g. Only clam samples were positive for the detection of VBNC forms. The results of this study highlighted that VBNC V. parahaemolyticus may be present in frozen bivalve molluscs. Further data on the prevalence of VBNC V. parahaemolyticus in frozen seafood are needed in order to perform a robust risk assessment.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| | - Felice Panebianco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Antonio Panebianco
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| | - Graziella Ziino
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
18
|
Batista FM, Hatfield R, Powell A, Baker-Austin C, Lowther J, Turner AD. Methodological advances in the detection of biotoxins and pathogens affecting production and consumption of bivalve molluscs in a changing environment. Curr Opin Biotechnol 2023; 80:102896. [PMID: 36773575 DOI: 10.1016/j.copbio.2023.102896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023]
Abstract
The production, harvesting and safe consumption of bivalve molluscs can be disrupted by biological hazards that can be divided into three categories: (1) biotoxins produced by naturally occurring phytoplankton that are bioaccumulated by bivalves during filter-feeding, (2) human pathogens also bioaccumulated by bivalves and (3) bivalve pathogens responsible for disease outbreaks. Environmental changes caused by human activities, such as climate change, can further aggravate these challenges. Early detection and accurate quantification of these hazards are key to implementing measures to mitigate their impact on production and safeguard consumers. This review summarises the methods currently used and the technological advances in the detection of biological hazards affecting bivalves, for the screening of known hazards and discovery of new ones.
Collapse
Affiliation(s)
- Frederico M Batista
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom.
| | - Robert Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew Powell
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - James Lowther
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| |
Collapse
|
19
|
Stoppel SM, Duinker A, Khatri M, Lunestad BT, Myrmel M. Temperature Dependent Depuration of Norovirus GII and Tulane Virus from Oysters (Crassostrea gigas). FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:43-50. [PMID: 36656416 PMCID: PMC10006268 DOI: 10.1007/s12560-022-09547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Raw oysters are considered a culinary delicacy but are frequently the culprit in food-borne norovirus (NoV) infections. As commercial depuration procedures are currently unable to efficiently eliminate NoV from oysters, an optimisation of the process should be considered. This study addresses the ability of elevated water temperatures to enhance the elimination of NoV and Tulane virus (TuV) from Pacific oysters (Crassostrea gigas). Both viruses were experimentally bioaccumulated in oysters, which were thereafter depurated at 12 °C and 17 °C for 4 weeks. Infectious TuV and viral RNA were monitored weekly for 28 days by TCID50 and (PMAxx-) RT-qPCR, respectively. TuV RNA was more persistent than NoV and decreased by < 0.5 log10 after 14 days, while NoV reductions were already > 1.0 log10 at this time. For RT-qPCR there was no detectable benefit of elevated water temperatures or PMAxx for either virus (p > 0.05). TuV TCID50 decreased steadily, and reductions were significantly different between the two temperatures (p < 0.001). This was most evident on days 14 and 21 when reductions at 17 °C were 1.3-1.7 log10 higher than at 12 °C. After 3 weeks, reductions > 3.0 log10 were observed at 17 °C, while at 12 °C reductions did not exceed 1.9 log10. The length of depuration also had an influence on virus numbers. TuV reductions increased from < 1.0 log10 after seven days to > 4.0 log10 after 4 weeks. This implies that an extension of the depuration period to more than seven days, possibly in combination with elevated water temperatures, may be beneficial for the inactivation and removal of viral pathogens.
Collapse
Affiliation(s)
- Sarah M Stoppel
- Section for Seafood Hazards, Institute of Marine Research, Bergen, Norway.
| | - Arne Duinker
- Section for Seafood Hazards, Institute of Marine Research, Bergen, Norway
| | - Mamata Khatri
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Mette Myrmel
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
20
|
Raymond P, Paul S, Guy RA. Impact of Capsid and Genomic Integrity Tests on Norovirus Extraction Recovery Rates. Foods 2023; 12:foods12040826. [PMID: 36832901 PMCID: PMC9957022 DOI: 10.3390/foods12040826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Human norovirus (HuNoV) is the leading pathogen responsible for food-borne illnesses. However, both infectious and non-infectious HuNoV can be detected by RT-qPCR. This study evaluated the efficiency of different capsid integrity treatments coupled with RT-qPCR or a long-range viral RNA (long RT-qPCR) detection to reduce the recovery rates of heat inactivated noroviruses and fragmented RNA. The three capsid treatments evaluated (RNase, the intercalating agent PMAxx and PtCl4) reduced the recovery of heat inactivated HuNoV and murine norovirus (MNV) spiked on lettuce, when combined with the ISO 15216-1:2017 extraction protocols. However, PtCl4 also reduced non-heat-treated noroviruses recovery as estimated by RT-qPCR. The PMAxx and RNase treatments had a similar effect on MNV only. The most efficient approaches, the RNase and PMAxx treatments, reduced the heat-inactivated HuNoV recovery rates estimated using RT-qPCR by 2 and >3 log, respectively. The long RT-qPCR detection approach also reduced the recovery rates of heat inactivated HuNoV and MNV by 1.0 and 0.5 log, respectively. Since the long-range viral RNA amplification could be applied to verify or confirm RT-qPCR results, it also provides some advantages by reducing the risk of false positive HuNoV results.
Collapse
Affiliation(s)
- Philippe Raymond
- St-Hyacinthe Laboratory—Food Virology, Canadian Food Inspection Agency (CFIA), St-Hyacinthe, QC J2S 8E3, Canada
- Correspondence:
| | - Sylvianne Paul
- St-Hyacinthe Laboratory—Food Virology, Canadian Food Inspection Agency (CFIA), St-Hyacinthe, QC J2S 8E3, Canada
| | - Rebecca A. Guy
- National Microbiology Laboratory, Division of Enteric Diseases, Public Health Agency of Canada (PHAC), Guelph, ON N1G 3W4, Canada
| |
Collapse
|
21
|
Li Y, Xue L, Gao J, Cai W, Zhang Z, Meng L, Miao S, Hong X, Xu M, Wu Q, Zhang J. A systematic review and meta-analysis indicates a substantial burden of human noroviruses in shellfish worldwide, with GII.4 and GII.2 being the predominant genotypes. Food Microbiol 2023; 109:104140. [DOI: 10.1016/j.fm.2022.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
|
22
|
Velebit B, Milojević L, Baltić T, Grković N, Gummalla S, Velebit M, Škoko I, Mojsova S, Putnik P. Efficacy of cold atmospheric plasma for inactivation of viruses on raspberries. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Canh VD, Liu M, Sangsanont J, Katayama H. Capsid integrity detection of pathogenic viruses in waters: Recent progress and potential future applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154258. [PMID: 35248642 DOI: 10.1016/j.scitotenv.2022.154258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Waterborne diseases caused by pathogenic human viruses are a major public health concern. To control the potential risk of viral infection through contaminated waters, a rapid, reliable tool to assess the infectivity of pathogenic viruses is required. Recently, an advanced approach (i.e., capsid integrity (RT-)qPCR) was developed to discriminate intact viruses (potentially infectious) from inactivated viruses. In this approach, samples were pretreated with capsid integrity reagents (e.g., monoazide dyes or metal compounds) before (RT -)qPCR. These reagents can only penetrate inactivated viruses with compromised capsids to bind to viral genomes and prevent their amplification, but they cannot enter viruses with intact capsids. Therefore, only viral genomes of intact viruses were amplified or detected by (RT-)qPCR after capsid integrity treatment. In this study, we reviewed recent progress in the development and application of capsid integrity (RT-)qPCR to assess the potential infectivity of viruses (including non-enveloped and enveloped viruses with different genome structures [RNA and DNA]) in water. The efficiency of capsid integrity (RT-)qPCR has been shown to depend on various factors, such as conditions of integrity reagent treatment, types of viruses, environmental matrices, and the capsid structure of viruses after disinfection treatments (e.g., UV, heat, and chlorine). For the application of capsid integrity (RT-)qPCR in real-world samples, the use of suitable virus concentration methods and process controls is important to control the efficiency of capsid integrity (RT-)qPCR. In addition, potential future applications of capsid integrity (RT-)qPCR for determining the mechanism of disinfection treatment on viral structure (e.g., capsid or genome) and a combination of capsid integrity treatment and next-generation sequencing (NGS) (capsid integrity NGS) for monitoring the community of intact pathogenic viruses in water are also discussed. This review provides essential information on the application of capsid integrity (RT-)qPCR as an efficient tool for monitoring the presence of pathogenic viruses with intact capsids in water.
Collapse
Affiliation(s)
- Vu Duc Canh
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Miaomiao Liu
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroyuki Katayama
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
24
|
Quantification of infectious Human mastadenovirus in environmental matrices using PMAxx-qPCR. Braz J Microbiol 2022; 53:1465-1471. [PMID: 35666431 PMCID: PMC9168632 DOI: 10.1007/s42770-022-00775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022] Open
Abstract
Molecular methodologies providing data on viral concentration and infectivity have been successfully used in environmental virology, supporting quantitative risk assessment studies. The present study aimed to assess human mastadenovirus (HAdV) intact particles using a derivative of propidium monoazide associated with qPCR (PMAxx-qPCR) in aquatic matrices. Initially, different concentrations of PMAxx were evaluated to establish an optimal protocol for treating different naturally contaminated matrices, using 10 min incubation in the dark at 200 rpm at room temperature and 15 min of photoactivation in the PMA-Lite™ LED photolysis device. There was no significant reduction in the quantification of infectious HAdV with increasing concentration of PMAxx used (20 μM, 50 μM, and 100 μM), except for sewage samples. In this matrix, a reduction of 5.01 log of genomic copies (GC)/L was observed from the concentration of 50 μM and revealed 100% HAdV particles with damaged capsids. On the other hand, the mean reduction of 0.51 log in stool samples using the same concentration mentioned above demonstrated 83% of damaged particles eliminated in the stool. Following, 50 μM PMAxx-qPCR protocol revealed a log reduction of 0.91, 0.67, and 1.05 in other samples of raw sewage, brackish, and seawater where HAdV concentration reached 1.47 × 104, 6.81 × 102, and 2.33 × 102 GC/L, respectively. Fifty micrometers of PMAxx protocol helped screen intact viruses from different matrices, including sea and brackish water.
Collapse
|
25
|
Detection of Viable Zygosaccharomyces rouxii in Honey and Honey Products via PMAXX-qPCR. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8670182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to establish a fast detection method for the living Zygosaccharomyces rouxii (Z. rouxii) cells in honey and honey products, the performance of propidium monoazide bromide (PMA) and enhanced propidium monoazide bromide (PMAXX) combined with real-time PCR for detecting living cells of Z. rouxii was compared. PMAXX was chosen as the added agent because of its better performance. The optimal concentration of PMAXX was found to be 76.92 μM in cell solution (the cell concentration was 1.0 × 108 CFU/mL). The LODs of PMAXX-qPCR in detecting Z. rouxii in pure MEA and honey solution were found to be 103 and 101 CFU/mL, respectively. Living Z. rouxii cells in 18 real honey samples were detected using this PMAXX-qPCR method and compared with the plate count method. The two methods showed consistent detection results in ten negative samples. In the other eight plate count zero but PMAXX-qPCR-positive samples, further verification experiments showed that six of the PMAXX-qPCR-positive samples contained viable but nonculturable (VBNC) Z. rouxii, while the other two PMAXX-qPCR-positive samples may have contained DNA contamination of Z. rouxii. This method is not only fast and sensitive but also can detect both culturable and viable but nonculturable Z. rouxii. This study provides a promising fast and culture-independent method for the detection of living Z. rouxii cells in honey and honey products.
Collapse
|
26
|
Daddy Gaoh S, Kweon O, Lee YJ, Hussong D, Marasa B, Ahn Y. A Propidium Monoazide (PMAxx)-Droplet Digital PCR (ddPCR) for the Detection of Viable Burkholderia cepacia Complex in Nuclease-Free Water and Antiseptics. Microorganisms 2022; 10:943. [PMID: 35630385 PMCID: PMC9147393 DOI: 10.3390/microorganisms10050943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022] Open
Abstract
Pharmaceutical products contaminated with Burkholderia cepacia complex (BCC) strains constitute a serious health issue for susceptible individuals. New detection methods to distinguish DNA from viable cells are required to ensure pharmaceutical product quality and safety. In this study, we have assessed a droplet digital PCR (ddPCR) with a variant propidium monoazide (PMAxx) for selective detection of live/dead BCC cells in autoclaved nuclease-free water after 365 days, in 0.001% chlorhexidine gluconate (CHX), and in 0.005% benzalkonium chloride (BZK) solutions after 184 days. Using 10 μM PMAxx and 5 min light exposure, a proportion of dead BCC was quantified by ddPCR. The detection limit of culture-based method was 104 CFU/mL, equivalent to 9.7 pg/μL for B. cenocepacia J2315, while that of ddPCR was 9.7 fg/μL. The true positive rate from nuclease-free water and CHX using PMAxx-ddPCR assay was 60.0% and 38.3%, respectively, compared to 85.0% and 74.6% without PMAxx (p < 0.05), respectively. However, in BZK-treated cells, no difference in the detection rate was observed between the ddPCR assay on samples treated with PMAxx (67.1%) and without PMAxx (63.3%). This study shows that the PMAxx-ddPCR assay provides a better tool for selective detection of live BCC cells in non-sterile pharmaceutical products.
Collapse
Affiliation(s)
- Soumana Daddy Gaoh
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.D.G.); (O.K.)
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.D.G.); (O.K.)
| | - Yong-Jin Lee
- Department of Natural Sciences, Albany State University, Albany, GA 31705, USA;
| | - David Hussong
- Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Beltsville, MD 20993, USA;
| | - Bernard Marasa
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Youngbeom Ahn
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.D.G.); (O.K.)
| |
Collapse
|
27
|
Cuevas-Ferrando E, Pérez-Cataluña A, Falcó I, Randazzo W, Sánchez G. Monitoring Human Viral Pathogens Reveals Potential Hazard for Treated Wastewater Discharge or Reuse. Front Microbiol 2022; 13:836193. [PMID: 35464930 PMCID: PMC9026171 DOI: 10.3389/fmicb.2022.836193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 01/22/2023] Open
Abstract
Wastewater discharge to the environment or its reuse after sanitization poses a concern for public health given the risk of transmission of human viral diseases. However, estimating the viral infectivity along the wastewater cycle presents technical challenges and still remains underexplored. Recently, human-associated crAssphage has been investigated to serve as viral pathogen indicator to monitor fecal impacted water bodies, even though its assessment as biomarker for infectious enteric viruses has not been explored yet. To this end, the occurrence of potentially infectious norovirus genogroup I (GI), norovirus GII, hepatitis A virus (HAV), rotavirus A (RV), and human astrovirus (HAstV) along with crAssphage was investigated in influent and effluent water sampled in four wastewater treatment plants (WWTPs) over 1 year by a PMAxx-based capsid integrity RT-qPCR assay. Moreover, influent and effluent samples of a selected WWTP were additionally assayed by an in situ capture RT-qPCR assay (ISC-RT-qPCR) as estimate for viral infectivity in alternative to PMAxx-RT-qPCR. Overall, our results showed lower viral occurrence and concentration assessed by ISC-RT-qPCR than PMAxx-RT-qPCR. Occurrence of potentially infectious enteric virus was estimated by PMAxx-RT-qPCR as 88–94% in influent and 46–67% in effluent wastewaters with mean titers ranging from 4.77 to 5.89, and from 3.86 to 4.97 log10 GC/L, with the exception of HAV that was sporadically detected. All samples tested positive for crAssphage at concentration ranging from 7.41 to 9.99 log10 GC/L in influent and from 4.56 to 6.96 log10 GC/L in effluent wastewater, showing higher mean concentration than targeted enteric viruses. Data obtained by PMAxx-RT-qPCR showed that crAssphage strongly correlated with norovirus GII (ρ = 0.67, p < 0.05) and weakly with HAstV and RV (ρ = 0.25–0.30, p < 0.05) in influent samples. In effluent wastewater, weak (ρ = 0.27–0.38, p < 0.05) to moderate (ρ = 0.47–0.48, p < 0.05) correlations between crAssphage and targeted viruses were observed. Overall, these results corroborate crAssphage as an indicator for fecal contamination in wastewater but a poor marker for either viral occurrence and viral integrity/infectivity. Despite the viral load reductions detected in effluent compared to influent wastewaters, the estimates of viral infectivity based on viability molecular methods might pose a concern for (re)-using of treated water.
Collapse
|
28
|
Mertens B, Moore MD, Jaykus LA, Velev OD. Efficacy and Mechanisms of Copper Ion-Catalyzed Inactivation of Human Norovirus. ACS Infect Dis 2022; 8:855-864. [PMID: 35315654 PMCID: PMC9003239 DOI: 10.1021/acsinfecdis.1c00609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/29/2022]
Abstract
The antinoroviral effect of copper ions is well known, yet most of this work has previously been conducted in copper and copper alloy surfaces, not copper ions in solution. In this work, we characterized the effects that Cu ions have on human norovirus capsids' and surrogates' integrity to explain empirical data, indicating virus inactivation by copper alloy surfaces, and as means of developing novel metal ion-based virucides. Comparatively high concentrations of Cu(II) ions (>10 mM) had little effect on the infectivity of human norovirus surrogates, so we used sodium ascorbate as a reducing agent to generate unstable Cu(I) ions from solutions of copper bromide. We found that significantly lower concentrations of monovalent copper ions (∼0.1 mM) compared to divalent copper ions cause capsid protein damage that prevents human norovirus capsids from binding to cell receptors in vitro and induce a greater than 4-log reduction in infectivity of Tulane virus, a human norovirus surrogate. Further, these Cu(I) solutions caused reduction of GII.4 norovirus from stool in suspension, producing about a 2-log reduction of virus as measured by a reverse transcriptase-quantitative polymerase chain reaction. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) data indicate substantial major capsid protein cleavage of both GI.7 and GII.4 norovirus capsids, and TEM images show the complete loss of capsid integrity of GI.7 norovirus. GII.4 virus-like particles (VLPs) were less susceptible to inactivation by copper ion treatments than GI.7 VLPs based upon receptor binding and SDS-PAGE analysis of viral capsids. The combined data demonstrate that stabilized Cu(I) ion solutions show promise as highly effective noroviral disinfectants in solution that can potentially be utilized at low concentrations for inactivation of human noroviruses.
Collapse
Affiliation(s)
- Brittany
S. Mertens
- Department
of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina 27606, United States
| | - Matthew D. Moore
- Department
of Food, Bioprocessing, and Nutrition Sciences, NC State University, Raleigh, North Carolina 27606, United States
- Department
of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Lee-Ann Jaykus
- Department
of Food, Bioprocessing, and Nutrition Sciences, NC State University, Raleigh, North Carolina 27606, United States
| | - Orlin D. Velev
- Department
of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
29
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Stobnicka-Kupiec A, Gołofit-Szymczak M, Cyprowski M, Górny RL. Detection and identification of potentially infectious gastrointestinal and respiratory viruses at workplaces of wastewater treatment plants with viability qPCR/RT-qPCR. Sci Rep 2022; 12:4517. [PMID: 35296727 PMCID: PMC8924946 DOI: 10.1038/s41598-022-08452-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
This study aimed to qualitatively and quantitatively assess the prevalence of the most common respiratory and gastrointestinal viruses in the air, surface swab, and influent/effluent samples collected in wastewater treatment plants (WWTPs). Application of qPCR/RT-qPCR (quantitative polymerase chain reaction/reverse-transcription quantitative polymerase chain reaction) assays combined with PMA (propidium monoazide) dye pretreatment allowed detecting the potentially infectious and disintegrated viral particles in collected samples. In the air at workplaces in WWTPs, the most frequent isolation with the highest concentrations (reaching up to 103 gc/m3 of potentially infectious intact viral particles) were observed in case of adenoviruses (AdVs) and rotaviruses (RoVs), followed by noroviruses (NoVs). Viruses were significantly more often detected in the air samples collected with Coriolis μ impinger, than with MAS-100NT impactor. The temperature negatively (Spearman correlation: –1 < R < 0; p < 0.05), while RH (relative humidity) positively (0 < R < 1; p < 0.05) affected airborne concentrations of potentially infectious viral particles. In turn, the predominant viruses on studied surfaces were RoVs and noroviruses GII (NoV GII) with concentrations of potentially infectious virions up to 104 gc/100 cm2. In the cases of SARS-CoV-2 and presumptive SARS-CoV-2 or other coronaviruses, their concentrations reached up to 103 gc/100 cm2. The contamination level of steel surfaces in WWTPs was similar to this on plastic ones. This study revealed that the qualitative and quantitative characteristics of respiratory and gastrointestinal viruses at workplaces in WWTPs is important for proper exposure assessment and needs to be included in risk management in occupational environment with high abundance of microbial pollutants derived from wastewater.
Collapse
Affiliation(s)
- Agata Stobnicka-Kupiec
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16 Street, Warsaw, Poland.
| | - Małgorzata Gołofit-Szymczak
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16 Street, Warsaw, Poland
| | - Marcin Cyprowski
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16 Street, Warsaw, Poland
| | - Rafał L Górny
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16 Street, Warsaw, Poland
| |
Collapse
|
31
|
Li J, Zhou D, Xie G, Deng M, Feng X, Xu H. PMAxx Combined with Recombinase Aided Amplification Technique for Specific and Rapid Detection of Salmonella in Milk. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02249-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Twigg C, Wenk J. Review and Meta‐Analysis: SARS‐CoV‐2 and Enveloped Virus Detection in Feces and Wastewater. CHEMBIOENG REVIEWS 2022. [PMCID: PMC9083821 DOI: 10.1002/cben.202100039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Detection and quantification of viruses supplies key information on their spread and allows risk assessment for public health. In wastewater, existing detection methods have been focusing on non‐enveloped enteric viruses due to enveloped virus transmission, such as coronaviruses, by the fecal‐oral route being less likely. Since the beginning of the SARS‐CoV‐2 pandemic, interest and importance of enveloped virus detection in wastewater has increased. Here, quantitative studies on SARS‐CoV‐2 occurrence in feces and raw wastewater and other enveloped viruses via quantitative real‐time reverse transcription polymerase chain reaction (RT‐qPCR) during the early stage of the pandemic until April 2021 are reviewed, including statistical evaluation of the positive detection rate and efficiency throughout the detection process involving concentration, extraction, and amplification stages. Optimized and aligned sampling protocols and concentration methods for enveloped viruses, along with SARS‐CoV‐2 surrogates, in wastewater environments may improve low and variable recovery rates providing increased detection efficiency and comparable data on viral load measured across different studies.
Collapse
Affiliation(s)
- Charlotte Twigg
- University of Bath Department of Chemical Engineering and Water Innovation and Research Centre (WIRC@Bath) Claverton Down BA2 7AY Bath Somerset United Kingdom
| | - Jannis Wenk
- University of Bath Department of Chemical Engineering and Water Innovation and Research Centre (WIRC@Bath) Claverton Down BA2 7AY Bath Somerset United Kingdom
| |
Collapse
|
33
|
Cuevas-Ferrando E, Girón-Guzmán I, Falcó I, Pérez-Cataluña A, Díaz-Reolid A, Aznar R, Randazzo W, Sánchez G. Discrimination of non-infectious SARS-CoV-2 particles from fomites by viability RT-qPCR. ENVIRONMENTAL RESEARCH 2022; 203:111831. [PMID: 34352235 PMCID: PMC8327643 DOI: 10.1016/j.envres.2021.111831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/01/2021] [Accepted: 08/01/2021] [Indexed: 05/05/2023]
Abstract
The ongoing coronavirus 2019 (COVID-19) pandemic constitutes a concerning global threat to public health and economy. In the midst of this pandemic scenario, the role of environment-to-human COVID-19 spread is still a matter of debate because mixed results have been reported concerning SARS-CoV-2 stability on high-touch surfaces in real-life scenarios. Up to now, no alternative and accessible procedures for cell culture have been applied to evaluate SARS-CoV-2 infectivity on fomites. Several strategies based on viral capsid integrity have latterly been developed using viability markers to selectively remove false-positive qPCR signals resulting from free nucleic acids and damaged viruses. These have finally allowed an estimation of viral infectivity. The present study aims to provide a rapid molecular-based protocol for detection and quantification of viable SARS-CoV-2 from fomites based on the discrimination of non-infectious SARS-CoV-2 particles by platinum chloride (IV) (PtCl4) viability RT-qPCR. An initial assessment compared two different swabbing procedures to recover inactivated SARS-CoV-2 particles from fomites coupled with two RNA extraction methods. Procedures were validated with human (E229) and porcine (PEDV) coronavirus surrogates, and compared with inactivated SARS-CoV-2 suspensions on glass, steel and plastic surfaces. The viability RT-qPCR efficiently removed the PCR amplification signals from heat and gamma-irradiated inactivated SARS-CoV-2 suspensions that had been collected from specified surfaces. This study proposes a rapid viability RT-qPCR that discriminates non-infectious SARS-CoV-2 particles on surfaces thus helping researchers to better understand the risk of contracting COVID-19 through contact with fomites and to develop more efficient epidemiological measures.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Inés Girón-Guzmán
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Azahara Díaz-Reolid
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Rosa Aznar
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
34
|
Polo D, Lois M, Fernández-Núñez MT, Romalde JL. Detection of SARS-CoV-2 RNA in bivalve mollusks and marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147534. [PMID: 33984699 PMCID: PMC8099584 DOI: 10.1016/j.scitotenv.2021.147534] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 05/04/2023]
Abstract
The presence of SARS-CoV-2 in wastewater pose the question of whether this new pandemic virus could be released into watercourses and potentially continue to finally reach coastal waters. In this study, we employed two bivalve molluscan species from the genus Ruditapes as sentinel organisms to investigate the presence of SARS-CoV-2 signals in the marine coastal environment. Estuarine sediments from the natural clam banks were also analyzed. Viral RNA was detected by RT-qPCR, targeting IP4, E and N1 genomic regions. Positive samples were also subjected to a PMAxx-triton viability RT-qPCR assay in order to discriminate between intact and altered capsids, obtaining indirect information about the viability of the virus. SARS-CoV-2 RNA traces were detected in 9/12 clam samples by RT-qPCR, from which 4 were positive for two different target regions. Viral quantification ranged from
Collapse
Affiliation(s)
- David Polo
- Department of Microbiology and Parasitology, CIBUS-Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Marta Lois
- Department of Microbiology and Parasitology, CIBUS-Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - Jesús L Romalde
- Department of Microbiology and Parasitology, CIBUS-Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
35
|
Yang M, Zhao F, Tong L, Wang S, Zhou D. Contamination, bioaccumulation mechanism, detection, and control of human norovirus in bivalve shellfish: A review. Crit Rev Food Sci Nutr 2021; 62:8972-8985. [PMID: 34184956 DOI: 10.1080/10408398.2021.1937510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Human norovirus (HuNoV) is a major foodborne pathogen that causes acute viral gastroenteritis, and bivalve shellfish are one of the main carriers of HuNoV transmission. A comprehensive understanding of bivalve shellfish-related HuNoV outbreaks focusing on contamination factors, bioaccumulation mechanisms, and pre- and post-harvest interventions is essential for the development of effective strategies to prevent contamination of shellfish. This review comprehensively surveys the current knowledge on global contamination and non-thermal treatment of HuNoV in bivalve shellfish. HuNoV contamination in bivalve shellfish is significantly related to the season and water. While evaluating the water quality of shellfish-inhabited waters is a key intervention, the development of non-heat treatment technology to effectively inactivate the HuNoV in bivalve shellfish while maintaining the flavor and nutrition of the shellfish is also an important direction for further research. Additionally, this review explores the bioaccumulation mechanisms of HuNoV in bivalve shellfish, especially the mechanism underlying the binding of histo-blood group antigen-like molecules and HuNoV. The detection methods for infectious HuNoV are also discussed. The establishment of effective methods to rapidly detect infectious HuNoV and development of biological components to inactivate or prevent HuNoV contamination in shellfish also need to be studied further.
Collapse
Affiliation(s)
- Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Lihui Tong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
36
|
Wurtzer S, Waldman P, Ferrier-Rembert A, Frenois-Veyrat G, Mouchel JM, Boni M, Maday Y, Marechal V, Moulin L. Several forms of SARS-CoV-2 RNA can be detected in wastewaters: Implication for wastewater-based epidemiology and risk assessment. WATER RESEARCH 2021; 198:117183. [PMID: 33962244 DOI: 10.1101/2020.12.19.20248508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 05/21/2023]
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health emergency of international concern. Although SARS-CoV-2 is considered to be mainly transmitted by inhalation of contaminated droplets and aerosols, SARS-CoV-2 is also detected in human feces and to a less extent in urine, and in raw wastewaters (to date viral RNA only) suggesting that other routes of infection may exist. Monitoring SARS-CoV-2 genomes in wastewaters has been proposed as a complementary approach for tracing the dynamics of virus transmission within human population connected to wastewater network. The understanding on SARS-CoV-2 transmission through wastewater surveillance, the development of epidemic modeling and the evaluation of SARS-CoV-2 transmission from contaminated wastewater are largely limited by our knowledge on viral RNA genome persistence and virus infectivity preservation in such an environment. Using an integrity based RT-qPCR assay this study led to the discovery that SARS-CoV-2 RNA can persist under several forms in wastewaters, which provides important information on the presence of SARS-CoV-2 in raw wastewaters and associated risk assessment.
Collapse
Affiliation(s)
- S Wurtzer
- Eau de Paris, R&D and Water quality department, 33 avenue Jean Jaurès, F-94200 Ivry sur Seine, France.
| | - P Waldman
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - A Ferrier-Rembert
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - G Frenois-Veyrat
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - J M Mouchel
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - M Boni
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - Y Maday
- Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France
| | - V Marechal
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France
| | - L Moulin
- Eau de Paris, R&D and Water quality department, 33 avenue Jean Jaurès, F-94200 Ivry sur Seine, France
| |
Collapse
|
37
|
Wurtzer S, Waldman P, Ferrier-Rembert A, Frenois-Veyrat G, Mouchel JM, Boni M, Maday Y, Marechal V, Moulin L. Several forms of SARS-CoV-2 RNA can be detected in wastewaters: Implication for wastewater-based epidemiology and risk assessment. WATER RESEARCH 2021; 198:117183. [PMID: 33962244 PMCID: PMC8060898 DOI: 10.1016/j.watres.2021.117183] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 05/20/2023]
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health emergency of international concern. Although SARS-CoV-2 is considered to be mainly transmitted by inhalation of contaminated droplets and aerosols, SARS-CoV-2 is also detected in human feces and to a less extent in urine, and in raw wastewaters (to date viral RNA only) suggesting that other routes of infection may exist. Monitoring SARS-CoV-2 genomes in wastewaters has been proposed as a complementary approach for tracing the dynamics of virus transmission within human population connected to wastewater network. The understanding on SARS-CoV-2 transmission through wastewater surveillance, the development of epidemic modeling and the evaluation of SARS-CoV-2 transmission from contaminated wastewater are largely limited by our knowledge on viral RNA genome persistence and virus infectivity preservation in such an environment. Using an integrity based RT-qPCR assay this study led to the discovery that SARS-CoV-2 RNA can persist under several forms in wastewaters, which provides important information on the presence of SARS-CoV-2 in raw wastewaters and associated risk assessment.
Collapse
Affiliation(s)
- S Wurtzer
- Eau de Paris, R&D and Water quality department, 33 avenue Jean Jaurès, F-94200 Ivry sur Seine, France.
| | - P Waldman
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - A Ferrier-Rembert
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - G Frenois-Veyrat
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - J M Mouchel
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - M Boni
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - Y Maday
- Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France
| | - V Marechal
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France
| | - L Moulin
- Eau de Paris, R&D and Water quality department, 33 avenue Jean Jaurès, F-94200 Ivry sur Seine, France
| |
Collapse
|
38
|
Lv X, Wang L, Zhang J, He X, Shi L, Zhao L. Quantitative detection of trace VBNC Cronobacter sakazakii by immunomagnetic separation in combination with PMAxx-ddPCR in dairy products. Food Microbiol 2021; 99:103831. [PMID: 34119116 DOI: 10.1016/j.fm.2021.103831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/20/2023]
Abstract
One immunomagnetic separation (IMS) assay based on immunomagnetic beads (IMBs) has been evaluated as a potential pretreatment tool for the separation and enrichment of target bacteria. In this study, we successfully immobilized antibodies onto magnetic bead surfaces to form IMBs through biotin and a streptavidin (SA) system to capture viable but nonculturable (VBNC) Cronobacter sakazakii (C. sakazakii) from dairy products. Various parameters that affected the capture efficiency (CE) of IMS, including the number of antibodies, IMBs dose, incubation time, magnetic separation time, and immunoreaction temperature, were systematically investigated. We further determined the optimal enrichment conditions for different dairy substrates to ensure maximum enrichment of target pathogens in the system. An IMS technique combining improved propidium monoazide (PMAxx) and droplet digital PCR (ddPCR) was established to detect the pathogenic VBNC C. sakazakii. The IMS-PMAxx-ddPCR method after IMBs enrichment showed higher accuracy when the VBNC C. sakazakii was under 1 Log10 copies/g. The detection limit for this method in a background of powdered infant formula (PIF) was 5.6 copies/g. In summary, the developed IMS-PMAxx-ddPCR method has great potential for the analysis and detection of VBNC bacteria in food.
Collapse
Affiliation(s)
- Xinrui Lv
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jingfeng Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoxin He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, China.
| | - Lichao Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
39
|
Leifels M, Cheng D, Sozzi E, Shoults DC, Wuertz S, Mongkolsuk S, Sirikanchana K. Capsid integrity quantitative PCR to determine virus infectivity in environmental and food applications - A systematic review. WATER RESEARCH X 2021; 11:100080. [PMID: 33490943 DOI: 10.1101/2020.05.08.20095364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/08/2020] [Accepted: 12/06/2020] [Indexed: 05/19/2023]
Abstract
Capsid integrity quantitative PCR (qPCR), a molecular detection method for infectious viruses combining azo dye pretreatment with qPCR, has been widely used in recent years; however, variations in pretreatment conditions for various virus types can limit the efficacy of specific protocols. By identifying and critically synthesizing forty-one recent peer-reviewed studies employing capsid integrity qPCR for viruses in the last decade (2009-2019) in the fields of food safety and environmental virology, we aimed to establish recommendations for the detection of infectious viruses. Intercalating dyes are effective measures of viability in PCR assays provided the viral capsid is damaged; viruses that have been inactivated by other causes, such as loss of attachment or genomic damage, are less well detected using this approach. Although optimizing specific protocols for each virus is recommended, we identify a framework for general assay conditions. These include concentrations of ethidium monoazide, propidium monoazide or its derivates between 10 and 200 μM; incubation on ice or at room temperature (20 - 25 °C) for 5-120 min; and dye activation using LED or high light (500-800 Watts) exposure for periods ranging from 5 to 20 min. These simple steps can benefit the investigation of infectious virus transmission in routine (water) monitoring settings and during viral outbreaks such as the current COVID-19 pandemic or endemic diseases like dengue fever.
Collapse
Affiliation(s)
- Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Emanuele Sozzi
- Gilling's School of Global Public Health, Department of Environmental Science and Engineering, University of North Carolina at Chapel Hill, NC, USA
| | - David C Shoults
- Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- School of Civil and Environmental Engineering, NTU, Singapore
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| |
Collapse
|
40
|
Leifels M, Cheng D, Sozzi E, Shoults DC, Wuertz S, Mongkolsuk S, Sirikanchana K. Capsid integrity quantitative PCR to determine virus infectivity in environmental and food applications - A systematic review. WATER RESEARCH X 2021; 11:100080. [PMID: 33490943 PMCID: PMC7811166 DOI: 10.1016/j.wroa.2020.100080] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/08/2020] [Accepted: 12/06/2020] [Indexed: 05/19/2023]
Abstract
Capsid integrity quantitative PCR (qPCR), a molecular detection method for infectious viruses combining azo dye pretreatment with qPCR, has been widely used in recent years; however, variations in pretreatment conditions for various virus types can limit the efficacy of specific protocols. By identifying and critically synthesizing forty-one recent peer-reviewed studies employing capsid integrity qPCR for viruses in the last decade (2009-2019) in the fields of food safety and environmental virology, we aimed to establish recommendations for the detection of infectious viruses. Intercalating dyes are effective measures of viability in PCR assays provided the viral capsid is damaged; viruses that have been inactivated by other causes, such as loss of attachment or genomic damage, are less well detected using this approach. Although optimizing specific protocols for each virus is recommended, we identify a framework for general assay conditions. These include concentrations of ethidium monoazide, propidium monoazide or its derivates between 10 and 200 μM; incubation on ice or at room temperature (20 - 25 °C) for 5-120 min; and dye activation using LED or high light (500-800 Watts) exposure for periods ranging from 5 to 20 min. These simple steps can benefit the investigation of infectious virus transmission in routine (water) monitoring settings and during viral outbreaks such as the current COVID-19 pandemic or endemic diseases like dengue fever.
Collapse
Affiliation(s)
- Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Emanuele Sozzi
- Gilling's School of Global Public Health, Department of Environmental Science and Engineering, University of North Carolina at Chapel Hill, NC, USA
| | - David C. Shoults
- Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- School of Civil and Environmental Engineering, NTU, Singapore
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| |
Collapse
|
41
|
Hortelano I, Moreno MY, García-Hernández J, Ferrús MA. Optimization of pre- treatments with Propidium Monoazide and PEMAX™ before real-time quantitative PCR for detection and quantification of viable Helicobacter pylori cells. J Microbiol Methods 2021; 185:106223. [PMID: 33872638 DOI: 10.1016/j.mimet.2021.106223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022]
Abstract
Accurate detection of H. pylori in different environmental and clinical samples is essential for public health strtdudies. Now, a big effort is being made to design PCR methodologies that allow for the detection of viable and viable but non-culturable (VBNC) H. pylori cells, by achieving complete exclusion of dead cells amplification signals. The use of DNA intercalating dyes has been proposed. However, its efficacy is still not well determined. In this study, we aimed to test the suitability of PMA and PEMAX™ dyes used prior to qPCR for only detecting viable cells of H. pylori. Their efficiency was evaluated with cells submitted to different disinfection treatments and confirmed by the absence of growth on culture media and by LIVE/DEAD counts. Our results indicated that an incubation period of 5 min for both, PMA and PEMAX™, did not affect viable cells. Our study also demonstrated that results obtained by using intercalating dyes may vary depending on the cell stress conditions. In all dead cell's samples, both PMA and PEMAX™ pre-qPCR treatments decreased the amplification signal (>103 Genomic Units (GU)), although none of them allowed for its disappearance confirming that intercalating dyes, although useful for screening purposes, cannot be considered as universal viability markers. To investigate the applicability of the method specifically to detect H. pylori cells in environmental samples, PMA-qPCR was performed on samples containing the different morphological and viability states that H. pylori can acquire in environment. The optimized PMA-qPCR methodology showed to be useful to detect mostly (but not only) viable forms, regardless the morphological state of the cell.
Collapse
Affiliation(s)
- Irene Hortelano
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain.
| | - María Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain
| | | | - María Antonia Ferrús
- Biotechnology Department, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
42
|
Fei Z, Wei R, Zhou D, Li N, Xiao P. A novel bioluminescent approach to the loop-mediated isothermal amplification-based detection of Lactobacillus salivarius in feed samples. J Microbiol Methods 2021; 187:106209. [PMID: 33771523 DOI: 10.1016/j.mimet.2021.106209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 11/25/2022]
Abstract
Coupling loop-mediated isothermal amplification (LAMP) with a bioluminescent assay in real-time (LAMP-BART) is a strategy that can be readily leveraged to detect bacteria in particular samples of interest without the need for costly or complicated equipments. However, this approach exhibits poor sensitivity, and it additionally amplifies all target DNA including that derived from non-viable cells. Herein, we sought to overcome these traditional pyrophosphate bioluminescent assay limitations by utilizing 2-deoxyadenosine-5-(α-thio) -triphosphate (dATPαS) in place of dATP when conducting LAMP, thereby markedly reducing and stabilizing overall background signal levels, resulting in a detection limit of 3 CFU/μL. We were additionally able to ouple this LAMP-BART with propidium monoazide (PMAxx™) as a means of eliminating false-positive signals derived from nonviable cells. Herein, we detail the development of this PMAxx™-LAMP-BART assay and its use for the detection of live Lactobacillus salivarius. Our developed approach exhibited 100% specificity, with a 3 CFU/μL limit of detection (LOD) pure culture. In the application of feed, the LOD was 103 CFU per 10 g of spiked dry dog food and 102 CFU per 10 g of spiked chicken feed without enrichment. Traditional culture methods and a MALDI Biotyper were also used to confirm the accuracy of our novel assay system.
Collapse
Affiliation(s)
- Zhongjie Fei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Rongbin Wei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Dongrui Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Na Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
43
|
Zhou N, Zhang RJ, Liu BD, Cui B, Du ZL, Chen PF, Zhu BF, Lin C, Dong HT, Zhou WY, Liu YS. Effects of ultrasound on invasive golden mussel Limnoperna fortunei mortality and tissue lesions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144134. [PMID: 33352347 DOI: 10.1016/j.scitotenv.2020.144134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Biofouling by the invasive golden mussel Limnoperna fortunei deleteriously affects artificial water systems, but few effective, environmentally friendly antifouling strategies exist. We propose ultrasound for control of this invasive mussel and report minimum exposure times to kill juveniles and adults at ultrasonic powers ranging 300-600 W from a fixed distance of 8.5 cm. Analysis using a PMA + RT-qPCR assay revealed the formation of tissue lesions in response to ultrasound, with gill tissue more prone to injury than adductor muscle tissue. Shell microstructure determined using scanning electron microscopy (SEM) + energy dispersive X-ray spectroscopy (EDS) is plywood-like, with a thicker shell and increased numbers of prism and nacre layers in adult mussels that provide greater resistance to ultrasound, reducing mortality and tissue lesions. Our results suggest L. fortunei biomass could be effectively reduced by ultrasound, especially for early life-history stages without, or with only immature shells.
Collapse
Affiliation(s)
- Na Zhou
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| | - Rui-Jian Zhang
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China.
| | - Bo-Dong Liu
- International Department, The Affiliated High School of South China Normal University, Guangzhou 510630, China
| | - Bin Cui
- Graduate School, Guangzhou University, Guangzhou 510060, China
| | - Zhi-Li Du
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| | - Peng-Fei Chen
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| | - Bin-Feng Zhu
- College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510006, PR China
| | - Chong Lin
- College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510006, PR China
| | - Hao-Tao Dong
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| | - Wu-Yang Zhou
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| | - Ying-Shi Liu
- Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China
| |
Collapse
|
44
|
Razafimahefa RM, Ludwig-Begall LF, Le Guyader FS, Farnir F, Mauroy A, Thiry E. Optimisation of a PMAxx™-RT-qPCR Assay and the Preceding Extraction Method to Selectively Detect Infectious Murine Norovirus Particles in Mussels. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:93-106. [PMID: 33389671 DOI: 10.1007/s12560-020-09454-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Human noroviruses are a major cause for gastroenteritis outbreaks. Filter-feeding bivalve molluscs, which accumulate noroviruses in their digestive tissues, are a typical vector for human infection. RT-qPCR, the established method for human norovirus detection in food, does not allow discrimination between infectious and non-infectious viruses and can overestimate potentially infectious viral loads. To develop a more accurate method of infectious norovirus load estimation, we combined intercalating agent propidium monoazide (PMAxx™)-pre-treatment with RT-qPCR assay using in vitro-cultivable murine norovirus. Three primer sets targeting different genome regions and diverse amplicon sizes were used to compare one-step amplification of a short genome fragment to three two-step long-range RT-qPCRs (7 kbp, 3.6 kbp and 2.3 kbp amplicons). Following initial assays performed on untreated infectious, heat-, or ultraviolet-inactivated murine noroviruses in PBS suspension, PMAxx™ RT-qPCRs were implemented to detect murine noroviruses subsequent to their extraction from mussel digestive tissues; virus extraction via anionic polymer-coated magnetic beads was compared with the proteinase K-dependent ISO norm. The long-range RT-qPCR process detecting fragments of more than 2.3 kbp allowed accurate estimation of the infectivity of UV-damaged murine noroviruses. While proteinase K extraction limited later estimation of PMAxx™ pre-treatment effects and was found to be unsuited to the assay, magnetic bead-captured murine noroviruses retained their infectivity. Genome copies of heat-inactivated murine noroviruses differed by 2.3 log10 between RT-qPCR and PMAxx™-RT-qPCR analysis in bivalve molluscs, the PMAxx™ pre-treatment allowing a closer approximation of infectious titres. The combination of bead-based virus extraction and PMAxx™ RT-qPCR thus provides a more accurate model for the estimation of noroviral bivalve mollusc contamination than the conjunction of proteinase K extraction and RT-qPCR and has the potential (once validated utilising infectious human norovirus) to provide an added measure of security to food safety authorities in the hazard assessment of potential bivalve mollusc contamination.
Collapse
Affiliation(s)
- Ravo M Razafimahefa
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, 4000, Liège, Belgium
| | - Louisa F Ludwig-Begall
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, 4000, Liège, Belgium
| | | | - Frédéric Farnir
- Biostatistics and Bioinformatics Applied To Veterinary Science, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Axel Mauroy
- Staff Direction for Risk Assessment, Control Policy, Federal Agency for the Safety of the Food Chain, Bld du Jardin Botanique 55, 1000, Brussels, Belgium
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, 4000, Liège, Belgium.
| |
Collapse
|
45
|
|
46
|
Fuentes C, Pérez-Rodríguez FJ, Sabrià A, Beguiristain N, Pintó RM, Guix S, Bosch A. Inactivation of Hepatitis A Virus and Human Norovirus in Clams Subjected to Heat Treatment. Front Microbiol 2021; 11:578328. [PMID: 33510715 PMCID: PMC7835484 DOI: 10.3389/fmicb.2020.578328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/17/2020] [Indexed: 02/01/2023] Open
Abstract
Bivalve mollusk contamination by enteric viruses, especially human noroviruses (HuNoV) and hepatitis A virus (HAV), is a problem with health and economic implications. The aim of the study was the evaluation of the effect of heat treatment in clams (Tawera gayi) experimentally contaminated with HuNoV using a PMA-viability RTqPCR assay to minimize measurement of non-infectious viruses, and used HAV as a model to estimate infectivity loss. Spiked clams were immersed in water at 90°C to ensure that internal meat temperature was maintained above 90°C for at least 5 min. The treatment resulted in >3.89 ± 0.24 log10 TCID50/g reduction of infectious HAV, confirming inactivation. For HuNoV, RTqPCR assays showed log10 reductions of 2.96 ± 0.79 and 2.56 ± 0.56, for GI and GII, respectively, and the use of PMA resulted in an additional log10 reduction for GII, providing a better correlation with risk reduction. In the absence of a cell culture system which could be used to determine HuNoV infectivity reduction, a performance criteria based on PMA-RTqPCR log reduction could be used to evaluate food product safety. According to data from this study, heat treatments of clams which cause reductions >3.5 log10 for GII as measured by PMA-RTqPCR assay may be regarded as an acceptable inactivation treatment, and could be set as a performance criterion to test the effectiveness of other time-temperature inactivation processes.
Collapse
Affiliation(s)
- Cristina Fuentes
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Francisco J. Pérez-Rodríguez
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Aurora Sabrià
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Nerea Beguiristain
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Rosa M. Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
Detection of Norovirus in Saliva Samples from Acute Gastroenteritis Cases and Asymptomatic Subjects: Association with Age and Higher Shedding in Stool. Viruses 2020; 12:v12121369. [PMID: 33266188 PMCID: PMC7761458 DOI: 10.3390/v12121369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Norovirus infections are a leading cause of acute gastroenteritis outbreaks worldwide and across all age groups, with two main genogroups (GI and GII) infecting humans. The aim of our study was to investigate the occurrence of norovirus in saliva samples from individuals involved in outbreaks of acute gastroenteritis in closed and semiclosed institutions, and its relationship with the virus strain, virus shedding in stool, the occurrence of symptoms, age, and the secretor status of the individual. Epidemiological and clinical information was gathered from norovirus outbreaks occurring in Catalonia, Spain during 2017–2018, and stool and saliva samples were collected from affected and exposed resident individuals and workers. A total of 347 saliva specimens from 25 outbreaks were analyzed. Further, 84% of individuals also provided a paired stool sample. For GII infections, norovirus was detected in 17.9% of saliva samples from symptomatic cases and 5.2% of asymptomatic individuals. Positivity in saliva occurred in both secretors and nonsecretors. None of the individuals infected by norovirus GI was positive for the virus in saliva. Saliva positivity did not correlate with any of the studied symptoms but did correlate with age ≥ 65 years old. Individuals who were positive in saliva showed higher levels of virus shedding in stool. Mean viral load in positive saliva was 3.16 ± 1.08 log10 genome copies/mL, and the predominance of encapsidated genomes was confirmed by propidium monoazide (PMA)xx-viability RTqPCR assay. The detection of norovirus in saliva raises the possibility of oral-to-oral norovirus transmission during the symptomatic phase and, although to a lesser extent, even in cases of asymptomatic infections.
Collapse
|
48
|
Parker CW, Singh N, Tighe S, Blachowicz A, Wood JM, Seuylemezian A, Vaishampayan P, Urbaniak C, Hendrickson R, Laaguiby P, Clark K, Clement BG, O'Hara NB, Couto-Rodriguez M, Bezdan D, Mason CE, Venkateswaran K. End-to-End Protocol for the Detection of SARS-CoV-2 from Built Environments. mSystems 2020; 5:e00771-20. [PMID: 33024053 PMCID: PMC7542562 DOI: 10.1128/msystems.00771-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019, is a respiratory virus primarily transmitted person to person through inhalation of droplets or aerosols, laden with viral particles. However, as recent studies have shown, virions can remain infectious for up to 72 h on surfaces, which can lead to transmission through contact. Thus, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end (E2E) study showed that the effective combination for monitoring SARS-CoV-2 on surfaces includes using an Isohelix swab collection tool, DNA/RNA Shield as a preservative, an automated system for RNA extraction, and reverse transcriptase quantitative PCR (RT-qPCR) as the detection assay. Using this E2E approach, this study showed that, in some cases, noninfectious viral fragments of SARS-CoV-2 persisted on surfaces for as long as 8 days even after bleach treatment. Additionally, debris associated with specific built environment surfaces appeared to inhibit and negatively impact the recovery of RNA; Amerstat demonstrated the highest inhibition (>90%) when challenged with an inactivated viral control. Overall, it was determined that this E2E protocol required a minimum of 1,000 viral particles per 25 cm2 to successfully detect virus from test surfaces. Despite our findings of viral fragment longevity on surfaces, when this method was employed to evaluate 368 samples collected from various built environmental surfaces, all samples tested negative, indicating that the surfaces were either void of virus or below the detection limit of the assay.IMPORTANCE The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus responsible for coronavirus disease 2019 [COVID-19]) pandemic has led to a global slowdown with far-reaching financial and social impacts. The SARS-CoV-2 respiratory virus is primarily transmitted from person to person through inhalation of infected droplets or aerosols. However, some studies have shown that virions can remain infectious on surfaces for days and can lead to human infection from contact with infected surfaces. Thus, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end study showed that the effective combination for monitoring SARS-CoV-2 on surfaces required a minimum of 1,000 viral particles per 25 cm2 to successfully detect virus from surfaces. This comprehensive study can provide valuable information regarding surface monitoring of various materials as well as the capacity to retain viral RNA and allow for effective disinfection.
Collapse
Affiliation(s)
- Ceth W Parker
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Nitin Singh
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Scott Tighe
- Vermont Integrative Genomics Resource, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Adriana Blachowicz
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jason M Wood
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Arman Seuylemezian
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Parag Vaishampayan
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Camilla Urbaniak
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- ZIN Technologies Inc., Middleburg Heights, Ohio, USA
| | - Ryan Hendrickson
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Pheobe Laaguiby
- Vermont Integrative Genomics Resource, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Kevin Clark
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brian G Clement
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Niamh B O'Hara
- Biotia, New York, New York, USA
- SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | | | - Daniela Bezdan
- Weill Medical College of Cornell University, New York, New York, USA
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, Tubingen, Germany
| | | | - Kasthuri Venkateswaran
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
49
|
Lv X, Wang L, Zhang J, Zeng H, Chen X, Shi L, Cui H, He X, Zhao L. Rapid and sensitive detection of VBNC Escherichia coli O157: H7 in beef by PMAxx and real-time LAMP. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107292] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Boles C, Brown G, Park JH, Nonnenmann M. The Optimization of Methods for the Collection of Aerosolized Murine Norovirus. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:199-208. [PMID: 32524378 DOI: 10.1007/s12560-020-09430-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/30/2020] [Indexed: 05/25/2023]
Abstract
Globally, norovirus is the most common gastroenteritis causing pathogen. Annually, norovirus causes 685 million cases of acute gastroenteritis and 200,000 deaths, worldwide. Recent evidence has suggested that norovirus can also be spread via aerosolization; however, an indoor generation source has yet to be determined. We optimized a sampling method for the collection of aerosolized norovirus using murine norovirus (MNV) as a surrogate. Optimization of the sampling method was performed using two bioaerosol samplers (SKC BioSampler and the NIOSH Bioaerosol Cyclone Sampler 251) and two sampling media (Hanks Balanced Salt Solution [HBSS] and Phosphate Buffered Saline [PBS]). Murine norovirus was aerosolized in a bioaerosol chamber and later collected using each sampler/media combination. Collected MNV was quantified using quantitative polymerase chain reaction (qPCR). Intact capsids of MNV were assessed using propidium monoazide dye in combination with qPCR and confirmed with transmission electron microscopy. Ten trials were conducted, with each trial lasting for 30 min. The SKC BioSampler collected a significantly higher concentration of MNV than the NIOSH-251 sampler did (p-value < 0.0001). However, there were no significant differences in the relative percent of MNV that remained viable between both samplers (p-value = 0.2215). The use of HBSS sampling media yielded a higher concentration of MNV than PBS media (p-value = 0.0125). However, PBS media maintained viability at a significantly higher percentage than HBSS media (p-value < 0.0001). The results support the optimization of a sampling method for the collection of aerosolized MNV and possibly norovirus in different sampling environments.
Collapse
Affiliation(s)
| | - Grant Brown
- College of Public Health, University of Iowa, Iowa City, USA
| | - Jae Hong Park
- School of Health Sciences, Purdue University, West Lafayette, USA
| | | |
Collapse
|